Dualities in Algebraic Logic

Yde Venema
Institute for Logic, Language and Computation
Universiteit van Amsterdam
https://staff.fnwi.uva.nl/y.venema

13 February 2018 LAC 2018, Melbourne

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

■ aim: study logics using methods from (universal) algebra

- aim: study logics using methods from (universal) algebra
- examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

- aim: study logics using methods from (universal) algebra
- examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

other examples:

- aim: study logics using methods from (universal) algebra
- examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

■ other examples:

interpolation: amalgamation completeness: representation

- aim: study logics using methods from (universal) algebra
- examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

■ other examples:

interpolation: amalgamation completeness: representation

abstract algebraic logic: study Logic using methods from (universal) algebra

Duality

■ in mathematics: categorical dualities

Duality

- in mathematics: categorical dualities
- \blacksquare C and D are dual(ly equivalent) if C and D° are equivalent

Duality

- in mathematics: categorical dualities
- C and D are dual(ly equivalent) if C and D° are equivalent i.e. there are contravariant functors linking C and D

verbal visual

verbal visual

algebra geometry

verbal visual
algebra geometry
syntax semantics

verbal visual
algebra geometry
syntax semantics

Stone duality:

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
- **.** . . .

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
- **.** . . .

Contravariance

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
- **.**..

Contravariance In all these examples both categories are concrete!

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)
- ..., and of course their morphisms!

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)
- ..., and of course their morphisms!

Aim:

- introduce TKS
- develop duality between MA and TKS

- \blacksquare $\mathbb{A} = (A, \vee, -, \perp, \diamondsuit)$ is a modal algebra if
 - $(A, \lor, -, \bot)$ is a Boolean algebra
 - ▶ \diamondsuit : $A \rightarrow A$ preserves finite joins:

$$\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b$$

- \blacksquare $\mathbb{A} = (A, \vee, -, \perp, \diamondsuit)$ is a modal algebra if
 - $(A, \lor, -, \bot)$ is a Boolean algebra
 - ▶ \diamondsuit : $A \to A$ preserves finite joins:

$$\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b$$

- $h: \mathbb{A}' \to \mathbb{A}$ is an MA-morphism if it preserves all operations:
 - $h(a' \lor' b') = h(a') \lor h(b'), \ldots, h(\diamondsuit'a') = \diamondsuit h(a').$

- \blacksquare $\mathbb{A} = (A, \vee, -, \perp, \diamondsuit)$ is a modal algebra if
 - $(A, \lor, -, \bot)$ is a Boolean algebra
 - $\diamond: A \to A$ preserves finite joins:
 - $\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b$
- $h: \mathbb{A}' \to \mathbb{A}$ is an MA-morphism if it preserves all operations:
 - $h(a' \lor' b') = h(a') \lor h(b'), \ldots, h(\diamondsuit'a') = \diamondsuit h(a').$
- MA is the category of modal algebras with MA-morphisms

- \blacksquare $\mathbb{A} = (A, \vee, -, \perp, \diamondsuit)$ is a modal algebra if
 - $(A, \lor, -, \bot)$ is a Boolean algebra
 - $\diamond: A \to A$ preserves finite joins:
 - $\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b$
- $h: \mathbb{A}' \to \mathbb{A}$ is an MA-morphism if it preserves all operations:
 - $h(a' \lor' b') = h(a') \lor h(b'), \ldots, h(\diamondsuit' a') = \diamondsuit h(a').$
- MA is the category of modal algebras with MA-morphisms
- \blacksquare A modal logic L can be algebraized by a variety V_L of modal algebras

- \blacksquare $\mathbb{A} = (A, \vee, -, \perp, \diamondsuit)$ is a modal algebra if
 - $(A, \lor, -, \bot)$ is a Boolean algebra
 - $\diamondsuit: A \to A$ preserves finite joins:
 - $\Diamond \bot = \bot \text{ and } \Diamond (a \lor b) = \Diamond a \lor \Diamond b$
- $h: \mathbb{A}' \to \mathbb{A}$ is an MA-morphism if it preserves all operations:
 - $h(a' \lor' b') = h(a') \lor h(b'), \ldots, h(\diamondsuit'a') = \diamondsuit h(a').$
- MA is the category of modal algebras with MA-morphisms
- \blacksquare A modal logic L can be algebraized by a variety V_L of modal algebras
- Modal algebras are (the simplest) Boolean Algebras with Operators

Kripke structures

- A Kripke structure (frame) is a pair S = (S, R) with $R \subseteq S \times S$
- ▶ these provide the possible-world semantics of modal logic

Kripke structures

- A Kripke structure (frame) is a pair S = (S, R) with $R \subseteq S \times S$
- ▶ these provide the possible-world semantics of modal logic
- $f:(S',R') \rightarrow (S,R)$ is a bounded morphism if
 - ightharpoonup R's't' implies Rf(s')f(t')
 - ▶ Rf(s')t implies the existence of t' with R's't' and f(t') = t.

Kripke structures

- A Kripke structure (frame) is a pair S = (S, R) with $R \subseteq S \times S$
- these provide the possible-world semantics of modal logic
- $f:(S',R') \rightarrow (S,R)$ is a bounded morphism if
 - ightharpoonup R's't' implies Rf(s')f(t')
 - ▶ Rf(s')t implies the existence of t' with R's't' and f(t') = t.
- KS is the category of Kripke structures with bounded morphisms

Stone spaces

- \blacksquare A (topological) space is a pair (S, τ) where τ is a topology on S
- A Stone space is a space (S, τ) where τ is
 - compact,
 - Hausdorff
 - zero-dimensional (i.e. it has a basis of clopen sets)
- Stone is the category of Stone spaces and continuous functions

```
From Stone spaces to Boolean algebras: (\cdot)^*
Objects Given (S,\tau) take (S,\tau)^*:=(\mathit{Clp}(\tau),\cup,\sim_S,\varnothing)
Arrows Given f:(S',\tau')\to(S,\tau) define f^*:\mathit{Clp}(\tau)\to\mathit{Clp}(\tau')
f^*(X):=\{s'\in S'\mid fs'\in X\}
```

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S,τ) take $(S,\tau)^*:=(\mathit{Clp}(\tau),\cup,\sim_S,\varnothing)$ Arrows Given $f:(S',\tau')\to(S,\tau)$ define $f^*:\mathit{Clp}(\tau)\to\mathit{Clp}(\tau')$ $f^*(X):=\{s'\in S'\mid fs'\in X\}$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \vee, -, \perp)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S,τ) take $(S,\tau)^*:=(\mathit{Clp}(\tau),\cup,\sim_S,\varnothing)$ Arrows Given $f:(S',\tau')\to(S,\tau)$ define $f^*:\mathit{Clp}(\tau)\to\mathit{Clp}(\tau')$ $f^*(X):=\{s'\in S'\mid fs'\in X\}$ From Boolean algebras to Stone spaces: $(\cdot)_*$

From Stone spaces to Boolean algebras: $(\cdot)^*$

Objects Given
$$(S, \tau)$$
 take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$

Arrows Given
$$f:(S',\tau') \to (S,\tau)$$
 define $f^*: Clp(\tau) \to Clp(\tau')$

$$f^*(X) := \{s' \in S' \mid \mathit{fs'} \in X\}$$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given
$$\mathbb{A} = (A, \vee, -, \perp)$$
 take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where

- ▶ Uf(A) is the set of ultrafilters of A and
- ▶ $\sigma_{\mathbb{A}}$ is generated by the basis $\{\widehat{a} \mid a \in A\}$
- with $\widehat{a} := \{u \in UF(\mathbb{A}) \mid a \in u\}$

Stone duality

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f:(S',\tau')\to (S,\tau)$ define $f^*:Clp(\tau)\to Clp(\tau')$ $f^*(X) := \{ s' \in S' \mid fs' \in X \}$ From Boolean algebras to Stone spaces: $(\cdot)_*$ Objects Given $\mathbb{A} = (A, \vee, -, \perp)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where ightharpoonup Uf(A) is the set of ultrafilters of A and \bullet $\sigma_{\mathbb{A}}$ is generated by the basis $\{\widehat{a} \mid a \in A\}$ ▶ with $\hat{a} := \{u \in UF(\mathbb{A}) \mid a \in u\}$ Arrows Given $h: \mathbb{A}' \to \mathbb{A}$ define $h_*: Uf(\mathbb{A}) \to Uf(\mathbb{A}')$ by $h_*(u) := \{a' \in A' \mid ha' \in u\}$

Stone duality 2

Theorem

The functors $(\cdot)^*$ and $(\cdot)_*$ witness the dual equivalence of BA and Stone.

Stone duality 2

Theorem

The functors $(\cdot)^*$ and $(\cdot)_*$ witness the dual equivalence of BA and Stone.

This is a natural duality evolving around the schizophrenic object 2

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle)$, where

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle)$, where $\land R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \varnothing \}$

Arrows Given $f:(S',R')\to (S,R)$ define f^+ as inverse image

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given
$$(S,R)$$
 take $(S,R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle)$, where $\blacktriangleright \langle R \rangle(X) := \{ s \in S \mid R[s] \cap X \neq \varnothing \}$
Arrows Given $f: (S',R') \to (S,R)$ define f^+ as inverse image

■ The operation $\langle R \rangle$ encodes the semantics of the modal diamond

```
Objects Given (S,R) take (S,R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle), where \blacktriangleright \langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \varnothing \} Arrows Given f: (S',R') \to (S,R) define f^+ as inverse image
```

- lacksquare The operation $\langle R
 angle$ encodes the semantics of the modal diamond
- \blacksquare $(S,R)^+$ is the complex algebra of (S,R)

```
Objects Given (S,R) take (S,R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle), where \blacktriangleright \langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \varnothing \}
Arrows Given f : (S',R') \to (S,R) define f^+ as inverse image
```

- The operation $\langle R \rangle$ encodes the semantics of the modal diamond
- \blacksquare $(S,R)^+$ is the complex algebra of (S,R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive

```
Objects Given (S,R) take (S,R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle), where \blacktriangleright \langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \varnothing \}
Arrows Given f: (S',R') \to (S,R) define f^+ as inverse image
```

- lacktriangle The operation $\langle R \rangle$ encodes the semantics of the modal diamond
- \blacksquare $(S,R)^+$ is the complex algebra of (S,R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
- \blacksquare (·)⁺ is part of a discrete duality between PMA and KS

Objects Given
$$(S,R)$$
 take $(S,R)^+ := (PS, \cup, \sim_S, \varnothing, \langle R \rangle)$, where $\blacktriangleright \langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \varnothing \}$
Arrows Given $f : (S',R') \to (S,R)$ define f^+ as inverse image

- lacktriangle The operation $\langle R \rangle$ encodes the semantics of the modal diamond
- \blacksquare $(S,R)^+$ is the complex algebra of (S,R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
- (·)⁺ is part of a discrete duality between PMA and KS (with the opposite functor (·)₊ taking the atom structure of a PMA)

From modal algebras to Kripke structures:

From modal algebras to Kripke structures:

Objects With
$$\mathbb{A} = (A, \vee, -, \perp, \diamond)$$
 take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamond})$, where

From modal algebras to Kripke structures:

Objects With
$$\mathbb{A}=(A,\vee,-,\perp,\diamondsuit)$$
 take $\mathbb{A}_{\bullet}:=(Uf(\mathbb{A}),Q_{\diamondsuit})$, where $Q_{\diamondsuit}uv$ iff $\forall a\in v.\diamondsuit a\in u$

From modal algebras to Kripke structures:

Objects With
$$\mathbb{A}=(A,\vee,-,\perp,\diamondsuit)$$
 take $\mathbb{A}_{\bullet}:=(Uf(\mathbb{A}),Q_{\diamondsuit})$, where $Q_{\diamondsuit}uv$ iff $\forall a\in v.\diamondsuit a\in u$

Arrows Given $f: \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

lacksquare These operations provide a functor: MA ightarrow KS

From modal algebras to Kripke structures:

Objects With
$$\mathbb{A}=(A,\vee,-,\perp,\diamondsuit)$$
 take $\mathbb{A}_{\bullet}:=(Uf(\mathbb{A}),Q_{\diamondsuit})$, where $Q_{\diamondsuit}uv$ iff $\forall a\in v.\diamondsuit a\in u$

Arrows Given $f: \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

- \blacksquare These operations provide a functor: MA \rightarrow KS
- A_• is the ultrafilter structure or canonical structure of A

From modal algebras to Kripke structures:

Objects With
$$\mathbb{A}=(A,\vee,-,\perp,\diamondsuit)$$
 take $\mathbb{A}_{\bullet}:=(Uf(\mathbb{A}),Q_{\diamondsuit})$, where $Q_{\diamondsuit}uv$ iff $\forall a\in v.\diamondsuit a\in u$

Arrows Given $f: \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

- \blacksquare These operations provide a functor: MA \rightarrow KS
- A. is the ultrafilter structure or canonical structure of A
- \blacksquare A embeds in its canonical extension $(\mathbb{A}_{\bullet})^+$

From modal algebras to Kripke structures:

Objects With
$$\mathbb{A}=(A,\vee,-,\perp,\diamondsuit)$$
 take $\mathbb{A}_{\bullet}:=(Uf(\mathbb{A}),Q_{\diamondsuit})$, where $Q_{\diamondsuit}uv$ iff $\forall a\in v.\diamondsuit a\in u$

Arrows Given $f: \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

- \blacksquare These operations provide a functor: MA \rightarrow KS
- A_• is the ultrafilter structure or canonical structure of A
- \blacksquare A embeds in its canonical extension $(\mathbb{A}_{\bullet})^+$
- Open Problem characterize the ultrafilter structures modulo isomorphism

- A topological Kripke structure is a triple (S, R, τ) such that
 - ▶ (S, R) is a Kripke structure
 - (S, τ) is a Stone space

- A topological Kripke structure is a triple (S, R, τ) such that
 - \triangleright (S, R) is a Kripke structure
 - (S, τ) is a Stone space
 - ▶ $\langle R \rangle X$ is clopen if $X \subseteq S$ is clopen

- A topological Kripke structure is a triple (S, R, τ) such that
 - \triangleright (S, R) is a Kripke structure
 - (S, τ) is a Stone space
 - ▶ $\langle R \rangle X$ is clopen if $X \subseteq S$ is clopen
 - ► *R*(*s*) is closed

- A topological Kripke structure is a triple (S, R, τ) such that
 - \triangleright (S, R) is a Kripke structure
 - (S, τ) is a Stone space
 - ▶ $\langle R \rangle X$ is clopen if $X \subseteq S$ is clopen
 - ▶ R(s) is closed
- ► TKS is the category with
 - objects: topological Kripke structures
 - arrows: continuous bounded morphism

Topological modal duality

From modal algebras to topological Kripke structures: $(\cdot)_*$ Objects Given $\mathbb{A} = (A, \vee, -, \bot, \diamondsuit)$ take $\mathbb{A}_* := (Uf(\mathbb{A}), Q_{\diamondsuit}, \sigma_{\mathbb{A}})$ Arrows Given $h : \mathbb{A}' \to \mathbb{A}$ define h_* as inverse image

From topological Kripke structures to modal algebras: $(\cdot)^*$

Objects Given
$$\mathbb{S} = (S, R, \tau)$$
 take $\mathbb{S}^* := (Clp(\tau), \cup, \sim_S, \varnothing, \langle R \rangle)$

Arrows Given $f: \mathbb{S}' \to \mathbb{S}$ define f^* as inverse image

Theorem

The functors $(\cdot)^*$ and $(\cdot)_*$ witness the dual equivalence of MA and TKS:

History:

■ Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .
- algebraic logic || modal logic

Research Topics:

 \blacksquare (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

- (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$
- lacktriangle (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+
 - e.g. $\mathbb{S} \models \forall vRvv \text{ iff } \mathbb{S}^+ \models x \leq \Diamond x$

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

- (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$
- lacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+
 - e.g. $\mathbb{S} \models \forall vRvv \text{ iff } \mathbb{S}^+ \models x \leq \Diamond x$
- (canonicity & correspondence) Sahlqvist theorem

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

- (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$
- \blacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+
 - e.g. $\mathbb{S} \models \forall vRvv \text{ iff } \mathbb{S}^+ \models x \leq \Diamond x$
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

- \blacksquare (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$
- lacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+
 - e.g. $\mathbb{S} \models \forall vRvv \text{ iff } \mathbb{S}^+ \models x \leq \Diamond x$
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions, ...

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

- (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$
- lacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+
 - e.g. $\mathbb{S} \models \forall vRvv \text{ iff } \mathbb{S}^+ \models x \leq \Diamond x$
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions, ...
- study free modal algebras

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

- (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$
- \blacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+
 - e.g. $\mathbb{S} \models \forall v R v v \text{ iff } \mathbb{S}^+ \models x \leq \Diamond x$
- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions, . . .
- study free modal algebras
- **.** . . .

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Subdirect Irreducibility

 \blacksquare Given an algebra $\mathbb{A},$ let Con \mathbb{A} be its lattice of congruences

Subdirect Irreducibility

- Given an algebra A, let ConA be its lattice of congruences
- \blacksquare A is simple if ConA \cong 2
- \blacksquare A is subdirectly irreducible if ConA has a least non-identity element

Subdirect Irreducibility

- Given an algebra A, let ConA be its lattice of congruences
- \blacksquare A is simple if ConA \cong 2
- A is subdirectly irreducible if ConA has a least non-identity element
- Birkhoff: every variety is generated by its s.i. members

Subdirect Irreducibility

- Given an algebra A, let ConA be its lattice of congruences
- \blacksquare A is simple if ConA \cong 2
- A is subdirectly irreducible if ConA has a least non-identity element
- Birkhoff: every variety is generated by its s.i. members

Question What is the dual of an s.i. modal algebra?

Subdirect Irreducibility

- Given an algebra A, let ConA be its lattice of congruences
- \blacksquare A is simple if ConA \cong 2
- A is subdirectly irreducible if ConA has a least non-identity element
- Birkhoff: every variety is generated by its s.i. members

Question What is the dual of an s.i. modal algebra?

Folklore Subdirect irreducibility is related to rootedness

Roots

Auxiliary definitions

- $\blacksquare R^{\omega} := \bigcup_{n>0} R^n,$
 - where $R^0 := Id_S$ and $R^{n+1} := R \circ R^n$

Roots

Auxiliary definitions

- $\blacksquare R^{\omega} := \bigcup_{n>0} R^n$,
 - where $R^0 := Id_S$ and $R^{n+1} := R \circ R^n$
- $\blacksquare R(s) := \{t \in S \mid Rst\}$

Roots

Auxiliary definitions

- \blacksquare $R^{\omega} := \bigcup_{n>0} R^n$,
 - where $R^0 := Id_S$ and $R^{n+1} := R \circ R^n$
- $\blacksquare R(s) := \{t \in S \mid Rst\}$
- \blacksquare $r \in S$ is a root of \mathbb{S} if $S = R^{\omega}(r)$
- \blacksquare \mathbb{S} is rooted if its collection $W_{\mathbb{S}}$ of roots is non-empty

Proposition (folklore) $W_{\mathbb{S}} \neq \emptyset$ (\mathbb{S} is rooted) iff \mathbb{S}^+ is s.i.

Proposition (folklore)

 $W_{\mathbb{S}} \neq \emptyset$ (S is rooted) iff \mathbb{S}^+ is s.i.

Example (Sambin)

There are rooted TKSs of which the dual algebra is not s.i.

Proposition (folklore)

 $W_{\mathbb{S}} \neq \emptyset$ (S is rooted) iff \mathbb{S}^+ is s.i.

Example (Sambin)

There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)

(1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i.

Proposition (folklore)

 $W_{\mathbb{S}} \neq \emptyset$ (S is rooted) iff S⁺ is s.i.

Example (Sambin)

There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)

- (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i.
- (2) If \mathbb{A} is s.i. then $Int(W_{\mathbb{A}_*}) \neq \emptyset$

Proposition (folklore)

 $W_{\mathbb{S}} \neq \emptyset$ (S is rooted) iff \mathbb{S}^+ is s.i.

Example (Sambin)

There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)

- (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i.
- (2) If $\mathbb A$ is s.i. then $Int(W_{\mathbb A_*}) \neq \emptyset$, provided $\mathbb A$ is $(\omega$ -)transitive.

Proposition (folklore)

 $W_{\mathbb{S}} \neq \emptyset$ (S is rooted) iff \mathbb{S}^+ is s.i.

Example (Sambin)

There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)

- (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i.
- (2) If $\mathbb A$ is s.i. then $Int(W_{\mathbb A_*}) \neq \emptyset$, provided $\mathbb A$ is $(\omega$ -)transitive.

Example (Kracht)

There are simple algebras of which the dual structure has no roots.

Proposition (folklore)

 $W_{\mathbb{S}} \neq \emptyset$ (S is rooted) iff \mathbb{S}^+ is s.i.

Example (Sambin)

There are rooted TKSs of which the dual algebra is not s.i.

Proposition (Sambin)

- (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i.
- (2) If $\mathbb A$ is s.i. then $Int(W_{\mathbb A_*}) \neq \emptyset$, provided $\mathbb A$ is $(\omega$ -)transitive.

Example (Kracht)

There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg)

 \mathbb{A} is s.i. iff \mathbb{A}_* has a largest nontrivial, closed hereditary subset.

Fix a modal algebra \mathbb{A} .

lacksquare r is a root of \mathbb{A}_* iff $Q^\omega_{\diamondsuit}(r) = Uf(\mathbb{A})$

- lacksquare r is a root of \mathbb{A}_* iff $Q^\omega_{\diamondsuit}(r) = Uf(\mathbb{A})$
- $\blacksquare Q_{\Diamond}^{\omega}uv \text{ iff } \exists n \in \omega \forall a \in v. \Diamond^{n}a \in u$

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamondsuit}(r) = Uf(\mathbb{A})$
- $\blacksquare Q_{\Diamond}^{\omega}uv \text{ iff } \exists n \in \omega \forall a \in v. \Diamond^{n}a \in u$
- Define Q_{\Diamond}^{\star} by putting $Q_{\Diamond}^{\star}uv$ iff $\forall a \in v \exists n \in \omega. \Diamond^{n}a \in u$

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamondsuit}(r) = Uf(\mathbb{A})$
- $\blacksquare Q_{\diamond}^{\omega} uv \text{ iff } \exists n \in \omega \forall a \in v. \diamond^n a \in u$
- Define Q_{\Diamond}^{\star} by putting $Q_{\Diamond}^{\star}uv$ iff $\forall a \in v \exists n \in \omega. \Diamond^{n}a \in u$
- Call $r \in Uf(\mathbb{A})$ a topo-root if $Q_{\diamondsuit}^{\star}(r) = Uf(\mathbb{A})$

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\Diamond}(r) = Uf(\mathbb{A})$
- $\blacksquare Q_{\diamond}^{\omega} uv \text{ iff } \exists n \in \omega \forall a \in v. \diamond^n a \in u$
- Define Q_{\Diamond}^{\star} by putting $Q_{\Diamond}^{\star}uv$ iff $\forall a \in v \exists n \in \omega. \Diamond^{n}a \in u$
- Call $r \in Uf(\mathbb{A})$ a topo-root if $Q_{\diamondsuit}^{\star}(r) = Uf(\mathbb{A})$
- Let $T_{\mathbb{A}_*}$ denote the collection of topo-roots of \mathbb{A}_*

Observations

Proposition For any modal algebra A:

- (1) Q^* is transitive
- (2) $Q^{\omega} \subseteq Q^{\star}$
- (3) $Q^*(u)$ is hereditary for any ultrafilter u
- (4) $Q^*(u)$ is closed for any ultrafilter u
- (5) $Q^*(u) = \overline{Q^\omega(u)}$ for any ultrafilter u
- (6) $\langle Q^{\star} \rangle$ maps opens to opens
- (7) If Q is transitive then $Q=Q^{\omega}=Q^{\star}$

Theorem For any modal algebra \mathbb{A} :

(1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$

Theorem For any modal algebra A:

- (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$
- (2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Theorem For any modal algebra A:

- (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$
- (2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Note Earlier results follow from this.

Theorem For any modal algebra A:

- (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$
- (2) A is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Note Earlier results follow from this.

Theorem (Birchall)

Similar results for distributive modal algebras (based on distr. lattices).

Theorem For any modal algebra A:

- (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$
- (2) A is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Note Earlier results follow from this.

Theorem (Birchall)

Similar results for distributive modal algebras (based on distr. lattices).

Suggestion Develop the modal theory of Q^*

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

- ▶ $\forall s \in F \exists U \in \mathcal{U}. s \in U$ and
- ▶ $\forall U \in \mathcal{U} \exists s \in F . s \in U$

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

- ▶ $\forall s \in F \exists U \in \mathcal{U}. s \in U$ and
- ▶ $\forall U \in \mathcal{U} \exists s \in F . s \in U$
- These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$,

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

- ▶ $\forall s \in F \exists U \in \mathcal{U}. s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F . s \in U$
- These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$, the Vietoris topology v_{τ}

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- \blacksquare K(X) denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$\nabla \mathcal{U} := \{ F \in K(\mathbb{X}) \mid (F, \mathcal{U}) \in \overline{P}(\in) \},$$

- $\forall s \in F \exists U \in \mathcal{U}. s \in U \text{ and }$
- $\forall U \in \mathcal{U} \exists s \in F . s \in U$
- These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$, the Vietoris topology v_{τ}
- \blacksquare $V(X) := \langle K(X), v_{\tau} \rangle$ is the Vietoris space of X.

Different presentation:

■ For $a \in \tau$, define

$$\diamond a := \{ F \in K(\mathbb{X}) \mid F \cap a \neq \emptyset \}$$

$$\square a := \{F \in K(\mathbb{X}) \mid F \subseteq a\}$$

Different presentation:

■ For $a \in \tau$, define

■ Generate v_{τ} from $\{\langle \ni \rangle a, [\ni] \mid a \in \tau\}$ as a subbasis.

Different presentation:

■ For $a \in \tau$, define

■ Generate v_{τ} from $\{\langle \ni \rangle a, [\ni] \mid a \in \tau\}$ as a subbasis.

Fact The Vietoris construction preserves various properties, including:

- compactness
- compact Hausdorfness
- zero-dimensionality

The Vietoris functor

From now on we restrict to the category KHaus of

objects: compact Hausdorff spaces

► arrows: continuous maps

Fact Given $f: \mathbb{X} \to \mathbb{Y}$,

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : \mathbb{X} \to \mathbb{Y}$, let $Vf : K(\mathbb{X}) \to P(Y)$ be given by

$$\mathbf{V}f(F) := f[F] \qquad \Big(= \{ fx \mid x \in F \} \Big)$$

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f: \mathbb{X} \to \mathbb{Y}$, let $\forall f: K(\mathbb{X}) \to P(Y)$ be given by

$$\mathbf{V}f(F) := f[F] \qquad \Big(= \{ fx \mid x \in F \} \Big)$$

Then Vf maps compact sets to compact sets.

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f: \mathbb{X} \to \mathbb{Y}$, let $\forall f: K(\mathbb{X}) \to P(Y)$ be given by

$$\mathbf{V}f(F) := f[F] \qquad \Big(= \{ fx \mid x \in F \} \Big)$$

Then Vf maps compact sets to compact sets.

Fact

V is a functor on the categories KHaus and Stone.

Observation Stone duality and the Vietoris functor:

Observation (Esakia) In a TKS (S, R, τ) , $R: S \rightarrow P(S)$

Observation Stone duality and the Vietoris functor:

Observation (Esakia)

In a TKS (S, R, τ) , $R: S \to P(S)$ is an arrow $R: (S, \tau) \to V(S, \tau)$

Observation Stone duality and the Vietoris functor:

Observation (Esakia)

In a TKS
$$(S, R, \tau)$$
, $R: S \to P(S)$ is an arrow $R: (S, \tau) \to V(S, \tau)$

Theorem

Topological Kripke frames are Vietoris coalgebras over Stone

► Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems

- ► Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- ▶ It provides a natural framework for notions like
 - behavior

- ► Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- ▶ It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence

- ► Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- ▶ It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants

- ► Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- ▶ It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- Sufficiently general to model notions like: input, output, non-determinism, interaction, probability, ...

Let $T: C \to C$ be an endofunctor on the category C

Let $T: C \to C$ be an endofunctor on the category C

■ An T-coalgebra is a pair $(c, \gamma : c \rightarrow Tc)$.

Let $T: C \to C$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma : c \to Tc)$.
- A coalgebra morphism between two coalgebras (c', γ') and (c, γ) is an arrow $f: c' \to C$ with

Let $T: C \to C$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma : c \rightarrow Tc)$.
- A coalgebra morphism between two coalgebras (c', γ') and (c, γ) is an arrow $f : c' \to C$ with

Examples:

- Kripke structures are P-coalgebras over Set
- deterministics finite automata are coalgebras over Set

 $\textbf{Theorem} \ \mathsf{TKS} \cong \mathsf{Coalg}_{\mathsf{V}}(\mathsf{Stone})$

Theorem TKS \cong Coalg_V(Stone)

Manifestations:

■ The final V-coalgebra \sim the canonical general frame (C, R, τ) ,

Theorem TKS \cong Coalg_V(Stone)

Manifestations:

- The final V-coalgebra \sim the canonical general frame (C, R, τ) ,
- the map $s \mapsto R(s)$ is a homeomorphism $R: (C, \tau) \to V(C, \tau)$

Theorem TKS \cong Coalg_V(Stone)

Manifestations:

- The final V-coalgebra \sim the canonical general frame (C, R, τ) ,
- the map $s \mapsto R(s)$ is a homeomorphism $R : (C, \tau) \to V(C, \tau)$

Duality:

Theorem TKS \cong Coalg_V(Stone)

Manifestations:

- The final V-coalgebra \sim the canonical general frame (C, R, τ) ,
- lacktriangledown the map $s\mapsto R(s)$ is a homeomorphism R:(C, au) o V(C, au)

Duality:

■ Johnstone: describe M via generators and relations

- Johnstone: describe M via generators and relations
- Given a BA B, MB is the Boolean algebra
 - ▶ generated by the set $\{ \underline{\diamond} b : b \in B \}$
 - ▶ modulo the relations $\Diamond(a \lor b) = \underline{\Diamond a} \lor \underline{\Diamond b}$ and $\underline{\Diamond \top} = \top$

- Johnstone: describe M via generators and relations
- Given a BA B, MB is the Boolean algebra
 - ▶ generated by the set $\{ \underline{\diamond} b : b \in B \}$
 - ▶ modulo the relations $\Diamond(a \lor b) = \underline{\Diamond a} \lor \underline{\Diamond b}$ and $\underline{\Diamond \top} = \top$

Theorem (Kupke, Kurz & Venema) $ModAlg \cong ALg_{BA}(M)$.

- Johnstone: describe M via generators and relations
- \blacksquare Given a BA \mathbb{B} , \mathbb{MB} is the Boolean algebra
 - ▶ generated by the set $\{ \underline{\diamond} b : b \in B \}$
 - ▶ modulo the relations $\Diamond(a \lor b) = \underline{\Diamond a} \lor \underline{\Diamond b}$ and $\underline{\Diamond \top} = \top$

Theorem (Kupke, Kurz & Venema) $ModAlg \cong ALg_{BA}(M)$.

The topological modal duality is an algebra coalgebra duality

Frames/Locales provide pointfree versions of topologies.

Geometric modal logic dualizes/axiomatizes the Vietoris functor (Johnstone)

Vietoris pointfree (Johnstone Functor)

Given a frame \mathbb{L} , define $L_{\square} := \{ \square a \mid a \in L \}$ and $L_{\lozenge} := \{ \lozenge a \mid a \in L \}$.

Vietoris and the Cover Modality ∇

 \blacktriangleright Vietoris used the $\nabla\text{-constructor}$ on $P_\omega\tau$

Vietoris and the Cover Modality ∇

- ▶ Vietoris used the ∇ -constructor on $P_{\omega}\tau$
- lacktriangle Now think of abla as a primitive modality

Vietoris and the Cover Modality ∇

- ▶ Vietoris used the ∇ -constructor on $P_{\omega}\tau$
- ightharpoonup Now think of ∇ as a primitive modality
- ▶ This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)

Vietoris and the Cover Modality ∇

- ▶ Vietoris used the ∇ -constructor on $P_{\omega}\tau$
- ightharpoonup Now think of ∇ as a primitive modality
- ▶ This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
- ► May develop ∇-logic . . .

Vietoris and the Cover Modality ∇

- ▶ Vietoris used the ∇ -constructor on $P_{\omega}\tau$
- ightharpoonup Now think of ∇ as a primitive modality
- ▶ This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
- ▶ May develop ∇-logic . . .
- lacksquare . . . and formulate the functor M accordingly, in terms of abla

Fix a standard set functor $\ensuremath{\mathsf{T}}$ that preserves weak pullbacks.

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{M}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3)\rangle,$$

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame \mathbb{L} as

$$\mathsf{M}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame \mathbb{L} as

$$\mathsf{M}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

$$(\nabla 1) \quad \nabla \alpha \le \nabla \beta \qquad (\alpha \ \overline{\mathsf{T}} \le \beta)$$

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{M}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3)\rangle,$$

$$(\nabla 1) \quad \nabla \alpha \leq \nabla \beta \qquad \qquad (\alpha \ \overline{\mathsf{T}} \leq \beta)$$

$$(\nabla 2) \quad \bigwedge_{\gamma \in \Gamma} \nabla \gamma \leq \bigvee \{ \nabla (\mathsf{T} \bigwedge) \Psi \mid \Psi \in \mathit{SRD}(\Gamma) \} \quad (\Gamma \in \mathsf{P}_{\omega} \mathsf{T}_{\omega} L)$$

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{M}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3)\rangle,$$

$$(\nabla 1) \quad \nabla \alpha \le \nabla \beta \qquad \qquad (\alpha \ \overline{\mathsf{T}} \le \beta)$$

$$(\nabla 2) \quad \bigwedge_{\gamma \in \Gamma} \nabla \gamma \leq \bigvee \{ \nabla (\mathsf{T} \bigwedge) \Psi \mid \Psi \in \mathit{SRD}(\Gamma) \} \quad (\Gamma \in \mathsf{P}_{\omega} \mathsf{T}_{\omega} L)$$

$$(\nabla 3) \quad \nabla (\mathsf{T} \bigvee) \Phi \leq \bigvee \{ \nabla \beta \mid \beta \ \overline{\mathsf{T}} \in \Phi \} \qquad \qquad (\Phi \in \mathsf{T}_{\omega} \mathsf{P} \mathsf{L})$$

Theorem (V., Vickers & Vosmaer) Given a set funtor T that preserves weak pullbacks:

 \blacksquare M_T provides a functor on the category Fr of frames.

Theorem (V., Vickers & Vosmaer) Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.

Theorem (V., Vickers & Vosmaer)

Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.

Theorem (V., Vickers & Vosmaer)

Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- \blacksquare M_T generalizes Johnstone's M: M \cong M_P.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Theorem (V., Vickers & Vosmaer)

Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Theorem (V., Vickers & Vosmaer)

Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Theorem (V., Vickers & Vosmaer)

Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Theorem (V., Vickers & Vosmaer)

Given a set funtor T that preserves weak pullbacks:

- \blacksquare M_T provides a functor on the category Fr of frames.
- M_T generalizes Johnstone's M: $M \cong M_P$.
- M_T preserves regularity, zero-dimensionality, and Stone-ness.
- M_T restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Describe the dual of M_T for an arbitrary set functor T!

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

■ Dualities are particularly useful if both categories are concrete

- Dualities are particularly useful if both categories are concrete
- Dualities can be used 'on the other side' to
 - ▶ solve problems

- Dualities are particularly useful if both categories are concrete
- Dualities can be used 'on the other side' to
 - ▶ solve problems
 - ▶ isolate interesting concepts

- Dualities are particularly useful if both categories are concrete
- Dualities can be used 'on the other side' to
 - solve problems
 - ▶ isolate interesting concepts
 - ▶ trigger interesting questions

References

- Y. Venema. A dual characterization of subdirectly irreducible BAOs. Studia Logica, 77 (2004) 105–115.
- C. Kupke, A. Kurz and Y. Venema. Stone Coalgebras. Theoretical Computer Science 327 (2004) 109–134.
- ► Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem, and F. Wolter, editors, *Handbook of Modal Logic*. Elsevier, 2006.
- Y. Venema, S. Vickers and J. Vosmaer. Generalized powerlocales via relation lifting. Mathematical Structures in Computer Science 23 (2013) pp. 142-199.
- ➤ Y. Venema and J. Vosmaer, Modal logic and the Vietoris functor. In G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics. Springer, 2014.

http://staff.fnwi.uva.nl/y.venema