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Algebraic Logic

� aim: study logics using methods from (universal) algebra

� examples:
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intuitionistic logic: Heyting algebras
first-order logic: cylindric algebras

� other examples:
interpolation: amalgamation
completeness: representation

� abstract algebraic logic:
study Logic using methods from (universal) algebra
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Variants of Stone duality

� Heyting algebra vs Esakia spaces

� compact regular frames vs compact Hausdorff spaces

� distributive lattices vs Priestley spaces

� modal algebras vs topological Kripke structures

� cylindric algebras vs . . .

� . . .

Contravariance In all these examples both categories are concrete!
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� Kripke structures (KS)

� Stone spaces (Stone)

� topological Kripke structures (TKS)

� . . . , and of course their morphisms!

Aim:

� introduce TKS

� develop duality between MA and TKS
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Modal Algebras

� A = (A,∨,−,⊥,3) is a modal algebra if
I (A,∨,−,⊥) is a Boolean algebra

I 3 : A→ A preserves finite joins:
3⊥ = ⊥ and 3(a ∨ b) = 3a ∨3b

� h : A′ → A is an MA-morphism if it preserves all operations:
I h(a′ ∨′ b′) = h(a′) ∨ h(b′), . . . , h(3′a′) = 3h(a′).

� MA is the category of modal algebras with MA-morphisms

� A modal logic L can be algebraized by a variety VL of modal algebras

� Modal algebras are (the simplest) Boolean Algebras with Operators
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Kripke structures

� A Kripke structure (frame) is a pair S = (S ,R) with R ⊆ S × S

I these provide the possible-world semantics of modal logic

� f : (S ′,R ′)→ (S ,R) is a bounded morphism if
I R ′s ′t′ implies Rf (s ′)f (t′)

I Rf (s ′)t implies the existence of t′ with R ′s ′t′ and f (t′) = t.

� KS is the category of Kripke structures with bounded morphisms



Kripke structures

� A Kripke structure (frame) is a pair S = (S ,R) with R ⊆ S × S

I these provide the possible-world semantics of modal logic

� f : (S ′,R ′)→ (S ,R) is a bounded morphism if
I R ′s ′t′ implies Rf (s ′)f (t′)

I Rf (s ′)t implies the existence of t′ with R ′s ′t′ and f (t′) = t.

� KS is the category of Kripke structures with bounded morphisms



Kripke structures

� A Kripke structure (frame) is a pair S = (S ,R) with R ⊆ S × S

I these provide the possible-world semantics of modal logic

� f : (S ′,R ′)→ (S ,R) is a bounded morphism if
I R ′s ′t′ implies Rf (s ′)f (t′)

I Rf (s ′)t implies the existence of t′ with R ′s ′t′ and f (t′) = t.

� KS is the category of Kripke structures with bounded morphisms



Stone spaces

� A (topological) space is a pair (S , τ) where τ is a topology on S

� A Stone space is a space (S , τ) where τ is
I compact,

I Hausdorff

I zero-dimensional (i.e. it has a basis of clopen sets)

� Stone is the category of Stone spaces and continuous functions



Stone duality

From Stone spaces to Boolean algebras: (·)∗

Objects Given (S , τ) take (S , τ)∗ := (Clp(τ),∪,∼S ,∅)

Arrows Given f : (S ′, τ ′)→ (S , τ) define f ∗ : Clp(τ)→ Clp(τ ′)

f ∗(X ) := {s ′ ∈ S ′ | fs ′ ∈ X}

From Boolean algebras to Stone spaces: (·)∗
Objects Given A = (A,∨,−,⊥) take A∗ := (Uf (A), σA), where

I Uf (A) is the set of ultrafilters of A and

I σA is generated by the basis {â | a ∈ A}
I with â := {u ∈ UF (A) | a ∈ u}

Arrows Given h : A′ → A define h∗ : Uf (A)→ Uf (A′) by

h∗(u) := {a′ ∈ A′ | ha′ ∈ u}
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Stone duality 2

Theorem
The functors (·)∗

and (·)∗ witness the dual equivalence of BA and Stone.

This is a natural duality evolving around the schizophrenic object 2



Complex algebras

From Kripke structures to modal algebras: (·)+

Objects Given (S ,R) take (S ,R)+ := (PS ,∪,∼S ,∅, 〈R〉), where

I 〈R〉(X ) := {s ∈ S | R[s] ∩ X 6= ∅}
Arrows Given f : (S ′,R ′)→ (S ,R) define f + as inverse image

� The operation 〈R〉 encodes the semantics of the modal diamond

� (S ,R)+ is the complex algebra of (S ,R)

� Complex algebras are perfect modal algebras (PMAs):

I complete, atomic and completely additive

� (·)+ is part of a discrete duality between PMA and KS
(with the opposite functor (·)+ taking the atom structure of a PMA)
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Ultrafilter structures

From modal algebras to Kripke structures:

Objects With A = (A,∨,−,⊥,3) take A• := (Uf (A),Q3), where

I Q3uv iff ∀a ∈ v .3a ∈ u

Arrows Given f : A′ → A define f• as inverse image

� These operations provide a functor: MA→ KS

� A• is the ultrafilter structure or canonical structure of A

� A embeds in its canonical extension (A•)+

� Open Problem characterize the ultrafilter structures modulo isomorphism
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Topological Kripke structures

� A topological Kripke structure is a triple (S ,R, τ) such that
I (S ,R) is a Kripke structure

I (S , τ) is a Stone space

I 〈R〉X is clopen if X ⊆ S is clopen

I R(s) is closed

I TKS is the category with
I objects: topological Kripke structures

I arrows: continuous bounded morphism



Topological Kripke structures

� A topological Kripke structure is a triple (S ,R, τ) such that
I (S ,R) is a Kripke structure

I (S , τ) is a Stone space

I 〈R〉X is clopen if X ⊆ S is clopen

I R(s) is closed

I TKS is the category with
I objects: topological Kripke structures

I arrows: continuous bounded morphism



Topological Kripke structures

� A topological Kripke structure is a triple (S ,R, τ) such that
I (S ,R) is a Kripke structure

I (S , τ) is a Stone space

I 〈R〉X is clopen if X ⊆ S is clopen

I R(s) is closed

I TKS is the category with
I objects: topological Kripke structures

I arrows: continuous bounded morphism



Topological Kripke structures

� A topological Kripke structure is a triple (S ,R, τ) such that
I (S ,R) is a Kripke structure

I (S , τ) is a Stone space

I 〈R〉X is clopen if X ⊆ S is clopen

I R(s) is closed

I TKS is the category with
I objects: topological Kripke structures

I arrows: continuous bounded morphism



Topological modal duality

From modal algebras to topological Kripke structures: (·)∗
Objects Given A = (A,∨,−,⊥,3) take A∗ := (Uf (A),Q3, σA)

Arrows Given h : A′ → A define h∗ as inverse image

From topological Kripke structures to modal algebras: (·)∗

Objects Given S = (S ,R, τ) take S∗ := (Clp(τ),∪,∼S ,∅, 〈R〉)
Arrows Given f : S′ → S define f ∗ as inverse image

Theorem
The functors (·)∗

and (·)∗ witness the dual equivalence of MA and TKS:

MA TKS
j

(·)∗

Y

(·)∗
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History:

� Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, . . .

� algebraic logic || modal logic

Research Topics:

� (canonicity) Which varieties are closed under (A 7→ (A•)+)

� (correspondence) FO properties of S ∼ equational prop’s of S+

I e.g. S |= ∀vRvv iff S+ |= x ≤ 3x

� (canonicity & correspondence) Sahlqvist theorem

� (completeness) Which varieties are generated by their PMAs?

� (completions) canonical extensions, MacNeille completions, . . .

� study free modal algebras
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� A is simple if ConA ∼= 2

� A is subdirectly irreducible if ConA has a least non-identity element

� Birkhoff: every variety is generated by its s.i. members

Question What is the dual of an s.i. modal algebra?

Folklore Subdirect irreducibility is related to rootedness
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� R(s) := {t ∈ S | Rst}
� r ∈ S is a root of S if S = Rω(r)

� S is rooted if its collection WS of roots is non-empty
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Subdirect Irreducibility and Rootedness
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Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
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(2) If A is s.i. then Int(WA∗) 6= ∅ , provided A is (ω-)transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg)
A is s.i. iff A∗ has a largest nontrivial, closed hereditary subset.
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3(r) = Uf (A)
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3 by putting
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3(r) = Uf (A)
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Observations

Proposition For any modal algebra A:
(1) Q? is transitive
(2) Qω ⊆ Q?

(3) Q?(u) is hereditary for any ultrafilter u
(4) Q?(u) is closed for any ultrafilter u
(5) Q?(u) = Qω(u) for any ultrafilter u
(6) 〈Q?〉 maps opens to opens
(7) If Q is transitive then Q = Qω = Q?



Characterizations

Theorem For any modal algebra A:
(1) A is simple iff TA∗ = Uf (A)

(2) A is s.i. iff Int(TA∗) 6= ∅

Note Earlier results follow from this.

Theorem (Birchall)
Similar results for distributive modal algebras (based on distr. lattices).

Suggestion Develop the modal theory of Q?
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The Vietoris construction

� Let X = 〈X , τ〉 be a topological space.

� K (X) denotes the collection of compact sets

� With U ⊆ω τ , define

∇U := {F ∈ K (X) | (F ,U) ∈ P(∈)},

where (F ,U) ∈ P(∈) if F is ‘properly covered’ by U :
I ∀s ∈ F∃U ∈ U . s ∈ U and

I ∀U ∈ U∃s ∈ F .s ∈ U

� These sets ∇U together provide a basis for a topology on K (X),
the Vietoris topology υτ

� V(X) := 〈K (X), υτ 〉 is the Vietoris space of X.
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The Vietoris construction 2

Different presentation:

� For a ∈ τ , define

3a := {F ∈ K (X) | F ∩ a 6= ∅}

2a := {F ∈ K (X) | F ⊆ a}

� Generate υτ from {〈3〉a, [3] | a ∈ τ} as a subbasis.

Fact The Vietoris construction preserves various properties, including:
• compactness
• compact Hausdorfness
• zero-dimensionality
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The Vietoris functor

From now on we restrict to the category KHaus of

I objects: compact Hausdorff spaces

I arrows: continuous maps

Fact Given f : X→ Y,

let Vf : K (X)→ P(Y ) be given by

Vf (F ) := f [F ]
(

= {fx | x ∈ F}
)

Then Vf maps compact sets to compact sets.

Fact
V is a functor on the categories KHaus and Stone.
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Two observations

Observation Stone duality and the Vietoris functor:

BA Stone
j

S

Y
P

	
V

R
?

Observation (Esakia)
In a TKS (S ,R, τ), R : S → P(S) is an arrow R : (S , τ)→ V(S , τ)

Theorem
Topological Kripke frames are Vietoris coalgebras over Stone
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Universal Coalgebra

I Universal Coalgebra (Rutten, 2000) is
a general mathematical theory for evolving systems

I It provides a natural framework for notions like
I behavior
I bisimulation/behavioral equivalence
I invariants

I Sufficiently general to model notions like:
input, output, non-determinism, interaction, probability, . . .
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Modal Logic Dualizes the Vietoris Functor
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� Johnstone: describe M via generators and relations

� Given a BA B, MB is the Boolean algebra
I generated by the set {3b : b ∈ B}
I modulo the relations 3(a ∨ b) = 3a ∨3b and 3> = >

Theorem (Kupke, Kurz & Venema) ModAlg ∼= ALgBA(M).

The topological modal duality is an algebra|coalgebra duality
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Vietoris pointfree (Johnstone Functor)

Given a frame L, define L2 := {2a | a ∈ L} and L3 := {3a | a ∈ L}.

ML := Fr〈L2 ] L3 | 2(
∧
A) =

∧
a∈A 2a (A ∈ PωL)

3(
∨
A) =

∨
a∈A 3a (A ∈ PωL)

2a ∧3b ≤ 3(a ∧ b)
2(a ∨ b) ≤ 2a ∨3b

2(
⊔
A) =

⊔
a∈A 2a (A ∈ PL directed)

3(
⊔
A) =

⊔
a∈A 3a (A ∈ PL directed)

〉



Vietoris and the Cover Modality ∇

I Vietoris used the ∇-constructor on Pωτ

I Now think of ∇ as a primitive modality
I This modality has many manifestations in modal logic

I normal forms (Fine)

I coalgebraic modal logic (Moss)

I automata theory (Walukiewicz)

I May develop ∇-logic . . .

I . . . and formulate the functor M accordingly, in terms of ∇
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New directions

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame L as

MTL := Fr〈TωL | (∇1), (∇2), (∇3)〉,

where the relations are as follows:

(∇1) ∇α ≤ ∇β (α T≤ β)

(∇2)
∧

γ∈Γ
∇γ ≤

∨
{∇(T

∧
)Ψ | Ψ ∈ SRD(Γ)} (Γ ∈ PωTωL)

(∇3) ∇(T
∨

)Φ ≤
∨
{∇β | β T∈ Φ} (Φ ∈ TωPL)
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Some results

Theorem (V., Vickers & Vosmaer)
Given a set funtor T that preserves weak pullbacks:

� MT provides a functor on the category Fr of frames.

� MT generalizes Johnstone’s M: M ∼= MP.

� MT preserves regularity, zero-dimensionality, and Stone-ness.

� MT restricts to a functor on KRFr (compact regular frames)
provided T preserves finiteness

Question

KRFr KHaus
j

S

Y
P

R
MT

	
?

Describe the dual of MT for an arbitrary set functor T!
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