Dualities in Algebraic Logic

Yde Venema
Institute for Logic, Language and Computation
Universiteit van Amsterdam
https://staff.fnwi.uva.nl/y.venema

13 February 2018
LAC 2018, Melbourne

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Algebraic Logic

■ aim: study logics using methods from (universal) algebra

Algebraic Logic

■ aim: study logics using methods from (universal) algebra

- examples:
propositional logic: Boolean algebras
intuitionistic logic: Heyting algebras
first-order logic: cylindric algebras

Algebraic Logic

■ aim: study logics using methods from (universal) algebra

- examples:
propositional logic: Boolean algebras
intuitionistic logic: Heyting algebras
first-order logic: cylindric algebras
- other examples:

Algebraic Logic

■ aim: study logics using methods from (universal) algebra

- examples:
propositional logic: Boolean algebras
intuitionistic logic: Heyting algebras
first-order logic: cylindric algebras
- other examples:
interpolation: amalgamation
completeness: representation

Algebraic Logic

■ aim: study logics using methods from (universal) algebra

- examples:
propositional logic: Boolean algebras
intuitionistic logic: Heyting algebras
first-order logic: cylindric algebras
- other examples:
interpolation: amalgamation
completeness: representation
- abstract algebraic logic:
study Logic using methods from (universal) algebra

Duality

■ in mathematics: categorical dualities

Duality

■ in mathematics: categorical dualities

- C and D are dual(ly equivalent) if C and D° are equivalent

Duality

■ in mathematics: categorical dualities

- C and D are dual(ly equivalent) if C and D° are equivalent i.e. there are contravariant functors linking C and D

A Fundamental Duality

A Fundamental Duality

$$
\begin{array}{cc}
\text { verbal } & \text { visual } \\
\text { algebra } & \text { geometry }
\end{array}
$$

A Fundamental Duality

verbal visual
algebra geometry
syntax
semantics

A Fundamental Duality

$$
\begin{array}{cc}
\text { verbal } & \text { visual } \\
\text { algebra } & \text { geometry } \\
\text { syntax } & \text { semantics }
\end{array}
$$

Stone duality:

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces

■ modal algebras vs topological Kripke structures

- cylindric algebras vs ...

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces

■ modal algebras vs topological Kripke structures
■ cylindric algebras vs...

Contravariance

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces

■ modal algebras vs topological Kripke structures

- cylindric algebras vs...

■...

Contravariance In all these examples both categories are concrete!

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Modal duality

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)

Modal duality

Main characters

- modal algebras (MA)
- Kripke structures (KS)

■ Stone spaces (Stone)
■ topological Kripke structures (TKS)

Modal duality

Main characters
■ modal algebras (MA)

- Kripke structures (KS)

■ Stone spaces (Stone)
■ topological Kripke structures (TKS)

- ... , and of course their morphisms!

Modal duality

Main characters
■ modal algebras (MA)

- Kripke structures (KS)
- Stone spaces (Stone)

■ topological Kripke structures (TKS)

- ... , and of course their morphisms!

Aim:
■ introduce TKS

- develop duality between MA and TKS

Modal Algebras

■ $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ is a modal algebra if

- $(A, \vee,-, \perp)$ is a Boolean algebra
- $\diamond: A \rightarrow A$ preserves finite joins:
$\diamond \perp=\perp$ and $\diamond(a \vee b)=\diamond a \vee \diamond b$

Modal Algebras

■ $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ is a modal algebra if

- $(A, \vee,-, \perp)$ is a Boolean algebra
- $\diamond: A \rightarrow A$ preserves finite joins: $\diamond \perp=\perp$ and $\diamond(a \vee b)=\diamond a \vee \diamond b$
■ $h: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ is an MA-morphism if it preserves all operations:
- $h\left(a^{\prime} \vee^{\prime} b^{\prime}\right)=h\left(a^{\prime}\right) \vee h\left(b^{\prime}\right), \ldots, h\left(\diamond^{\prime} a^{\prime}\right)=\diamond h\left(a^{\prime}\right)$.

Modal Algebras

$\square \mathbb{A}=(A, \vee,-, \perp, \diamond)$ is a modal algebra if

- $(A, \vee,-, \perp)$ is a Boolean algebra
- $\diamond: A \rightarrow A$ preserves finite joins: $\diamond \perp=\perp$ and $\diamond(a \vee b)=\diamond a \vee \diamond b$
■ $h: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ is an MA-morphism if it preserves all operations:
- $h\left(a^{\prime} \vee^{\prime} b^{\prime}\right)=h\left(a^{\prime}\right) \vee h\left(b^{\prime}\right), \ldots, h\left(\diamond^{\prime} a^{\prime}\right)=\diamond h\left(a^{\prime}\right)$.
- MA is the category of modal algebras with MA-morphisms

Modal Algebras

■ $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ is a modal algebra if

- $(A, \vee,-, \perp)$ is a Boolean algebra
- $\diamond: A \rightarrow A$ preserves finite joins: $\diamond \perp=\perp$ and $\diamond(a \vee b)=\diamond a \vee \diamond b$
■ $h: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ is an MA-morphism if it preserves all operations:
- $h\left(a^{\prime} \vee^{\prime} b^{\prime}\right)=h\left(a^{\prime}\right) \vee h\left(b^{\prime}\right), \ldots, h\left(\diamond^{\prime} a^{\prime}\right)=\diamond h\left(a^{\prime}\right)$.
- MA is the category of modal algebras with MA-morphisms

■ A modal logic L can be algebraized by a variety V_{L} of modal algebras

Modal Algebras

■ $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ is a modal algebra if

- $(A, \vee,-, \perp)$ is a Boolean algebra
- $\diamond: A \rightarrow A$ preserves finite joins: $\diamond \perp=\perp$ and $\diamond(a \vee b)=\diamond a \vee \diamond b$
■ $h: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ is an MA-morphism if it preserves all operations:
- $h\left(a^{\prime} \vee^{\prime} b^{\prime}\right)=h\left(a^{\prime}\right) \vee h\left(b^{\prime}\right), \ldots, h\left(\diamond^{\prime} a^{\prime}\right)=\diamond h\left(a^{\prime}\right)$.
- MA is the category of modal algebras with MA-morphisms
- A modal logic L can be algebraized by a variety V_{L} of modal algebras
- Modal algebras are (the simplest) Boolean Algebras with Operators

Kripke structures

- A Kripke structure (frame) is a pair $\mathbb{S}=(S, R)$ with $R \subseteq S \times S$
- these provide the possible-world semantics of modal logic

Kripke structures

- A Kripke structure (frame) is a pair $\mathbb{S}=(S, R)$ with $R \subseteq S \times S$
- these provide the possible-world semantics of modal logic
- $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ is a bounded morphism if
- $R^{\prime} s^{\prime} t^{\prime}$ implies $R f\left(s^{\prime}\right) f\left(t^{\prime}\right)$
- $R f\left(s^{\prime}\right) t$ implies the existence of t^{\prime} with $R^{\prime} s^{\prime} t^{\prime}$ and $f\left(t^{\prime}\right)=t$.

Kripke structures

- A Kripke structure (frame) is a pair $\mathbb{S}=(S, R)$ with $R \subseteq S \times S$
- these provide the possible-world semantics of modal logic

■ $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ is a bounded morphism if

- $R^{\prime} s^{\prime} t^{\prime}$ implies $R f\left(s^{\prime}\right) f\left(t^{\prime}\right)$
- $R f\left(s^{\prime}\right) t$ implies the existence of t^{\prime} with $R^{\prime} s^{\prime} t^{\prime}$ and $f\left(t^{\prime}\right)=t$.
- KS is the category of Kripke structures with bounded morphisms

Stone spaces

■ A (topological) space is a pair (S, τ) where τ is a topology on S

- A Stone space is a space (S, τ) where τ is
- compact,
- Hausdorff
- zero-dimensional (i.e. it has a basis of clopen sets)

■ Stone is the category of Stone spaces and continuous functions

Stone duality

From Stone spaces to Boolean algebras: (•)*
Objects Given (S, τ) take $(S, \tau)^{*}:=\left(C l p(\tau), \cup, \sim_{S}, \varnothing\right)$
Arrows Given $f:\left(S^{\prime}, \tau^{\prime}\right) \rightarrow(S, \tau)$ define $f^{*}: \operatorname{Clp}(\tau) \rightarrow \operatorname{Clp}\left(\tau^{\prime}\right)$

$$
f^{*}(X):=\left\{s^{\prime} \in S^{\prime} \mid f s^{\prime} \in X\right\}
$$

Stone duality

From Stone spaces to Boolean algebras: (•)*
Objects Given (S, τ) take $(S, \tau)^{*}:=\left(C l p(\tau), \cup, \sim_{S}, \varnothing\right)$
Arrows Given $f:\left(S^{\prime}, \tau^{\prime}\right) \rightarrow(S, \tau)$ define $f^{*}: \operatorname{Clp}(\tau) \rightarrow \operatorname{Clp}\left(\tau^{\prime}\right)$

$$
f^{*}(X):=\left\{s^{\prime} \in S^{\prime} \mid f s^{\prime} \in X\right\}
$$

From Boolean algebras to Stone spaces: $(\cdot)_{*}$
Objects Given $\mathbb{A}=(A, \vee,-, \perp)$ take $A_{*}:=\left(U f(\mathbb{A}), \sigma_{\mathbb{A}}\right)$, where

Stone duality

From Stone spaces to Boolean algebras: (•)*
Objects Given (S, τ) take $(S, \tau)^{*}:=\left(C l p(\tau), \cup, \sim_{S}, \varnothing\right)$
Arrows Given $f:\left(S^{\prime}, \tau^{\prime}\right) \rightarrow(S, \tau)$ define $f^{*}: \operatorname{Clp}(\tau) \rightarrow \operatorname{Clp}\left(\tau^{\prime}\right)$

$$
f^{*}(X):=\left\{s^{\prime} \in S^{\prime} \mid f s^{\prime} \in X\right\}
$$

From Boolean algebras to Stone spaces: $(\cdot)_{*}$
Objects Given $\mathbb{A}=(A, \vee,-, \perp)$ take $A_{*}:=\left(U f(\mathbb{A}), \sigma_{\mathbb{A}}\right)$, where

- $\operatorname{Uf}(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and

Stone duality

From Stone spaces to Boolean algebras: ($\cdot)^{*}$
Objects Given (S, τ) take $(S, \tau)^{*}:=\left(C l p(\tau), \cup, \sim_{S}, \varnothing\right)$
Arrows Given $f:\left(S^{\prime}, \tau^{\prime}\right) \rightarrow(S, \tau)$ define $f^{*}: \operatorname{Clp}(\tau) \rightarrow \operatorname{Clp}\left(\tau^{\prime}\right)$

$$
f^{*}(X):=\left\{s^{\prime} \in S^{\prime} \mid f s^{\prime} \in X\right\}
$$

From Boolean algebras to Stone spaces: $(\cdot)_{*}$
Objects Given $\mathbb{A}=(A, \vee,-, \perp)$ take $A_{*}:=\left(U f(\mathbb{A}), \sigma_{\mathbb{A}}\right)$, where

- $\operatorname{Uf}(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and
- σ_{A} is generated by the basis $\{\hat{a} \mid a \in A\}$
- with $\widehat{a}:=\{u \in U F(\mathbb{A}) \mid a \in u\}$

Stone duality

From Stone spaces to Boolean algebras: $(\cdot)^{*}$
Objects Given (S, τ) take $(S, \tau)^{*}:=\left(C l p(\tau), \cup, \sim_{S}, \varnothing\right)$
Arrows Given $f:\left(S^{\prime}, \tau^{\prime}\right) \rightarrow(S, \tau)$ define $f^{*}: \operatorname{Clp}(\tau) \rightarrow \operatorname{Clp}\left(\tau^{\prime}\right)$

$$
f^{*}(X):=\left\{s^{\prime} \in S^{\prime} \mid f s^{\prime} \in X\right\}
$$

From Boolean algebras to Stone spaces: $(\cdot)_{*}$
Objects Given $\mathbb{A}=(A, \vee,-, \perp)$ take $A_{*}:=\left(U f(\mathbb{A}), \sigma_{\mathbb{A}}\right)$, where

- $\operatorname{Uf}(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and
- σ_{A} is generated by the basis $\{\hat{a} \mid a \in A\}$
- with $\hat{a}:=\{u \in U F(\mathbb{A}) \mid a \in u\}$

Arrows Given $h: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ define $h_{*}: U f(\mathbb{A}) \rightarrow U f\left(\mathbb{A}^{\prime}\right)$ by

$$
h_{*}(u):=\left\{a^{\prime} \in A^{\prime} \mid h a^{\prime} \in u\right\}
$$

Stone duality 2

Theorem

The functors $(\cdot)^{*}$ and $(\cdot)_{*}$ witness the dual equivalence of BA and Stone.

Stone duality 2

Theorem

The functors $(\cdot)^{*}$ and $(\cdot)_{*}$ witness the dual equivalence of BA and Stone.

This is a natural duality evolving around the schizophrenic object 2

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{S}, \varnothing,\langle R\rangle\right)$, where

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{s}, \varnothing,\langle R\rangle\right)$, where

- $\langle R\rangle(X):=\{s \in S \mid R[s] \cap X \neq \varnothing\}$

Arrows Given $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ define f^{+}as inverse image

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{s}, \varnothing,\langle R\rangle\right)$, where

- $\langle R\rangle(X):=\{s \in S \mid R[s] \cap X \neq \varnothing\}$

Arrows Given $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ define f^{+}as inverse image

■ The operation $\langle R\rangle$ encodes the semantics of the modal diamond

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{S}, \varnothing,\langle R\rangle\right)$, where

- $\langle R\rangle(X):=\{s \in S \mid R[s] \cap X \neq \varnothing\}$

Arrows Given $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ define f^{+}as inverse image

- The operation $\langle R\rangle$ encodes the semantics of the modal diamond
- $(S, R)^{+}$is the complex algebra of (S, R)

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{S}, \varnothing,\langle R\rangle\right)$, where

- $\langle R\rangle(X):=\{s \in S \mid R[s] \cap X \neq \varnothing\}$

Arrows Given $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ define f^{+}as inverse image

■ The operation $\langle R\rangle$ encodes the semantics of the modal diamond

- $(S, R)^{+}$is the complex algebra of (S, R)

■ Complex algebras are perfect modal algebras (PMAs):

- complete, atomic and completely additive

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{s}, \varnothing,\langle R\rangle\right)$, where

- $\langle R\rangle(X):=\{s \in S \mid R[s] \cap X \neq \varnothing\}$

Arrows Given $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ define f^{+}as inverse image

- The operation $\langle R\rangle$ encodes the semantics of the modal diamond
- $(S, R)^{+}$is the complex algebra of (S, R)

■ Complex algebras are perfect modal algebras (PMAs):

- complete, atomic and completely additive

■ $(\cdot)^{+}$is part of a discrete duality between PMA and KS

Complex algebras

From Kripke structures to modal algebras: $(\cdot)^{+}$
Objects Given (S, R) take $(S, R)^{+}:=\left(\mathrm{PS}, \cup, \sim_{s}, \varnothing,\langle R\rangle\right)$, where

- $\langle R\rangle(X):=\{s \in S \mid R[s] \cap X \neq \varnothing\}$

Arrows Given $f:\left(S^{\prime}, R^{\prime}\right) \rightarrow(S, R)$ define f^{+}as inverse image

■ The operation $\langle R\rangle$ encodes the semantics of the modal diamond

- $(S, R)^{+}$is the complex algebra of (S, R)

■ Complex algebras are perfect modal algebras (PMAs):

- complete, atomic and completely additive

■ ($\cdot)^{+}$is part of a discrete duality between PMA and KS (with the opposite functor $(\cdot)_{+}$taking the atom structure of a PMA)

Ultrafilter structures

From modal algebras to Kripke structures:

Ultrafilter structures

From modal algebras to Kripke structures:
Objects With $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{\bullet}:=\left(U f(\mathbb{A}), Q_{\diamond}\right)$, where

Ultrafilter structures

From modal algebras to Kripke structures:
Objects With $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{\bullet}:=\left(U f(\mathbb{A}), Q_{\diamond}\right)$, where

- $Q_{\diamond} u v$ iff $\forall a \in v . \diamond a \in u$

Ultrafilter structures

From modal algebras to Kripke structures:
Objects With $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{\bullet}:=\left(U f(\mathbb{A}), Q_{\diamond}\right)$, where

- $Q_{\diamond} u v$ iff $\forall a \in v . \diamond a \in u$

Arrows Given $f: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ define f_{0} as inverse image

- These operations provide a functor: $\mathrm{MA} \rightarrow \mathrm{KS}$

Ultrafilter structures

From modal algebras to Kripke structures:
Objects With $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{\bullet}:=\left(U f(\mathbb{A}), Q_{\diamond}\right)$, where

- $Q_{\diamond} u v$ iff $\forall a \in v . \diamond a \in u$

Arrows Given $f: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ define f_{0} as inverse image

- These operations provide a functor: $\mathrm{MA} \rightarrow \mathrm{KS}$
- \mathbb{A}. is the ultrafilter structure or canonical structure of \mathbb{A}

Ultrafilter structures

From modal algebras to Kripke structures:
Objects With $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{\bullet}:=\left(U f(\mathbb{A}), Q_{\diamond}\right)$, where

- $Q_{\diamond} u v$ iff $\forall a \in v . \diamond a \in u$

Arrows Given $f: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ define f_{0} as inverse image

- These operations provide a functor: $\mathrm{MA} \rightarrow \mathrm{KS}$
- \mathbb{A}. is the ultrafilter structure or canonical structure of \mathbb{A}

■ \mathbb{A} embeds in its canonical extension $\left(\mathbb{A}_{\bullet}\right)^{+}$

Ultrafilter structures

From modal algebras to Kripke structures:
Objects With $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{\bullet}:=\left(U f(\mathbb{A}), Q_{\diamond}\right)$, where

- $Q_{\diamond} u v$ iff $\forall a \in v . \diamond a \in u$

Arrows Given $f: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ define f_{0} as inverse image

- These operations provide a functor: $\mathrm{MA} \rightarrow \mathrm{KS}$
- \mathbb{A}. is the ultrafilter structure or canonical structure of \mathbb{A}
- \mathbb{A} embeds in its canonical extension $\left(\mathbb{A}_{\bullet}\right)^{+}$
- Open Problem characterize the ultrafilter structures modulo isomorphism

Topological Kripke structures

■ A topological Kripke structure is a triple (S, R, τ) such that

- (S, R) is a Kripke structure
- (S, τ) is a Stone space

Topological Kripke structures

■ A topological Kripke structure is a triple (S, R, τ) such that

- (S, R) is a Kripke structure
- (S, τ) is a Stone space
- $\langle R\rangle X$ is clopen if $X \subseteq S$ is clopen

Topological Kripke structures

- A topological Kripke structure is a triple (S, R, τ) such that
- (S, R) is a Kripke structure
- (S, τ) is a Stone space
- $\langle R\rangle X$ is clopen if $X \subseteq S$ is clopen
- $R(s)$ is closed

Topological Kripke structures

- A topological Kripke structure is a triple (S, R, τ) such that
- (S, R) is a Kripke structure
- (S, τ) is a Stone space
- $\langle R\rangle X$ is clopen if $X \subseteq S$ is clopen
- $R(s)$ is closed
- TKS is the category with
- objects: topological Kripke structures
- arrows: continuous bounded morphism

Topological modal duality

From modal algebras to topological Kripke structures: $(\cdot)_{*}$
Objects Given $\mathbb{A}=(A, \vee,-, \perp, \diamond)$ take $\mathbb{A}_{*}:=\left(U f(\mathbb{A}), Q_{\diamond}, \sigma_{\mathbb{A}}\right)$
Arrows Given $h: \mathbb{A}^{\prime} \rightarrow \mathbb{A}$ define h_{*} as inverse image
From topological Kripke structures to modal algebras: ($\cdot)^{*}$ Objects Given $\mathbb{S}=(S, R, \tau)$ take $\mathbb{S}^{*}:=\left(C l p(\tau), \cup, \sim_{s}, \varnothing,\langle R\rangle\right)$
Arrows Given $f: \mathbb{S}^{\prime} \rightarrow \mathbb{S}$ define f^{*} as inverse image
Theorem
The functors $(\cdot)^{*}$ and $(\cdot)_{*}$ witness the dual equivalence of MA and TKS:

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
■ algebraic logic || modal logic

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
■ algebraic logic || modal logic
Research Topics:

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
■ algebraic logic || modal logic
Research Topics:
■ (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

- algebraic logic || modal logic

Research Topics:
■ (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$
■ (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^{+}

- e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^{+} \models x \leq \diamond x$

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

- algebraic logic || modal logic

Research Topics:
■ (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$
■ (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^{+}

- e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^{+} \models x \leq \diamond x$
- (canonicity \& correspondence) Sahlqvist theorem

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

- algebraic logic || modal logic

Research Topics:

- (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$

■ (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^{+}

- e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^{+} \models x \leq \diamond x$
- (canonicity \& correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

- algebraic logic || modal logic

Research Topics:

- (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$
- (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^{+}
- e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^{+} \models x \leq \diamond x$
- (canonicity \& correspondence) Sahlqvist theorem

■ (completeness) Which varieties are generated by their PMAs?

- (completions) canonical extensions, MacNeille completions, ...

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

- algebraic logic || modal logic

Research Topics:
■ (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$

- (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^{+}
- e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^{+} \models x \leq \diamond x$
- (canonicity \& correspondence) Sahlqvist theorem

■ (completeness) Which varieties are generated by their PMAs?

- (completions) canonical extensions, MacNeille completions, ...
- study free modal algebras

Remarks

History:
■ Jónsson \& Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

- algebraic logic || modal logic

Research Topics:
■ (canonicity) Which varieties are closed under $\left(\mathbb{A} \mapsto\left(\mathbb{A}_{\bullet}\right)^{+}\right)$

- (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^{+}
- e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^{+} \models x \leq \diamond x$
- (canonicity \& correspondence) Sahlqvist theorem

■ (completeness) Which varieties are generated by their PMAs?

- (completions) canonical extensions, MacNeille completions, ...
- study free modal algebras

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Subdirect Irreducibility

■ Given an algebra \mathbb{A}, let Con \mathbb{A} be its lattice of congruences

Subdirect Irreducibility

■ Given an algebra \mathbb{A}, let Con \mathbb{A} be its lattice of congruences

- \mathbb{A} is simple if $\operatorname{Con} \mathbb{A} \cong \mathbf{2}$

■ \mathbb{A} is subdirectly irreducible if $\operatorname{Con} \mathbb{A}$ has a least non-identity element

Subdirect Irreducibility

■ Given an algebra \mathbb{A}, let Con \mathbb{A} be its lattice of congruences

- \mathbb{A} is simple if $\operatorname{Con} \mathbb{A} \cong \mathbf{2}$

■ \mathbb{A} is subdirectly irreducible if $C o n \mathbb{A}$ has a least non-identity element
■ Birkhoff: every variety is generated by its s.i. members

Subdirect Irreducibility

- Given an algebra \mathbb{A}, let Con \mathbb{A} be its lattice of congruences
- \mathbb{A} is simple if Con $\mathbb{A} \cong \mathbf{2}$

■ \mathbb{A} is subdirectly irreducible if $\operatorname{Con} \mathbb{A}$ has a least non-identity element

- Birkhoff: every variety is generated by its s.i. members

Question What is the dual of an s.i. modal algebra?

Subdirect Irreducibility

- Given an algebra \mathbb{A}, let Con \mathbb{A} be its lattice of congruences
- \mathbb{A} is simple if $\operatorname{Con} \mathbb{A} \cong \mathbf{2}$

■ \mathbb{A} is subdirectly irreducible if $\operatorname{Con} \mathbb{A}$ has a least non-identity element

- Birkhoff: every variety is generated by its s.i. members

Question What is the dual of an s.i. modal algebra?
Folklore Subdirect irreducibility is related to rootedness

Roots

Auxiliary definitions
■ $R^{\omega}:=\bigcup_{n>0} R^{n}$,

- where $R^{0}:=I d_{S}$ and $R^{n+1}:=R \circ R^{n}$

Roots

Auxiliary definitions
■ $R^{\omega}:=\bigcup_{n>0} R^{n}$,

- where $R^{0}:=I d_{S}$ and $R^{n+1}:=R \circ R^{n}$

■ $R(s):=\{t \in S \mid R s t\}$

Roots

Auxiliary definitions
■ $R^{\omega}:=\bigcup_{n>0} R^{n}$,

- where $R^{0}:=I d_{S}$ and $R^{n+1}:=R \circ R^{n}$

■ $R(s):=\{t \in S \mid R s t\}$
■ $r \in S$ is a root of \mathbb{S} if $S=R^{\omega}(r)$
■ \mathbb{S} is rooted if its collection $W_{\mathbb{S}}$ of roots is non-empty

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.
Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.
Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
Proposition (Sambin)
(1) If $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$ then \mathbb{A} is s.i.

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.
Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
Proposition (Sambin)
(1) If $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$ then \mathbb{A} is s.i.
(2) If \mathbb{A} is s.i. then $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.
Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
Proposition (Sambin)
(1) If $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$ then \mathbb{A} is s.i.
(2) If \mathbb{A} is s.i. then $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$, provided \mathbb{A} is $(\omega-)$ transitive.

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.
Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
Proposition (Sambin)
(1) If $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$ then \mathbb{A} is s.i.
(2) If \mathbb{A} is s.i. then $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$, provided \mathbb{A} is $(\omega-)$ transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.

Subdirect Irreducibility and Rootedness

Proposition (folklore)
$W_{\mathbb{S}} \neq \varnothing\left(\mathbb{S}\right.$ is rooted) iff \mathbb{S}^{+}is s.i.
Example (Sambin)
There are rooted TKSs of which the dual algebra is not s.i.
Proposition (Sambin)
(1) If $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$ then \mathbb{A} is s.i.
(2) If \mathbb{A} is s.i. then $\operatorname{Int}\left(W_{\mathbb{A}_{*}}\right) \neq \varnothing$, provided \mathbb{A} is $(\omega-)$ transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.
Proposition (Rautenberg)
\mathbb{A} is s.i. iff \mathbb{A}_{*} has a largest nontrivial, closed hereditary subset.

Roots and Topo-roots

Fix a modal algebra \mathbb{A}.
■ r is a root of \mathbb{A}_{*} iff $Q_{\diamond}^{\omega}(r)=U f(\mathbb{A})$

Roots and Topo-roots

Fix a modal algebra \mathbb{A}.
■ r is a root of \mathbb{A}_{*} iff $Q_{\diamond}^{\omega}(r)=U f(\mathbb{A})$
■ $Q_{\diamond}^{\omega} u v$ iff $\exists n \in \omega \forall a \in v . \diamond^{n} a \in u$

Roots and Topo-roots

Fix a modal algebra \mathbb{A}.
■ r is a root of \mathbb{A}_{*} iff $Q_{\diamond}^{\omega}(r)=U f(\mathbb{A})$
■ $Q_{\diamond}^{\omega} u v$ iff $\exists n \in \omega \forall a \in v . \diamond^{n} a \in u$
■ Define Q_{\diamond}^{\star} by putting $Q_{\diamond}^{\star} u v$ iff $\forall a \in v \exists n \in \omega . \diamond^{n} a \in u$

Roots and Topo-roots

Fix a modal algebra \mathbb{A}.
■ r is a root of \mathbb{A}_{*} iff $Q_{\diamond}^{\omega}(r)=U f(\mathbb{A})$
■ $Q_{\diamond}^{\omega} u v$ iff $\exists n \in \omega \forall a \in v . \diamond^{n} a \in u$
■ Define Q_{\diamond}^{\star} by putting $Q_{\diamond}^{\star} u v$ iff $\forall a \in v \exists n \in \omega . \diamond^{n} a \in u$
■ Call $r \in U f(\mathbb{A})$ a topo-root if $Q_{\diamond}^{\star}(r)=U f(\mathbb{A})$

Roots and Topo-roots

Fix a modal algebra \mathbb{A}.
■ r is a root of \mathbb{A}_{*} iff $Q_{\diamond}^{\omega}(r)=U f(\mathbb{A})$
■ $Q_{\diamond}^{\omega} u v$ iff $\exists n \in \omega \forall a \in v . \diamond^{n} a \in u$
■ Define Q_{\diamond}^{\star} by putting $Q_{\diamond}^{\star} u v$ iff $\forall a \in v \exists n \in \omega . \diamond^{n} a \in u$
■ Call $r \in U f(\mathbb{A})$ a topo-root if $Q_{\diamond}^{\star}(r)=U f(\mathbb{A})$
■ Let $T_{\mathbb{A}_{*}}$ denote the collection of topo-roots of \mathbb{A}_{*}

Observations

Proposition For any modal algebra \mathbb{A} :
(1) Q^{\star} is transitive
(2) $Q^{\omega} \subseteq Q^{\star}$
(3) $Q^{\star}(u)$ is hereditary for any ultrafilter u
(4) $Q^{\star}(u)$ is closed for any ultrafilter u
(5) $Q^{\star}(u)=\overline{Q^{\omega}(u)}$ for any ultrafilter u
(6) $\left\langle Q^{\star}\right\rangle$ maps opens to opens
(7) If Q is transitive then $Q=Q^{\omega}=Q^{\star}$

Characterizations

Theorem For any modal algebra \mathbb{A} :
(1) \mathbb{A} is simple iff $T_{\mathbb{A}_{*}}=U f(\mathbb{A})$

Characterizations

Theorem For any modal algebra \mathbb{A} :
(1) \mathbb{A} is simple iff $T_{\mathbb{A}_{*}}=U f(\mathbb{A})$
(2) \mathbb{A} is s.i. iff $\operatorname{lnt}\left(T_{\mathbb{A}_{*}}\right) \neq \varnothing$

Characterizations

Theorem For any modal algebra \mathbb{A} :
(1) \mathbb{A} is simple iff $T_{\mathbb{A}_{*}}=U f(\mathbb{A})$
(2) \mathbb{A} is s.i. iff $\operatorname{lnt}\left(T_{\mathbb{A}_{*}}\right) \neq \varnothing$

Note Earlier results follow from this.

Characterizations

Theorem For any modal algebra \mathbb{A} :
(1) \mathbb{A} is simple iff $T_{\mathbb{A}_{*}}=U f(\mathbb{A})$
(2) \mathbb{A} is s.i. iff $\operatorname{lnt}\left(T_{\mathbb{A}_{*}}\right) \neq \varnothing$

Note Earlier results follow from this.
Theorem (Birchall)
Similar results for distributive modal algebras (based on distr. lattices).

Characterizations

Theorem For any modal algebra \mathbb{A} :
(1) \mathbb{A} is simple iff $T_{\mathbb{A}_{*}}=U f(\mathbb{A})$
(2) \mathbb{A} is s.i. iff $\operatorname{lnt}\left(T_{\mathbb{A}_{*}}\right) \neq \varnothing$

Note Earlier results follow from this.
Theorem (Birchall)
Similar results for distributive modal algebras (based on distr. lattices).
Suggestion Develop the modal theory of Q^{\star}

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

The Vietoris construction

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq \subseteq_{\omega} \tau$, define

$$
\nabla \mathcal{U}:=\{F \in K(\mathbb{X}) \mid(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)\},
$$

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$
\nabla \mathcal{U}:=\{F \in K(\mathbb{X}) \mid(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)\},
$$

where $(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)$ if F is 'properly covered' by \mathcal{U} :

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$
\nabla \mathcal{U}:=\{F \in K(\mathbb{X}) \mid(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)\},
$$

where $(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)$ if F is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in \mathcal{U} . s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F . s \in U$

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$
\nabla \mathcal{U}:=\{F \in K(\mathbb{X}) \mid(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)\},
$$

where $(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)$ if F is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in \mathcal{U} . s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F . s \in U$

■ These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$,

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$
\nabla \mathcal{U}:=\{F \in K(\mathbb{X}) \mid(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)\},
$$

where $(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)$ if F is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in \mathcal{U} . s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F . s \in U$

■ These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$, the Vietoris topology v_{τ}

The Vietoris construction

■ Let $\mathbb{X}=\langle X, \tau\rangle$ be a topological space.

- $K(\mathbb{X})$ denotes the collection of compact sets
- With $\mathcal{U} \subseteq_{\omega} \tau$, define

$$
\nabla \mathcal{U}:=\{F \in K(\mathbb{X}) \mid(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)\},
$$

where $(F, \mathcal{U}) \in \overline{\mathrm{P}}(\in)$ if F is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in \mathcal{U} . s \in U$ and
- $\forall U \in \mathcal{U} \exists s \in F . s \in U$
- These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $K(\mathbb{X})$, the Vietoris topology v_{τ}
■ $\mathrm{V}(\mathbb{X}):=\left\langle K(\mathbb{X}), v_{\tau}\right\rangle$ is the Vietoris space of \mathbb{X}.

The Vietoris construction 2

Different presentation:
■ For $a \in \tau$, define

$$
\begin{aligned}
& \diamond a:=\{F \in K(\mathbb{X}) \mid F \cap a \neq \varnothing\} \\
& \square a:=\{F \in K(\mathbb{X}) \mid F \subseteq a\}
\end{aligned}
$$

The Vietoris construction 2

Different presentation:

- For $a \in \tau$, define

$$
\begin{aligned}
& \diamond a:=\{F \in K(\mathbb{X}) \mid F \cap a \neq \varnothing\} \\
& \square a:=\{F \in K(\mathbb{X}) \mid F \subseteq a\}
\end{aligned}
$$

■ Generate v_{τ} from $\{\langle\ni\rangle a,[\ni] \mid a \in \tau\}$ as a subbasis.

The Vietoris construction 2

Different presentation:
■ For $a \in \tau$, define

$$
\begin{aligned}
\diamond a & :=\{F \in K(\mathbb{X}) \mid F \cap a \neq \varnothing\} \\
\square a & :=\{F \in K(\mathbb{X}) \mid F \subseteq a\}
\end{aligned}
$$

■ Generate v_{τ} from $\{\langle\ni\rangle a,[\ni] \mid a \in \tau\}$ as a subbasis.
Fact The Vietoris construction preserves various properties, including:

- compactness
- compact Hausdorfness
- zero-dimensionality

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f: \mathbb{X} \rightarrow \mathbb{Y}$,

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f: \mathbb{X} \rightarrow \mathbb{Y}$, let $\mathrm{V} f: K(\mathbb{X}) \rightarrow \mathrm{P}(Y)$ be given by

$$
\vee f(F):=f[F] \quad(=\{f x \mid x \in F\})
$$

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f: \mathbb{X} \rightarrow \mathbb{Y}$, let $\mathrm{V} f: K(\mathbb{X}) \rightarrow \mathrm{P}(Y)$ be given by

$$
\vee f(F):=f[F] \quad(=\{f x \mid x \in F\})
$$

Then $V f$ maps compact sets to compact sets.

The Vietoris functor

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f: \mathbb{X} \rightarrow \mathbb{Y}$, let $\mathrm{V} f: K(\mathbb{X}) \rightarrow \mathrm{P}(Y)$ be given by

$$
\vee f(F):=f[F] \quad(=\{f x \mid x \in F\})
$$

Then $V f$ maps compact sets to compact sets.
Fact
V is a functor on the categories KHaus and Stone.

Two observations

Observation Stone duality and the Vietoris functor:

Two observations

Observation Stone duality and the Vietoris functor:

Two observations

Observation Stone duality and the Vietoris functor:

Two observations

Observation Stone duality and the Vietoris functor:

Observation (Esakia) In a TKS $(S, R, \tau), R: S \rightarrow \mathrm{P}(S)$

Two observations

Observation Stone duality and the Vietoris functor:

Observation (Esakia)
In a TKS $(S, R, \tau), R: S \rightarrow \mathrm{P}(S)$ is an arrow $R:(S, \tau) \rightarrow \mathrm{V}(S, \tau)$

Two observations

Observation Stone duality and the Vietoris functor:

Observation (Esakia)
In a TKS $(S, R, \tau), R: S \rightarrow \mathrm{P}(S)$ is an arrow $R:(S, \tau) \rightarrow \mathrm{V}(S, \tau)$

Theorem

Topological Kripke frames are Vietoris coalgebras over Stone

Universal Coalgebra

- Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems

Universal Coalgebra

- Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- It provides a natural framework for notions like
- behavior

Universal Coalgebra

- Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- It provides a natural framework for notions like
- behavior
- bisimulation/behavioral equivalence

Universal Coalgebra

- Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- It provides a natural framework for notions like
- behavior
- bisimulation/behavioral equivalence
- invariants

Universal Coalgebra

- Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems
- It provides a natural framework for notions like
- behavior
- bisimulation/behavioral equivalence
- invariants
- Sufficiently general to model notions like: input, output, non-determinism, interaction, probability, ...

Coalgebras and their morphisms

Let T: $C \rightarrow C$ be an endofunctor on the category C

Coalgebras and their morphisms

Let T: $C \rightarrow C$ be an endofunctor on the category C
■ An T-coalgebra is a pair $(c, \gamma: c \rightarrow \mathrm{~T} c)$.

Coalgebras and their morphisms

Let T: $C \rightarrow C$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma: c \rightarrow \mathrm{~T} c)$.
- A coalgebra morphism between two coalgebras $\left(c^{\prime}, \gamma^{\prime}\right)$ and (c, γ) is an arrow $f: c^{\prime} \rightarrow C$ with

Coalgebras and their morphisms

Let T: $C \rightarrow C$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma: c \rightarrow \mathrm{~T} c)$.
- A coalgebra morphism between two coalgebras $\left(c^{\prime}, \gamma^{\prime}\right)$ and (c, γ) is an arrow $f: c^{\prime} \rightarrow C$ with

Examples:

- Kripke structures are P-coalgebras over Set

■ deterministics finite automata are coalgebras over Set

Vietoris coalgebras

Theorem TKS $\cong \operatorname{Coalg}_{\vee}$ (Stone)

Vietoris coalgebras

Theorem TKS $\cong \operatorname{Coalg}_{\vee}$ (Stone)
Manifestations:
\square The final V -coalgebra \sim the canonical general frame (C, R, τ),

Vietoris coalgebras

Theorem TKS $\cong \operatorname{Coalg}_{\vee}$ (Stone)
Manifestations:
■ The final V-coalgebra \sim the canonical general frame (C, R, τ),
■ the map $s \mapsto R(s)$ is a homeomorphism $R:(C, \tau) \rightarrow \vee(C, \tau)$

Vietoris coalgebras

Theorem TKS \cong Coalg $_{\vee}$ (Stone)
Manifestations:
\square The final V-coalgebra \sim the canonical general frame (C, R, τ),
■ the map $s \mapsto R(s)$ is a homeomorphism $R:(C, \tau) \rightarrow \vee(C, \tau)$
Duality:

Vietoris coalgebras

Theorem TKS $\cong \operatorname{Coalg}_{\vee}$ (Stone)
Manifestations:
■ The final V-coalgebra \sim the canonical general frame (C, R, τ),
■ the map $s \mapsto R(s)$ is a homeomorphism $R:(C, \tau) \rightarrow \vee(C, \tau)$
Duality:

Modal Logic Dualizes the Vietoris Functor

Modal Logic Dualizes the Vietoris Functor

■ Johnstone: describe M via generators and relations

Modal Logic Dualizes the Vietoris Functor

- Johnstone: describe M via generators and relations
- Given a $B A \mathbb{B}, M \mathbb{B}$ is the Boolean algebra
- generated by the set $\{\underline{\diamond b}: b \in B\}$
- modulo the relations $\underline{\diamond(a \vee b)}=\underline{\diamond a} \vee \underline{\diamond b}$ and $\underline{\diamond T}=\top$

Modal Logic Dualizes the Vietoris Functor

- Johnstone: describe M via generators and relations
- Given a $\mathrm{BA} \mathbb{B}, \mathrm{M} \mathbb{B}$ is the Boolean algebra
- generated by the set $\{\underline{\diamond b}: b \in B\}$
- modulo the relations $\underline{\diamond(a \vee b)}=\underline{\diamond a} \vee \underline{\diamond b}$ and $\underline{\diamond T}=\top$

Theorem (Kupke, Kurz \& Venema) ModAlg $\cong \operatorname{ALg}_{B A}(M)$.

Modal Logic Dualizes the Vietoris Functor

- Johnstone: describe M via generators and relations
- Given a $\mathrm{BA} \mathbb{B}, \mathrm{M} \mathbb{B}$ is the Boolean algebra
- generated by the set $\{\underline{\diamond b}: b \in B\}$
- modulo the relations $\underline{\diamond(a \vee b)}=\underline{\diamond a} \vee \underline{\diamond b}$ and $\underline{\diamond T}=\top$

Theorem (Kupke, Kurz \& Venema) ModAlg $\cong \operatorname{ALg}_{B A}(M)$.
The topological modal duality is an algebra|coalgebra duality

Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.

Geometric modal logic dualizes/axiomatizes the Vietoris functor (Johnstone)

Vietoris pointfree (Johnstone Functor)

Given a frame \mathbb{L}, define $L_{\square}:=\{\square a \mid a \in L\}$ and $L_{\diamond}:=\{\diamond a \mid a \in L\}$.

$$
\begin{array}{lll}
\mathrm{ML}:=\operatorname{Fr}\left\langle L_{\square} \uplus L_{\diamond}\right| & \square(\bigwedge A)=\bigwedge_{a \in A} \square a & \left(A \in \mathrm{P}_{\omega} L\right) \\
& \diamond(\bigvee A)=\bigvee_{a \in A} \diamond a & \left(A \in \mathrm{P}_{\omega} L\right) \\
& \square a \wedge \diamond b \leq \diamond(a \wedge b) & \\
& \square(a \vee b) \leq \square a \vee \diamond b & \\
& \square(\bigsqcup A)=\bigsqcup_{a \in A} \square a & (A \in \mathrm{PL} \text { directed }) \\
& \diamond(\bigsqcup A)=\bigsqcup_{a \in A} \diamond a & (A \in \mathrm{PL} \text { directed }) \\
& > &
\end{array}
$$

Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on $\mathrm{P}_{\omega} \tau$

Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on $\mathrm{P}_{\omega} \tau$
- Now think of ∇ as a primitive modality

Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on $\mathrm{P}_{\omega} \tau$
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
- normal forms (Fine)
- coalgebraic modal logic (Moss)
- automata theory (Walukiewicz)

Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on $\mathrm{P}_{\omega} \tau$
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
- normal forms (Fine)
- coalgebraic modal logic (Moss)
- automata theory (Walukiewicz)
- May develop ∇-logic ...

Vietoris and the Cover Modality ∇

- Vietoris used the ∇-constructor on $\mathrm{P}_{\omega} \tau$
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
- normal forms (Fine)
- coalgebraic modal logic (Moss)
- automata theory (Walukiewicz)
- May develop ∇-logic ...
- \quad. . and formulate the functor M accordingly, in terms of ∇

New directions

New directions

Fix a standard set functor T that preserves weak pullbacks.

New directions

Fix a standard set functor T that preserves weak pullbacks.
Define the T-powerlocale of a frame \mathbb{L} as

$$
M_{\mathrm{T}} \mathbb{L}:=\operatorname{Fr}\left\langle\mathrm{T}_{\omega} L \mid(\nabla 1),(\nabla 2),(\nabla 3)\right\rangle,
$$

New directions

Fix a standard set functor T that preserves weak pullbacks.
Define the T-powerlocale of a frame \mathbb{L} as

$$
M_{T} \mathbb{L}:=\operatorname{Fr}\left\langle T_{\omega} L \mid(\nabla 1),(\nabla 2),(\nabla 3)\right\rangle,
$$

where the relations are as follows:

New directions

Fix a standard set functor T that preserves weak pullbacks.
Define the T-powerlocale of a frame \mathbb{L} as

$$
M_{T} \mathbb{L}:=\operatorname{Fr}\left\langle T_{\omega} L \mid(\nabla 1),(\nabla 2),(\nabla 3)\right\rangle,
$$

where the relations are as follows:

$$
(\nabla 1) \quad \nabla \alpha \leq \nabla \beta \quad(\alpha \overline{\mathbf{T}} \leq \beta)
$$

New directions

Fix a standard set functor T that preserves weak pullbacks.
Define the T-powerlocale of a frame \mathbb{L} as

$$
M_{T} \mathbb{L}:=\operatorname{Fr}\left\langle T_{\omega} L \mid(\nabla 1),(\nabla 2),(\nabla 3)\right\rangle,
$$

where the relations are as follows:
$(\nabla 1) \quad \nabla \alpha \leq \nabla \beta$
$(\alpha \overline{\mathrm{T}} \leq \beta)$
$(\nabla 2) \quad \bigwedge_{\gamma \in \Gamma} \nabla \gamma \leq \bigvee\{\nabla(\mathrm{T} \wedge) \psi \mid \psi \in \operatorname{SRD}(\Gamma)\} \quad\left(\Gamma \in \mathrm{P}_{\omega} \mathrm{T}_{\omega} L\right)$

New directions

Fix a standard set functor T that preserves weak pullbacks.
Define the T-powerlocale of a frame \mathbb{L} as

$$
M_{T} \mathbb{L}:=\operatorname{Fr}\left\langle T_{\omega} L \mid(\nabla 1),(\nabla 2),(\nabla 3)\right\rangle,
$$

where the relations are as follows:
$(\nabla 1) \quad \nabla \alpha \leq \nabla \beta$
$(\alpha \overline{\mathrm{T}} \leq \beta)$
($\nabla 2$) $\bigwedge_{\gamma \in \Gamma} \nabla \gamma \leq \bigvee\{\nabla(\mathrm{T} \wedge) \psi \mid \psi \in S R D(\Gamma)\} \quad\left(\Gamma \in \mathrm{P}_{\omega} \mathrm{T}_{\omega} L\right)$
$(\nabla 3) \quad \nabla(\mathrm{TV}) \Phi \leq \bigvee\{\nabla \beta \mid \beta \overline{\mathrm{T}} \in \Phi\}$
$\left(\Phi \in T_{\omega} P L\right)$

Some results

Some results

Theorem (V., Vickers \& Vosmaer) Given a set funtor T that preserves weak pullbacks:
■ M_{T} provides a functor on the category Fr of frames.

Some results

Theorem (V., Vickers \& Vosmaer) Given a set funtor T that preserves weak pullbacks:
■ M_{T} provides a functor on the category Fr of frames.
■ M_{T} generalizes Johnstone's $M: M \cong M_{P}$.

Some results

Theorem (V., Vickers \& Vosmaer) Given a set funtor T that preserves weak pullbacks:

- M_{T} provides a functor on the category Fr of frames.

■ M_{T} generalizes Johnstone's $M: M \cong M_{p}$.

- M_{T} preserves regularity, zero-dimensionality, and Stone-ness.

Some results

Theorem (V., Vickers \& Vosmaer) Given a set funtor T that preserves weak pullbacks:

- M_{T} provides a functor on the category Fr of frames.
- M_{T} generalizes Johnstone's $M: M \cong M_{p}$.
- M_{T} preserves regularity, zero-dimensionality, and Stone-ness.
- M_{T} restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Some results

Theorem (V., Vickers \& Vosmaer)
Given a set funtor T that preserves weak pullbacks:
■ M_{T} provides a functor on the category Fr of frames.
■ M_{T} generalizes Johnstone's $M: M \cong M_{p}$.

- M_{T} preserves regularity, zero-dimensionality, and Stone-ness.
- M_{T} restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Some results

Theorem (V., Vickers \& Vosmaer)
Given a set funtor T that preserves weak pullbacks:
■ M_{T} provides a functor on the category Fr of frames.
■ M_{T} generalizes Johnstone's $M: M \cong M_{p}$.

- M_{T} preserves regularity, zero-dimensionality, and Stone-ness.
- M_{T} restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Some results

Theorem (V., Vickers \& Vosmaer)
Given a set funtor T that preserves weak pullbacks:
■ M_{T} provides a functor on the category Fr of frames.
■ M_{T} generalizes Johnstone's $M: M \cong M_{p}$.

- M_{T} preserves regularity, zero-dimensionality, and Stone-ness.
- M_{T} restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Some results

Theorem (V., Vickers \& Vosmaer)
Given a set funtor T that preserves weak pullbacks:
■ M_{T} provides a functor on the category Fr of frames.

- M_{T} generalizes Johnstone's M : $M \cong M_{P}$.
- M_{T} preserves regularity, zero-dimensionality, and Stone-ness.
- M_{T} restricts to a functor on KRFr (compact regular frames) provided T preserves finiteness

Question

Describe the dual of M_{T} for an arbitrary set functor T !

Overview

- Introduction
- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Final Remarks

■ Dualities are particularly useful if both categories are concrete

Final Remarks

- Dualities are particularly useful if both categories are concrete

■ Dualities can be used 'on the other side' to

- solve problems

Final Remarks

■ Dualities are particularly useful if both categories are concrete
■ Dualities can be used 'on the other side' to

- solve problems
- isolate interesting concepts

Final Remarks

■ Dualities are particularly useful if both categories are concrete
■ Dualities can be used 'on the other side' to

- solve problems
- isolate interesting concepts
- trigger interesting questions

References

- Y. Venema. A dual characterization of subdirectly irreducible BAOs. Studia Logica, 77 (2004) 105-115.
- C. Kupke, A. Kurz and Y. Venema. Stone Coalgebras. Theoretical Computer Science 327 (2004) 109-134.
- Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic. Elsevier, 2006.
- Y. Venema, S. Vickers and J. Vosmaer. Generalized powerlocales via relation lifting. Mathematical Structures in Computer Science 23 (2013) pp. 142-199.
- Y. Venema and J. Vosmaer, Modal logic and the Vietoris functor. In G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics. Springer, 2014.
http://staff.fnwi.uva.nl/y.venema

