A resolution-based approach to graph transformation

lonuţ Ţuţu

Department of Computer Science, Royal Holloway University of London

Workshop on Logic, Algebra and Category Theory Melbourne, 2018

• Both Graph Transformation and Logic Programming have a long tradition, with a well-established theory and rich tool support.

simple graphs typed graphs labelled graphs multigraphs hypergraphs

SPO derivations DPO derivations DPB transitions

adhesive categories

relational LP equational LP constraint LP service-oriented LP hybrid LP resolution paramodulation narrowing

• Both Graph Transformation and Logic Programming have a long tradition, with a well-established theory and rich tool support.

simple graphs typed graphs labelled graphs multigraphs hypergraphs

SPO derivations DPO derivations DPB transitions

adhesive categories

relational LP equational LP constraint LP service-oriented LP hybrid LP

> resolution paramodulation narrowing

generalized substitution systems

• Both Graph Transformation and Logic Programming have a long tradition, with a well-established theory and rich tool support.

simple graphs typed graphs labelled graphs multigraphs hypergraphs

SPO derivations DPO derivations DPB transitions

adhesive categories

relational LP equational LP constraint LP service-oriented LP hybrid LP

> resolution paramodulation narrowing

generalized substitution systems

• Both Graph Transformation and Logic Programming have a long tradition, with a well-established theory and rich tool support.

simple graphs typed graphs labelled graphs multigraphs hypergraphs SPO derivations

DPO derivations DPB transitions

adhesive categories

relational LP equational LP constraint LP service-oriented LP hybrid LP resolution paramodulation narrowing

• Both Graph Transformation and Logic Programming have a long tradition, with a well-established theory and rich tool support.

simple graphs typed graphs labelled graphs multigraphs hypergraphs

SPO derivations DPO derivations DPB transitions

adhesive categories

relational LP equational LP constraint LP service-oriented LP hybrid LP resolution paramodulation narrowing

• Both Graph Transformation and Logic Programming have a long tradition, with a well-established theory and rich tool support.

simple graphs typed graphs labelled graphs multigraphs hypergraphs

SPO derivations DPO derivations DPB transitions

adhesive categories

relational LP equational LP constraint LP service-oriented LP hybrid LP resolution paramodulation narrowing generalized

simple	An institution-theoretic approa	ch tional LP
typed g	Ser	(Σ) tional LP
labelled	Sen	traint LP
multigra	$\langle Sig, Sen, Mod, \models \rangle$ $\Sigma \nearrow$	⊨ _Σ ented LP
hypergr	Mod	$d(\Sigma)$ ybrid LP
spo der		solution
DPO der	rules ser	ntences dulation
DPB trai	graph transition systems	models arrowing
adhesiv	witnessing rule application satis	faction peralized
		systems

Bridging the gap between GT and LP: Outline

Bridging the gap between GT and LP: Outline

Bridging the gap between GT and LP: Outline

A resolution-based approach to graph transformation

A resolution-based approach to graph transformation

A resolution-based approach to graph transformation

Type & instance graphs

A resolution-based approach to graph transformation

Type & instance graphs

Actor networks

Actor networks

A resolution-based approach to graph transformation

Substitution systems

• Every institution $\mathfrak{I} = \langle \$ig, \$en, Mod, \vDash \rangle$ can be regarded as a functor $\mathfrak{I} : \$ig \rightarrow \mathbb{R}$ oom into the category of rooms and corridors:

- A substitution system consists of
 - 1. a category Subst of signatures of variables and substitutions,
 - 2. a room G of ground sentences and models, and
 - 3. a functor $S: Subst \to G / Room$.
- Universally and existentially quantified sentences can be defined:

 $\forall X \cdot \rho = \exists X \cdot \rho$

where $X \in |Subst|$ and $\rho \in Sen(X)$.

Substitution systems

• Every institution $\mathfrak{I} = \langle \$ig, \$en, Mod, \vDash \rangle$ can be regarded as a functor $\mathfrak{I}: \$ig \rightarrow \mathbb{R}$ oom into the category of rooms and corridors:

- A substitution system consists of
 - 1. a category Subst of signatures of variables and substitutions,
 - 2. a room G of ground sentences and models, and
 - 3. a functor $S: Subst \to G / \mathbb{R}oom$.
- Universally and existentially quantified sentences can be defined:

 $\forall X \cdot \rho \qquad \exists X \cdot \rho$

where $X \in |Subst|$ and $\rho \in Sen(X)$.

Substitution systems

• Every institution $\mathfrak{I} = \langle \$ig, \$en, Mod, \vDash \rangle$ can be regarded as a functor $\mathfrak{I}: \$ig \rightarrow \mathbb{R}$ oom into the category of rooms and corridors:

- A substitution system consists of
 - 1. a category Subst of signatures of variables and substitutions,
 - 2. a room G of ground sentences and models, and
 - 3. a functor $S: Subst \to G / \mathbb{R}oom$.
- Universally and existentially quantified sentences can be defined:

$$\forall X \cdot \rho \qquad \exists X \cdot \rho$$

where $X \in |Subst|$ and $\rho \in Sen(X)$.

A substitution system for GT: Prerequisites

Consider an adhesive category $\mathbb C.$ Then the following prop. hold:

- C has pushouts along monomorphisms, and monomorphisms are stable under pushouts.
- C has pullbacks, and pushouts along monomorphisms are also pullbacks.
- 3. Given a commutative cube diagram, if the arrows in the top and bottom squares are mono, the top square is a pullback, and the front and back squares are pushouts, then the bottom square is a pullback too.

A substitution system for GT: Prerequisites

Consider an adhesive category \mathbb{C} . Then the following prop. hold:

- C has pushouts along monomorphisms, and monomorphisms are stable under pushouts.
- C has pullbacks, and pushouts along monomorphisms are also pullbacks.
- 3. Given a commutative cube diagram, if the arrows in the top and bottom squares are mono, the top square is a pullback, and the front and back squares are pushouts, then the bottom square is a pullback too.

A substitution system for GT: Prerequisites

Consider an adhesive category \mathbb{C} . Then the following prop. hold:

- C has pushouts along monomorphisms, and monomorphisms are stable under pushouts.
- C has pullbacks, and pushouts along monomorphisms are also pullbacks.
- 3. Given a commutative cube diagram, if the arrows in the top and bottom squares are mono, the top square is a pullback, and the front and back squares are pushouts, then the bottom square is a pullback too.

A substitution system for GT: Prerequisites (continued)

We assume that C is equipped with a monic quantification space
 R, i.e. a class of monomorphisms for which there exists a functorial choice of pushouts along any arrow in C.

A substitution system for GT: Prerequisites (continued)

- In addition, we assume a class $\mathbb T$ of commutative squares

(for which the arrows \mathfrak{m} and \mathfrak{n} are monomorphisms)

such that

- 1. all pushouts along monomorphisms are in \mathbb{T} , and
- for any commutative two-square diagram such that the top square is a pushout along monomorphisms, the outer square belongs to T if and only if the bottom square belongs to T.

A substitution system for GT: Prerequisites (continued)

- In addition, we assume a class $\mathbb T$ of commutative squares

(for which the arrows \mathfrak{m} and \mathfrak{n} are monomorphisms)

such that

- 1. all pushouts along monomorphisms are in $\mathbb T,$ and
- for any commutative two-square diagram such that the top square is a pushout along monomorphisms, the outer square belongs to T if and only if the bottom square belongs to T.

- ${\boldsymbol{\cdot}}$ The category §ubst of variables and substitutions is just $\mathbb{C}.$
- For simplicity, we define the set of ground sentences to be empty. (Hence, the ground satisfaction relation is empty also.)
- Concerning ground models, let Trans(C) be the category in which:
 - the objects are objects of C;
 - the arrows are abstract spans of monomorphisms in C;

- the composition of arrows is defined by means of pullbacks.

- ${\boldsymbol{\cdot}}$ The category §ubst of variables and substitutions is just $\mathbb{C}.$
- For simplicity, we define the set of ground sentences to be empty. (Hence, the ground satisfaction relation is empty also.)
- Concerning ground models, let $\mathbb{T}rans(\mathbb{C})$ be the category in which:
 - the objects are objects of C;
 - the arrows are abstract spans of monomorphisms in \mathbb{C} ;

- the composition of arrows is defined by means of pullbacks.

- The category Subst of variables and substitutions is just $\mathbb C.$
- For simplicity, we define the set of ground sentences to be empty. (Hence, the ground satisfaction relation is empty also.)
- Concerning ground models, let $Trans(\mathbb{C})$ be the category in which:
 - the objects are objects of \mathbb{C} ;
 - the arrows are abstract spans of monomorphisms in \mathbb{C} ;

- the composition of arrows is defined by means of pullbacks.

- The category Subst of variables and substitutions is just $\mathbb C.$
- For simplicity, we define the set of ground sentences to be empty. (Hence, the ground satisfaction relation is empty also.)
- Concerning ground models, let $Trans(\mathbb{C})$ be the category in which:
 - the objects are objects of \mathbb{C} ;
 - the arrows are abstract spans of monomorphisms in \mathbb{C} ;

- the composition of arrows is defined by means of pullbacks.

- The category Subst of variables and substitutions is just $\mathbb C.$
- For simplicity, we define the set of ground sentences to be empty. (Hence, the ground satisfaction relation is empty also.)
- Concerning ground models, let $Trans(\mathbb{C})$ be the category in which:
 - the objects are objects of $\mathbb{C};$
 - the arrows are abstract spans of monomorphisms in \mathbb{C} ;

- the composition of arrows is defined by means of pullbacks.

- The category Subst of variables and substitutions is just $\mathbb C.$
- For simplicity, we define the set of ground sentences to be empty. (Hence, the ground satisfaction relation is empty also.)
- Concerning ground models, let $Trans(\mathbb{C})$ be the category in which:
 - the objects are objects of $\mathbb{C};$
 - the arrows are abstract spans of monomorphisms in \mathbb{C} ;

- the composition of arrows is defined by means of pullbacks.

• A sentence over $X \in |Subst|$ is a span of morphisms in \mathbb{R} .

$$L \xleftarrow{ \mathfrak{l} } X \xrightarrow{ r } R$$

- A valuation for X consists of a graph transition system M and a morphism $\nu\colon X\to K$ in $\mathbb{C}.$
- $\langle M, v \rangle \vDash_X l \to r$ if and only if every graph transition generated from the span (l, r) along the morphism v is in M:

• A sentence over $X \in |Subst|$ is a span of morphisms in \mathbb{R} .

$$L \xleftarrow{\iota} X \xrightarrow{r} R$$

- A valuation for X consists of a graph transition system M and a morphism $\nu\colon X\to K$ in $\mathbb{C}.$
- $\langle M, v \rangle \vDash_X l \to r$ if and only if every graph transition generated from the span (l, r) along the morphism v is in M:

• A sentence over $X \in |Subst|$ is a span of morphisms in \mathbb{R} .

$$\mathsf{L} \xleftarrow{\mathfrak{l}} X \xrightarrow{r} \mathsf{R}$$

- A valuation for X consists of a graph transition system M and a morphism $\nu\colon X\to K$ in $\mathbb{C}.$
- $\langle M, \nu \rangle \vDash_X l \to r$ if and only if every graph transition generated from the span (l, r) along the morphism ν is in M:

• Sentences (over signature of variables X) are translated along substitutions $\psi: X \to Y$ by means of dedicated pushouts:

• The reduction of valuations is defined by precomposition with ψ :

$$\langle M,\nu\rangle\mapsto \langle M,\psi\,{\scriptscriptstyle \$}\,\nu\rangle$$

Proposition. The satisfaction of graph-transformation sentences is invariant with respect to substitutions.

• Sentences (over signature of variables X) are translated along substitutions $\psi: X \to Y$ by means of dedicated pushouts:

$$\begin{array}{c} L \xleftarrow{l_X} & X \xrightarrow{r_X} R \\ \downarrow & \mathbb{R} & \psi & \mathbb{R} \\ G \xleftarrow{l_Y} & Y \xrightarrow{r_Y} H \end{array}$$

- The reduction of valuations is defined by precomposition with $\psi {:}$

$$\langle M,\nu\rangle\mapsto \langle M,\psi\,{\rm g}\,\nu\rangle$$

Proposition. The satisfaction of graph-transformation sentences is invariant with respect to substitutions.

• Sentences (over signature of variables X) are translated along substitutions $\psi: X \to Y$ by means of dedicated pushouts:

$$\begin{array}{c} L \xleftarrow{l_X} & X \xrightarrow{r_X} R \\ \downarrow & \mathbb{R} & \psi & \mathbb{R} \\ G \xleftarrow{l_Y} & Y \xrightarrow{r_Y} H \end{array}$$

- The reduction of valuations is defined by precomposition with $\psi {:}$

$$\langle M,\nu\rangle\mapsto \langle M,\psi\,{\scriptscriptstyle \$}\,\nu\rangle$$

Proposition. The satisfaction of graph-transformation sentences is invariant with respect to substitutions.

Graph transformation as logic programming

• A homomorphism between two valuations $\langle M_1, \nu_1 : X \to K_1 \rangle$ and $\langle M_2, \nu_2 : X \to K_2 \rangle$ is a morphism h: $K_1 \to K_2$ such that

Proposition. For any sentence $l \to r$ over X and any homomorphism h: $\langle M_1, \nu_1 \rangle \to \langle M_2, \nu_2 \rangle$ such that $\langle M_1, \nu_1 \rangle \models l \to r$, $\langle M_2, \nu_2 \rangle \models l \to r$.

Graph transformation as logic programming

• A homomorphism between two valuations $\langle M_1, \nu_1 : X \to K_1 \rangle$ and $\langle M_2, \nu_2 : X \to K_2 \rangle$ is a morphism h: $K_1 \to K_2$ such that

Proposition. For any sentence $l \to r$ over X and any homomorphism h: $\langle M_1, \nu_1 \rangle \to \langle M_2, \nu_2 \rangle$ such that $\langle M_1, \nu_1 \rangle \models l \to r$, $\langle M_2, \nu_2 \rangle \models l \to r$.

Graph transformation as logic programming (continued)

Theorem. Every set Γ of universally quantified GT sentences has an initial model o_{Γ} : the broad subcategory of $Trans(\mathbb{C})$ generated by those transitions that witness the application of a rule from Γ .

Proposition. The model o_{Γ} is X-reachable for every $X \in |Subst|$: for every valuation $\langle o_{\Gamma}, v_1 \rangle$ of X, every pair of morphisms $o_{\Gamma} \to M$ and h: $K_1 \to K_2$ can be lifted to a homomorphism $\langle o_{\Gamma}, v_1 \rangle \to \langle M, v_1
ightharrow h$.

Graph transformation as logic programming (continued)

Theorem. Every set Γ of universally quantified GT sentences has an initial model o_{Γ} : the broad subcategory of $Trans(\mathbb{C})$ generated by those transitions that witness the application of a rule from Γ .

Proposition. The model o_{Γ} is X-reachable for every $X \in |Subst|$: for every valuation $\langle o_{\Gamma}, v_1 \rangle$ of X, every pair of morphisms $o_{\Gamma} \to M$ and h: $K_1 \to K_2$ can be lifted to a homomorphism $\langle o_{\Gamma}, v_1 \rangle \to \langle M, v_1
ightharpoonrig$

Graph transformation as logic programming (conclusion)

Theorem (Herbrand's theorem). For every graph-transformation logic program Γ and every query $\exists X \cdot l \rightarrow r$ such that

- the satisfaction of $\iota \to r$ is preserved by X-homomorphisms,
- Γ has an X-reachable initial model o_{Γ} ,

the following statements are equivalent:

- **1.** $\Gamma \vDash \exists X \cdot l \rightarrow r$.
- **2.** $O_{\Gamma} \vDash \exists X \cdot l \rightarrow r.$
- 3. $\exists X \cdot l \rightarrow r$ admits a Γ -solution.

Proposition. Resolution is sound and complete with respect to the denotational semantics of the graph-transformation subst. system.

I. Ţuţu

Proposition. Resolution is sound and complete with respect to the denotational semantics of the graph-transformation subst. system.

I. Ţuţu

A resolution-based approach to graph transformation

Bridging the gap between GT and LP: Conclusions

• Both G	A substitution-system-based approach	ive a long	
traditic		support.	
	rules sentences		
simple g	graph transition systems models	tional LP	
typed g		tional LP	
labelled	witnessing rule application satisfaction	straint LP	
multigra	graph rewriting resolution	ented LP	
hypergr		nybrid LP	
	Further challenges		
SPO der		solution	
DPO der	 a concrete operational semantics of GT LP 	dulation	
DPB trai	• accommodating GT systems with (negative)	arrowing	
adhesiv	application conditions	eralized	
\\ substitution systems			

Thank you!

Further Reading

- Reiko Heckel, Hartmut Ehrig, Uwe Wolter, Andrea Corradini.
 Double-Pullback Transitions and Coalgebraic Loose Semantics for Graph Transformation Systems.
 Applied Categorical Structures 9(1): 83-110 (2001)
- Stephen Lack and Pawel Sobocinski. Adhesive and quasiadhesive categories. ITA 39(3): 511-545 (2005)
- Hartmut Ehrig, Julia Padberg, Ulrike Prange, Annegret Habel. Adhesive High-Level Replacement Systems: A New Categorical Framework for Graph Transformation. Fundam. Inform. 74(1): 1-29 (2006)
 - Andrea Corradini, Fabio Gadducci, Leila Ribeiro. An Institution for Graph Transformation. WADT 2010: 160-174
- Ionuţ Ţuţu and José L. Fiadeiro. From conventional to institution-independent logic programming. JLC (2017)