Relational T-algebra and the category of topological spaces

Yoshihiro Mizoguchi Institute of Mathematics for Industry Kyushu University, JAPAN

Workshop on Logic Algebra and Category Theory: LAC2018 La Trobe University, Melbourne

February 14, 2018

Table of Contents

(1) Theory of Relational Calculus
(2) Category theory
(3) Ω-algebra
(4) T-algebra
(5) Haskell's monad
(6) Ultra filter monad
(7) Relational T-algebra

First step of an algebra of logic

- Boolean Algebra (1847) : an algebra of logic!

$$
\mathcal{B}=(B, \perp, \top, \wedge, \vee,-)
$$

- De Morgan's Law (1864) : a formula of logic!

$$
\overline{(x \vee y)}=\bar{x} \wedge \bar{y}, \quad \overline{(x \wedge y)}=\bar{x} \vee \bar{y}
$$

- Symbolic Computing : A merit of algebraic formalization!

$$
\begin{aligned}
(x \vee y) \wedge \overline{(x \wedge y)} & =(x \vee y) \wedge(\bar{x} \vee \bar{y}) \\
& =(x \wedge \bar{x}) \vee(x \wedge \bar{y}) \vee(y \wedge \bar{x}) \vee(y \wedge \bar{y}) \\
& =\perp \vee(x \wedge \bar{y}) \vee(y \wedge \bar{x}) \vee \perp=(x \wedge \bar{y}) \vee(\bar{x} \wedge y)
\end{aligned}
$$

Theory of Relational Calculus (1)

(1) A relation α from a set A into another set B is a subset of the Cartesian product $A \times B$ and denoted by $\alpha: A \rightharpoondown B$.

$$
\begin{aligned}
A & =\{1,2,3\} \\
B & =\{X, Y, Z\} \\
\alpha & =\{(1, X),(1, Y),(1, Z),(3, X),(3, Z)\} \\
\alpha & \subseteq A \times B
\end{aligned}
$$

Theory of Relational Calculus (2)

(2) The inverse relation $\alpha^{\sharp}: B \rightharpoondown A$ of α is a relation such that $(b, a) \in \alpha^{\sharp}$ if and only if $(a, b) \in \alpha$.

We note $\alpha \subseteq A \times B$ and $\alpha^{\sharp} \subseteq B \times A$.
(3) The composite $\alpha \cdot \beta: A \rightharpoondown C$ of $\alpha: A \rightharpoondown B$ followed by $\beta: B \rightharpoondown C$ is a relation such that $(a, c) \in \alpha \cdot \beta$ if and only if there exists $b \in B$ with $(a, b) \in \alpha$ and $(b, c) \in \beta$.

We note $\alpha \cdot \beta \subseteq A \times C$.

Theory of Relational Calculus (3)

(4) As a relation of a set A into a set B is a subset of $A \times B$, the inclusion relation, union, intersection and difference of them are available as usual and denoted by $\sqsubseteq, \sqcup, \sqcap$ and - , respectively.
(5) The identity relation $\mathrm{id}_{A}: A \rightharpoondown A$ is a relation with $\mathrm{id}_{A}=\{(a, a) \in A \times A \mid \cdot a \in A\}$.

(6) The empty relation $\phi \subseteq A \times B$ is denoted by $\mathbf{0}_{A B}$. The entire set $A \times B$ is called the universal relation and denoted by $\nabla_{A B}$.
(7) The one point set $\{*\}$ is denoted by \mathbf{I}. We note that $\nabla_{I I}=\mathrm{id}_{/}$.

Theory of Relational Calculus (4)

- Axiom
- $\alpha \cdot \mathrm{id}=\alpha$
- $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$
- $(\alpha \cdot \beta)^{\sharp}=\beta^{\sharp} \cdot \alpha^{\sharp}$
- $\left(\alpha^{\sharp}\right)^{\sharp}=\alpha$
- If $\alpha \sqsubseteq \alpha^{\prime}$ then $\alpha^{\sharp} \sqsubseteq \alpha^{\prime \#}$.
- $(\alpha \cdot \beta) \sqcup \gamma \sqsubseteq \alpha \cdot\left(\beta \sqcap\left(\alpha^{\sharp} \cdot \gamma\right)\right)$
- ...
- Lemma
- $\alpha \cdot(\beta \sqcup \gamma)=(\alpha \cdot \beta) \sqcup(\alpha \cdot \gamma)$
- $\alpha \cdot(\beta \sqcap \gamma) \sqsubseteq(\alpha \cdot \beta) \sqcap(\alpha \cdot \gamma) \sqsubseteq \alpha \cdot\left(\beta \sqcap\left(\alpha^{\sharp} \cdot \alpha \cdot \gamma\right)\right)$
- $\alpha \sqsubseteq \alpha \cdot \alpha^{\sharp} \cdot \alpha$
- If $\beta \sqsubseteq \beta^{\prime}$ then $\alpha \cdot \beta \cdot \gamma \sqsubseteq \alpha \cdot \beta^{\prime} \cdot \gamma$.
- ...
composition of an injection and an injection is an injection (relational formula)

Proposition

Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be injections. Then $f \cdot g: X \rightarrow Z$ is an injection.

$$
\left(f \cdot f^{\sharp} \sqsubseteq i d_{X}\right) \wedge\left(g \cdot g^{\sharp} \sqsubseteq i d_{Y}\right) \Rightarrow\left((f \cdot g) \cdot(f \cdot g)^{\sharp} \sqsubseteq i d_{X}\right)
$$

$$
\begin{aligned}
& (f \cdot g) \cdot(f \cdot g)^{\sharp} \\
= & (f \cdot g) \cdot\left(g^{\sharp} \cdot f^{\sharp}\right) \\
= & \left(\because(\alpha \cdot \beta)^{\sharp}=\beta^{\sharp} \cdot \alpha^{\sharp}\right) \\
=f \cdot\left(g \cdot g^{\sharp}\right) \cdot f^{\sharp} & (\because \text { associative law }) \\
\sqsubseteq & f \cdot \text { id }_{Y} \cdot f^{\sharp} \\
=f \cdot f^{\sharp} & \left(\because g \cdot g^{\sharp} \sqsubseteq \text { id } y_{Y}\right) \\
\sqsubseteq \text { id }_{X} & \left(\because \text { id }_{Y} \text { is unit }\right) \\
& \left(\because f \cdot f^{\sharp} \sqsubseteq \text { id } X\right)
\end{aligned}
$$

Proof can be done using symbolic transformations.

composition of an injection and an injection is an injection (relational formula)

```
Theorem injection_composite_rel_tactic
    \{X Y Z : eqType\} \{f : Rel X Y\} \{g : Rel Y Z\}:
    \((f \cdot(f \#)) \subseteq I d X / \backslash(\mathrm{g} \cdot(\mathrm{g} \#)) \subseteq\) Id \(Y\)->
    \(((f \cdot g) \cdot((f \cdot g) \#)) \subseteq I d X\).
Proof.
    Rel_simpl2.
Qed.
```

We can implement an automatic prover (Tactic).

The long and winding load to the relational T-algebra

- Algebra (Group,Ring,Field) $\rightarrow(\Omega, E)$-algebra (Universal Algebra) $\rightarrow T$-algebra $\left(\mathbf{S e t}^{T}\right) \rightarrow$ relational T-algebra $(\operatorname{Rel}(T))$
- Monad (Triple) (T, η, μ)
- Kleisli Category (T, η, \circ)
- Haskell's monad (T, return, >>=)
- ultrafilter monad (U, η_{U}, μ_{U})
$\rightarrow \operatorname{Set}^{U} \cong C H \rightarrow \operatorname{Rel}(U) \cong T o p$

Our goal is to refine those theories and introduce a formal proof using relational calculus and Coq a proof assistant system.

Category

Definition

A category \mathcal{C} is defined by the following data and axioms.
Datum1 $\operatorname{Obj}(\mathcal{C})$: a class of objects in \mathcal{C}.
Datum2 $\mathcal{C}(A, B)$: a class of \mathcal{C}-morphisms for objects A and B.
Datum3 $i d_{A} \in \mathcal{C}(A, A)$: the identity morphism $i d_{A}$ for any object A.
Datum4 $g \cdot f \in \mathcal{C}(A, C)$ is defined by $f \in \mathcal{C}(A, B)$ and $g \in \mathcal{C}(B, C)$.
Axiom1 For any $f \in \mathcal{C}(A, B), g \in \mathcal{C}(B, C)$ and $h \in \mathcal{C}(C, D)$, $h \cdot(g \cdot f)=(h \cdot g) \cdot f$.
Axiom2 For any $f \in \mathcal{C}(A, B), f \cdot i d_{A}=f=i d_{B} \cdot f$.
Axiom3 If $A \neq A^{\prime}$ and $B \neq B^{\prime}$ then $\mathcal{C}(A, B) \cap \mathcal{C}\left(A^{\prime}, B^{\prime}\right)=\phi$.

Functor

Definition

Let \mathcal{C} and \mathcal{D} be categories. A functor $H: \mathcal{C} \rightarrow \mathcal{D}$ is defined by the following data and axioms.

Datum1 $H A \in \operatorname{Obj}(\mathcal{D})$ is defined by $A \in \operatorname{Obj}(\mathcal{C})$.
Datum2 $H f \in \mathcal{D}(H A, H B)$ is defined by $f \in \mathcal{C}(A, B)$.
Axiom1 $\mathrm{Hid}_{A}=i d_{H A}$.
Axiom2 For any $f \in \mathcal{C}(A, B)$ and $g \in \mathcal{C}(B, C), H(g \cdot f)=H g \cdot H f$.

Natural transformation

Definition

$$
\begin{array}{ccc}
H A & \xrightarrow{H f} & H B \\
\alpha A \mid & & \mid \alpha B \\
H^{\prime} A & \xrightarrow[H^{\prime} f]{ } & H^{\prime} B
\end{array}
$$

Let $H, H^{\prime}: \mathcal{C} \rightarrow \mathcal{D}$ be functors. A natural transformation $\alpha: H \rightarrow H^{\prime}$ is defined by the following datum and axiom.

Datum $\alpha A \in \mathcal{D}\left(H A, H^{\prime} A\right)$ is defined by $A \in \operatorname{Obj}(\mathcal{C})$.
Axiom For any $f \in \mathcal{C}(A, B)$, the following diagram commutes.

Example

Set(sets and functions), Lin(linear spaces and linear maps), Grp(groups and homomorphisms).

Ω-algebra

Definition

Let Ω_{n} be a label set of n-ary operators for $n=0,1, \ldots$ and $\Omega=\left\{\Omega_{n} \mid n=0,1, \ldots\right\}$. For a given set $X, \delta=\left\{\delta_{\omega} \mid \omega \in \Omega_{n}, n=0,1, \ldots\right\}$ is a set of n-ary functions $\delta_{\omega}: X^{n} \rightarrow X$. A pair (X, δ) is called a Ω-algebra.
Let (X, δ) and (Y, γ) are Ω-algebras. A function $f: X \rightarrow Y$ is an Ω-morphism if

$$
f \cdot \delta_{\omega}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\gamma_{\omega}\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)
$$

for any $\omega \in \Omega_{n}$.

Ω-term

Definition

Let A be a set. The set ΩA of all ω-terms over A is defined as follows.
(1) $a \in A \Rightarrow a \in \Omega A$
(2) $\omega \in \Omega_{n}, p_{1}, \ldots, p_{n} \in \Omega A \Rightarrow \omega\left(p_{1}, \ldots, p_{n}\right) \in \Omega A$.

Definition

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}, \ldots\right\}$ be a set of variables. For two elements $e_{1}, e_{2} \in \Omega V$, a set $\left\{e_{1}, e_{2}\right\}$ is called Ω-equation. A pair (Ω, E) of Ω and a set E of Ω-equation is called an equational presentation.

Example

Example

Let m (multiple), i (inverse) and e (unit) be labels of operators. Let $\Omega_{0}=\{e\}, \Omega_{1}=\{i\}, \Omega_{2}=\{m\}$ and $E=\left\{\left\{m\left(v_{1}, m\left(v_{2}, v_{3}\right)\right)\right.\right.$, $\left.m\left(m\left(v_{1}, v_{2}\right), v_{3}\right)\right\},\left\{m\left(v_{1}, e\right), v_{1}\right\},\left\{m\left(e, v_{1}\right), v_{1}\right\},\left\{m\left(v_{1}, i\left(v_{1}\right), e\right\}\right.$, $\left.\left\{m\left(i\left(v_{1}\right), v_{1}\right), e\right\}\right\}$. Then a group X can be considered as an Ω-algebra.

Example

For a division function $d(x, y)=m(x, i(y))$ in a group, we define $\Omega_{2}=\{d\}$ and

$$
E=\{\{d(x, d(d(d(d(x, x), y), z), d(d(d(x, x), x), z))), y\}\}
$$

Then an (Ω, E)-algebra can be considered as a group[4].

Ω-algebra

Example (The Total Description Map)

Let (X, δ) be an Ω-algebra. δ can be naturally extended to $\delta^{@}: \Omega X \rightarrow X$.

- $\delta^{@}(x)=x(x \in X)$,
- $\delta^{@}\left(\omega\left(p_{1}, \cdots, p_{n}\right)\right)=\delta_{\omega}\left(\delta^{@}\left(p_{1}\right), \cdots, \delta^{@}\left(p_{n}\right)\right)\left(\omega \in \Omega_{n}\right)$.

Definition (Ω-algebra)

For a given Ω-algebra (X, δ) and an assignment $r: V \rightarrow X$, an extension map $r^{\sharp}: \Omega V \rightarrow X$ is defined by $\delta^{\complement} \cdot \Omega r$. Let $\left\{e_{1}, e_{2}\right\}$ be a Ω-equation. If $r^{\sharp}\left(e_{1}\right)=r^{\sharp}\left(e_{2}\right)$ for any $r: V \rightarrow X$ then we say (X, δ) satisfies $\left\{e_{1}, e_{2}\right\}$. If an Ω-algebra satisfies all equations in E, then it is called as an (Ω, E)-algebra.

ת-morphism

Definition

For a given set A, we define an equivalence relation E_{A} over ΩA by

$$
E_{A}=\left\{(p, q) \mid \forall(X, \delta): \Omega-\text { algebra, } \forall f: A \rightarrow X, f^{\sharp}(p)=f^{\sharp}(q)\right\} .
$$

We denote a quotient set of ΩA by an equivalence relation E_{A} as $T A=\Omega A / E_{A}$. We denote an equivalence class including $p \in \Omega A$ as $\rho A(p)=[p]$. Then $\rho A: \Omega A \rightarrow T A$.

Proposition

Let $\omega_{n} \in \Omega_{n}, \omega_{n}\left(\left[p_{1}\right], \cdots,\left[p_{n}\right]\right)=\left[\omega_{n}\left(p_{1}, \cdots, p_{n}\right)\right]$ and $\omega=\left\{\omega_{n} \mid n=0,1, \ldots\right\}$. An Ω-algebra $(T A, \omega)$ is an (Ω, E)-algebra and $\rho A: \Omega A \rightarrow T A$ is an Ω-morphism.

(Ω, E)-algebra (1)

Definition

We denote $(T A, \omega)$ as $T A$ and it is called a free (Ω, E)-algebra over A.

Proposition (The Universal Property of TA)

A function $\eta A: A \rightarrow T A$ is defined by $\eta A(a)=[a]$. For any (Ω, E)-algebra (X, δ) and a function $f: A \rightarrow X$, there exists a unique Ω-morphism $f^{\sharp \sharp}: T A \rightarrow(X, \delta)$ of f such that $f^{\sharp \sharp} \cdot \eta A=f$.

Monad (Triple)

Definition (Algebraic theory and monad)

A monad type algebraic theory over a category \mathcal{C} is a triple $T=(T, \eta, \mu)$ satisfies followings.
$T: \mathcal{C} \rightarrow \mathcal{C}$ is a functor.
$\eta: I \rightarrow T, \mu: T T \rightarrow T$ is a natural transformation.
$\mu_{A} \cdot \eta_{T A}=i d_{T A}, \mu_{A} \cdot T \eta_{A}=i d_{T A}$ and $\mu_{A} \cdot T \mu_{A}=\mu_{A} \cdot \mu_{T A}$ hold for any $A \in \operatorname{Obj}(\mathcal{C})$.
A category \mathcal{C}^{T} of T-algebra and T-homomorphisms is defined by
$\operatorname{Obj}\left(\mathcal{C}^{T}\right)=\left\{(X, x) \mid X \in \operatorname{Obj}(\mathcal{C}), x: T X \rightarrow X, x \cdot \eta_{X}=i d_{X}, x \cdot T_{x}=x \cdot \mu_{X}\right\}$ and

$$
\mathcal{C}^{T}\left((X, x),\left(X^{\prime}, x^{\prime}\right)\right)=\left\{f \in \mathcal{C}\left(X, X^{\prime}\right) \mid x^{\prime} \cdot T f=f \cdot x\right\}
$$

We call an object in \mathcal{C}^{T} as T-algebra and a morphism as T-homomorphism.

Kleisli Category

Definition (Algebraic theory and Kleisli category)

A clone type algebraic theory over a category \mathcal{C} is a triple $T=(T, \eta, \circ)$ satisfies followings.
T is a map $T: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{C})$.
A morphism $\eta A: A \rightarrow T A$ is defined for any object $A \in \operatorname{Obj}(\mathcal{C})$.

- is a map $\circ: \mathcal{C}(A, T B) \times \mathcal{C}(B, T C) \rightarrow \mathcal{C}(A, T C)$.

For any $f \in \mathcal{C}(A, B), f^{\Delta}: A \rightarrow T B$ is defined by $f^{\Delta}=A \xrightarrow{f} B \xrightarrow{\eta B} T B$. For any morphisms $\alpha \in \mathcal{C}(A, T B), \beta \in \mathcal{C}(B, T C)$ and $\gamma \in \mathcal{C}(C, T D)$, the followings hold.

- $(\alpha \circ \beta) \circ \gamma=\alpha \circ(\beta \circ \gamma)$
- $\alpha \circ \eta B=\alpha$
- $\beta \circ \alpha^{\Delta}=(\beta \alpha)^{\Delta}$

A Kleisli category \mathcal{C}_{T} is a category defined by $\operatorname{Obj}\left(\mathcal{C}_{T}\right)=\operatorname{Obj}(\mathcal{C})$, $\mathcal{C}_{T}(A, B)=\mathcal{C}(A, T B)$ and a composition of morphisms are defined by 0 . We note the identity $\operatorname{id}_{A} \in \mathcal{C}_{T}(A, A)$ is $\eta A: A \rightarrow T A$.

Monad and Kleisli category

Theorem ([7])

There exists a bijective correspondence between a clone type algebraic theory $T=(T, \eta, \circ)$ and a monad type algebraic theory $T=(T, \eta, \mu)$.

Theorem

A category of (Ω, E)-algebra is isomorphic to a category of Set T defined by its algebraic theory $T=(T, \eta, \circ)$.

Example

Example

Let $\Omega_{0}=\{$ zero $\}, \Omega_{1}=\{$ succ $\}, \Omega_{2}=\{$ plus $\}, E=\{\{$ plus(zero, $x), x\}$, $\{$ plus $(\operatorname{succ}(x), y), \operatorname{succ}(p l u s(x, y))\}\}$. For (Ω, E), we have

$$
(\Omega, E) \vdash \operatorname{plus}(\operatorname{succ}(z e r o), \text { zero })=\operatorname{succ}(z e r o)
$$

(Ω, E)-algebra (2)

Definition

A clone category $\operatorname{Set}(\Omega, E)$ of (Ω, E) is defined as follows.
$\operatorname{Object} \operatorname{Obj}(\operatorname{Set}(\Omega, E))=\operatorname{Obj}(\operatorname{Set})$
Morphism $\operatorname{Set}(\Omega, E)(A, B)=\operatorname{Set}(A, T B)$. For any $\alpha: A \rightarrow T B$ and $\beta: B \rightarrow T C$, we define

$$
(A \xrightarrow{\alpha} B) \circ(B \xrightarrow{\beta} C)=A \xrightarrow{\alpha} T B \xrightarrow{\beta^{\sharp}} T C .
$$

Identity $i d_{A} \in \operatorname{Set}(\Omega, E)(A, A)$ is $i d_{A}=\eta A: A \rightarrow T A$.

Proposition

$\operatorname{Set}(\Omega, E)$ is a category and $T \phi$ is the initial object in $\operatorname{Set}(\Omega, E)$.

Haskell's monad (1)

- Let Set be the category of sets and functions.
- Let List be the category of free monoids and homomorphisms.
- Let $A=$ Integer (the set of all integers).
- Let $F:$ Set \rightarrow List be a functor creating a free monoid. We note $1,2,3 \in A$ and $[1,2,3] \in F A$.
For $f: A \rightarrow B$ we define $F f: F A \rightarrow F B$ as $F f=(\operatorname{map} f)$.
$\mathrm{Ff}[1,2,3]=(\operatorname{map} \mathrm{f}[1,2,3])=[\mathrm{f}(1), \mathrm{f}(2), \mathrm{f}(3)]$
- concat : $F F A \rightarrow F A$ is a natural transfromation.
concat $[[1,2],[3],[4,5,6]]=[1,2,3,4,5,6]$
- return : $A \rightarrow F A$ is a natural transformation. return $x=[x]$

Haskell's monad (2)

Haskell's monad is constructed by a triple (F, return, $\gg=$).

- $F: \operatorname{Obj}(S e t) \rightarrow \operatorname{Obj}(S e t)$.
- return : $A \rightarrow F A($ for $A \in \operatorname{Obj}(\operatorname{Set}))$
- $\gg=: \operatorname{Set}(A, F A) \rightarrow \operatorname{Set}(F A, F B)$

We denote $\gg=(f)\left(l_{a}\right)$ as $I \gg=f$.
$l_{a} \gg=f$ is defined as $\left(\right.$ concat $\left.\left(\operatorname{map} f l_{a}\right)\right)$.

$$
\begin{aligned}
& {[1,2,3] \gg=(\lambda x \cdot[x, 2 x]) } \\
= & \operatorname{concat}(\operatorname{map}(\lambda x \cdot[x, 2 x])[1,2,3]) \\
= & \operatorname{concat}[[1,2],[2,4],[3,6]] \\
= & {[1,2,2,4,3,6] }
\end{aligned}
$$

Haskell's monad (3)

- Haskell's monad is a triple (F, return, $\gg=$).
- return : $A \rightarrow F A$
- $\gg=:(A \rightarrow F B) \rightarrow(F A \rightarrow F B)$
- Kleisli category is a triple (F, η, \circ).
- $\eta: A \rightarrow F A$
- $\circ:(A \rightarrow F B) \times(B \rightarrow F C) \rightarrow(A \rightarrow F C)$
- Correspondence between (F, return, $\gg=$) and (F, η, \circ).
- $\eta=$ return
- $\alpha \circ \beta=\lambda x .((\alpha x) \gg=\beta)$.

Ultra filter monad

Let U : Set \rightarrow Set be a functer, and $\eta U: 1_{\text {Set }} \rightarrow U$ and $\mu U: U^{2} \rightarrow U$ natural transformations. For a set $X, U X$ is a set of ultra filters over X. For a set Y and a function $\Psi: X \rightarrow Y$, we define $U \Psi: U X \rightarrow U Y$, $\eta U X: X \rightarrow U X$, and $\mu U X: U^{2} X \rightarrow U X$ by

$$
\begin{aligned}
U \Psi(\mathcal{U}) & :=\left\{B \sqsubseteq Y \mid \Psi^{\sharp} \cdot B \in \mathcal{U}\right\} \\
\eta U X(a) & :=\{A \sqsubseteq X \mid a \in A\} \\
\mu U X(\mathscr{U}) & :=\{A \sqsubseteq X \mid \pi U X(A) \in \mathscr{U}\} .
\end{aligned}
$$

where $\pi U X(A):=\left\{\mathcal{U} \sqsubseteq 2^{X} \mid A \in \mathcal{U}\right\}$.
We note $\mathbf{U}=(U, \eta, \mu)$ is a monad over Set and called ultra filter monad.

Relational T-algebra

Let $\mathbf{T}=(T, \eta, \mu)$ a monad on Set. If $x \cdot T x \sqsubseteq x \cdot \mu X$, and $1_{X} \sqsubseteq x \cdot \eta X$ holds for a pair (X, x) of a set X and a function $x: T X \rightharpoondown X$, then (X, x) is called a relational \mathbf{T}-algebra. For two relational \mathbf{T}-algebra (X, x), and $\left(X^{\prime}, x^{\prime}\right)$, A function $f:(X, x) \rightarrow\left(X^{\prime}, x^{\prime}\right)$ is called a relational T-morphism if $f \cdot x \sqsubseteq x^{\prime} \cdot T f$. We denote the category of relational \mathbf{T}-algebra and relational \mathbf{T}-relations as $\operatorname{Rel}(\mathbf{T})$.

A proof using relational calculus

$$
\begin{aligned}
& \bar{T}^{2} Y_{1} \xrightarrow{\mu Y_{1}} \bar{T} Y_{1} \\
& \bar{T}^{2} \alpha \mid \ll \sqrt{\bar{T}} \alpha \\
& \bar{T}^{2} Y_{2} \underset{\mu Y_{2}}{ } \bar{T} Y_{2}
\end{aligned}
$$

i.e.

$$
\mu Y_{2} \cdot \bar{T}^{2} \alpha \sqsubseteq \bar{T} \alpha \cdot \mu Y_{1}
$$

can be proved as follows:

$$
\begin{aligned}
& \mu Y_{2} \cdot \bar{T}^{2} \alpha \\
= & \mu Y_{2} \cdot T^{2} g_{\alpha} \cdot\left(T^{2} f_{\alpha}\right)^{\sharp} \\
\sqsubseteq & \mu Y_{2} \cdot T^{2} g_{\alpha} \cdot\left(\mu R_{\alpha}\right)^{\sharp} \cdot\left(T f_{\alpha}\right)^{\sharp} \cdot \mu Y_{1} \\
\sqsubseteq & \mu Y_{2} \cdot\left(\mu Y_{2}\right)^{\sharp} \cdot T g_{\alpha} \cdot\left(T f_{\alpha}\right)^{\sharp} \cdot \mu Y_{1} \\
\sqsubseteq & T g_{\alpha} \cdot\left(T f_{\alpha}\right)^{\sharp} \cdot \mu Y_{1} \\
\sqsubseteq & \bar{T} \alpha \cdot \mu Y_{1}
\end{aligned}
$$

Our motivation of formalization of mathematics using relational calculus

Closure Space

Let X be a set, $\alpha, \alpha^{\prime}: I \rightharpoondown X$ subsets in X. Then $\Gamma: 2^{X} \rightarrow 2^{X}$ holds: $\left(a_{1}\right)$, $\left(a_{2}\right)$, and $\left(a_{3}\right)$ then Γ is called a closure of X, further if it satisfies (b) then its called a closure system.
$\left(\mathrm{a}_{1}\right) \alpha \sqsubseteq \Gamma \alpha$
$\left(\mathrm{a}_{2}\right) \alpha \sqsubseteq \alpha^{\prime} \rightarrow \Gamma \alpha \sqsubseteq \Gamma \alpha^{\prime}$
$\left(\mathrm{a}_{3}\right) \Gamma^{2} \alpha=\Gamma \alpha$
(b) $\Gamma\left(\alpha \sqcup \alpha^{\prime}\right)=\Gamma \alpha \sqcup \Gamma \alpha^{\prime}$

For closure systems (X, Γ), and $\left(X^{\prime}, \Gamma^{\prime}\right)$, a function $f:(X, \Gamma) \rightarrow\left(X^{\prime}, \Gamma^{\prime}\right)$ is continuous if for all $\alpha: I \rightharpoondown X$ such that $f \cdot \Gamma \alpha \sqsubseteq \Delta(f \cdot \alpha)$. We denote the closure space as Clos. and the category of topological spaces and continuous functions as Top.

Conclusion

Definition

We define $C: \operatorname{Rel}(\mathbf{T}) \rightarrow$ Clos as follows: For a relational \mathbf{T}-algebra (X, x), we define $C(X, x)=\left(X, \Gamma_{x}\right)$, where $\Gamma_{x}: 2^{X} \rightarrow 2^{X}$ is defined for $\alpha: I \rightharpoondown X$ by $\Gamma_{x} \alpha=x \cdot \bar{T} \alpha \cdot \eta I$. We define $C f:=f$ for a \mathbf{T}-morphism $f:(X, x) \rightarrow\left(X^{\prime}, x^{\prime}\right)$.

Definition

We define $J: \operatorname{Top} \rightarrow \operatorname{Rel}(\mathbf{U})$ as follows: for a topological space (X, Γ) $J(X, \Gamma):=\left(X, r_{\Gamma}\right)$. where,

$$
(\mathcal{U}, a) \in r_{\Gamma} \leftrightarrow a \in \lim \mathcal{U}\left(=\sqcap_{F \in \mathcal{U}} \Gamma F\right)
$$

For a topological space $\left(X^{\prime}, \Gamma^{\prime}\right)$ and a continuous function $\Psi:(X, \Gamma) \rightarrow\left(X^{\prime}, \Gamma^{\prime}\right)$, we define $J \Psi:=\Psi$.

Theorem (Barr(1970))

- $C \cdot J=1_{\text {Top }}, J \cdot C=1_{\operatorname{Rel}(\mathbf{U})}, \operatorname{Rel}(\mathbf{U}) \cong \operatorname{Top}$

References I

雷 M. Barr, Relational algebra, Lecture Notes in Math., 137(1970), 39-55.

- A. Day, Filter monads, continuous lattices and closure systems, Can. J. Math., 27(1975), 50-59.

R H. Furusawa, Y. Kawahara, Point axioms and related conditions in Dedekind categories, J. of Logical and Algebraic Methods in Programming, Vol.84(2015), 359-376.

目 G.Higman, B.H.Neumann, Groups as groupoids with one law, Publ. Math. Debrecen 2, 215-221,1952.
(1) Y.Kawahara, Y.Mizoguchi, Categorical assertion semantics in toposes, Advances in Software Science and Technology, Vol.4(1992), 137-150. https://catalog.lib.kyushu-u.ac.jp/opac_download_md/ 25296/cas-jssst.pdf

References II

E.G.Manes, a triple-theoretic construction of compact algebras, Lecture Notes in Mathematics, Vol.80(1969), Springer-Verlag, 91-118.
E.G.Manes, Algebraic Theories, Springer-Verlag, 1976.

目 S.Mac Lane, Categories for the working mathematician, Springer-Verlag, 1978.
目 Y.Mizoguchi, Powerset monad, filter monad and primfilter monad in the category of set with monoid actions, Bull. of Informatics and Cybernetics, IVol.21(1985), 83-95. https://catalog.lib. kyushu-u.ac.jp/opac_download_md/13370/p083.pdf
© Y.Mizoguchi, H.Tanaka, S.Inokuchi, Formalization of proofs using relational calculus, Proc. International Symposium on Information Theory and Its Applications (ISITA2016), pp. 532-536, November, 2016.

