Relational T-algebra and the category of topological spaces

Yoshihiro Mizoguchi Institute of Mathematics for Industry Kyushu University, JAPAN

Workshop on Logic Algebra and Category Theory : LAC2018 La Trobe University, Melbourne February 14, 2018

- 1 Theory of Relational Calculus
- 2 Category theory
- $\Im \Omega$ -algebra
- 4 T-algebra
- 5 Haskell's monad
- 6 Ultra filter monad
- 7 Relational T-algebra

First step of an algebra of logic

- Boolean Algebra (1847) : an algebra of logic! $\mathcal{B} = (B, \bot, \top, \land, \lor, -)$
- De Morgan's Law (1864) : a formula of logic! $\overline{(x \lor y)} = \overline{x} \land \overline{y}, \qquad \overline{(x \land y)} = \overline{x} \lor \overline{y}.$
- Symbolic Computing : A merit of algebraic formalization!

$$\begin{array}{ll} (x \lor y) \land \overline{(x \land y)} &=& (x \lor y) \land (\overline{x} \lor \overline{y}) \\ &=& (x \land \overline{x}) \lor (x \land \overline{y}) \lor (y \land \overline{x}) \lor (y \land \overline{y}) \\ &=& \bot \lor (x \land \overline{y}) \lor (y \land \overline{x}) \lor \bot = (x \land \overline{y}) \lor (\overline{x} \land y) \end{array}$$

Theory of Relational Calculus (1)

(1) A relation α from a set A into another set B is a subset of the Cartesian product $A \times B$ and denoted by $\alpha : A \rightarrow B$.

$$A = \{1, 2, 3\}$$

$$B = \{X, Y, Z\}$$

$$\alpha = \{(1, X), (1, Y), (1, Z), (3, X), (3, Z)\}$$

$$\alpha \subseteq A \times B$$

Theory of Relational Calculus (2)

(2) The inverse relation α[#]: B → A of α is a relation such that (b, a) ∈ α[#] if and only if (a, b) ∈ α.

We note $\alpha \subseteq A \times B$ and $\alpha^{\sharp} \subseteq B \times A$.

(3) The composite α ⋅ β : A → C of α : A → B followed by β : B → C is a relation such that (a, c) ∈ α ⋅ β if and only if there exists b ∈ B with (a, b) ∈ α and (b, c) ∈ β.

We note $\alpha \cdot \beta \subseteq A \times C$.

Theory of Relational Calculus (3)

- (4) As a relation of a set A into a set B is a subset of A × B, the inclusion relation, union, intersection and difference of them are available as usual and denoted by ⊑, □, □ and −, respectively.
- (5) The **identity relation** $id_A : A \rightarrow A$ is a relation with $id_A = \{(a, a) \in A \times A | a \in A\}.$

(6) The empty relation φ ⊆ A × B is denoted by **0**_{AB}. The entire set A × B is called the universal relation and denoted by ∇_{AB}.
(7) The one point set {*} is denoted by I. We note that ∇_{II} = id_I.

Theory of Relational Calculus (4)

Axiom

•
$$\alpha \cdot \operatorname{id} = \alpha$$

• $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
• $(\alpha \cdot \beta)^{\sharp} = \beta^{\sharp} \cdot \alpha^{\sharp}$
• $(\alpha^{\sharp})^{\sharp} = \alpha$
• If $\alpha \sqsubseteq \alpha'$ then $\alpha^{\sharp} \sqsubseteq \alpha'^{\sharp}$.
• $(\alpha \cdot \beta) \sqcup \gamma \sqsubseteq \alpha \cdot (\beta \sqcap (\alpha^{\sharp} \cdot \gamma))$
• ...

•
$$\alpha \cdot (\beta \sqcup \gamma) = (\alpha \cdot \beta) \sqcup (\alpha \cdot \gamma)$$

• $\alpha \cdot (\beta \sqcap \gamma) \sqsubseteq (\alpha \cdot \beta) \sqcap (\alpha \cdot \gamma) \sqsubseteq \alpha \cdot (\beta \sqcap (\alpha^{\sharp} \cdot \alpha \cdot \gamma))$
• $\alpha \sqsubseteq \alpha \cdot \alpha^{\sharp} \cdot \alpha$
• If $\beta \sqsubseteq \beta'$ then $\alpha \cdot \beta \cdot \gamma \sqsubseteq \alpha \cdot \beta' \cdot \gamma$.

composition of an injection and an injection is an injection (relational formula)

Proposition

Let $f : X \to Y$, $g : Y \to Z$ be injections. Then $f \cdot g : X \to Z$ is an injection.

$$(f \cdot f^{\sharp} \sqsubseteq id_X) \land (g \cdot g^{\sharp} \sqsubseteq id_Y) \Rightarrow ((f \cdot g) \cdot (f \cdot g)^{\sharp} \sqsubseteq id_X)$$

$$\begin{array}{l} (f \cdot g) \cdot (f \cdot g)^{\sharp} \\ = (f \cdot g) \cdot (g^{\sharp} \cdot f^{\sharp}) \quad (\because (\alpha \cdot \beta)^{\sharp} = \beta^{\sharp} \cdot \alpha^{\sharp}) \\ = f \cdot (g \cdot g^{\sharp}) \cdot f^{\sharp} \quad (\because \text{associative law}) \\ \sqsubseteq f \cdot \operatorname{id}_{Y} \cdot f^{\sharp} \quad (\because g \cdot g^{\sharp} \sqsubseteq \operatorname{id}_{Y}) \\ = f \cdot f^{\sharp} \quad (\because id_{Y} \operatorname{is unit}) \\ \sqsubseteq \operatorname{id}_{X} \quad (\because f \cdot f^{\sharp} \sqsubseteq \operatorname{id}_{X}) \end{array}$$

Proof can be done using symbolic transformations.

Y.Mizoguchi

composition of an injection and an injection is an injection (relational formula)

```
Theorem injection_composite_rel_tactic 
{X Y Z : eqType} {f : Rel X Y} {g : Rel Y Z}: 
(f \cdot (f #)) \subseteq Id X /\ (g \cdot (g #)) \subseteq Id Y -> 
((f \cdot g) \cdot ((f \cdot g) #)) \subseteq Id X.
Proof.
Rel_simpl2.
Qed.
```

* We can implement an automatic prover (Tactic).

The long and winding load to the relational T-algebra

- Algebra (Group,Ring,Field) \rightarrow (Ω , E)-algebra (Universal Algebra) \rightarrow T-algebra (**Set**^T) \rightarrow relational T-algebra (Rel(T))
- Monad (Triple) (T, η, μ)
- Kleisli Category (T, η, \circ)
- Haskell's monad (T, return, >>=)
- ultrafilter monad (U, η_U, μ_U) $\rightarrow \mathbf{Set}^U \cong CH \rightarrow \mathrm{Rel}(U) \cong Top$

Our goal is to refine those theories and introduce a formal proof using relational calculus and Coq a proof assistant system.

Definition

A category C is defined by the following data and axioms.

Datum1 Obj(C): a class of objects in C.

Datum2 C(A, B): a class of C-morphisms for objects A and B.

Datum3 $id_A \in C(A, A)$: the identity morphism id_A for any object A.

Datum4 $g \cdot f \in C(A, C)$ is defined by $f \in C(A, B)$ and $g \in C(B, C)$.

Axiom1 For any
$$f \in C(A, B)$$
, $g \in C(B, C)$ and $h \in C(C, D)$,
 $h \cdot (g \cdot f) = (h \cdot g) \cdot f$.

Axiom2 For any $f \in C(A, B)$, $f \cdot id_A = f = id_B \cdot f$.

Axiom3 If $A \neq A'$ and $B \neq B'$ then $\mathcal{C}(A, B) \cap \mathcal{C}(A', B') = \phi$.

Definition

Let C and D be categories. A **functor** $H : C \to D$ is defined by the following data and axioms.

Datum1 $HA \in Obj(\mathcal{D})$ is defined by $A \in Obj(\mathcal{C})$. Datum2 $Hf \in \mathcal{D}(HA, HB)$ is defined by $f \in \mathcal{C}(A, B)$. Axiom1 $Hid_A = id_{HA}$. Axiom2 For any $f \in \mathcal{C}(A, B)$ and $g \in \mathcal{C}(B, C)$, $H(g \cdot f) = Hg \cdot Hf$.

Natural transformation

Definition

Let $H, H' : \mathcal{C} \to \mathcal{D}$ be functors. A **natural transformation** $\alpha : H \to H'$ is defined by the following datum and axiom.

Datum $\alpha A \in \mathcal{D}(HA, H'A)$ is defined by $A \in Obj(\mathcal{C})$.

Axiom For any $f \in C(A, B)$, the following diagram commutes.

Example

Set(sets and functions), **Lin**(linear spaces and linear maps), **Grp**(groups and homomorphisms).

Definition

Let Ω_n be a label set of *n*-ary operators for n = 0, 1, ... and $\Omega = \{\Omega_n | n = 0, 1, ...\}$. For a given set $X, \delta = \{\delta_\omega | \omega \in \Omega_n, n = 0, 1, ...\}$ is a set of *n*-ary functions $\delta_\omega : X^n \to X$. A pair (X, δ) is called a Ω -algebra. Let (X, δ) and (Y, γ) are Ω -algebras. A function $f : X \to Y$ is an

 Ω -morphism if

$$f \cdot \delta_{\omega}(x_1, x_2, \cdots, x_n) = \gamma_{\omega}(f(x_1), f(x_2), \cdots, f(x_n))$$

for any $\omega \in \Omega_n$.

Definition

Let A be a set. The set ΩA of all ω -terms over A is defined as follows.

 $a \in A \Rightarrow a \in \Omega A$

Definition

Let $V = \{v_1, v_2, \ldots, v_n, \ldots\}$ be a set of variables. For two elements $e_1, e_2 \in \Omega V$, a set $\{e_1, e_2\}$ is called Ω -equation. A pair (Ω, E) of Ω and a set E of Ω -equation is called an equational presentation.

Example

Let m(multiple), i(inverse) and e(unit) be labels of operators. Let $\Omega_0 = \{e\}, \ \Omega_1 = \{i\}, \ \Omega_2 = \{m\} \text{ and } E = \{\{m(v_1, m(v_2, v_3)), m(m(v_1, v_2), v_3)\}, \{m(v_1, e), v_1\}, \{m(e, v_1), v_1\}, \{m(v_1, i(v_1), e\}, \{m(i(v_1), v_1), e\}\}$. Then a group X can be considered as an Ω -algebra.

Example

For a division function d(x,y) = m(x,i(y)) in a group, we define $\Omega_2 = \{d\}$ and

 $E = \{\{d(x, d(d(d(x, x), y), z), d(d(d(x, x), x), z))), y\}\}.$

Then an (Ω, E) -algebra can be considered as a group[4].

Example (The Total Description Map)

Let (X, δ) be an Ω -algebra. δ can be naturally extended to $\delta^{@} : \Omega X \to X$. • $\delta^{@}(x) = x(x \in X)$, • $\delta^{@}(\omega(p_1, \dots, p_n)) = \delta_{\omega}(\delta^{@}(p_1), \dots, \delta^{@}(p_n))(\omega \in \Omega_n)$.

Definition (Ω -algebra)

For a given Ω -algebra (X, δ) and an assignment $r : V \to X$, an extension map $r^{\sharp} : \Omega V \to X$ is defined by $\delta^{@} \cdot \Omega r$. Let $\{e_1, e_2\}$ be a Ω -equation. If $r^{\sharp}(e_1) = r^{\sharp}(e_2)$ for any $r : V \to X$ then we say (X, δ) satisfies $\{e_1, e_2\}$. If an Ω -algebra satisfies all equations in E, then it is called as an (Ω, E) -algebra.

Definition

For a given set A, we define an equivalence relation E_A over ΩA by

$$\mathsf{E}_{\mathsf{A}} = \{(\mathsf{p},q) | orall (X,\delta) : \Omega - \mathsf{algebra}, orall f : \mathsf{A} o X, f^{\sharp}(\mathsf{p}) = f^{\sharp}(q) \}.$$

We denote a quotient set of ΩA by an equivalence relation E_A as $TA = \Omega A/E_A$. We denote an equivalence class including $p \in \Omega A$ as $\rho A(p) = [p]$. Then $\rho A : \Omega A \to TA$.

Proposition

Let $\omega_n \in \Omega_n$, $\omega_n([p_1], \dots, [p_n]) = [\omega_n(p_1, \dots, p_n)]$ and $\omega = \{\omega_n | n = 0, 1, \dots\}$. An Ω -algebra (TA, ω) is an (Ω, E) -algebra and $\rho A : \Omega A \to TA$ is an Ω -morphism.

Definition

We denote (TA, ω) as TA and it is called a **free** (Ω, E) -algebra over A.

Proposition (The Universal Property of TA)

A function $\eta A : A \to TA$ is defined by $\eta A(a) = [a]$. For any (Ω, E) -algebra (X, δ) and a function $f : A \to X$, there exists a unique Ω -morphism $f^{\sharp\sharp} : TA \to (X, \delta)$ of f such that $f^{\sharp\sharp} \cdot \eta A = f$.

Monad (Triple)

Definition (Algebraic theory and monad)

A monad type **algebraic theory** over a category C is a triple $T = (T, \eta, \mu)$ satisfies followings. $T : C \to C$ is a functor. $\eta : I \to T, \mu : TT \to T$ is a natural transformation. $\mu_A \cdot \eta_{TA} = id_{TA}, \mu_A \cdot T\eta_A = id_{TA}$ and $\mu_A \cdot T\mu_A = \mu_A \cdot \mu_{TA}$ hold for any $A \in Obj(C)$. A category C^T of *T*-algebra and *T*-homomorphisms is defined by

$$Obj(\mathcal{C}^{\mathsf{T}}) = \{(X, x) \mid X \in Obj(\mathcal{C}), x : TX \to X, x \cdot \eta_X = id_X, x \cdot Tx = x \cdot \mu_X\}$$

and

$$\mathcal{C}^{\mathsf{T}}((X,x),(X',x')) = \{f \in \mathcal{C}(X,X') \mid x' \cdot Tf = f \cdot x\}.$$

We call an object in C^T as T-algebra and a morphism as T-homomorphism.

Definition (Algebraic theory and Kleisli category)

A clone type **algebraic theory** over a category C is a triple $T = (T, \eta, \circ)$ satisfies followings.

T is a map $T: Obj(\mathcal{C}) \to Obj(\mathcal{C}).$

A morphism $\eta A : A \rightarrow TA$ is defined for any object $A \in Obj(\mathcal{C})$.

◦ is a map ◦ : $C(A, TB) \times C(B, TC) \rightarrow C(A, TC)$. For any $f \in C(A, B)$, $f^{\Delta} : A \rightarrow TB$ is defined by $f^{\Delta} = A \xrightarrow{f} B \xrightarrow{\eta B} TB$. For any morphisms $\alpha \in C(A, TB)$, $\beta \in C(B, TC)$ and $\gamma \in C(C, TD)$, the followings hold.

•
$$(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$$

•
$$\alpha \circ \eta B = \alpha$$

•
$$\beta \circ \alpha^{\Delta} = (\beta \alpha)^{\Delta}$$

A **Kleisli category** C_T is a category defined by $Obj(C_T) = Obj(C)$, $C_T(A, B) = C(A, TB)$ and a composition of morphisms are defined by \circ . We note the identity $id_A \in C_T(A, A)$ is $\eta A : A \to TA$.

Theorem ([7])

There exists a bijective correspondence between a clone type algebraic theory $T = (T, \eta, \circ)$ and a monad type algebraic theory $T = (T, \eta, \mu)$.

Theorem

A category of (Ω, E) -algebra is isomorphic to a category of **Set**^T defined by its algebraic theory $T = (T, \eta, \circ)$.

Example

Let $\Omega_0 = \{zero\}, \Omega_1 = \{succ\}, \Omega_2 = \{plus\}, E = \{\{plus(zero, x), x\}, \{plus(succ(x), y), succ(plus(x, y))\}\}$. For (Ω, E) , we have $(\Omega, E) \vdash plus(succ(zero), zero) = succ(zero)$

(Ω, E) -algebra (2)

Definition

A clone category $Set(\Omega, E)$ of (Ω, E) is defined as follows.

Object $Obj(\mathbf{Set}(\Omega, E)) = Obj(\mathbf{Set})$

Morphism $\mathbf{Set}(\Omega, E)(A, B) = \mathbf{Set}(A, TB)$. For any $\alpha : A \to TB$ and $\beta : B \to TC$, we define

$$(A \xrightarrow{\alpha} B) \circ (B \xrightarrow{\beta} C) = A \xrightarrow{\alpha} TB \xrightarrow{\beta^{\sharp}} TC.$$

Identity $id_A \in \mathbf{Set}(\Omega, E)(A, A)$ is $id_A = \eta A : A \to TA$.

Proposition

Set(Ω , E) is a category and $T\phi$ is the initial object in **Set**(Ω , E).

- Let Set be the category of sets and functions.
- Let List be the category of free monoids and homomorphisms.
- Let A = Integer (the set of all integers).
- Let F : Set → List be a functor creating a free monoid. We note 1, 2, 3 ∈ A and [1, 2, 3] ∈ FA. For f : A → B we define Ff : FA → FB as Ff = (map f). Ff[1,2,3] = (map f [1,2,3]) = [f(1),f(2),f(3)]
- concat : FFA → FA is a natural transformation. concat[[1,2], [3], [4,5,6]] = [1,2,3,4,5,6]
- return : $A \rightarrow FA$ is a natural transformation. return x = [x]

Haskell's monad is constructed by a triple (F, return, >>=).

- $F: Obj(Set) \rightarrow Obj(Set)$.
- $return : A \rightarrow FA$ (for $A \in Obj(Set)$)

• >>=:
$$Set(A, FA) \rightarrow Set(FA, FB)$$

We denote >>= $(f)(I_a)$ as $l >>= f$.
 $I_a >>= f$ is defined as (concat (map f I_a)).

۲

$$[1,2,3] >>= (\lambda \ x.[x,2x])$$

= concat (map (\lambda \ x.[x,2x]) [1,2,3])
= concat [[1,2],[2,4],[3,6]]
= [1,2,2,4,3,6]

• Haskell's monad is a triple (*F*, *return*, >>=).

- $\bullet \ \textit{return}: \textit{A} \rightarrow \textit{FA}$
- >>=: $(A \rightarrow FB) \rightarrow (FA \rightarrow FB)$
- Kleisli category is a triple (F, η, \circ) .
 - $\eta: A \to FA$
 - \circ : $(A \rightarrow FB) \times (B \rightarrow FC) \rightarrow (A \rightarrow FC)$
- Correspondence between (F, return, >>=) and (F, η, \circ) .
 - $\eta = return$
 - $\alpha \circ \beta = \lambda x.((\alpha x) >>= \beta).$

Let $U : \text{Set} \to \text{Set}$ be a functer, and $\eta U : 1_{\text{Set}} \to U$ and $\mu U : U^2 \to U$ natural transformations. For a set X, UX is a set of ultra filters over X. For a set Y and a function $\Psi : X \to Y$, we define $U\Psi : UX \to UY$, $\eta UX : X \to UX$, and $\mu UX : U^2X \to UX$ by

$$U\Psi(\mathcal{U}) := \{B \sqsubseteq Y \mid \Psi^{\sharp} \cdot B \in \mathcal{U}\}$$

$$\eta UX(a) := \{A \sqsubseteq X \mid a \in A\}$$

$$\mu UX(\mathscr{U}) := \{A \sqsubseteq X \mid \pi UX(A) \in \mathscr{U}\}.$$

where $\pi UX(A) := \{ \mathcal{U} \sqsubseteq 2^X | A \in \mathcal{U} \}.$ We note $\mathbf{U} = (U, \eta, \mu)$ is a monad over Set and called ultra filter monad. Let $\mathbf{T} = (T, \eta, \mu)$ a monad on Set. If $x \cdot Tx \sqsubseteq x \cdot \mu X$, and $\mathbf{1}_X \sqsubseteq x \cdot \eta X$ holds for a pair (X, x) of a set X and a function $x : TX \to X$, then (X, x)is called a relational **T**-algebra. For two relational **T**-algebra (X, x), and (X', x'), A function $f : (X, x) \to (X', x')$ is called a relational **T**-morphism if $f \cdot x \sqsubseteq x' \cdot Tf$. We denote the category of relational **T**-algebra and relational **T**-relations as Rel(**T**).

A proof using relational calculus

$$\begin{array}{c|c} \bar{T}^2 Y_1 \xrightarrow{\mu Y_1} \bar{T} Y_1 \\ \hline{\bar{T}}^2 \alpha & & & \\ \bar{T}^2 Y_2 \xrightarrow{\mu Y_2} \bar{T} Y_2 \end{array}$$

i.e.

$$\mu Y_2 \cdot \overline{T}^2 \alpha \sqsubseteq \overline{T} \alpha \cdot \mu Y_1$$

can be proved as follows:

$$\begin{array}{rcl} & \mu Y_2 \cdot \overline{T}^2 \alpha \\ = & \mu Y_2 \cdot T^2 g_\alpha \cdot (T^2 f_\alpha)^{\sharp} \\ \sqsubseteq & \mu Y_2 \cdot T^2 g_\alpha \cdot (\mu R_\alpha)^{\sharp} \cdot (T f_\alpha)^{\sharp} \cdot \mu Y_1 \\ \sqsubseteq & \mu Y_2 \cdot (\mu Y_2)^{\sharp} \cdot T g_\alpha \cdot (T f_\alpha)^{\sharp} \cdot \mu Y_1 \\ \sqsubseteq & T g_\alpha \cdot (T f_\alpha)^{\sharp} \cdot \mu Y_1 \\ \sqsubseteq & \overline{T} \alpha \cdot \mu Y_1 \end{array}$$

Our motivation of formalization of mathematics using relational calculus

Y.Mizoguchi

Let X be a set, $\alpha, \alpha' : I \to X$ subsets in X. Then $\Gamma : 2^X \to 2^X$ holds: (a₁), (a₂), and (a₃) then Γ is called a closure of X, further if it satisfies (b) then its called a closure system.

(a₁)
$$\alpha \sqsubseteq \Gamma \alpha$$

(a₂)
$$\alpha \sqsubseteq \alpha' \to \Gamma \alpha \sqsubseteq \Gamma \alpha'$$

(a₃)
$$\Gamma^2 \alpha = \Gamma \alpha$$

(b)
$$\Gamma(\alpha \sqcup \alpha') = \Gamma \alpha \sqcup \Gamma \alpha'$$

For closure systems (X, Γ) , and (X', Γ') , a function $f : (X, \Gamma) \to (X', \Gamma')$ is continuous if for all $\alpha : I \to X$ such that $f \cdot \Gamma \alpha \sqsubseteq \Delta(f \cdot \alpha)$. We denote the closure space as Clos. and the category of topological

spaces and continuous functions as Top.

Conclusion

Definition

We define $C : \operatorname{Rel}(\mathbf{T}) \to \operatorname{Clos}$ as follows: For a relational **T**-algebra (X, x), we define $C(X, x) = (X, \Gamma_x)$, where $\Gamma_x : 2^X \to 2^X$ is defined for $\alpha : I \to X$ by $\Gamma_x \alpha = x \cdot \overline{T} \alpha \cdot \eta I$. We define Cf := f for a **T**-morphism $f : (X, x) \to (X', x')$.

Definition

We define $J : \text{Top} \to \text{Rel}(\mathbf{U})$ as follows: for a topological space (X, Γ) $J(X, \Gamma) := (X, r_{\Gamma})$. where,

$$(\mathcal{U}, a) \in r_{\Gamma} \quad \leftrightarrow \quad a \in \lim \mathcal{U} \ (= \sqcap_{F \in \mathcal{U}} \Gamma F)$$

For a topological space (X', Γ') and a continuous function $\Psi : (X, \Gamma) \to (X', \Gamma')$, we define $J\Psi := \Psi$.

Theorem (Barr(1970))

•
$$C \cdot J = 1_{\text{Top}}, J \cdot C = 1_{\text{Rel}(U)}, \text{Rel}(U) \cong \text{Top}$$

- M. Barr, Relational algebra, Lecture Notes in Math., 137(1970), 39–55.
- A. Day, Filter monads, continuous lattices and closure systems, Can. J. Math., 27(1975), 50–59.
- H. Furusawa, Y. Kawahara, Point axioms and related conditions in Dedekind categories, J. of Logical and Algebraic Methods in Programming, Vol.84(2015), 359–376.
- G.Higman, B.H.Neumann, Groups as groupoids with one law, Publ. Math. Debrecen 2, 215–221,1952.
- Y.Kawahara, Y.Mizoguchi, Categorical assertion semantics in toposes, Advances in Software Science and Technology, Vol.4(1992), 137-150. https://catalog.lib.kyushu-u.ac.jp/opac_download_md/ 25296/cas-jssst.pdf

References II

- E.G.Manes, a triple-theoretic construction of compact algebras, Lecture Notes in Mathematics, Vol.80(1969), Springer-Verlag, 91–118.
- E.G.Manes, Algebraic Theories, Springer-Verlag, 1976.
- S.Mac Lane, Categories for the working mathematician, Springer-Verlag, 1978.
- Y.Mizoguchi, Powerset monad, filter monad and primfilter monad in the category of set with monoid actions, Bull. of Informatics and Cybernetics, IVol.21(1985), 83-95. https://catalog.lib. kyushu-u.ac.jp/opac_download_md/13370/p083.pdf
- Y.Mizoguchi, H.Tanaka, S.Inokuchi, Formalization of proofs using relational calculus, Proc. International Symposium on Information Theory and Its Applications (ISITA2016), pp. 532-536, November, 2016.