
Designing an appropriate logic for conceptual modelling
languages

(on devising a formalism that’ll fit with need or use)

C. Maria Keet1

Department of Computer Science, University of Cape Town, South Africa,
mkeet@cs.uct.ac.za

Workshop on Logic, Algebra and Category Theory (LAC 2018)
12-16 February 2018, Melbourne, Australia

1Joint work with Pablo Rubén Fillottrani, Universidad Nacional del Sur, Bah́ıa
Blanca, Argentina

1 / 76

Outline

1 Motivation

2 Language design
Principles
Toward logics for CDMLs

3 Logic-based profiles for CDMLs
Preliminaries
Logic-based profiles
Example

4 Discussion and Conclusions

2 / 76

Motivation

Outline

1 Motivation

2 Language design
Principles
Toward logics for CDMLs

3 Logic-based profiles for CDMLs
Preliminaries
Logic-based profiles
Example

4 Discussion and Conclusions

3 / 76

Motivation

Context

I’m mostly a logic user—LAC18 is alike 5-day window shopping
(shopping spree?) to see if there’s something that satisfies some of
the needs in computing

This talk: on those requirements, solutions, some ‘loose ends’, and
things that might possibly be done more elegantly (?)

Conceptual data modelling for complex system development and
information integration

Languages for conceptual modelling:

UML Class Diagrams, for generating object-oriented code
ER and EER, for generating relational databases
ORM and ORM2, for generating OO code, relational databases, link to
business rules

Need formal basis for model linking and integration, tools, and
techniques

4 / 76

Motivation

Context

I’m mostly a logic user—LAC18 is alike 5-day window shopping
(shopping spree?) to see if there’s something that satisfies some of
the needs in computing

This talk: on those requirements, solutions, some ‘loose ends’, and
things that might possibly be done more elegantly (?)

Conceptual data modelling for complex system development and
information integration

Languages for conceptual modelling:

UML Class Diagrams, for generating object-oriented code
ER and EER, for generating relational databases
ORM and ORM2, for generating OO code, relational databases, link to
business rules

Need formal basis for model linking and integration, tools, and
techniques

4 / 76

Motivation

Conceptual data models–UML Class Diagram, inferences

5 / 76

Motivation

Conceptual data models–UML Class Diagram, inferences

5 / 76

Motivation

Conceptual data models–EER diagram, inferences

6 / 76

Motivation

Conceptual data models–EER diagram, inferences

6 / 76

Motivation

Example scenario: isiZulu termbank (simplified)

Term POS tag

Name

Grammatical
Number

synonym

antonym

name: String
isiZuluTerm

code: String
grammNr.: String

NounClass

stem: String
root: String

Morphological
SyntaxInfoname: String

Affix

prefix preprefix

suffix

10..*1..*10..*0..*
belongs

tocontains

UML class diagram

EER diagram

MorphInfoMorphology

IDStem

Affix

7 / 76

Motivation

After logical and ontological analysis

Term POS tag

Name

Grammatical
Number

synonym

antonym

name: String
isiZuluTerm

code: String
grammNr.: String

NounClass

stem: String
root: String

Morphological
SyntaxInfoname: String

Affix

prefix preprefix

suffix

10..*1..*10..*0..*
belongs

tocontains

UML class diagram

EER diagram

MorphInfoMorphology

IDStem

Affix

8 / 76

Motivation

Example: ICOM tool [Fillottrani et al.(2012)]

9 / 76

Motivation

Graphical queries for Ontology-Based Data Access
[Calvanese et al.(2010)]

10 / 76

Motivation

Graphical queries for Ontology-Based Data Access
[Calvanese et al.(2010)]

11 / 76

Motivation

Typical computational usages for conceptual models

Reasoning over conceptual models to improve their quality
With logic-based reconstructions in, and reasoners for, among others:
DL [Artale et al.(2007), Berardi et al.(2005), Keet(2009)]) and OWL
[Wagih et al.(2013)], OCL [Queralt et al.(2012)], CLIF
[Pan and Liu(2010)], Alloy [Braga et al.(2010)], Z
[Jahangard Rafsanjani and Mirian-Hosseinabadi(2011)] (and many more)

Use of conceptual models during runtime
Verification and validation [Cabot et al.(2008), Nizol et al.(2014)] (e.g.,
scalable test data generation [Smaragdakis et al.(2009)])
Designing [Bloesch and Halpin(1997)] and executing
[Calvanese et al.(2010)] queries with the model’s vocabulary; VQF/QBD
[Soylu et al.(2017)]

Querying databases during the stage of query compilation
[Toman and Weddell(2011)]

Ontology-based data access and integration (tries both)

12 / 76

Motivation

Some common questions/problems/assumptions

Diagrams are notational variants?

They’re not

Design a unifying logic-based reconstruction for one/all CDMLs

Achieved for fragments only

Which CDML features are actually used?

Most, but few often

Decidable, scalable, computationally well-behaved reasoning,
querying,

Many logics used, for the bits and pieces of the CDML that fits that
logic

⇒ Suitable formalism, logic-based reconstruction

‘Suitable’? For what?
What does a ‘good’ (or at least not ‘bad’) formalisation (of CDMLs)
look like?

13 / 76

Motivation

Some common questions/problems/assumptions

Diagrams are notational variants?

They’re not

Design a unifying logic-based reconstruction for one/all CDMLs

Achieved for fragments only

Which CDML features are actually used?

Most, but few often

Decidable, scalable, computationally well-behaved reasoning,
querying,

Many logics used, for the bits and pieces of the CDML that fits that
logic

⇒ Suitable formalism, logic-based reconstruction

‘Suitable’? For what?
What does a ‘good’ (or at least not ‘bad’) formalisation (of CDMLs)
look like?

13 / 76

Motivation

Some common questions/problems/assumptions

Diagrams are notational variants?

They’re not

Design a unifying logic-based reconstruction for one/all CDMLs

Achieved for fragments only

Which CDML features are actually used?

Most, but few often

Decidable, scalable, computationally well-behaved reasoning,
querying,

Many logics used, for the bits and pieces of the CDML that fits that
logic

⇒ Suitable formalism, logic-based reconstruction

‘Suitable’? For what?
What does a ‘good’ (or at least not ‘bad’) formalisation (of CDMLs)
look like?

13 / 76

Motivation

Some common questions/problems/assumptions

Diagrams are notational variants?

They’re not

Design a unifying logic-based reconstruction for one/all CDMLs

Achieved for fragments only

Which CDML features are actually used?

Most, but few often

Decidable, scalable, computationally well-behaved reasoning,
querying,

Many logics used, for the bits and pieces of the CDML that fits that
logic

⇒ Suitable formalism, logic-based reconstruction

‘Suitable’? For what?
What does a ‘good’ (or at least not ‘bad’) formalisation (of CDMLs)
look like?

13 / 76

Motivation

Some common questions/problems/assumptions

Diagrams are notational variants?

They’re not

Design a unifying logic-based reconstruction for one/all CDMLs

Achieved for fragments only

Which CDML features are actually used?

Most, but few often

Decidable, scalable, computationally well-behaved reasoning,
querying,

Many logics used, for the bits and pieces of the CDML that fits that
logic

⇒ Suitable formalism, logic-based reconstruction

‘Suitable’? For what?
What does a ‘good’ (or at least not ‘bad’) formalisation (of CDMLs)
look like?

13 / 76

Motivation

Some common questions/problems/assumptions

Diagrams are notational variants?

They’re not

Design a unifying logic-based reconstruction for one/all CDMLs

Achieved for fragments only

Which CDML features are actually used?

Most, but few often

Decidable, scalable, computationally well-behaved reasoning,
querying,

Many logics used, for the bits and pieces of the CDML that fits that
logic

⇒ Suitable formalism, logic-based reconstruction

‘Suitable’? For what?
What does a ‘good’ (or at least not ‘bad’) formalisation (of CDMLs)
look like?

13 / 76

Language design

Outline

1 Motivation

2 Language design
Principles
Toward logics for CDMLs

3 Logic-based profiles for CDMLs
Preliminaries
Logic-based profiles
Example

4 Discussion and Conclusions

14 / 76

Language design Principles

Guidance on language design

A logic/language can be seen as a ‘product’/solution that solves a
problem

In analogy of other products: is there a development process, with
requirements to meet etc.?

No methodology for design of a logic

There is one for design of Domain Specific languages (DSLs)
[Frank(2013)]

Adapt that for our purpose

15 / 76

Language design Principles

1. Clarification of Scope and Purpose

7. Evaluation and Refinement

6. Development of Modelling Tool

5. Design of Graphical Notation

4. Language Specification

3. Analysis of Specific Requirements

2. Analysis of Generic Requirements 2/3a. Consult requirements catalogue
2/3b. Use scenarios
2/3c. Assign priorities

4a. Specify syntax and semantics
4b. Define glossary
4c. Define metamodel

1a. Determine scope, benefits
1b. Long-term perspective
1c. Economics, feasibility

5a. Create sample diagrams
5b. Evaluate notation

7a. Test cases
7b. Analyse against requirements
7c. Analyse effect of use against
 current practice

234.Ontological analysis of language features

16 / 76

Language design Principles

“234. Ontological analysis of language features”

Affordances and features of the logic concern:
Ability to represent the conceptualisation/reality more or less precisely
with more or less constraints; e.g.

Human v ∃hasPart.Eye or Human v= 2 hasPart (OWL DL)
Human v= 2 hasPart.Eye (OWL 2 DL)

whether the language contributes to support, or even shape, the
conceptualisation and one’s data analysis for the conceptual data
model, or embeds certain philosophical assumptions and positions

17 / 76

Language design Principles

“234. Ontological analysis of language features”

Affordances and features of the logic concern:
Ability to represent the conceptualisation/reality more or less precisely
with more or less constraints; e.g.

Human v ∃hasPart.Eye or Human v= 2 hasPart (OWL DL)
Human v= 2 hasPart.Eye (OWL 2 DL)

whether the language contributes to support, or even shape, the
conceptualisation and one’s data analysis for the conceptual data
model, or embeds certain philosophical assumptions and positions

17 / 76

Language design Principles

Choices – ontology

Whether the roles that objects play are fundamental components of
relationships (positionalist) or not (standard view); i.e.: if roles should
be elements of the language; e.g.

∃teaches v Course and ∃teaches− v Prof (most DLs, FOL)
teach v [lect]Prof u [taught]Course (DLR family, DBs)

a

i

ii

1

2

3

4D view on the world (space-time worms) or 3D objects with optional
temporal extension

Inherent vagueness (rough, fuzzy), or the world is crisp

18 / 76

Language design Principles

Choices – ontology

Whether the roles that objects play are fundamental components of
relationships (positionalist) or not (standard view); i.e.: if roles should
be elements of the language; e.g.

∃teaches v Course and ∃teaches− v Prof (most DLs, FOL)
teach v [lect]Prof u [taught]Course (DLR family, DBs)

a

i

ii

1

2

3

4D view on the world (space-time worms) or 3D objects with optional
temporal extension

Inherent vagueness (rough, fuzzy), or the world is crisp

18 / 76

Language design Principles

Choices – (im)precision in elements

Whether refinements on the kinds of general elements—that then
have their own representation element—would result in a different
(better) conceptual model. e.g.:

Add element for aggregation or parthood (in addition to not just
Relationship and subsumption)
not just Object type but also, say, sortal with rigid property
(∀xφ(x)→ �φ(x)) or class with anti-rigid property
(∀xφ(x)→ ¬�φ(x)), with stereotypes or separate graphical elements
If binary relationships only (cf. n-aries), would the modeller would
assume there are only binaries in the world?

‘truly conceptual’ or or also somewhat computational; i.e., to
represent only what vs. what & how

data types of attributes (UML) or not (ER), with attribute being
A 7→ C × Datatype

19 / 76

Language design Principles

Choices – (im)precision in elements

Whether refinements on the kinds of general elements—that then
have their own representation element—would result in a different
(better) conceptual model. e.g.:

Add element for aggregation or parthood (in addition to not just
Relationship and subsumption)
not just Object type but also, say, sortal with rigid property
(∀xφ(x)→ �φ(x)) or class with anti-rigid property
(∀xφ(x)→ ¬�φ(x)), with stereotypes or separate graphical elements
If binary relationships only (cf. n-aries), would the modeller would
assume there are only binaries in the world?

‘truly conceptual’ or or also somewhat computational; i.e., to
represent only what vs. what & how

data types of attributes (UML) or not (ER), with attribute being
A 7→ C × Datatype

19 / 76

Language design Toward logics for CDMLs

The choices in UML, ER, ORM

Ontology: positionalist, 3D, crisp world

Features: n-aries, UML with aggregation, just object types, ER no
datatypes

Data showed that UML has disproportionally

fewer n-aries (look across is ambiguous)
more aggregation (if the construct is there, modellers see it
everywhere?)

20 / 76

Language design Toward logics for CDMLs

Table: Popular logics for logic-based reconstructions of CDMLs assessed against a
set of requirements (1/2).

DL-LiteA DLRifd OWL 2 DL FOL

Language features

– standard view + positionalist – standard view – standard view

– with datatypes – with datatypes – with datatypes + no datatypes

– no parthood
primitive

– no parthood
primitive

– no parthood
primitive

– no parthood
primitive

– no n-aries + with n-aries – no n-aries + with n-aries

+ 3D + 3D + 3D + 3D

– very few fea-
tures; large feature
mismatch

+ little feature
mismatch

± some feature
mismatch, with
overlapping sets

+ little feature
mismatch

– formalisation to
complete

+ formalisation
exist

– formalisation to
complete

± formalisation
exist

21 / 76

Language design Toward logics for CDMLs

Table: Popular logics for logic-based reconstructions of CDMLs assessed against a
set of requirements (2/2).

DL-LiteA DLRifd OWL 2 DL FOL

Computation and implementability

+ PTIME (TBox);
AC0 (ABox)

± EXPTIME-
complete

± N2EXPTIME-
complete

– undecidable

+ very scalable
(TBox and ABox)

± somewhat scal-
able (TBox)

± somewhat scal-
able (TBox)

– not scalable

+ several reason-
ers

– no implementa-
tion

+ several reason-
ers

– few reasoners

+ linking with on-
tologies doable

– no interoperabil-
ity

+ linking with on-
tologies doable

– no interoperabil-
ity with existing
infrastructures

+ ‘integration’
with OntoIOP

– no integration
with OntoIOP

+ ‘integration’
with OntoIOP

+ ‘integration’
with OntoIOP

+ modularity in-
frastructure

– modularity in-
frastructure

+ modularity in-
frastructure

– modularity in-
frastructure

22 / 76

Logic-based profiles for CDMLs

Outline

1 Motivation

2 Language design
Principles
Toward logics for CDMLs

3 Logic-based profiles for CDMLs
Preliminaries
Logic-based profiles
Example

4 Discussion and Conclusions

23 / 76

Logic-based profiles for CDMLs Preliminaries

24 / 76

Logic-based profiles for CDMLs Preliminaries

24 / 76

Logic-based profiles for CDMLs Preliminaries

24 / 76

Logic-based profiles for CDMLs Preliminaries

24 / 76

Logic-based profiles for CDMLs Preliminaries

24 / 76

Logic-based profiles for CDMLs Preliminaries

Logic foundation for profiles

How to formalise the diagrams in which logic?

⇒ Which DL (or other logic) is most appropriate, and why?

⇒ Analyse contents of publicly available conceptual data models2

Try as high a coverage of the most used features

2
Fillottrani, P.R., Keet, C.M. Evidence-based Languages for Conceptual Data Modelling Profiles. ADBIS’15. Morzy et al.

(Eds.). Springer LNCS vol. 9282, 215-229.

25 / 76

Logic-based profiles for CDMLs Preliminaries

Considerations in the formalisation

Positionalist relations and relationships complicates formalisation
(computationally more costly), and implementation (DLR has one
very much proof-of-concept implementation [Calvanese et al.(2011)])

Did both positionalist and standard core, with algorithm

26 / 76

Logic-based profiles for CDMLs Logic-based profiles

Definition (Positionalist core profile)

Given a conceptual model in any of the analysed CDMLs, we construct a
knowledge base in DCp by applying the rules:

we take the set all of object types A, binary relationships P, datatypes
T and attributes a in the model as the basic elements in the
knowledge base.

for each binary relationship P formed by object types A and B, we add
to the knowledge base the assertions ≥ 1[1]P v A and ≥ 1[2]P v B.

for each attribute a of datatype T within an object type A, including
the transformation of ORM’s Value Type following the rule given in
[Fillottrani and Keet(2014)], we add the assertion A v ∃a.Tu ≤ 1a.

subsumption between two object types A and B is represented by the
assertion A v B.

Continues on next slide....

27 / 76

Logic-based profiles for CDMLs Logic-based profiles

Definition (Positionalist core profile)

Given a conceptual model in any of the analysed CDMLs, we construct a
knowledge base in DCp by applying the rules:

... continued from previous slide

for each object type cardinality m..n in relationship P with respect to
its i-th component A, we add the assertions A v≤ n[i]P u ≥ m[i]P.

we add for each mandatory constraints of a concept A in a
relationship P the axiom A v≥ 1[1]P or A v≥ 1[2]P depending on
the position played by A in P. This is a special case of the previous
one, with n = 1.

for each single identification in object type A with respect to an
attribute a of datatype T we add the axiom idAa.

28 / 76

Logic-based profiles for CDMLs Logic-based profiles

Positionalist Core profile in DL syntax

DCp can be represented by the following DL syntax. Starting from atomic
elements, we can construct binary relations R, arbitrary concepts C and
axioms X according to the rules:

C −→ > |A | ≤ k[i]R | ≥ k[i]R | ∀a.T | ∃a.T | ≤ 1 a |C u D

R −→ >2 |P | (i : C)

X −→ C v D | idC a

where i = 1, 2 and 0 < k. For convenience of presentation, we use the
numbers 1 and 2 to name the role places, but they can be any number or
string and do not impose an order.

29 / 76

Logic-based profiles for CDMLs Logic-based profiles

Positionalist Core profile in DL, semantics (1/2)

Definition

An DCp interpretation I = (·IC , ·IT , ·I) for a knowledge base in DCp
consists of a set of objects ∆IC , a set of datatype values ∆IT , and a
function ·I satisfying the constraints shown in Table 3. It is said that I
satisfies the assertion C v D iff CI ⊆ DI ; and it satisfies the assertion
idC a iff exists T such that CI ⊆ (∃a.Tu ≤ 1a)I (mandatory 1) and for
all v ∈ T I it holds that #{c |c ∈ CI ∧ (c, v) ∈ aI} ≤ 1 (inverse
functional).

30 / 76

Logic-based profiles for CDMLs Logic-based profiles

Positionalist Core profile in DL, semantics (2/2)

Table: Semantics of DCp.

>I ⊆ ∆IC (≤ k[i]R)I = {c ∈ ∆IC |#{(d1, d2) ∈ RI .di = c} ≤ k}
AI ⊆ >I (≥ k[i]R)I = {c ∈ ∆IC |#{d1, d2) ∈ RI .di = c} ≥ k}

>I2 = >I ×>I (∃a.T)I = {c ∈ ∆IC |∃b ∈ TI .(c , b) ∈ aI}
PI ⊆ >I2 (∀a.T)I = {c ∈ ∆IC |∀v ∈ ∆IT .(c , v) ∈ aI → v ∈ TI}
TI ⊆ ∆IT (≤ 1 a)I = {c ∈ ∆IC |#{(c , v) ∈ aI} ≤ 1}

aI ⊆ >I ×∆IT (i : C)I = {(d1, d2) ∈ >I2 |di ∈ CI}
(C u D)I = CI ∩ DI

31 / 76

Logic-based profiles for CDMLs Logic-based profiles

Some observations

All the entities in the core profile sum up to 87.57% of the entities in
all the analysed models, covering 91,88% of UML models, 73.29% of
ORM models, and 94.64% of ER/EER models

Excluded due to their low incidence in the model set (despite
overlap): Role (DL role component) and Relationship (DL role)
Subsumption, and Completeness and Disjointness constraints

No completeness and disjointness, so reasoning is quite simple

Can code negation only with cardinality constraints [Baader et al.(2008),

chapter 3], but then we need to reify each negated concept as a new
idempotent role, which is not possible to get from the DCp rules

Can embed DCp into DLR, but latter is more expressive than needed

32 / 76

Logic-based profiles for CDMLs Logic-based profiles

Some observations

All the entities in the core profile sum up to 87.57% of the entities in
all the analysed models, covering 91,88% of UML models, 73.29% of
ORM models, and 94.64% of ER/EER models

Excluded due to their low incidence in the model set (despite
overlap): Role (DL role component) and Relationship (DL role)
Subsumption, and Completeness and Disjointness constraints

No completeness and disjointness, so reasoning is quite simple

Can code negation only with cardinality constraints [Baader et al.(2008),

chapter 3], but then we need to reify each negated concept as a new
idempotent role, which is not possible to get from the DCp rules

Can embed DCp into DLR, but latter is more expressive than needed

32 / 76

Logic-based profiles for CDMLs Logic-based profiles

Standard core profile

Convert DCp into a standard core, DCs

Definition

Given a conceptual model in any of the analysed CDMLs, we construct a
knowledge based in DCs by applying Algorithm 1 to its DCp knowledge
base.

With inverse relations to keep connected both relationships generated
by reifying roles

DL syntax approximation (noting construction rules from DCp):

C −→ >1 |A | ∀R.A | ∃R.A | ≤ k R | ≥ k R | ∀a.T | ∃a.T | ≤ 1 a.T |C u D

R −→ >2 |P |P−

X −→ C v D | idC a

33 / 76

Logic-based profiles for CDMLs Logic-based profiles

Positionalist to standard choices

staffNo: String
name: String

Professor
code: String
name: String
year: Date

Course
0..*1..*

teachertaughtBy

teacher and taughtBy are named association ends, not a name of the
association (DL role). Options to formalise it:

make each association end a DL role, teacher and taughtBy, then
choose:

declare them inverse of each other with teacher ≡ taughtBy−

do not declare them inverses

‘bump up’ either teacher or taughtBy to DL role, and use the other
through a direct inverse and do not extend vocabulary with the other
(teacher and teacher− cf. adding also taughtBy)

34 / 76

Logic-based profiles for CDMLs Logic-based profiles

35 / 76

Logic-based profiles for CDMLs Logic-based profiles

Some observations on DCs

Simple, too

Main reasoning problem still class subsumption and equivalence

At most the DL ALNI (called PL1 in [Donini et al.(1991)])

PL1 has polynomial subsumption; data complexity unknown

Tweaking with interaction between role inclusions and number

restrictions, and UNA: DL-Lite
(HN)
core (NLOGSPACE)

As aside: adding class disjointness, then reduction to DL-Lite
(HN)
bool

(NP-hard) [Artale et al.(2009)]

36 / 76

Logic-based profiles for CDMLs Logic-based profiles

Profile for UML Class diagrams (1/2)

Strictly extends DCs with:

Shared & composite aggregate (no new semantics in UML v2.4.1)
Association subsumption, as DL role inclusion R v S
Attributive Property Cardinality (as for DL roles) and Attribute
Value Constraint (define new data types)

Definition

A knowledge base in DCUML from a given conceptual model in UML is
obtained by adding to its DCs knowledge base the following formulas and
axioms:

for each attribute cardinality m..n in an attribute a of datatype T
within an object type A we add the assertion A v≤ n a.T u ≥ ma.T .

for each binary relationship subsumption between relationships R and
S we add the axiom R v S .

37 / 76

Logic-based profiles for CDMLs Logic-based profiles

The syntax is as in DCs , with the additions highlighted in bold face for
easy comparison:

C −→ > |A | ∀R.A | ∃R.A | ≤ k R | ≥ k R | ∀a.T | ∃a.T
C −→≤ k a.T | ≥ k a.T |C u D

R −→ >2 |P |P−

X −→ C v D |R v S | idC a

Definition

A DCUML interpretation for a DCUML knowledge base is a DCs
interpretation I that also satisfies R v S if and only if RI ⊆ SI , with
(≤ k a.T)I = {c ∈ ∆IC |#{a ∈ T I |(c, a) ∈ aI} ≤ k} and
(≥ k a.T)I = {c ∈ ∆IC |#{a ∈ T I |(c , a) ∈ aI} ≥ k}.

38 / 76

Logic-based profiles for CDMLs Logic-based profiles

Profile for UML Class diagrams

99.44% of all the elements in the analysed UML models are covered
by this profile.

ALNI + role hierarchies → ALNHI(D) that has not been studied
yet

If with UNA and some restrictions on role inclusion and cardinalities,
then DL-Lite

(H)N
core suffices (NLOGSPACE for subsumption and AC 0

for data complexity [Artale et al.(2009)])

39 / 76

Logic-based profiles for CDMLs Logic-based profiles

Profile for ER and EER

Core Profile plus:

Composite and Multivalued attribute: multivalued with attribute
cardinality, composite with union datatype derivation operator
Weak Object Type, Weak Identification: use functionality
constraints on roles as in DLRifd [Calvanese et al.(2001)] or in CFD
[Toman and Weddell(2009)]

Ternary relationships
Associative Object type: use reification
Multiattribute identification: new composite attribute with single
identification

99.06% of all the elements in the set of (E)ER models belong to this
profile

40 / 76

Logic-based profiles for CDMLs Logic-based profiles

Which DL language, complexity?

The only DL with arbitrary n-aries and the advanced id constraints is
DLRifd, which is positionalist

DL role components are not strictly needed for (E)ER; n-ary DL
without DL role components but with id: the CFD family +
positionalist to standard view Algorithm 1

Giving in a little more

(binaries and with UNA): DL-LiteNcore [Artale et al.(2009)] (NLOGSPACE
for the satisfiability problem), use Algo 2
(no composite att, no weak entity types): similar result for ERref

[Artale et al.(2007)]

41 / 76

Logic-based profiles for CDMLs Logic-based profiles

42 / 76

Logic-based profiles for CDMLs Logic-based profiles

ORM and ORM2

Profile covers 98.69% of all the elements in the analysed ORM an
ORM2 models

Main required extras: n-aries, identification constraints, and the
argument positions

Some extra processing due to fact type readings cf naming roles

Then complexity of the ORM/2 Profile is still not clear:

EXPTIME-complete DLRifd is the easiest fit, but contains more than
is strictly needed (disj., compl., complex fd)
PTIME CFDI∀−nc [Toman and Weddell(2014)] may be a better candidate
[Fillottrani et al.(2015)] provided positionalist to standard view
translation; but no arbitrary number restrictions, disjunctive mandatory
on ORM roles (so 96.5% coverage)

43 / 76

Logic-based profiles for CDMLs Example

Sample diagrams using all DCs features

writes

name: String {ID}
Person

Scientist Copy editorReviewer

title: String
ISBN: String {ID}

Book

Popular
Science book

name: String {ID}
country: Code
Address [0..1]: String

Affiliation

0..*

1..*

reviews
1..*

2..*

edits
0..*

1..*

has
0..*1..*

0..1affiliated with

0..*

0..3

0..n

name: String
VAT reg no: Code {ID}
HQ: String

Publisher
10..*

publishes published
by

has member

reviewed
by

edited bywritten by

has member

44 / 76

Logic-based profiles for CDMLs Example

Sample diagrams using all DCs features

Person Affiliation

Reviewer Scientist Copy editor

Popular Science
book

Book Publisher

Title

ISBN

Name HQ

VAT reg no

Name
Name

Country

Address

member

writing

publish

reviewing editing

affiliation
member

0..n1

1..n

1..n0..n

1..n

0..n

>=2

0..n 1..n

0..n

<=3

0..n

<=1

44 / 76

Logic-based profiles for CDMLs Example

Sample diagrams using all DCs features

Person
(Name)

Affiliation
(Name)

Reviewer Scientist Copy editor

Popular
Science book

Book
(ISBN)

Publisher
(VAT reg no)Title

Name

HQ

Country

Address

>=2

<=3

… is published by … / … publishes …… is of … / … has …

… member of … … is in … / … hosts …

… has … / … is of …… member of …
… affiliated with …

… has … / … is of …

… has … / … is of …

… writes … / … written by … … edits … /
… edited by …

… reviews … /
… reviewed by …

44 / 76

Logic-based profiles for CDMLs Example

Or as business rules (fragment shown)

Each popular science book is reviewed by at least 2 reviewers.

Each reviewer may review a popular science book.

Each book must be published by exactly one publisher.

Each publisher has one HQ.

45 / 76

Logic-based profiles for CDMLs Example

Steps UML diagram to DCs
(Recall DCs is obtained from DCp+ Algorithm 1)
Obtain set of OTs ({Person, ...}) and DTs ({Name, ...})

For Relationships, use Algorithm 1:

1 bump up the association end names to DL roles
2 type the relationships with:

> v ∀has member.Affiliation u ∀has member−.Person

> v ∀has.Person u ∀has−.Affiliation
3 declare inverses, has member ≡ has−

Repeat for each association in UML diagram
Step 3 of DCp definition: attributes. e.g., for Person’s Name:

Person v ∃Name.Stringu ≤ 1 Name

Step 4: subsumptions; e.g., Popular science book v Book

Step 5 and 6: cardinalities. e.g. Affiliation v≥ 1 has member

Finally, identifiers; e.g. ISBN for Book, adding id Book ISBN to the
DCs knowledge base

46 / 76

Logic-based profiles for CDMLs Example

Steps UML diagram to DCs
(Recall DCs is obtained from DCp+ Algorithm 1)
Obtain set of OTs ({Person, ...}) and DTs ({Name, ...})
For Relationships, use Algorithm 1:

1 bump up the association end names to DL roles
2 type the relationships with:

> v ∀has member.Affiliation u ∀has member−.Person

> v ∀has.Person u ∀has−.Affiliation
3 declare inverses, has member ≡ has−

Repeat for each association in UML diagram

Step 3 of DCp definition: attributes. e.g., for Person’s Name:

Person v ∃Name.Stringu ≤ 1 Name

Step 4: subsumptions; e.g., Popular science book v Book

Step 5 and 6: cardinalities. e.g. Affiliation v≥ 1 has member

Finally, identifiers; e.g. ISBN for Book, adding id Book ISBN to the
DCs knowledge base

46 / 76

Logic-based profiles for CDMLs Example

Steps UML diagram to DCs
(Recall DCs is obtained from DCp+ Algorithm 1)
Obtain set of OTs ({Person, ...}) and DTs ({Name, ...})
For Relationships, use Algorithm 1:

1 bump up the association end names to DL roles
2 type the relationships with:

> v ∀has member.Affiliation u ∀has member−.Person

> v ∀has.Person u ∀has−.Affiliation
3 declare inverses, has member ≡ has−

Repeat for each association in UML diagram
Step 3 of DCp definition: attributes. e.g., for Person’s Name:

Person v ∃Name.Stringu ≤ 1 Name

Step 4: subsumptions; e.g., Popular science book v Book

Step 5 and 6: cardinalities. e.g. Affiliation v≥ 1 has member

Finally, identifiers; e.g. ISBN for Book, adding id Book ISBN to the
DCs knowledge base

46 / 76

Logic-based profiles for CDMLs Example

Steps UML diagram to DCs
(Recall DCs is obtained from DCp+ Algorithm 1)
Obtain set of OTs ({Person, ...}) and DTs ({Name, ...})
For Relationships, use Algorithm 1:

1 bump up the association end names to DL roles
2 type the relationships with:

> v ∀has member.Affiliation u ∀has member−.Person

> v ∀has.Person u ∀has−.Affiliation
3 declare inverses, has member ≡ has−

Repeat for each association in UML diagram
Step 3 of DCp definition: attributes. e.g., for Person’s Name:

Person v ∃Name.Stringu ≤ 1 Name

Step 4: subsumptions; e.g., Popular science book v Book

Step 5 and 6: cardinalities. e.g. Affiliation v≥ 1 has member

Finally, identifiers; e.g. ISBN for Book, adding id Book ISBN to the
DCs knowledge base

46 / 76

Logic-based profiles for CDMLs Example

Steps UML diagram to DCs
(Recall DCs is obtained from DCp+ Algorithm 1)
Obtain set of OTs ({Person, ...}) and DTs ({Name, ...})
For Relationships, use Algorithm 1:

1 bump up the association end names to DL roles
2 type the relationships with:

> v ∀has member.Affiliation u ∀has member−.Person

> v ∀has.Person u ∀has−.Affiliation
3 declare inverses, has member ≡ has−

Repeat for each association in UML diagram
Step 3 of DCp definition: attributes. e.g., for Person’s Name:

Person v ∃Name.Stringu ≤ 1 Name

Step 4: subsumptions; e.g., Popular science book v Book

Step 5 and 6: cardinalities. e.g. Affiliation v≥ 1 has member

Finally, identifiers; e.g. ISBN for Book, adding id Book ISBN to the
DCs knowledge base

46 / 76

Logic-based profiles for CDMLs Example

Steps UML diagram to DCs
(Recall DCs is obtained from DCp+ Algorithm 1)
Obtain set of OTs ({Person, ...}) and DTs ({Name, ...})
For Relationships, use Algorithm 1:

1 bump up the association end names to DL roles
2 type the relationships with:

> v ∀has member.Affiliation u ∀has member−.Person

> v ∀has.Person u ∀has−.Affiliation
3 declare inverses, has member ≡ has−

Repeat for each association in UML diagram
Step 3 of DCp definition: attributes. e.g., for Person’s Name:

Person v ∃Name.Stringu ≤ 1 Name

Step 4: subsumptions; e.g., Popular science book v Book

Step 5 and 6: cardinalities. e.g. Affiliation v≥ 1 has member

Finally, identifiers; e.g. ISBN for Book, adding id Book ISBN to the
DCs knowledge base

46 / 76

Discussion and Conclusions

Outline

1 Motivation

2 Language design
Principles
Toward logics for CDMLs

3 Logic-based profiles for CDMLs
Preliminaries
Logic-based profiles
Example

4 Discussion and Conclusions

47 / 76

Discussion and Conclusions

Profile comparison on language and complexity

Profile Main features Approx. DL Subsumption
complexity

DCp positionalist, binary relationships, identi-
fiers, cardinality constraints, attribute typ-
ing, mandatory attribute and its function-
ality

DLR EXPTIME

DCs standard view, binary relationships, in-
verses

ALNI P

DCUML relationship subsumption, attribute cardi-
nality

DL-LiteHNcore NLOGSPACE

DCEER ternary relationships, attribute cardinality, DL-LiteNcore NLOGSPACE
external keys CFD P

DCORM entity type disjunction, relationships com-
plement, relationship subsumption,

DLRifd EXPTIME

complex identifiers (‘multi attribute keys’) CFDI∀−nc P

48 / 76

Discussion and Conclusions

Discussion

‘Uninteresting’ logics for automated reasoning over conceptual models

But

assuming that also the reconstructions of DCp and DCORM will be
lower than EXPTIME (tbd),

They’re good/excellent for use of conceptual models during runtime;
e.g.:

Scalable test data generation [Smaragdakis et al.(2009)]

Designing [Bloesch and Halpin(1997)] and executing
[Calvanese et al.(2010)] queries with the model’s vocabulary
Querying databases during the stage of query compilation
[Toman and Weddell(2011)]

49 / 76

Discussion and Conclusions

Discussion

‘Uninteresting’ logics for automated reasoning over conceptual models

But

assuming that also the reconstructions of DCp and DCORM will be
lower than EXPTIME (tbd),

They’re good/excellent for use of conceptual models during runtime;
e.g.:

Scalable test data generation [Smaragdakis et al.(2009)]

Designing [Bloesch and Halpin(1997)] and executing
[Calvanese et al.(2010)] queries with the model’s vocabulary
Querying databases during the stage of query compilation
[Toman and Weddell(2011)]

49 / 76

Discussion and Conclusions

Discussion

‘Uninteresting’ logics for automated reasoning over conceptual models

But

assuming that also the reconstructions of DCp and DCORM will be
lower than EXPTIME (tbd),

They’re good/excellent for use of conceptual models during runtime;
e.g.:

Scalable test data generation [Smaragdakis et al.(2009)]

Designing [Bloesch and Halpin(1997)] and executing
[Calvanese et al.(2010)] queries with the model’s vocabulary
Querying databases during the stage of query compilation
[Toman and Weddell(2011)]

49 / 76

Discussion and Conclusions

Language design

First attempt to scope and structure the the logic design process,
with ontological considerations

Can do with a broader systematic investigation on alternative design
choices and their consequences

Identified alternate choices effectively addressed by multiple
compatible profiles with algorithms for conversions

‘good’ logic

matches the implicit ontological commitments
that fits needs here is ‘less good’ in precision
turns out to be a family of compatible logics + algorithms

50 / 76

Discussion and Conclusions

Language design

First attempt to scope and structure the the logic design process,
with ontological considerations

Can do with a broader systematic investigation on alternative design
choices and their consequences

Identified alternate choices effectively addressed by multiple
compatible profiles with algorithms for conversions

‘good’ logic

matches the implicit ontological commitments
that fits needs here is ‘less good’ in precision
turns out to be a family of compatible logics + algorithms

50 / 76

Discussion and Conclusions

Toward applicability

Profiles may be applied as back-end of CASE tool, OBDA

Will allow modeller to model in their graphical notation of choice, yet
be compatible with the rest

Transformations and inter-model assertions of approximate entities
and of modelling patterns
[Fillottrani and Keet(2014), Khan et al.(2016), Fillottrani and Keet(2017)] details

Inter-model links checker
(patterns, rules with metamodel)

DL-based checker
(semantics)

Metamodel-driven
checker (syntax)

graphics files for
EER, UML, ORM2

logic files for core profile
for EER, UML, ORM2

metamodel frament files
for EER, UML, ORM2

automated
reasoner

Transformation rules
and mappings

formalised
 as

checks

uses

linked
theory metamodel

consults

merged into

51 / 76

Discussion and Conclusions

Conclusions

Ontology-informed language design process

Used to define five optimal profiles

Profiles are exceedingly suitable for runtime usage of conceptual
models

52 / 76

Discussion and Conclusions

Ongoing and future work

Integrate these results into design tools (commenced, in ICOM)

Module management, modularisation & rules (ongoing)

Complexity of the profiles

Suitable reasoner

‘Scalability’ of graphical representation and inferences

53 / 76

Discussion and Conclusions

References I

A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev.

The DL-Lite family and relations.
Journal of Artificial Intelligence Research, 36:1–69, 2009.

Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.

Reasoning over extended ER models.
In Christine Parent, Klaus-Dieter Schewe, Veda C. Storey, and Bernhard Thalheim, editors, Proceedings of the 26th
International Conference on Conceptual Modeling (ER’07), volume 4801 of LNCS, pages 277–292. Springer, 2007.
Auckland, New Zealand, November 5-9, 2007.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logics Handbook – Theory and Applications.
Cambridge University Press, 2 edition, 2008.

D. Berardi, D. Calvanese, and G. De Giacomo.

Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005.

A. C. Bloesch and T. A. Halpin.

Conceptual Queries using ConQuer-II.
In Proceedings of ER’97: 16th International Conference on Conceptual Modeling, volume 1331 of LNCS, pages 113–126.
Springer, 1997.

Bernardo F. B. Braga, João Paulo A. Almeida, Giancarlo Guizzardi, and Alessander Botti Benevides.

Transforming OntoUML into Alloy: towards conceptual model validation using a lightweight formal methods.
Innovations in Systems and Software Engineering, 6(1-2):55–63, 2010.

54 / 76

Discussion and Conclusions

References II

Jordi Cabot, Robert Clarisó, and Daniel Riera.

Verification of UML/OCL class diagrams using constraint programming.
In Model Driven Engineering, Verification, and Validation: Integrating Verification and Validation in MDE (MoDeVVA
2008), 2008.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

Identification constraints and functional dependencies in description logics.
In Bernhard Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 155–160.
Morgan Kaufmann, 2001.
Seattle, Washington, USA, August 4-10, 2001.

Diego Calvanese, C. Maria Keet, Werner Nutt, Mariano Rodŕıguez-Muro, and Giorgio Stefanoni.

Web-based graphical querying of databases through an ontology: the WONDER system.
In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings
of ACM Symposium on Applied Computing (ACM SAC’10), pages 1389–1396. ACM, 2010.
March 22-26 2010, Sierre, Switzerland.

Diego Calvanese, Domenico Carbotta, and Magdalena Ortiz.

A practical automata-based technique for reasoning in expressive description logics.
In Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11), 2011.

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt.

Tractable concept languages.
In Proc.of IJCAI’91, volume 91, pages 458–463, 1991.

55 / 76

Discussion and Conclusions

References III

P. R. Fillottrani and C. M. Keet.

Conceptual model interoperability: a metamodel-driven approach.
In A. Bikakis et al., editors, Proceedings of the 8th International Web Rule Symposium (RuleML’14), volume 8620 of
LNCS, pages 52–66. Springer, 2014.
August 18-20, 2014, Prague, Czech Republic.

Pablo R. Fillottrani and C. Maria Keet.

Patterns for heterogeneous tbox mappings to bridge different modelling decisions.
In E. Blomqvist et al., editors, Proc. of ESWC’17, volume 10249 of LNCS, pages 371–386. Springer, 2017.
30 May - 1 June 2017, Portoroz, Slovenia.

Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris.

The ICOM 3.0 intelligent conceptual modelling tool and methodology.
Semantic Web Journal, 3(3):293–306, 2012.

Pablo Rubén Fillottrani, C. Maria Keet, and David Toman.

Polynomial encoding of orm conceptual models in CFDI∀−nc .
In D. Calvanese and B. Konev, editors, Proceedings of the 28th International Workshop on Description Logics (DL’15),
volume 1350 of CEUR-WS, pages 401–414, 2015.
7-10 June 2015, Athens, Greece.

Ulrich Frank.

Domain-specific modeling languages - requirements analysis and design guidelines.
In I. Reinhartz-Berger, A. Sturm, T. Clark, J. Bettin, and S. Cohen, editors, Domain Engineering: Product Lines,
Conceptual Models, and Languages, pages 133–157. Springer, 2013.

56 / 76

Discussion and Conclusions

References IV

Amir Jahangard Rafsanjani and Seyed-Hassan Mirian-Hosseinabadi.

A Z Approach to Formalization and Validation of ORM Models.
In Ezendu Ariwa and Eyas El-Qawasmeh, editors, Digital Enterprise and Information Systems, volume 194 of CCIS, pages
513–526. Springer, 2011.

C. Maria Keet.

Positionalism of relations and its consequences for fact-oriented modelling.
In R. Meersman, P. Herrero, and Dillon T., editors, OTM Workshops, International Workshop on Fact-Oriented Modeling
(ORM’09), volume 5872 of LNCS, pages 735–744. Springer, 2009.
Vilamoura, Portugal, November 4-6, 2009.

Zubeida C. Khan, C. Maria Keet, Pablo R. Fillottrani, and Karina Cenci.

Experimentally motivated transformations for intermodel links between conceptual models.
In J. Pokorný et al., editors, 20th Conference on Advances in Databases and Information Systems (ADBIS’16), volume
9809 of LNCS, pages 104–118. Springer, 2016.
August 28-31, Prague, Czech Republic.

Matthew Nizol, Laura K. Dillon, and R. E. K. Stirewalt.

Toward tractable instantiation of conceptual data models using non-semantics-preserving model transformations.
In Proceedings of the 6th International Workshop on Modeling in Software Engineering (MiSE’14), pages 13–18. ACM
Conference Proceedings, 2014.
Hyderabad, India, June 02-03, 2014.

Wen-Lin Pan and Da-xin Liu.

Mapping object role modeling into common logic interchange format.
In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE’10),
volume 2, pages 104–109. IEEE Computer Society, 2010.

57 / 76

Discussion and Conclusions

References V

Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente.

OCL-Lite: Finite reasoning on UML/OCL conceptual schemas.
Data & Knowledge Engineering, 73:1–22, 2012.

Y. Smaragdakis, C. Csallner, and R. Subramanian.

Scalable satisfiability checking and test data generation from modeling diagrams.
Automation in Software Engineering, 16:73–99, 2009.

Ahmet Soylu, Evgeny Kharlamov, Dimitry Zheleznyakov, Ernesto Jimenez Ruiz, Martin Giese, Martin G. Skjaeveland,

Dag Hovland, Rudolf Schlatte, Sebastian Brandt, Hallstein Lie, and Ian Horrocks.
OptiqueVQS: a visual query system over ontologies for industry.
Semantic Web Journal, page in press, 2017.

David Toman and Grant E Weddell.

Applications and extensions of PTIME Description Logics with functional constraints.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence IJCAI’09, pages 948–954. AAAI Press,
2009.

David Toman and Grant E. Weddell.

Fundamentals of Physical Design and Query Compilation.
Synthesis Lectures on Data Management. Morgan & Claypool, 2011.

David Toman and Grant E. Weddell.

On adding inverse features to the description logic CFD∀nc.
In PRICAI 2014: Trends in Artificial Intelligence - 13th Pacific Rim International Conference on Artificial Intelligence,
Gold Coast, QLD, Australia, December 1-5, 2014., pages 587–599, 2014.

58 / 76

Discussion and Conclusions

References VI

Heba M. Wagih, Doaa S. El Zanfaly, and Mohamed M. Kouta.

Mapping Object Role Modeling 2 schemes into SROIQ(d) description logic.
International Journal of Computer Theory and Engineering, 5(2):232–237, 2013.

59 / 76

Discussion and Conclusions

Thank you!

For more information, papers, data sets, presentations and
other files, please visit

http://www.meteck.org/SAAR.html

Bilateral project “ontology-driven unification of conceptual data modelling
languages” funded by SA Dept. of Sci & Tech and AR’s MINCyT

60 / 76

http://www.meteck.org/SAAR.html

Discussion and Conclusions

International Conference on Formal Ontology and
Information Systems 2018 (FOIS’18)

17-21 September 2018, Cape Town
http://fois2018.cs.uct.ac.za/

61 / 76

http://fois2018.cs.uct.ac.za/

Discussion and Conclusions

CS@UCT

62 / 76

Discussion and Conclusions

CS@UCT

62 / 76

Discussion and Conclusions

CS@UCT

62 / 76

Discussion and Conclusions

Inter-model assertions [Fillottrani and Keet(2014)]

map entities of M1 and
M2 into MM

input model M1
and M2 in language

X and Y, resp.

algorithms

output model M12
or NO

ISBN:string
Author:string

Book

Author
(ID) name

has

ISBN:string
Author:string

Book

Author
(ID) name

has

vocabulary +
list of entities to map,

transform, approximate,
or not

formalised
metamodel

Book
(ISBN)writes

Book
(ISBN)writes

input inter-model
assertions

process inter-model assertion using the
transformation rules and compare

output with element in M2

63 / 76

Discussion and Conclusions

(still a small ‘toy’ example)

ID
name

Airline
ID
arrival_time
departure_time

Flight

AIRPLANE

TypeSeatsReg No

AIRPORTLANDS
ON

Code

Name

Country

City

AIRLINES

OWNED
BY

FLIES

FLIGHT

A name

Code

Flight

Arr_time Dep_time

Dep_dateArr_date

To

From

Class

TRAVELS
ON

HAS
BOOKING

BOOKING
OFFICE

BOOKS
TICKET

1

NM

N

1

N
N1

1
N Office

id

Office
name

ID
name

Airport

name
repair
landed

Aircraft

name
Aircraft Type

name
Pilot

Pilot3

Pilot2

Pilot1

1

1

1

1

*

*

* *
*

*

*

1

1

*

*

*

*

1..n

2..n

offers

owns

arrives to

departs from

uses Driven by

is of

Navigator of

Copilot of
Captain of

….….

64 / 76

Discussion and Conclusions

1:1 mapping rules and the metamodel (selection)

(R1) Association
UML to MM

=======⇒ Relationship

in: Association(AssociationEnd : Class, AssociationEnd : Class)

out: AssociationEnd→ Role // i.e., using (Ro1)

out: Association→ Relationship

out: Class→ Object Type // i.e., using (O1)

out: Relationship(Role:Object type, Role:Object Type)

(1R) Relationship
MM to UML

=======⇒ Association

in: Relationship(Role:Object type, Role:Object Type)

out: Role → AssociationEnd // i.e., using (1Ro)

out: Relationship → Association

out: Object Type → Class // i.e., using (1O)

out:
Association(AssociationEnd : Class, AssociationEnd : Class)

65 / 76

Discussion and Conclusions

Formalised metamodel (section), highlighted for step 2

∀(x , y)(Contains(x , y)→ Relationship(x) ∧ Role(y))
∀(x)∃≥2y(Contains(x , y))
∀(x)(Role(x)→ ∃(y)(Contains(y , x)))
∀(x , y , z)(Contains(x , y) ∧ Contains(z, y)→ (x = z))
∀(x , y , z)(RolePlaying(x , y , z)→ Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x)→ ∃(y , z)(RolePlaying(x , y , z)))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(x , v ,w)→ (y = v) ∧ (z = w))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(v , y ,w)→ (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x)→ ∃(y)(MinimumCardinality(x , y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x)→ ∃(y)(MaximumCardinality(x , y) ∧ Integer(y)))
∀(x , y)(Identifies(x , y)→ (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x)→ ∃(y)(Identifies(x , y)))
∀(x , y , z)((Identifies(x , y) ∧ Identifies(x , z))→ (y = z))
∀(x)(ObjectType(x)→ ∃(y)(Identifies(y , x)))
∀(x , y , z)((DeclaredOn(x , y) ∧ DeclaredOn(x , z) ∧ IdentificationConstraint(x) ∧ (¬(y = z)))→

(ValueProperty(y)↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x)→ ∃(y)(DeclaredOn(x , y)))
∀(x , y)((DeclaredOn(x , y) ∧ SingleIdentification(x))→ (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x)→ ∃(y)(DeclaredOn(x , y))
∀(x , y , z)((SingleIdentification(x) ∧ DeclaredOn(x , y) ∧ DeclaredOn(x , z))→ (y = z))

66 / 76

Discussion and Conclusions

Highlighted section for step 3

∀(x , y)(Contains(x , y)→ Relationship(x) ∧ Role(y))
∀(x)∃≥2y(Contains(x , y))
∀(x)(Role(x)→ ∃(y)(Contains(y , x)))
∀(x , y , z)(Contains(x , y) ∧ Contains(z, y)→ (x = z))
∀(x , y , z)(RolePlaying(x , y , z)→ Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x)→ ∃(y , z)(RolePlaying(x , y , z)))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(x , v ,w)→ (y = v) ∧ (z = w))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(v , y ,w)→ (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x)→ ∃(y)(MinimumCardinality(x , y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x)→ ∃(y)(MaximumCardinality(x , y) ∧ Integer(y)))
∀(x , y)(Identifies(x , y)→ (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x)→ ∃(y)(Identifies(x , y)))
∀(x , y , z)((Identifies(x , y) ∧ Identifies(x , z))→ (y = z))
∀(x)(ObjectType(x)→ ∃(y)(Identifies(y , x)))
∀(x , y , z)((DeclaredOn(x , y) ∧ DeclaredOn(x , z) ∧ IdentificationConstraint(x) ∧ (¬(y = z)))→

(ValueProperty(y)↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x)→ ∃(y)(DeclaredOn(x , y)))
∀(x , y)((DeclaredOn(x , y) ∧ SingleIdentification(x))→ (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x)→ ∃(y)(DeclaredOn(x , y))
∀(x , y , z)((SingleIdentification(x) ∧ DeclaredOn(x , y) ∧ DeclaredOn(x , z))→ (y = z))

67 / 76

Discussion and Conclusions

Transformations approach [Khan et al.(2016)]

Assume the models, called Model1 and Model2, are syntactically
correct

Allow equivalence, disjointness, and subsumption axioms between
homogeneous metamodel entities

Introduce a third model, called Intermodel, that keeps all
intermediate metamodel entities that are necessary to implement the
transformation rule, adhering to constraints of metamodel

Note: the original link has no direction, i.e., without source and
target models

ATL uses notion of ‘source’ and ‘target’

⇒ Solution: Model1 and Model2 both serve as ‘source’, and Intermodel

as ‘target’

68 / 76

Discussion and Conclusions

Transformations approach [Khan et al.(2016)]

Assume the models, called Model1 and Model2, are syntactically
correct

Allow equivalence, disjointness, and subsumption axioms between
homogeneous metamodel entities

Introduce a third model, called Intermodel, that keeps all
intermediate metamodel entities that are necessary to implement the
transformation rule, adhering to constraints of metamodel

Note: the original link has no direction, i.e., without source and
target models

ATL uses notion of ‘source’ and ‘target’

⇒ Solution: Model1 and Model2 both serve as ‘source’, and Intermodel

as ‘target’

68 / 76

Discussion and Conclusions

Attribute ↔ Object type transformation

An attribute A 7→ C × D becomes an object type A′ with a new stub
attribute a 7→ A′ × D and has a relationship R to an object type C

69 / 76

Discussion and Conclusions

In ATL

rule Att<-->OT {

from

a : Model1.MM!Attribute (a.range(dt)),

o : Model2.MM!ObjectType

to

newO : InterModel.MM!ObjectType (newO.hasAttribute <-- a1),

a1 : InterModel.MM!Attribute (a1.domain <-- newO,

a1.range<--dt, a1.of <-- co),

e : InterModel.MM!EqualityConstraint(e.declaredOn(a),

e.declaredOn(a1)),

co : InterModel.MM!CardO (co.cardinalityConstraint <-- cc,

co.attribute <-- a1, co.objectType <-- newO),

sid : InterModel.MM!SingleIdentification (sid.declaredOn <-- a1,

sid.identifies <-- newO, sid.mandatory <-- mc),

m : InterModel.MM!Mandatory (m.declaredOn <-- a1.contains),

cc : InterModel.MM!CardinalityConstraint (cc.maximumCardinality <-- 1,

cc.minimumCardinality <-- 1),

s : InterModel.MM!Subsumption (s1.super <-- newO, s1.sub <-- o)

}

70 / 76

Discussion and Conclusions

Bridging different modelling decisions [Fillottrani and Keet(2017)]

‘Case A’: class or object property? (and Case B with perdurants)

Main issue: to reify or not to reify?

And: are the more precise cardinality constraints needed?

71 / 76

Discussion and Conclusions

Formalisation—preliminaries

Language of pattern instantiation (OWL in this case)

Language for patterns with vocabulary V, meta-level (second-order)
elements (or stereotypes)

Ontology pattern, with name, elements from V, pattern axiom
components, pattern’s full formalisations; e.g.:

pattern name: basic all-some
pattern elements: C1, C2, R1

pattern axiom components: v, ∃
pattern’s full formalisation C1 v ∃R.C2

Example instantiation: Professor v ∃teaches.Course
Homogeneous mapping: subsumption or equivalence relating two
homogeneous elements (e.g., Teacher in O and Instructor in O ′)

72 / 76

Discussion and Conclusions

Definition (Ontology Pattern Alignment, OPA)

An ontology pattern alignment OPA consists of two ontology patterns, P
and P ′, such that its signature Σ is a subset of the signature of the
respective ontologies O and O ′, i.e., Σ(P) ⊆ Σ(O) and Σ(P ′) ⊆ Σ(O ′),
and alignment axioms

alignment pattern name;

pattern elements;

alignment patterns’ context, consisting of:

O’s pattern P
O ′’s pattern P ′

alignment pattern axiom component(s) from VX ;

pattern alignment’s formalisation, composed of:

a (possibly empty) set of mappings between homogeneous elements in
P and P ′

a set of axioms made from components in VX connecting
heterogeneous elements in P and P ′

73 / 76

Discussion and Conclusions

Class vs. Object Property (case A)

alignment pattern name: class-OP

pattern elements: C1, C2,R1 from O, C′3, C′4, C′5,R′2,R′3 from O ′

alignment patterns’ contexts:

pattern P in O: ∃R1.C2 v C1 and ∃R−1 .C1 v C2;
pattern P ′ in O ′: ∃R′2.C′4 v C′3, ∃R′−2 .C′3 v C′4, ∃R′3.C′5 v C′3,
∃R′−3 .C′3 v C′5, C′3 v (∃R′2), and C′3 v (∃R′3).

pattern’s full formalisation:

homogeneous mappings: between C1 and C′4 and between C2 and C′5,
which may be subsumption or equivalence relations.
heterogeneous alignments: ∃R1 v C′3, ∃R−1 v C′3,
C′3 v ∃R1 u ∃R−1 u (≤ 1R1) u (≤ 1R−1).

74 / 76

Discussion and Conclusions

Example: mapping and searching (‘Case A’: Class↔OP)

75 / 76

Discussion and Conclusions

Example: checking and accept/reject alignment

back to main

76 / 76

	Motivation
	Language design
	Principles
	Toward logics for CDMLs

	Logic-based profiles for CDMLs
	Preliminaries
	Logic-based profiles
	Example

	Discussion and Conclusions

