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Constraints and satisfaction

Constraint
A tuple of variables, and a target relation on some domain

Constraint satisfaction problem
Given some constraints, can they be satisfied?



3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied?
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a classic catch by John Dyson 1981
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Can the instance be satisfied?

As a CSP
Each clause is a constraint:
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A Warrick Capper classic
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A system of equations over Z2:

x1 + x2 +x4 = 1
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x1 + x3 +x4 = 0
x1 +x4 = 1

. Easily solved in polynomial time using Gaussian elimination. It
has its own complexity class ⊕L (“parity L”)



Solvability of linear equations

A system of equations over Z2:

x1 + x2 +x4 = 1
x2 + x3 +x4 = 1

x1 + x3 +x4 = 0
x1 +x4 = 1

As a CSP
Each equation is a constraint:
. Equation x2 + x3 + x4 = 1 means (x2, x3, x4) is constrained to be in

{100,010,001,111}
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directed path from s to t?



Directed graph unreachability

A directed graph, a “start” vertex s and a “finish” vertex t . Is there no
directed path from s to t?
. Easily solved in polynomial time (and nondeterministic logspace).
. A fundamental computational problem in computational complexity
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Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {00,01,11} (that is, ≤

on 0,1)



Directed graph unreachability

A directed graph, a “start” vertex s and a “finish” vertex t . Is there no
directed path from s to t?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {00,01,11} (that is, ≤

on 0,1)
AND:
. s is constrained to be 1 while t is constrained to be 0



Schaefer’s Theorem

So far, all these problems have domain 0,1.

Schaefer’s Theorem (1979)
A Boolean satisfiability problem is either solvable in P or NP-complete



Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?
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Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {01,10,02,20,12,21}

(the 6= relation on {0,1,2})

The target domain and relations are fixed: “template”

Database example
Conjunctive database queries (the database is the template, the query
the instance)



Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

. . . but in practice there seem to be few natural problems that appear to
have this intermediate status

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem hold
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Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold,
. it’s the fixed finite template CSPs!
. Conjecture: Ladner’s Theorem fails for this class.

Bulatov/Zhuk (joint best paper award, FOCS 2017)
A fixed template CSP is either solvable in P or is NP-complete.

. they give a structural characterisation of hardness for an enormous
class of natural problems of interest. . .
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. Give some sort of appreciation to the background mathematics
underlying the Bulatov/Zhuk result and proof



Goal

. Give some sort of appreciation to the background mathematics
underlying the Bulatov/Zhuk result and proof

. as well as how this approach and result can be used to achieve
other complexity-theoretic classifications
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The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

. the hard part

it’s really hard
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template D

Automorphism
Automorphism: f : D→ D

the set of automorphisms form a group action on D
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Polymorphism

template D

Polymorphism
Polymorphism: f : Dn → D

the set of all polymorphisms forms an exotic algebra on D
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Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)
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Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
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. iff (roughly) the template relations can logically define the 3SAT
ternary relations by way of primitive positive formulæ



Cyclic

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)

. iff it has cyclic terms of all prime arities greater than the size of the
algebra
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Cyclic polymorphism
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Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

then. . .

a ∧ b = c

≤ and ≤ ≤

a′ ∧ b′ = c′



Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

and obviously x1 ∧ x2 = x2 ∧ x1 (for all x1, x2 ∈ {0,1})



Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c( u1, u2, . . . up−1, up)

c( u2, u3, . . . up, u1)
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Universal Horn

A non-constraint is implied if every solution maps it inside the target
relation.

CSP to universal Horn
. CSP(A): is there a homomorphism from B into A?
. UHorn(A): are there no implied constraints?

Fix a finite structure A in signature R

B is an induced substructure of a direct power of A
B satisfies the universal Horn sentences of A
if r ∈ R is a relation of arity n and (b1, . . . ,bn) /∈ rB then there is a
homomorphism φ from B to A with (φ(b1), . . . , φ(bn)) /∈ rA

B has no implied constraints relative to A
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The hard part is the hardness part
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