
The algebraic method for Constraint Satisfaction
Problems

LAC 2018
Institute of Mathematics for Industry, Kyushu University and La Trobe

University

Marcel Jackson

Constraints and satisfaction

Constraint
A tuple of variables, and a target relation on some domain

Constraint satisfaction problem
Given some constraints, can they be satisfied?

3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied?

3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied?
. The quintessential NP-complete classic

a classic catch by John Dyson 1981

3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied?

As a CSP
Each clause is a constraint:
. Clause (¬x1 ∨ x2 ∨ ¬x3) means (x1, x2, x3) must lie in

{000,001,010,011,100,101,110,111}

Not-all-equal 3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied with each clause containing a true literal
and a false literal?

Not-all-equal 3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied with each clause containing a true literal
and a false literal?
. Another well-known NP-complete classic.

A Warrick Capper classic

Not-all-equal 3SAT

Conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∧ ¬x2 ∧ ¬x4) ∧ . . .

Can the instance be satisfied with each clause containing a true literal
and a false literal?

As a CSP
Each clause is a constraint:
. Clause (¬x1 ∨ x2 ∨ ¬x3) means (x1, x2, x3) must lie in

{000,001,010,011,100,101,110,111}

Solvability of linear equations

A system of equations over Z2:

x1 + x2 +x4 = 1
x2 + x3 +x4 = 1

x1 + x3 +x4 = 0
x1 +x4 = 1

Solvability of linear equations

A system of equations over Z2:

x1 + x2 +x4 = 1
x2 + x3 +x4 = 1

x1 + x3 +x4 = 0
x1 +x4 = 1

. Easily solved in polynomial time using Gaussian elimination. It
has its own complexity class ⊕L (“parity L”)

Solvability of linear equations

A system of equations over Z2:

x1 + x2 +x4 = 1
x2 + x3 +x4 = 1

x1 + x3 +x4 = 0
x1 +x4 = 1

As a CSP
Each equation is a constraint:
. Equation x2 + x3 + x4 = 1 means (x2, x3, x4) is constrained to be in

{100,010,001,111}

Directed graph unreachability

A directed graph, a “start” vertex s and a “finish” vertex t . Is there no
directed path from s to t?

Directed graph unreachability

A directed graph, a “start” vertex s and a “finish” vertex t . Is there no
directed path from s to t?
. Easily solved in polynomial time (and nondeterministic logspace).
. A fundamental computational problem in computational complexity

Directed graph unreachability

A directed graph, a “start” vertex s and a “finish” vertex t . Is there no
directed path from s to t?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {00,01,11} (that is, ≤

on 0,1)

Directed graph unreachability

A directed graph, a “start” vertex s and a “finish” vertex t . Is there no
directed path from s to t?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {00,01,11} (that is, ≤

on 0,1)
AND:
. s is constrained to be 1 while t is constrained to be 0

Schaefer’s Theorem

So far, all these problems have domain 0,1.

Schaefer’s Theorem (1979)
A Boolean satisfiability problem is either solvable in P or NP-complete

Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?

Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?
. Yet another classic NP-complete problem

Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {01,10,02,20,12,21}

(the 6= relation on {0,1,2})

Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {01,10,02,20,12,21}

(the 6= relation on {0,1,2})

The target domain and relations are fixed: “template”

Graph colouring

Given a graph G = (V ,E), can we colour the vertices V by {0,1,2} so
that adjacent vertices have different colours?

As a CSP
Each edge is a constraint:
. (u, v) means (u, v) is constrained to be in {01,10,02,20,12,21}

(the 6= relation on {0,1,2})

The target domain and relations are fixed: “template”

Database example
Conjunctive database queries (the database is the template, the query
the instance)

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

. . . but in practice there seem to be few natural problems that appear to
have this intermediate status

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem hold

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold,
. it’s the fixed finite template CSPs!

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold,
. it’s the fixed finite template CSPs!

(very roughly)

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold,
. it’s the fixed finite template CSPs!
. Conjecture: Ladner’s Theorem fails for this class.

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold,
. it’s the fixed finite template CSPs!
. Conjecture: Ladner’s Theorem fails for this class.

Bulatov/Zhuk (joint best paper award, FOCS 2017)
A fixed template CSP is either solvable in P or is NP-complete.

Ladner’s Theorem versus CSPs

Ladner’s Theorem
If P 6= NP then there are problems in NP\P that are not NP-complete.

Feder and Vardi (1994)
(Roughly) there is a largest logically definable subclass of NP in which
Ladner’s Theorem might not hold,
. it’s the fixed finite template CSPs!
. Conjecture: Ladner’s Theorem fails for this class.

Bulatov/Zhuk (joint best paper award, FOCS 2017)
A fixed template CSP is either solvable in P or is NP-complete.

. they give a structural characterisation of hardness for an enormous
class of natural problems of interest. . .

Goal

Goal

Goal

. Give some sort of appreciation to the background mathematics
underlying the Bulatov/Zhuk result and proof

Goal

. Give some sort of appreciation to the background mathematics
underlying the Bulatov/Zhuk result and proof

. as well as how this approach and result can be used to achieve
other complexity-theoretic classifications

The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

. to be explained in due course

The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

. the “easy” part

The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

. the hard part

The CSP Dichotomy Theorem

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a “cyclic polymorphism”
and is NP-complete otherwise.

. the hard part

it’s really hard

Polymorphism

template D

Polymorphism

template D

Automorphism
Automorphism: f : D→ D

Polymorphism

template D

Automorphism
Automorphism: f : D→ D

the set of automorphisms form a group action on D

Polymorphism

template D

Polymorphism
Polymorphism: f : Dn → D

Polymorphism

template D

Polymorphism
Polymorphism: f : Dn → D

the set of all polymorphisms forms an exotic algebra on D

Cyclic

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)

Cyclic

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)

Cyclic

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)

Cyclic

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)

. iff (roughly) the template relations can logically define the 3SAT
ternary relations by way of primitive positive formulæ

Cyclic

Bulatov/Zhuk 2017
A fixed template CSP is solvable in P if it has a cyclic polymorphism
and is NP-complete otherwise.

n-ary cyclic polymorphism

∀x1 . . . ∀xn c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

Behind the scenes (Barto, Kozik 2012 after Taylor 1977)
A finite algebra has a cyclic term if and only if its variety contains no
algebras with essentially trivial term operations (projections)

. iff it has cyclic terms of all prime arities greater than the size of the
algebra

Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

if. . .

a ∧ b = c

≤ and ≤

a′ ∧ b′ = c′

Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

and

a ∧ b = c

≤ and ≤

a′ ∧ b′ = c′

Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

then. . .

a ∧ b = c

≤ and ≤ ≤

a′ ∧ b′ = c′

Example: Directed graph unreachability

R = 〈{0,1};≤, , 〉

Cyclic polymorphism
The operations of meet ∧ and join ∨ on 0,1 are cyclic polymorphisms.

and obviously x1 ∧ x2 = x2 ∧ x1 (for all x1, x2 ∈ {0,1})

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up)

c(u2, u3, . . . up, u1)

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial

. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up)

c(u2, u3, . . . up, u1)

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up)

c(u2, u3, . . . up, u1)

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1

Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up)

c(u2, u3, . . . up, u1)

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up)

c(u2, u3, . . . up, u1)

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up)

c(u2, u3, . . . up, u1)

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up) = v

c(u2, u3, . . . up, u1) = v

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up) = v
| | . . . | |

c(u2, u3, . . . up, u1) = v

Hell-Nešetřil Dichotomy

Hell and Nešetřil (1990)
A finite graph has tractable CSP if it has a loop or is bipartite and is
NP-complete otherwise

Modern proof by cyclic polymorphism
. loop: trivial
. bipartite: easy (logspace)

. now assume there is an odd circuit.
an odd length circuit︷ ︸︸ ︷

u1 − u2 − u3 − · · · − up − u1
Claim: if there is a cyclic polymorphism c, there is a loop

c(u1, u2, . . . up−1, up) = v
| | . . . | | |

c(u2, u3, . . . up, u1) = v

Beyond satisfaction

Many other results follow from polymorphism analysis
Counting CSPs (complexity of counting solutions)

valued CSPs (constraints have a cost. Minimise it.)
approximation of CSPs (complexity of solving asymptotically most
constraints)
Universal Horn class membership. . .

Beyond satisfaction

Many other results follow from polymorphism analysis
Counting CSPs (complexity of counting solutions)
valued CSPs (constraints have a cost. Minimise it.)

approximation of CSPs (complexity of solving asymptotically most
constraints)
Universal Horn class membership. . .

Beyond satisfaction

Many other results follow from polymorphism analysis
Counting CSPs (complexity of counting solutions)
valued CSPs (constraints have a cost. Minimise it.)
approximation of CSPs (complexity of solving asymptotically most
constraints)

Universal Horn class membership. . .

Beyond satisfaction

Many other results follow from polymorphism analysis
Counting CSPs (complexity of counting solutions)
valued CSPs (constraints have a cost. Minimise it.)
approximation of CSPs (complexity of solving asymptotically most
constraints)
Universal Horn class membership. . .

CSPs as homomorphism problems

Fixed template A
CSP(A) is just the homomorphism problem for homomorphisms into A

instance︷︸︸︷
B ?−→

template︷︸︸︷
A

CSPs as homomorphism problems

Fixed template A
CSP(A) is just the homomorphism problem for homomorphisms into A

instance︷︸︸︷
B ?−→

template︷︸︸︷
A

a graph

(3-colouring is an
edge-preserving
function into K3)0 1

2

K3

CSPs as homomorphism problems

Fixed template A
CSP(A) is just the homomorphism problem for homomorphisms into A

instance︷︸︸︷
B ?−→

template︷︸︸︷
A

a graph

(3-colouring is an
edge-preserving
function into K3)0 1

2

K3

CSPs as homomorphism problems

Fixed template A
CSP(A) is just the homomorphism problem for homomorphisms into A

instance︷︸︸︷
B ?−→

template︷︸︸︷
A

a graph

(3-colouring is an
edge-preserving
function into K3)0 1

2

K3

CSPs as homomorphism problems

Fixed template A
CSP(A) is just the homomorphism problem for homomorphisms into A

instance︷︸︸︷
B ?−→

template︷︸︸︷
A

a graph

(3-colouring is an
edge-preserving
function into K3)0 1

2

K3

(3-colouring is an
edge-preserving
function into K3)

Universal Horn

A non-constraint is implied if every solution maps it inside the target
relation.

CSP to universal Horn
. CSP(A): is there a homomorphism from B into A?
. UHorn(A): are there no implied constraints?

Fix a finite structure A in signature R

B is an induced substructure of a direct power of A
B satisfies the universal Horn sentences of A
if r ∈ R is a relation of arity n and (b1, . . . ,bn) /∈ rB then there is a
homomorphism φ from B to A with (φ(b1), . . . , φ(bn)) /∈ rA

B has no implied constraints relative to A

Universal Horn

A non-constraint is implied if every solution maps it inside the target
relation.

CSP to universal Horn
. CSP(A): is there a homomorphism from B into A?
. UHorn(A): are there no implied constraints?

Fix a finite structure A in signature R

B is an induced substructure of a direct power of A

B satisfies the universal Horn sentences of A
if r ∈ R is a relation of arity n and (b1, . . . ,bn) /∈ rB then there is a
homomorphism φ from B to A with (φ(b1), . . . , φ(bn)) /∈ rA

B has no implied constraints relative to A

Universal Horn

A non-constraint is implied if every solution maps it inside the target
relation.

CSP to universal Horn
. CSP(A): is there a homomorphism from B into A?
. UHorn(A): are there no implied constraints?

Fix a finite structure A in signature R

B is an induced substructure of a direct power of A
B satisfies the universal Horn sentences of A

if r ∈ R is a relation of arity n and (b1, . . . ,bn) /∈ rB then there is a
homomorphism φ from B to A with (φ(b1), . . . , φ(bn)) /∈ rA

B has no implied constraints relative to A

Universal Horn

A non-constraint is implied if every solution maps it inside the target
relation.

CSP to universal Horn
. CSP(A): is there a homomorphism from B into A?
. UHorn(A): are there no implied constraints?

Fix a finite structure A in signature R

B is an induced substructure of a direct power of A
B satisfies the universal Horn sentences of A
if r ∈ R is a relation of arity n and (b1, . . . ,bn) /∈ rB then there is a
homomorphism φ from B to A with (φ(b1), . . . , φ(bn)) /∈ rA

B has no implied constraints relative to A

Universal Horn

A non-constraint is implied if every solution maps it inside the target
relation.

CSP to universal Horn
. CSP(A): is there a homomorphism from B into A?
. UHorn(A): are there no implied constraints?

Fix a finite structure A in signature R

B is an induced substructure of a direct power of A
B satisfies the universal Horn sentences of A
if r ∈ R is a relation of arity n and (b1, . . . ,bn) /∈ rB then there is a
homomorphism φ from B to A with (φ(b1), . . . , φ(bn)) /∈ rA

B has no implied constraints relative to A

CSP and UHorn are different

CSP and UHorn are different

Example
CSP(R) is NL-complete, but UHorn(R) is first order definable

R = 〈{0,1};≤, , 〉

CSP and UHorn are different

Example
CSP(R) is NL-complete, but UHorn(R) is first order definable

R = 〈{0,1};≤, , 〉

CSP and UHorn are different

Example
CSP(G) is first order definable, but UHorn(G) is NP-complete

G

CSP and UHorn are different

Example
CSP(G) is first order definable, but UHorn(G) is NP-complete

G

Main Result

Barto, Jackson, Ham (2017)
UHorn(A) is solvable in P if A has an idempotent cyclic polymorphism
and otherwise is NP-complete

(roughly)

Main Result

Barto, Jackson, Ham (2017)
UHorn(A) is solvable in P if A has an idempotent cyclic polymorphism
and otherwise is NP-complete

(roughly)

The easy part is the easiness part

Let Aconst be the result of adding singleton unary relations to A

If A has an idempotent cyclic polymorphism
1 then by the Bulatov/Zhuk Dichotomy Theorem, CSP(Aconst) is

tractable (the very hard part of their result)
2 make multiple calls to this to solve membership in UHorn(A)

The easy part is the easiness part

Let Aconst be the result of adding singleton unary relations to A

If A has an idempotent cyclic polymorphism

1 then by the Bulatov/Zhuk Dichotomy Theorem, CSP(Aconst) is
tractable (the very hard part of their result)

2 make multiple calls to this to solve membership in UHorn(A)

The easy part is the easiness part

Let Aconst be the result of adding singleton unary relations to A

If A has an idempotent cyclic polymorphism
1 then by the Bulatov/Zhuk Dichotomy Theorem, CSP(Aconst) is

tractable (the very hard part of their result)

2 make multiple calls to this to solve membership in UHorn(A)

The easy part is the easiness part

Let Aconst be the result of adding singleton unary relations to A

If A has an idempotent cyclic polymorphism
1 then by the Bulatov/Zhuk Dichotomy Theorem, CSP(Aconst) is

tractable (the very hard part of their result)
2 make multiple calls to this to solve membership in UHorn(A)

The hard part is the hardness part

If A has no idempotent cyclic polymorphism

1 Then Aconst has no cyclic polymorphism
2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements
. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies

YES for UHorn(A).

The hard part is the hardness part

If A has no idempotent cyclic polymorphism
1 Then Aconst has no cyclic polymorphism

2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements
. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies

YES for UHorn(A).

The hard part is the hardness part

If A has no idempotent cyclic polymorphism
1 Then Aconst has no cyclic polymorphism
2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements
. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies

YES for UHorn(A).

The hard part is the hardness part

If A has no idempotent cyclic polymorphism
1 Then Aconst has no cyclic polymorphism
2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements
. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies

YES for UHorn(A).

The hard part is the hardness part

If A has no idempotent cyclic polymorphism
1 Then Aconst has no cyclic polymorphism
2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements
. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies

YES for UHorn(A).

The hard part is the hardness part

If A has no idempotent cyclic polymorphism
1 Then Aconst has no cyclic polymorphism
2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements

. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies
YES for UHorn(A).

The hard part is the hardness part

If A has no idempotent cyclic polymorphism
1 Then Aconst has no cyclic polymorphism
2 Apply the ANT to Aconst

The All or Nothing Theorem (ANT); Ham, J, 2016
(Nothing is easy part)

if D has no cyclic polymorphism then ∀k ∃` s.t. it is NP-hard to
distinguish (i) from (ii):

I (i) B is every reasonable partial homomorphism on k elements
extends to a solution

I (ii) B has no homomorphism into A

reasonable: can be extended to any further ` elements
. (ii) means No for UHorn(A). Argue (nontrivially) how (i) implies

YES for UHorn(A).

References
L. Barto, L. Ham and M. Jackson, Flexible satisfaction, in progress.
arXiv1611.00886
L. Barto and M. Kozik, Absorbing subalgebras, cyclic terms and the constraint
satisfaction problem, Logical Methods in Computer Science, 8/1:07 (2012), 1–26.
A. Bulatov, A dichotomy theorem for nonuniform CSPs, FOCS 2017, pp
319–330. arXiv:1703.03021
T. Feder and M. Vardi, The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory, SIAM J.
Computing, 28 (1), 1998, 57–104.
L. Ham and M. Jackson, All or Nothing: toward a promise problem dichotomy for
constraint satisfaction problems, in Principles and practice of Constraint
Programming, J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 139–156, 2017.
P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser.
B 48(1) (1990), 92–110.
T. J. Schaefer, The Complexity of Satisfiability Problems, STOC (1978), pp.
216–226.
W. Taylor, Varieties obeying homotopy laws, Can J. Math. 29 (1977), 498–527.
D. Zhuk, A Proof of CSP Dichotomy Conjecture, FOCS 2017, pp. 331–342.
arXiv:704.01914

