Catalan families in categories

Richard Garner

Macquarie University

14 February 2018

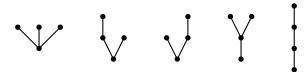
The Catalan numbers are given by $C_n = \binom{2n}{n}/(n+1)$: 1, 1, 2, 5, 14, 42, ...

and are the solution to many counting problems...

There are C_n plane binary trees with n + 1 leaves:

$$\bigvee \bigvee \lor \lor \lor \lor$$

There are C_n plane trees with n + 1 vertices:



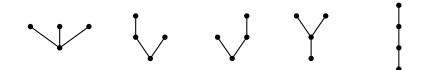
There are C_n Dyck words of length 2n: UDUDUD UUDDUD UUUDD UUUDD UUUDDD UUUDDD A Catalan family is a family of sets $(A_n)_{n \in \mathbb{N}}$ with $|A_n| = C_n$.

Stanley's "Enumerative combinatorics" and its addendum lists 207 such families, which he invites the reader to show are indeed Catalan families

"by exhibiting a simple, elegant bijection $\phi: A \rightarrow B$ for each pair of families"

making a total of 21, 321 bijections in all.

The point, of course, is that a Catalan family bears more structure than its mere sequence of cardinalities. Easy: plane trees versus Dyck words.



UDUDUD UUDDUD UDUUDD UUUDDD UUUDDD

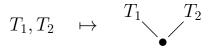
Harder: binary trees versus Dyck words.

The aim of this talk is to explain this latter bijection in terms of logic, algebra and category theory.

(joint work with Geoff Edington-Cheater).

The Catalan family of binary trees $(B_n)_{n \in \mathbb{N}}$ is endowed with the following structure:

- 1. There's a constant $e \in B_0$ given by the trivial binary tree \bullet ;
- 2. There's an operation $(-) \star (-) : B_n \times B_m \to B_{n+m+1}$ with



٠

And $(B_n)_{n \in \mathbb{N}}$ is *initial* among families with such structure.

The Catalan family of Dyck words $(D_n)_{n \in \mathbb{N}}$ is endowed with the following structure:

- **1**. There's a constant $e \in D_0$ —the empty Dyck word;
- 2. There's an associative operation $(-) \cdot (-) : D_n \times D_m \to D_{n+m}$ with unit *e*, given by concatenation of Dyck words;
- **3**. There's an operation $s: D_n \to D_{n+1}$ given by $W \mapsto UWD$.

And $(D_n)_{n \in \mathbb{N}}$ is *initial* among families with such structure.

In fact, a further simplification is possible. If we take the disjoint unions of these families, $B = \sum_n B_n$ and $D = \sum_n D_n$, then we still have universal characterisations:

- The set *B* of binary trees underlies the initial *pointed magma*. A pointed magma is a set equipped with a constant $e: 1 \to X$ and a binary operation $\star: X \times X \to X$.
- The set D of Dyck words underlies the initial *motor*. A motor is a set X equipped with unital semigroup structure (e, \cdot) and a unary operation $s: X \to X$.

In both cases, the $\mathbb N\text{-}\mathrm{grading}$ can be recovered from the initiality.

- We make \mathbb{N} into a pointed magma by taking e = 0and $n \star m = n + m + 1$. Because B is an initial pointed magma, we induce a map $B \to \mathbb{N}$. Its fibres are the Catalan family of binary trees.
- We make N into a motor by taking e = 0,
 n ⋅ m = n + m and s(n) = n + 1. Because D is an initial motor, we induce a map D → N. Its fibres are the Catalan family of Dyck words.

To summarise:

- A pointed magma (X, e, ⋆) is a set endowed with a constant and a binary operation;
- A motor (X, e, ⋅, s) is a set endowed with a unital semigroup structure and a (non-homomorphic) unary operation.

The Catalan question to be answered: why do the initial pointed magma and the initial motor coincide?

Write **PtMag** and **Motor** for the categories of pointed magmas and of motors. There is a forgetful functor

$U \colon \mathbf{Motor} \to \mathbf{PtMag}$

sending (X, e, \cdot, s) to (X, e, \star) , where

$$x \star y = x \cdot s(y) \; .$$

We can exploit this functor in various ways to show that the initial motor and initial pointed magma coincide.

One possibility is to show that the initial pointed magma lifts along U to an initial motor. This is interesting, but much more fun is the converse.

Proposition

 $U: \mathbf{Motor} \to \mathbf{PtMag} \text{ preserves the initial object.}$

The initial motor is the motor $D = (D, e, \cdot, s)$ of Dyck words. To show that UD is an initial pointed magma, we must exhibit a unique homomorphism $UD \to M$ into any other pointed magma.

The only reasonable way to construct this homomorphism is by exploiting initiality of D in **Motor**. So we need to build a motor out of the pointed magma M. Elements of the initial motor D are Dyck words:

W = UDUUDDUUDDD

which we view as *instructions* for a stack machine for a function of type $M \to M$, as follows:

- (1) Push the input element $m \in M$ onto the stack.
- (2) If W is exhausted, output the top of the stack and stop.
- (3) Otherwise, read the next unconsumed element of W.
 - If it is U, push an *e* onto the stack;
 - If it is D, pop x_1, x_2 off the stack, and push on $x_1 \star x_2$.

(4) Go to (2).

m

m

e

 $m \star e$

 $m \star e$

e

$m \star e$

e

e

 $m \star e$

 $e \star e$

$\begin{array}{c} \textbf{UDUUDDUUDD} \\ (m \star e) \star (e \star e) \end{array}$

$\begin{array}{c} \textbf{UDUUDDUUDD}\\ (m \star e) \star (e \star e)\\ e \end{array}$

$\begin{array}{c} \textbf{UDUUDDUUDDU}\\ (m \star e) \star (e \star e)\\ e \end{array}$

e

UDUUDDUUDUUDU $(m \star e) \star (e \star e)$ $e \star e$

$\begin{array}{c} \textbf{UDUUDDUUDUUD}\\ (m \star e) \star (e \star e)\\ e \star e \end{array}$

e

UDUUDDUUDDUDD $(m \star e) \star (e \star e)$ $(e \star e) \star e$

UDUUDDUUDDD $((m \star e) \star (e \star e)) \star ((e \star e) \star e)$

So W = UDUUDDUUDUDD encodes the function $\varphi_W(m) = ((m \star e) \star (e \star e)) \star ((e \star e) \star e)$.

Doing similarly for all $W \in D$, we get a function

$$\varphi_{(-)}\colon D\to M^M$$

Having constructed $\varphi_{(-)}$ in a hands-on way, we can now reconstruct it much more efficiently ...

Indeed, we have that:

•
$$\varphi_{\epsilon}(m) = m;$$

• $\varphi_{W_1W_2}(m) = \varphi_{W_2}(\varphi_{W_1}(m));$
• $\varphi_{UWD}(m) = m \star \varphi_W(e);$

so we can construct $\varphi_{(-)}$ by recursion over D.

Explicitly, to each pointed magma M, we associate the motor $\tilde{M} = (M^M, 1_M, \cdot, s)$ where \cdot and s are defined by

$$(\varphi \cdot \psi)(m) = \psi(\varphi(m))$$
 and $s(\varphi)(m) = m \star \varphi(e)$

Because D is the initial motor, we induce a unique motor homomorphism $D \to \tilde{M}$, which must equal $\varphi_{(-)}$ since it satisfies the same defining clauses.

Proposition

 $U: Motor \rightarrow PtMag$ preserves the initial object. Proof.

Let D be the initial motor of Dyck words. We show that UD is an initial pointed magma.

For any $M \in \mathbf{PtMag}$, we construct the motor \tilde{M} as above, and the unique homomorphism $\varphi_{(-)} \colon D \to \tilde{M}$. Applying U gives a map of pointed magmas

$$U\varphi_{(-)} \colon UD \to U\tilde{M}$$
.

We now check that evaluation at e is a map of pointed magmas $ev_e \colon U\tilde{M} \to M$, and so obtain a composite:

$$u_M \colon UD \xrightarrow{\varphi_{(-)}} U\tilde{M} \xrightarrow{\operatorname{ev}_e} M$$
 in **PtMag**.

It remains to show unicity: thus, if $f: UD \to M$ is another map of pointed magmas, then $f = u_M$.

To do so, we prove by induction on W that the following commutes for all $W \in D$:

Evaluating at $e \in D$ gives $f(W) = \varphi_W(e) = u_M(W)$ for each W, whence $f = u_M$.

We can immediately generalise this proof!

Consider a stack machine for sets endowed with:

- A constant e;
- A family of operations $(f_i)_{i \in I}$ with $\operatorname{arity}(f_i) = a_i + 1$.

This receives instructions composed of commands:

- U: "push e"; and
- D_i : "pop $a_i + 1$ elements, apply f_i , and push".

(I.e., RPN for the constant e and operators $(f_i)_{i \in I}$.) This language is the free unital semigroup M equipped with operations $(s_i)_{i \in I}$ of respective arities a_i . The semigroup operation is still concatenation, while

$$s_i \colon M^{a_i} \to M$$

 $(W_1, \dots, W_{a_i}) \mapsto UW_1 UW_2 \dots UW_{a_i} D_m$.

The preceding proof now generalises as follows. We say:

- An \vec{a} -motor is a unital semigroup endowed with a family of functions $(s_i)_{i \in I}$ of respective arities a_i .
- A pointed \vec{a} -magma is a set endowed with a constant e and a family of functions $(f_i)_{i \in I}$ of respectively arities $a_i + 1$.

There is a forgetful functor $U: \vec{a}$ -Motor $\to \mathbf{Pt} \cdot \vec{a}$ -Mag sending $(X, e, \cdot, (s_i)_{i \in I})$ to $(X, e, (f_i)_{i \in I})$ where

$$f_i(x_0,\ldots,x_{a_i})=x_0\cdot s_i(x_1,\ldots,x_{a_i}) \ .$$

Proposition

 $U: \vec{a}$ -Motor \rightarrow Pt- \vec{a} -Mag preserves the initial object.

A special case of this: let each $a_i = 0$.

So each operation f_i have arity 1, and each corresponding s_i has arity 0. Then our result identifies:

- ► The initial unital semigroup endowed with I constants, i.e., the free unital semigroup I* on I; and
- The initial set endowed with a constant and I unary operations: i.e., the initial set X with a constant nil and a function cons: $I \times X \to X$.

Even more special case: take I = 1. Then we identify the free monoid on one generator with the free set with a constant 0 and a unary operation s. Further generalisation: let $F : \mathbf{Set} \to \mathbf{Set}$ be an endofunctor.

- An *F*-motor is a unital semigroup X endowed with a function $s: FX \to X$.
- A pointed F-magma is a set X endowed with a constant e and a function $\star : X \times FX \to X$.

There is a forgetful functor U: F-Motor \to Pt-F-Mag sending (X, e, \cdot, s) to (X, e, \star) where \star is the composite

$$X \times FX \xrightarrow{\operatorname{id} \times s} X \times X \xrightarrow{\cdot} X$$
.

Proposition

U: F-Motor \rightarrow Pt-F-Mag preserves the initial object.

Further² generalisation: let \mathcal{C} be a cartesian closed category and $F: \mathcal{C} \to \mathcal{C}$ an endofunctor.

- An *F*-motor is a unital semigroup X in C endowed with a morphism $s: FX \to X$.
- A pointed F-magma is an object $X \in \mathcal{C}$ endowed with a constant $e: 1 \to X$ and a morphism $\star: X \times FX \to X$.

There is still a forgetful functor U: F-Motor \rightarrow Pt-F-Mag.

Proposition

U: F-Motor \rightarrow Pt-F-Mag preserves the initial object.

Further³ generalisation: let \mathcal{C} be a right-closed monoidal category and $F: \mathcal{C} \to \mathcal{C}$ an endofunctor.

- An *F*-motor is a unital semigroup X in C endowed with a morphism $s: FX \to X$.
- A pointed F-magma is an object $X \in \mathcal{C}$ endowed with a constant $e: I \to X$ and a morphism $\star: X \otimes FX \to X$.

There is still a forgetful functor U: F-Motor \rightarrow Pt-F-Mag.

Proposition

U: F-Motor \rightarrow Pt-F-Mag preserves the initial object.

Questions:

- Are there interesting new instantiations of these more general results?
- What does all of this have to do with the Fiore–Plotkin–Turi theory of variable binding?