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Abstract. Topological complexity T C(B) of a space B is introduced by M.
Farber to measure how much complex the space is, which is first considered
on a configuration space of a motion planning of a robot arm. We also con-
sider a stronger version T CM(B) of topological complexity with an additional
condition: in a robot motion planning, a motion must be stasis if the initial
and the terminal states are the same. Our main goal is to show the equalities
T C(B) = cat*

B(d(B))+1 and T CM(B) = catB
B(d(B))+1, where d(B) = B×B

is a fibrewise pointed space over B whose projection and section are given by
pd(B) = pr2 : B×B → B the canonical projection to the second factor and
sd(B) = ∆B : B → B×B the diagonal. In addition, our method in studying
fibrewise L-S category is able to treat a fibrewise space with singular fibres.

1. Introduction

We say a pair of spaces (X, A) is an NDR pair or A is an NDR subset of X, if
the inclusion map is a (closed) cofibration, in other words, the inclusion map has
the (strong) Strøm structure (see page 22 in G. Whitehead [24]). When the set of
the base point of a space is an NDR subset, the space is called well-pointed.

Let us recall the definition of a sectional category (see James [14]) which is
originally defined and called by Schwarz ‘genus’.

Definition 1.1 (Schwarz [21], James [15]). For a fibration p : E → X, the sectional
cateory secat(p) (= one less than the Schwarz genus Genus(p)) is the minimal
number m ≥ 0 such that there exists a cover of X by (m+1) open subsets Ui ⊂ X
each of which admits a continuous section si : Ui → E.

The topological complexity of a robot motion planning is first introduced by
M. Farber [2] in 2003 to measure the discontinuity of a robot motion planning
algorithm searching also the way to minimise the discontinuity. At a more general
view point, Farber defined a numerical invariant T C(B) of any topological space
B: let P(B) be the space of all paths in B. Then there is a Serre path fibration
π : P(B) → B×B given by π(`) = (`(0), `(1)) for ` ∈ P(B).

Definition 1.2 (Farber). For a space B, the topological complexity T C(B) is the
minimal number m ≥ 1 such that there exists a cover of B×B by m open subsets Ui

each of which admits a continuous section si : Ui → P(B) for π : P(B) → B×B.

By definition, we can observe that the topological complexity is nothing but the
Schwartz genus or the sectional category.
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Farber has further introduced a new invariant restricting motions by giving two
additional conditions on the section s : U → P(B).

(1) s(b, b) = cb the constant path at b for any b ∈ B,
(2) s(b1, b2) = s(b2, b1)−1 if (b1, b2) ∈ U .

It gives a stronger invariant than the topological complexity, and the Z/2-equivariant
theory must be applied as in Farber-Grant [4]. This new topological invariant, in
turn, suggests us another motion planning under the condition that a motion is sta-
sis if the initial and the terminal states are the same. Let us state more precisely.

Definition 1.3. For a space B, the ‘monoidal’ topological complexity T CM(B) is
the minimal number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the Serre
path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B.
Remark 1.4. This new topological complexity T CM is not a homotopy invariant,
in general. However, it is a homotopy invariant if we restrict our working category
to the category of a space B such that the pair (B×B, ∆(B)) is NDR.

On the other hand, a fibrewise pointed L-S category of a fibrewise pointed space
is introduced and studied by James-Morris [13]. Let us recall the definition:
Definition 1.5 (James-Morris [13]). (1) Let X be a fibrewise pointed space

over B. The fibrewise pointed L-S category catB
B(X) is the minimal num-

ber m ≥ 0 such that there exists a cover of X by (m + 1) open subsets
Ui ⊃ sX(B) each of which is fibrewise null-homotopic in X by a fibrewise
pointed homotopy. If there are no such m, we say catB

B(X) = ∞.
(2) Let f : Y → X be a fibrewise pointed map over B. The fibrewise pointed

L-S category catB
B(f) is the minimal number m ≥ 0 such that there exists

a cover of Y by (m + 1) open subsets Ui ⊃ sY (B), where the restriction
f |Ui to each subset is fibrewise compressible into sX(B) in X by a fibrewise
pointed homotopy. If there are no such m, we say catB

B(f) = ∞.
To describe our main result, we further introduce a new unpointed version of

fibrewise L-S category: the fibrewise L-S category catB( ) of an fibrewise unpointed
space is also defined by James and Morris [13] as the minimum number (minus one)
of open subsets which cover the given space and are fibrewise null-homotopic (see
also James [14] and Crabb-James [1]). In this paper, we give a new version of a
fibrewise unpointed L-S category of a fibrewise pointed space as follows:
Definition 1.6. (1) Let X be a fibrewise pointed space over B. The fibrewise

unpointed L-S category cat*
B(X) is the minimal number m ≥ 0 such that

there exists a cover of X by (m+1) open subsets Ui each of which is fibrewise
compressible into sX(B) in X by a fibrewise homotopy. If there are no such
m, we say cat*

B(X) = ∞.
(2) Let f : Y → X be a fibrewise pointed map over B. The fibrewise unpointed

L-S category cat*
B(f) is the minimal number m ≥ 0 such that there exists

a cover of Y by (m + 1) open subsets Ui, where the restriction f |Ui to each
subset is fibrewise compressible into sX(B) in X by a fibrewise homotopy.
If there are no such m, we say cat*

B(f) = ∞.
For a given space B, we define a fibrewise pointed space d(B) by d(B) = B×B

with pd(B) = pr2 : B×B → B and sd(B) = ∆B : B → B×B the diagonal. One of
our main goals of this paper is to show the following theorem.
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Theorem 1.7. For a space B, we have the following equalities.
(1) T C(B) = cat*

B(d(B)) + 1.
(2) T CM(B) = catB

B(d(B)) + 1.

Farber and Grant has also introduced lower bounds for the topological complex-
ity by using the cup length and category weight (see Rudyak [17] for example) on
the ideal of zero-divisors, i.e, the kernel of ∆∗ : H∗(B×B; R) → H∗(B; R).

Definition 1.8 (Farber [2] and Farber-Grant [4]). For a space B and a ring R 3 1,
the zero-divisors cup-length ZR(B) and the TC-weight wgtπ(u; R) for u ∈ I =
ker ∆∗ : H∗(B×B; R) → H∗(B; R) is defined as follows.

(1) ZR(B) = Max {m≥0 H∗(B×B; R) ⊃ Im 6= 0}
(2) wgtπ(u; R) = Max {m≥0 ∀f : Y → B×B (secat(f∗π) < m), f∗(u) = 0}

In the category T B
B

of fibrewise pointed spaces with base space B and maps
between them, we also have corresponding definitions.

Definition 1.9. For a fibrewise pointed space X over B and a ring R 3 1 and
u ∈ I = H∗(X, B; R) ⊂ H∗(X; R), we define

(1) cupB
B(X; R) = Max {m≥0 ∃{u1, · · ·, um ∈ H∗(X, B; R)} s.t. u1· · ·um 6= 0}

(2) wgtB
B(u; R) = Max

n
m≥0 ∀f : Y → X ∈ T B

B
(catB

B(f) < m), f∗(u) = 0
o

This immediately implies the following.

Theorem 1.10. For a space B, we have ZR(B) = cupB
B(d(B); R) for a ring R 3 1.

Motivating by this equality, we proceed to obtain the following result.

Theorem 1.11. For any space B, any element u ∈ H∗(B×B, ∆(B); R) and a ring
R 3 1, we have wgtπ(u; R) = wgtB

B(u; R).

Let us consider one technical condition on a fibrewise pointed space:

Theorem 1.12. For any space B having the homotopy type of a locally finite sim-
plicial complex, we may assume that d(B) is fibrewise well-pointed up to homotopy.

The following is the main result of our paper.

Theorem 1.13. For any fibrewise well-pointed space X over B, we have catB
B(X) =

cat*
B(X). So, if B is a locally finite simplicial complex, we have T C(B) = T CM(B) =

catB
B(d(B)) + 1.

In [19], Sakai showed, in his study of the fibrewise pointed L-S category of a
fibrewise well-pointed spaces, using Whitehead style definition, that we can utilise
A∞ methods used in the study of L-S category (see Iwase [7, 8]). Let us state the
Whitehead style definitions of fibrewise L-S categories following [19].

Definition 1.14. Let X be a fibrewise well-pointed space over B. The fibrewise
pointed L-S category catB

B(X) is the minimal number m ≥ 0 such that the (m+1)-

fold fibrewise diagonal ∆m+1
B : X →

m+1
ΠB X is compressible into the fibrewise fat

wedge
m+1
TB X in T B

B
. If there are no such m, we say catB

B(X) = ∞.
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We remark that this new definition coincides with the ordinary one, if the total
space X is a finite simplicial complex.

The above Whitehead-style definition allows us to define the module weight,
cone length and categorical length, and moreover, to give their relationship as in
Section 8. To show that, we need a criterion given by fibrewise A∞ structure on
the fibrewise loop space (see Sections 6–7).

2. Proof of Theorem 1.7

First, we show the equality T CM(B) = catB
B(d(B))+1: assume T CM(B) = m+1,

m ≥ 0 and that there are an open cover
Sm

i=0 Ui = B×B and a series of sections
si : Ui → P(B) of π : P(B) → d(B) satisfying si(b, b) = cb for b ∈ B, since we are
considering monoidal topological complexity. Then each Ui is fibrewise compressible
relative to ∆(B) into ∆(B) ⊂ B×B = d(B) by a homotopy Hi : Ui×[0, 1] → B×B
given by the following:

Hi(a, b; t) = (si(a, b)(t), b), (a, b) ∈ Ui, t ∈ [0, 1],

where we can easily check that Hi gives a fibrewise compression of Ui relative to
∆(B) into ∆(B) ⊂ B×B. Since

S
i=0 Ui = B×B = d(B), we obtain catB

B(d(B)) ≤
m, and hence we have catB

B(d(B)) + 1 ≤ T CM(B).
Conversely assume that catB

B(d(B)) = m, m ≥ 0 and there is an open coverSm
i=0 Ui = d(B) of d(B) = B×B where Ui is fibrewise compressible relative to

∆(B) into ∆(B) ⊂ d(B) = B×B: let us denote the compression homotopy of Ui

by Hi(a, b; t) = (σi(a, b; t), b) for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b; 0) = a and
σi(a, b; 1) = b. Hence we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0 Ui = B×B, we obtain T CM(B) ≤ m+1 and hence we have T CM(B) ≤
catB

B(d(B)) + 1. Thus we have T CM(B) = catB
B(d(B)) + 1.

Second, we show the equality T C(B) = cat*
B(d(B)) + 1: assume T C(B) = m+1,

m ≥ 0 and that there is a open cover
Sm

i=0 Ui = B×B and a section si : Ui → P(B)
of π : P(B) → d(B). Then each Ui is fibrewise compressible into ∆(B) ⊂ B×B =
d(B) by a homotopy Hi : Ui×[0, 1] → B×B which is given by

Hi(a, b; t) = (s(a, b)(t), b), (a, b) ∈ Ui, t ∈ [0, 1],

where we can easily check that H gives a fibrewise compression of Ui into ∆(B) ⊂
B×B = d(B). Since

S
i=0 Ui = B×B = d(B), we obtain cat*

B(d(B)) ≤ m, and
hence we have cat*

B(d(B)) + 1 ≤ T C(B).
Conversely assume that cat*

B(d(B)) = m, m ≥ 0 and there is an open coverSm
i=0 Ui = d(B) of d(B) = B×B where Ui is fibrewise compressible into ∆(B) ⊂

B×B = d(B): the compression homotopy is described as Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], such that σi(a, b; 0) = a and σi(a, b; 1) = b. Hence we
can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0 Ui = B×B, we obtain T C(B) ≤ m+1 and hence we have T C(B) ≤
cat*

B(d(B)) + 1. Thus we have T C(B) = cat*
B(d(B)) + 1. §
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3. Proof of Theorem 1.11

Assume that wgtB
B(u; R) = m, where u ∈ H∗(B×B, ∆(B)) and f : Y → d(B) =

B×B a map of secat(f∗π) < m. Then there is an open cover
Sm

i=1 Ui = Y and a
series of maps {σi : Ui → P(B) ; 1 ≤ i ≤ m} satisfying π◦σi = f |Ui . Let Ŷ = Y qB
with projection pŶ and section sŶ given by

pŶ |Y = pY , pŶ |B = idB and sŶ : B ↪→ Y q B = Ŷ .

Then we can extend f to a map f̂ : Ŷ → d(B) by the formula

f̂ |Y = f, f̂ |B = sd(B) = ∆.

By putting Ûi = Ui q B which is open in Ŷ , we obtain an open cover
Sm

i=1 Ûi = Ŷ

and a series of maps σ̂i : Ûi → P(B) satisfying π◦σ̂i = f̂ |Ûi
:

σ̂i|Ui = σi, σ̂i|B = sP(B).

Hence there is a fibrewise homotopy Φi : Ûi×[0, 1] → d(B) such that Φi(y, 0) = f̂(y)
and Φi(y, 1) ∈ ∆(B) given by the following formula.

Φi(y, t) = (σ̂i(y)(t), σ̂i(y)(1)), (y, t) ∈ Ûi×[0, 1],

so that we have Φi(y, 0) = (σ̂i(y)(0), σ̂i(y)(1)) = π◦σ̂i(y) = f̂(y) and Φi(y, 1) =
(σ̂i(y)(1), σ̂i(y)(1)) ∈ ∆(B). Moreover, for any (b, t) ∈ B×[0, 1], we have Φi(b, t) =
(σ̂i(b)(t), σ̂i(b)(1)) = (sP(B)(t), sP(B)(1)) = (b, b). Thus Φi gives a fibrewise pointed
compression homotopy of f̂ |Ûi

into ∆(B). Then it follows that catB
B(f̂) < m and

hence we obtain f∗(u) = 0 and wgtπ(u; R) ≥ m. Thus we obtain wgtπ(u; R) ≥
m = wgtB

B(u; R).
Conversely assume that wgtπ(u; R) = m, where u ∈ H∗(B×B, ∆(B)) and f :

Y → B×B such that catB
B(f) < m. Then there exists an open covering

Sm
i=1 Ui = Y

with Ui ⊃ sY (B) and a sequence of fibrewise homotopies {φi : Ui×[0, 1] → B×B}
such that φi(y, 0) = f |Ui(y), φi(y, 1) ∈ ∆(B) and pr2◦φi(y, t) = pr2◦f(y) for
(y, t) ∈ Ui×[0, 1]. Hence there is a sequence of maps {σi : Ui → P(B)} given by

σi(y)(t) = pr1◦φi(y, t), y ∈ Ui, t ∈ [0, 1]

such that π◦σi(y) = (pr1◦φi(y, 0), pr1◦φi(y, 1)) = f(y) since pr2◦φi(y, t) = pr2◦f(y)
for (y, t) ∈ Ui×[0, 1]. Thus we obtain secat(f∗π) < m, and hence f∗(u) = 0. This
implies wgtB

B(u; R) ≥ m = wgtπ(u; R) and hence wgtB
B(u; R) = wgtπ(u; R). §

4. Proof of Theorem 1.12

The proof of Lemma 2 in §2 of Milnor [16] implies the following:

Lemma 4.1. The pair (B×B, ∆(B)) is an NDR-pair.

Proof : For each vertex β of B, let Vβ be the star neighbourhood in B and V =S
β Vβ×Vβ ⊂ B×B. Then the closure V̄ =

S
β V̄β×V̄β is a subcomplex of B×B. For

the barycentric coordinates {ξβ} and {ηβ} of x and y, resp, we see that (x, y) ∈ V
if and only if

P
β Min(ξβ , ηβ) > 0 and that

P
β Min(ξβ , ηβ) = 1 if and only if the

barycentric coordinates of x and y are the same, or equivalently, (x, y) ∈ ∆(B).
Hence we can define a continuous map v : B×B → [−1, 1] by the following formula.

v(x, y) =

(
2

P
β Min(ξβ , ηβ) − 1, if (x, y) ∈ V̄ ,

−1, if (x, y) 6∈ V .
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Then we have that v−1(1) = ∆(B). Let U = v−1((0, 1]) an open neighbourhood of
∆(B). Using Milnor’s map s, we obtain a pair of maps (u, h) as follows:

u(x, y) = Min{1, 1−v(x, y)} and
h(x, y, t) = (s(x, y)(Min{t, w(x, y)}), y),

where w(x, y) = u(x, y) + v(x, y) = Min{1, 1+v(x, y)}. Note that w(x, y) = 1 if
(x, y) ∈ U and that w(x, y) = 0 if (x, y) 6∈ V . Then u−1(0) = ∆(B), u−1([0, 1)) = U
and h(x, y, 1) = (y, y) ∈ ∆(B) if (x, y) ∈ U . Moreover, pr2◦h(x, y, t) = y and
h(x, x, t) = (s(x, x)(t), x) = (x, x) for any x, y ∈ B and t ∈ [0, 1]. Thus the data
(u, h) gives the fibrewise Strøm structure on (B×B, ∆(B)). §

5. Proof of Theorem 1.13

Let X be a fibrewise well-pointed space over B and X̂ the fiberwise pointed
space obtained from X by giving a fibrewise whisker. More precisely, we define X̂
be the mapping cylinder of sX ,

X̂ = X ∪sX B×[0, 1], X 3 sX(b) ∼ (b, 0) ∈ B×[0, 1] for any b ∈ B,

with projection pX̂ and section sX̂ given by the formulas

pX̂ |X = pX , pX̂ |B×[0,1](b, t) = b, for (b, t) ∈ B×[0, 1],

sX̂(b) = (b, 1) ∈ B×[0, 1] ⊂ X̂.

Then by the definition of Strøm structure, X is fibrewise pointed homotopy equiv-
alent to X̂ the fibrewise whiskered space over B. So we have catB

B(X) = catB
B(X̂)

and cat*
B(X) = cat*

B(X̂).
Assume that catB

B(X) = m ≥ 0. Then it is clear by definition that cat*
B(X) ≤

m = catB
B(X).

Conversely assume that cat*
B(X) = m ≥ 0. Then there is an open coverSm

i=0 Ui = X such that Ui is compressible into sX(B) ⊂ X. Hence there is a fibre-
wise homotopy Φi : Ui×[0, 1] → X such that Φi(x, 0) = x, Φi(x, 1) = sX(pX(x))
and pX◦Φi(x, t) = pX(x). We define Ûi as follows:

Ûi = Ui ∪sX (sX)−1(Ui)×[0, 1] ∪ B×(
2
3

, 1].

We also define a fibrewise pointed homotopy Φ̂i : Ûi×[0, 1] → X̂ as follows:

Φ̂i(x̂, t) =






Φi(x, t), x̂ = x ∈ X,

Φi(sX(b), t−3s), x̂ = (b, s) ∈ (sX)−1(Ui)×(0, t
3 ),

sX(b), x̂ = (b, t
3 ), b ∈ (sX)−1(Ui),

(b, 6s−2t
6−3t ), x̂ = (b, s) ∈ (sX)−1(Ui)×( t

3 , 2
3 ),

(b, 2
3 ), x̂ = (b, 2

3 ), b ∈ (sX)−1(Ui),
(b, s), x̂ = (b, s) ∈ B×(2

3 , 1].

It is then easy to see that Ûi’s cover the entire X, and hence we have catB
B(X̂) ≤

m = cat*
B(X). Thus catB

B(X) ≤ cat*
B(X) and hence catB

B(X) = cat*
B(X). In

particular, we have T C(B) = T CM(B) for a locally finite simplicial complex B. §
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6. Fibrewise A∞ structures

From now on, we work in the category T B
B

. For any X a fibrewise pointed space
over B, we denote by pX : X → B its projection and by sX : B → X its section.

We say that a pair (X, A) of fibrewise pointed spaces over B is a fibrewise NDR-
pair or that A is a fibrewise NDR subset of X, if the inclusion map A ↪→ X is a
fibrewise cofibration, in other words, the inclusion has the fibrewise (strong) Strøm
structure (see Crabb-James [1]). Since B is the zero object in T B

B
, for any given

fibrewise pointed space X over B, we always have a pair (X, B) in T B
B

, where we
regard sX(B) = B. When the pair (X, B) is fibrewise NDR, the space X is called
fibrewise well-pointed.

Proposition 6.1 (Crabb-James [1]). (1) If (X, A) and (X 0, A0) are fibrewise
NDR-pairs, then so is (X, A)×B(X 0, A0) = (X×BX 0, X×BA0∪A×BX 0).

(2) If (X, A) is a fibrewise NDR-pair, then so is (
m
ΠBX,

m
TB(X, A)), which is

defined by induction for all m ≥ 1:

(
1
ΠBX,

1
TB(X, A)) = (X, A),

(
m+1
ΠB X,

m+1
TB (X, A)) = (

m
ΠBX,

m
TB(X, A))×B(X, A).

If X is a fibrewise pointed space over B, then by taking A = B, we obtain a

fibrewise subspace
m+1
TB (X, B) of

m+1
TB X, which is called an (m+1)-fold fibrewise fat-

wedge of X, and is often denoted by
m+1
TB X. In addition, the pair (

m+1
ΠB X,

m+1
TB X) is

a fibrewise NDR-pair for all m ≥ 0, if X is fibrewise well-pointed.

Examples 6.2. (1) Let X be a fibrewise pointed space over B with pX = pr2 :
X = F×B → B the canonical projection to the second factor and sX =
in2 : B ↪→ F×B = E the canonical inclusion to the second factor. Then X
is a fibrewise pointed space over B.

(2) Let X = B×B, pX = pr2 : B×B → B the canonical projection to the
second factor and sX = ∆B : B ↪→ B×B the diagonal. Then X is a
fibrewise pointed space over B.

(3) Let G be a topological group, EG the infinite join of G with right G action
and BG = EG/G the classifying space of G. By considering G as a left
G space by the adjoint action, we obtain a fibrewise pointed space X =
EG×G G with pX : EG×G G → BG with section sX : BG ↪→ EG×G {e} ⊆
EG ×G G.

(4) Let B be a space, X = L(B) the space of free loops on B. Then pX :
L(B) → B the evaluation map at 1 ∈ S1 ⊂ C is a fibration with section
sX : B → L(B) given by the inclusion of constant loops. In view of Milnor’s
arguments, this example is homotopically equivalent to the example (3).

Definition 6.3. Let PB(X) =
©

` : [0, 1] → X ∃b∈B s.t. ∀t∈[0,1] pX(`(t))=b
™

the
fibrewise free path space, LB(X) = {` ∈ PB(X) `(1)=`(0)} the fibrewise free loop
space and LB

B(X) = {` ∈ PB(X) `(1)=`(0)=sX◦pX(`(0))} the fibrewise pointed loop
space. For any m ≥ 0, we define an A∞ structure of LB

B(X) as follows.

(1) Em+1
B (LB

B(X)) as the homotopy pull-back in T B
B

of B ↪→
m+1
ΠB X ←-

m+1
TB X,
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(2) P m
B (LB

B(X)) as the homotopy pull-back in T B
B

of X
∆m+1

B−−−−→
m+1
ΠB X ←-

m+1
TB X,

(3) eX
m : P m

B (LB
B(X)) → X as the induced map from the inclusion

m+1
TB X ↪→

m+1
ΠB X by the diagonal ∆m+1

B : X →
m+1
ΠB X and

(4) p
LB

B(X)
B : Em+1

B (LB
B(X)) → P m

B (LB
B(X)) as a map of fibrewise pointed

spaces induced from the section sX : B → X, since the section B ↪→
m+1
ΠB X

is nothing but the composition ∆m+1
B ◦sX : B

s−→ X
∆m+1

B−−−−→
m+1
ΠB X.

We further investigate to understand an A∞ stucture in a fiberwise view point,
using fibrewise constructions. Clearly, these constructions are not exactly the
Ganea-type fibre-cofibre constructions but the following.

Proposition 6.4 (Sakai). Let X be a fibrewise pointed space over B and m ≥ 0.
Then P m+1

B (LB
B(X)) has the homotopy type of a push-out of p

LB
B(X)

B : Em+1
B (LB

B(X))
→ P m

B (LB
B(X)) and the projection Em+1

B (LB
B(X)) → B.

This is a direct consequence of the following lemma.

Lemma 6.5. Let (X, A) and (X 0, A0) be fibrewise NDR-pairs of fibrewise pointed
spaces over B and Z a fibrewise pointed space over B with fibrewise maps f : Z → X
and g : Z → X 0. Then the homotopy pull-back Ω(f,g),k of maps (f, g) : Z →
X×BX 0 and k : X×BA0 ∪ A×BX 0 ↪→ X×BX 0 has naturally the homotopy type of
the reduced homotopy push-out W = Ωg,j ∪p2

©
Ω(f,g),i×j ∧B (B×J+)

™
∪p1 Ωf,i of

p1 : Ω(f,g),i×j → Ωf,i and p2 : Ω(f,g),i×j → Ωg,j, where J = [−1, 1] and

Ω(f,g),k =
n

(z, `, `0) ∈ Z×B PB(X)×B PB(X 0) f(z)=`(0), g(z)=`0(0),
(`(1),`0(1))∈A×BX0∪X×BA0

o
,

Ω(f,g),i×j =
©

(z, `, `0) ∈ Ω(f,g),k (`(1), `0(1)) ∈ A×BA0™ ,

Ωf,i = {(z, `) ∈ Z×B PB(X) f(z)=`(0), `(1)∈A} ,

Ωg,j = {(z, `0) ∈ Z×B PB(X 0) g(z)=`0(0), `0(1)∈A0} ,

p1(z, `, `0) = (z, `) and p2(z, `, `0) = (z, `0).

Proof of Outline of the proof. The proof of Lemma 6.5 is quite similar to that of
Theorem 1.1 in Sakai [20] (which is based on Iwase [7]) by replacing (Y, B) in [20]
by (X 0, A0), defining and using the following spaces.

cW = Ω(f,g),i× idX0 ×{−1} ∪
©

Ω(f,g),i×j×J
™

∪ Ω(f,g),idX ×j×{1} ⊂ Ω(f,g),k×J,

Ω(f,g),idX ×j =
©

(z, `, `0) ∈ Ω(f,g),k (`(1), `0(1)) ∈ X×BA0™ ,

Ω(f,g),i×idX0 =
©

(z, `, `0) ∈ Ω(f,g),k (`(1), `0(1)) ∈ A×BX 0™ .

The precise construction of homotopy equivalences and homotopies is identical to
that in [20] and is left to the readers. §

Theorem 6.6. Let X be a fibrewise well-pointed space over B. Then the sequence
{p

LB
B(X)

B : Em+1
B (LB

B(X)) → P m
B (LB

B(X))} gives a fibrewise pointed version of A∞-
structure on the fibrewise pointed loop space LB

B(X).

Thus in the case when X is a fibrewise well-pointed space over B, we assume
that P m

B (LB
B(X)) is an increasing sequence given by homotopy push-outs with a
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fibrewise fibration eX
m : P m

B (LB
B(X)) → X such that eX

1 : SB
B(LB

B(X)) → X is a
fibrewise evaluation.

Examples 6.7. (1) Let X be a fibrewise pointed space over B with pX =
pr2 : F×B → B the canonical projection and sX = in2 : B ↪→ F×B
the canonical inclusion. Then LB

B(X) = L(F )×B is given by pLB
B(X) =

pr2 : L(F )×B → B and sLB
B(X) = in2 : B ↪→ L(F )×B.

(2) Let X = B×B be a fibrewise pointed space over B with pX = pr2 : B×B →
B and sX = ∆B : B ↪→ B×B the diagonal. Then LB

B(X) = L(B) the free
loop space on B, pLB

B(X) : L(B) → B the evalation map at 1 ∈ S1 ⊂ C and
sLB

B(X) : B ↪→ L(B) the inclusion of constant loops.

Remark 6.8. When E is a cell-wise trivial fibration on a polyhedron B (see [12]),
we can see that the canonical map eE

∞ : P ∞
B (LB

B(E)) → E is a homotopy equivalence
by a similar arguments given in the proof of Theorem 2.9 of [12].

7. Fibrewise L-S categories of fibrewise pointed spaces

The fibrewise pointed L-S category of an fibrewise pointed space is first defined by
James and Morris [13] as the least number (minus one) of open subsets which cover
the given space and are contractible by a homotopy fixing the base point in each fibre
(see also James [14] and Crabb-James [1]) and is redefined by Sakai in [19] as follows:

let X be a fibrewise pointed space over B. For given k ≥ 0, we denote by
k+1
ΠBX

the (k+1)-fold fibrewise product and by
k+1
TBX the (k+1)-fold fibrewise fat wedge.

Then catB
B(X) ≤ m if the (m+1)-fold fibrewise diagonal map ∆m+1

B : X →
m+1
ΠB X

is compressible into the fibrewise fat wedge
m+1
TB X in T B

B
. If there is no such m, we

say catB
B(X) = ∞. Let us consider the case when catB

B(X) < ∞. The definition of
a fibrewise A∞ structure yields the following criterion.

Theorem 7.1. Let X be a fibrewise pointed space over B and m ≥ 0. Then

catB
B(X) ≤ m if and only if idX : X → X has a lift to P m

B (LB
B(X))

eX
m→ X in T B

B
.

Proof : If catB
B(X) ≤ m, then the fibrewise diagonal ∆m+1

B : X →
m+1
ΠB X is com-

pressible into the fibrewise fat wedge
m+1
TB X ⊂

m+1
ΠB X in T B

B
. Hence there is a map

σ : X → P m
B (LB

B(X)) in T B
B

such that eX
m◦σ ∼B 1X in T B

B
. The converse is clear

by the definition of P m
B (LB

B(X)). §

In the rest of this section, we work within the category T
B

of fibrewise unpointed
spaces and maps between them. But we concentrate ourselves to consider its full
subcategory T ∗

B
of all fibrewise pointed spaces, so in T ∗

B
, we have more maps than

in T B
B

while we have just the same objects as in T B
B

.

Let X be a fibrewise pointed space over B. For given k ≥ 0, we denote by
k+1
ΠBX

the (k+1)-fold fibrewise product and by
k+1
TBX the (k+1)-fold fibrewise fat wedge.

Then cat*
B(X) ≤ m if the (m+1)-fold fibrewise diagonal map ∆m+1

B : X →
m+1
ΠB X
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is compressible into the fibrewise fat wedge
m+1
TB X in T ∗

B
. If there is no such m, we

say cat*
B(X) = ∞. Let us consider the case when cat*

B(X) < ∞. The definition of
a fibrewise A∞ structure yields the following.

Theorem 7.2. Let X be a fibrewise pointed space over B and m ≥ 0. Then

cat*
B(X) ≤ m if and only if idX : X → X has a lift to P m

B (LB
B(X))

eX
m→ X in the

category T ∗
B

.

Proof : If cat*
B(X) ≤ m, then the fibrewise diagonal ∆m+1

B : X →
m+1
ΠB X is com-

pressible into the fibrewise fat wedge
m+1
TB X ⊂

m+1
ΠB X in T ∗

B
. Hence there is a map

σ : X → P m
B (LB

B(X)) in T ∗
B

such that eX
m◦σ ∼B 1X in T ∗

B
. The converse is clear

by the definition of P m
B (LB

B(X)). §

8. Upper and lower estimates

For X a fibrewise pointed space over B, we define a fibrewise version of Ganea’s
strong L-S category (see Ganea [6]) of X as CatB

B(X) and also a fibrewise version
of Fox’s categorical length (see Fox [5] and Iwase [10]) of X as catlenB

B(X).

Definition 8.1. Let X be a fibrewise pointed space over B.
(1) CatB

B(X) is the least number m ≥ 0 such that there exists a sequence
{(Xi, hi) hi : Ai→Xi−1, 0≤i≤m} of pairs of space and map satisfying X0 =
B and Xm 'B X in T B

B
with the following homotopy push-out diagrams:

Ai B

Xi−1 Xi

✲pAi

❄
hi

❄

sXi

✲

(2) catlenB
B(X) is the least number m ≥ 0 such that there exists a sequence

{Xi hi : Ai→Xi−1, 0≤i≤m} of spaces satisfying X0 = B and Xm 'B X in
T B

B
and that ∆B : Xi → Xi×BXi is compressible into Xi×BXi−1 ∪B×BXi

in Xm×BXm.

A lower bound for the fibrewise L-S category of a fibrewise pointed space X over
B can be described by a variant of cup length: since X is a fibrewise pointed space
over B, there is a projection pX : X → B with its section sX : B → X. Hence we
can easily observe for any multiplicative cohomology theory h that

h∗(X) ∼= h∗(B)⊕h∗(X, B),

where we may identify h∗(X, B) with the ideal ker s∗
X : h∗(X) → h∗(B).

Definition 8.2. For a fibrewise pointed space X over B and any multiplicative
cohomology theory h, we define

cupB
B(X; h) = Max {m≥0 ∃{u1, · · ·, um ∈ h∗(X, B)} s.t. u1· · ·um 6= 0} ,

cupB
B(X) = Max

©
cupB

B(X; h) h is a multiplicative cohomology theory
™

.
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We often denote cupB
B( ; h) by cupB

B( ; R) when h∗( ) = H∗( ; R), where R is a
ring with unit.

Let us recall that the relationship between an A∞-structure and a Lusternik-
Schnirelmann category gives the key observation in [7, 8, 9].

On the other hand, Rudyak [17] and Strom [23] introduced a homotopy theo-
retical version of Fadell-Husseini’s category weight, which can be translated into our
setting as follows: for any fibrewise pointed space X over B, let {p

LB
B(X)

k : Ek
B(LB

B(X))
→ P k−1

B (LB
B(X)) ; k≥1} be the fibrewise A∞-structure of LB

B(X) in the sense of
Stasheff [22] (see also [11] for some more properties). Let h be a generalisd coho-
mology theory.

Definition 8.3. For any u ∈ h∗(X, B), we define

wgtB
B(u; h) = Min

©
m≥0

ØØ (eX
m)∗(u) 6= 0

™
,

where eX
m is the composition of fibrewise maps P m

B (LB
B(X)) ↪→ P ∞

B (LB
B(X))

eX
∞−−→

'B

X.

Using this, we introduce some more invariants as follows.

Definition 8.4. For any fibrewise pointed space X over B, we define

wgtπ(X; h) = Max {wgtπ(u; h) | u ∈ h∗(X, B)} ,

wgtπ(X) = Max {wgtπ(X; h) h is a generalised cohomology theory} ,

wgtB
B(X; h) = Max

©
wgtB

B(u; h) | u ∈ h∗(X, B)
™

,

wgtB
B(X) = Max

©
wgtB

B(X; h) h is a generalised cohomology theory
™

.

We often denote wgtπ( ; h) and wgtB
B( ; h) by wgtπ( ; R) and wgtB

B( ; R) respec-
tively when h∗( ) = H∗( ; R), where R is a ring with unit. We define versions of
module weight for a fibrewise pointed space over B.

Definition 8.5. For a fibrewise pointed space X over B, we define

(1) MwgtB
B(X; h) = Min

Ω
m≥0

ØØØØ
(eX

m)∗ is a split mono of (unstable) h∗h-
modules

æ
for

a generalisd cohomology theory h.
(2) MwgtB

B(X) = Max
©

MwgtB
B(X; h) h is a generalised cohomology theory

™
.

Then we immediately obtain the following result.

Theorem 8.6. For any fibrewise pointed space X over B, we have

cupB
B(X) ≤ wgtB

B(X) ≤ MwgtB
B(X) ≤ catB

B(X) ≤ catlenB
B(X) ≤ CatB

B(X).

By Lemma 4.1, we have the following as a corollary of Theorem 1.13.

Corollary 8.7. For any space B having the homotopy type of a locally finite sim-
plicial complex, we obtain

Zπ(B) ≤ wgtπ(B) ≤ MwgtB
B(d(B)) ≤ T C(B)−1 ≤ catlenB

B(d(B)) ≤ CatB
B(d(B)).
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9. Higher Hopf invariants

For any fibrewise pointed map f : SB
B(V ) → X in T B

B
, we have its adjoint

ad f : V → LB
B(X) such that

eX
1 ◦ SB

B(ad f) = f : SB
B(V ) → X.

If catB
B(X) ≤ m, then there is a fibrewise pointed map σ : X → P m

B LB
B(X) in T B

B
such that

eX
1 ◦σ 'B

B idX : X → X.

Hence both the fibrewise maps eX
1 ◦(σ◦f) and eX

1 ◦ SB
B(ad f) are fibrewise pointed

homotopic to f in T B
B

. Then we have

eX
1 ◦{SB

B(ad f) − (σ◦f)} 'B
B ∗B,

where 'B
B denotes the fibrewise pointed homotopy and ∗B denotes the fibrewise

trivial map in T B
B

. Thus there is a fibrewise pointed map Hσ
m(f) : SB

B(V ) →
Em+1

B LB
B(X) such that

p
LB

B(X)
m ◦Hσ

m(f) 'B
B SB

B(ad f) − (σ◦f).

Definition 9.1. Let X be of catB
B(X) ≤ m, m ≥ 0. For f : SB

B(V ) → X, we define
(1) HB

m(f) =
©

Hσ
m(f) eX

1 ◦σ 'B
B idX

™
⊂ [SB

B(V ), X],
(2) HB

m(f) =
©

(SB
B)∞

∗ Hσ
m(f) eX

1 ◦σ 'B
B idX

™
⊂

©
SB

B(V ), X
™B

B
,

where, for two fibrewise spaces V and W , we denote by {V, W}B
B the homotopy set

of fibrewise stable maps from V to W .

Appendix A. Fibrewise homotopy pull-backs and push-outs

In this paper, we are using A∞ structures which is constructed using tools in T
B

and T B
B

— especially, finite homotopy limits and colimits, in other words, fibrewise
homotopy pull-backs and push-outs in T

B
and T B

B
. We show in this section that

such constructions are possible even when a fibrewise space has some singular fibres.
First we consider the fibrewise homotopy pull-backs in T B

B
: let X, Y , Z and E

be fibrewise spaces over B and p : E → Z be a fibrewise fibration in T
B

. For any

fibrewise map f : X → Z in T
B

, there exists a pull-back X
f∗p←−− f∗E

f̂−→ E of

X
f−→ Z

p←− E as
f∗E = {(x, e) ∈ X×BE f(x) = p(e)}

a subspace of X×BE together with fibrewise maps f∗p : f∗E → X and f̂ : f∗E →
E given by restricting canonical projections:

(f∗p)(x, e) = x, f̂(x, e) = e.

Theorem A.1 (Crabb-James [1]). Let p : E → Z be a fibrewise fibration. For any
fibrewise map f : W → Z in T

B
, f∗p : f∗E → W is also a fibrewise fibration.

Let πt : PB(Z) → Z be fibrewise fibrations given by πt(`) = `(t), t = 0, 1 (see
also [1]). Then π0 and π1 induce a map π : PB(Z) → Z×BZ to the fibre product
of two copies of pZ : Z → B.
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Proposition A.2. π : PB(Z) → Z×BZ is a fibrewise fibration.

Proof : For any fibrewise map φ : W → PB(Z) and a fibrewise homotopy H :
W×[0, 1] = W×B(IB) → Z×BZ such that H(w, 0) = π◦φ(w) for w ∈ W , we
define a fibrewise homotopy Ĥ : W×[0, 1] = W×B(IB) → PB(Z)(⊂ P(Z)) by

Ĥ(w, s)(t) =






pr0◦H(w, s), if t = 0,
pr0◦H(w, s−3t), if 0 < t < s

3 ,
π0◦φ(w), if t = s

3 ,
φ(w)( 3t−s

3−2s ), if s
3 < t < 3−s

3 ,
π1◦φ(w), if t = 3−s

3 ,
pr1◦H(w, 3t−3+s), if 3−s

3 < t < 1
pr1◦H(w, s), if t = 0,

for (w, s) ∈ W×BIB and t ∈ [0, 1], where prk : Z×BZ ⊂ Z×Z → Z denotes the
canonical projection given by prk(z0, z1) = zk, k = 0, 1 for any (z0, z1) ∈ Z×BZ.
Then for any (w, s) ∈ W×BIB, we clearly have

Ĥ(w, 0)(t) = φ(w)(t), t ∈ [0, 1],

(Ĥ(w, s)(0), Ĥ(w, s)(1)) = (pr0◦H(w, s), pr1◦H(w, s)) = H(w, s),

and hence we have Ĥ(w, 0) = φ(w) for any w ∈ W and also π◦Ĥ = H. This implies
that Ĥ is a fibrewise homotopy of φ covering H. Thus π is a fibrewise fibration.§

This yields the following corollary.

Corollary A.3. For any fibrewise maps f : X → Z and g : Y → Z in T
B

, the
induced map (f×Bg)∗π : (f×Bg)∗ PB(Z) → X×BY is a fibrewise fibration in T

B
.

We often call the fibrewise space (f×Bg)∗ PB(Z) together with the projections
prX◦(f×Bg)∗π : (f×Bg)∗ PB(Z) → X and prY ◦(f×Bg)∗π : (f×Bg)∗ PB(Z) → Y

the homotopy pull-back in T
B

of X
f−→ Z

g←− Y . We remark that the above
construction can be performed within T B

B
if X, Y , Z, f and g are all in T B

B
, so

that we have a pointed version of a fibrewise homotopy pull-back:

Corollary A.4. For any fibrewise maps f : X → Z and g : Y → Z in T B
B

, the
induced map (f×Bg)∗π : (f×Bg)∗ PB(Z) → X×BY is a fibrewise fibration in T B

B
.

Second we consider the fibrewise homotopy push-outs in T B
B

: let X, Y , Z and W

be fibrewise pointed spaces over B and i : Z → W be a fibrewise cofibration in T B
B

.

For any fibrewise map f : Z → X over B, there exists a push-out X
f∗i−−→ f∗W

f̌←− W

of X
f←− Z

i−→ W as a quotient space of XqBW by gluing f(z) with i(z) together
with fibrewise maps f∗i and f̌ induced from the canonical inclusions.

Theorem A.5 (Crabb-James [1]). Let i : Z → W be a fibrewise cofibration in T
B

(or T B
B

). For any fibrewise map f : Z → X in T
B

(or T B
B

, resp.), f∗i : X → f∗W

is also a fibrewise cofibration in T
B

(or T B
B

, resp.).

Let us recall that IB
B(Z) is obtained from IB(Z) = Z×B(B×[0, 1]) = Z×[0, 1]

by identifying the subspace sZ(B)×[0, 1] ⊂ Z×[0, 1] with sZ(B) by the canonical
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projection to the first factor : sZ(B)×[0, 1] → sZ(B). Let ιt : Z → IB
B(Z) be

fibrewise cofibration in T B
B

given by ιt(z) = q(z, t), 0 ≤ t ≤ 1, where q : Z×[0, 1] →
IB

B(Z) denotes the identification map. Then ι0 and ι1 induce a map ι : Z∨BZ →
IB

B(Z) from Z∨BZ the push-out of two copies of sZ : B → Z.

Proposition A.6. ι : Z∨BZ → IB
B(Z) is a fibrewise cofibration.

Proof : For any fibrewise map φ : IB
B(Z) → W and a fibrewise homotopy H :

(Z∨BZ)×[0, 1] = (Z∨BZ)×BIB → W such that H(z, 0) = φ◦ι(z) for z ∈ Z∨BZ,
we define a fibrewise homotopy Ȟ : IB(Z)×[0, 1] = IB(Z)×B(IB) → W by

Ȟ(q(z, t), s) =






H(in0(z), s−3t), if 0 ≤ t ≤ s
3 ,

φ(q(z, 3t−s
3−2s )), if s

3 ≤ t ≤ 3−s
3 ,

H(in1(z), 3t−3+s), if 3−s
3 ≤ t ≤ 1

for (q(z, t), s) ∈ IB
B(Z)×BIB, where ink : Z ↪→ Z∨BZ, k = 0, 1 denote the canonical

inclusion given by in0(z) = (z, ∗b) and in1(z) = (∗b, z), b = pZ(z) for any z ∈ Z.
Then for any (q(z, t), s) ∈ IB

B(Z)×BIB, we clearly have

Ȟ(q(z, t))(0) = φ(q(z, t)),

Ȟ(q(z, 0))(s) = H(in0(z), s), Ȟ(q(z, 1))(s) = H(in1(z), s),

and hence we have Ȟ(q(z, t))(0) = φ(q(z, t)) for any q(z, t) ∈ IB
B(Z) and also

Ȟ◦(ι×B1IB ) = H. This implies that Ȟ is a fibrewise homotopy of φ extending H.
Thus ι is a fibrewise cofibration. §

This yields the following corollary.

Corollary A.7. For any fibrewise maps f : Z → X and g : Z → Y in T B
B

, the
induced map (f∨Bg)∗ι : X∨BY → (f∨Bg)∗ IB

B(Z) is a fibrewise cofibration in T B
B

.

We often call the fibrewise space (f∨Bg)∗ IB
B(Z) together with the inclusions

(f∨Bg)∗ι◦inX : X → (f∨Bg)∗ IB
B(Z) and (f∨Bg)∗ι◦inY : Y → (f∨Bg)∗ IB

B(Z) as
homotopy push-out in T B

B
of X

f←− Z
g−→ Y .

Quite similarly for a fibrewise space Z in T
B

, we obtain a fibrewise cofibration
ι̂ : Z q Z = Z×{0} ∪ Z×{1} ↪→ Z×[0, 1] = IB(Z). Thus we have the following.

Corollary A.8. For any fibrewise maps f : Z → X and g : Z → Y in T
B

, the
induced map (fqg)∗ι̂ : XqY → (fqg)∗ IB(Z) is a fibrewise cofibration in T

B
.

Thus we also have an unpointed version of a fibrewise homotopy push-out.
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