TOPOLOGICAL COMPLEXITY IS A FIBREWISE L-S
CATEGORY

NORIO IWASE AND MICHIHIRO SAKAI

Abstract. Topological complexity T C(B) of a space B is introduced by M.
Farber to measure how much complex the space is, which is first considered
on a configuration space of a motion planning of a robot arm. We also con-
sider a stronger version T CM(B) of topological complexity with an additional
condition: in a robot motion planning, a motion must be stasis if the initial
and the terminal states are the same. Our main goal is to show the equalities
TC(B) = catz(d(B))+1and TCM(B) = catS(d(B)) +1, where d(B) = BxB
is a fibrewise pointed space over B whose projection and section are given by
Pasy = Pr : BxB - B the canonical projection to the second factor and
sqe) = Qs : B —» BxB the diagonal. In addition, our method in studying
fibrewise L-S category is able to treat a fibrewise space with singular fibres.

1. Introduction

We say a pair of spaces (X, A) is an NDR pair or A is an NDR subset of X, if
the inclusion map is a (closed) cofibration, in other words, the inclusion map has
the (strong) Strgm structure (see page 22 in G. Whitehead [24]). When the set of
the base point of a space is an NDR subset, the space is called well-pointed.

Let us recall the definition of a sectional category (see James [14]) which is
originally defined and called by Schwarz ‘genus’.

Definition 1.1 (Schwarz [21], James [15]). For a fibration p: E - X, the sectional
cateory secat(p) (= one less than the Schwarz genus Genus(p)) is the minimal
number m = 0 such that there exists a cover of X by (m+1) open subsets U; [XI
each of which admits a continuous section s; : U; — E.

The topological complexity of a robot motion planning is first introduced by
M. Farber [2] in 2003 to measure the discontinuity of a robot motion planning
algorithm searching also the way to minimise the discontinuity. At a more general
view point, Farber defined a numerical invariant T C(B) of any topological space
B: let P(B) be the space of all paths in B. Then there is a Serre path fibration
n:P(B) - BxB given by n(DJ= (D), [(Q)) for CTPI(B).

Definition 1.2 (Farber). For a space B, the topological complexity T C(B) is the
minimal number m = 1 such that there exists a cover of BxB by m open subsets Uj;
each of which admits a continuous section s; : U; - P(B) for m: P(B) - BxB.

By definition, we can observe that the topological complexity is nothing but the
Schwartz genus or the sectional category.
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2 IWASE AND SAKAI

Farber has further introduced a new invariant restricting motions by giving two

additional conditions on the section s: U - P(B).

(1) s(b,b) =cy, the constant path at b for any b B,

(2) s(b1,bz) = s(bz,by)™ 2 if (by,by) L
It gives a stronger invariant than the topological complexity, and the Z/2-equivariant
theory must be applied as in Farber-Grant [4]. This new topological invariant, in
turn, suggests us another motion planning under the condition that a motion is sta-
sis if the initial and the terminal states are the same. Let us state more precisely.

Definition 1.3. For a space B, the ‘monoidal’ topological complexity T CM(B) is
the minimal number m = 1 such that there exists a cover of Bx<B by m open subsets
U; CAX(B) each of which admits a continuous section s; : Ui — P(B) for the Serre
path fibration : P(B) - BxB satisfying sj(b,b) = ¢, for any b Bl

Remark 1.4. This new topological complexity TCM is not a homotopy invariant,
in general. However, it is a homotopy invariant if we restrict our working category
to the category of a space B such that the pair (Bx<B,A(B)) is NDR.

On the other hand, a fibrewise pointed L-S category of a fibrewise pointed space
is introduced and studied by James-Morris [13]. Let us recall the definition:

Definition 1.5 (James-Morris [13]). (1) Let X be a fibrewise pointed space
over B. The fibrewise pointed L-S category catg(X) is the minimal num-
ber m = 0 such that there exists a cover of X by (m + 1) open subsets
Ui sk (B) each of which is fibrewise null-homotopic in X by a fibrewise
pointed homotopy. If there are no such m, we say catg(X) = co.

(2) Let f:Y - X be a fibrewise pointed map over B. The fibrewise pointed
L-S category catS(f) is the minimal number m = 0 such that there exists
a cover of Y by (m + 1) open subsets U; Sy} (B), where the restriction
T|u, to each subset is fibrewise compressible into sx (B) in X by a fibrewise
pointed homotopy. If there are no such m, we say catg(f) = co.

To describe our main result, we further introduce a new unpointed version of
fibrewise L-S category: the fibrewise L-S category catg( ) of an fibrewise unpointed
space is also defined by James and Morris [13] as the minimum number (minus one)
of open subsets which cover the given space and are fibrewise null-homotopic (see
also James [14] and Crabb-James [1]). In this paper, we give a new version of a
fibrewise unpointed L-S category of a fibrewise pointed space as follows:

Definition 1.6. (1) Let X be a fibrewise pointed space over B. The fibrewise
unpointed L-S category catg(X) is the minimal number m = 0 such that
there exists a cover of X by (m+1) open subsets U; each of which is fibrewise
compressible into sx (B) in X by a fibrewise homotopy. If there are no such
m, we say catg(X) = oo.

(2) Letf:Y - X be afibrewise pointed map over B. The fibrewise unpointed
L-S category catg(f) is the minimal number m = 0 such that there exists
a cover of Y by (m+ 1) open subsets U;, where the restriction f|y, to each
subset is fibrewise compressible into sx (B) in X by a fibrewise homotopy.
If there are no such m, we say catg(f) = oo.

For a given space B, we define a fibrewise pointed space d(B) by d(B) = BxB
with pgy = pr, : BxB - B and sqy = A : B — BxB the diagonal. One of
our main goals of this paper is to show the following theorem.
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Theorem 1.7. For a space B, we have the following equalities.

(1) TC(B) = catg(d(B)) + 1.
(2) TCM(B) = cat8(d(B)) + 1.

Farber and Grant has also introduced lower bounds for the topological complex-
ity by using the cup length and category weight (see Rudyak [17] for example) on
the ideal of zero-divisors, i.e, the kernel of A= HYBxB;R) -~ HXB;R).

Definition 1.8 (Farber [2] and Farber-Grant [4]). For a space B and a ring R 1]
the zero-divisors cup-length Zg(B) and the TC-weight wgt;(u;R) for u [l =
ker AXTHYBxB; R) - HYB;R) is defined as follows.

(1) Zr(B) = Max{m=0|HBxB;R) 1T & 0}

(2) wgtr(u; R) = Max{m=0|[f1 Y - BxB (secat(fw) <m), fit) =0}

In the category ng of fibrewise pointed spaces with base space B and maps
between them, we also have corresponding definitions.

Definition 1.9. For a fibrewise pointed space X over B and a ring R [l and
u 0= HYX, B;R) CHYX;R), we define
(1) cupg(X;R) = Maxfmz=0| Uy, - -, um CHYX,B;R)} s.t. ur---um & @3
(2) wotB(u; R) = Max mzo‘ FLY - X CIE (catd(f) <m), ) =0

This immediately implies the following.
Theorem 1.10. For a space B, we have Zg(B) = cupE(d(B);R) for a ring R [1]
Motivating by this equality, we proceed to obtain the following result.

Theorem 1.11. For any space B, any element u CHYBxB,A(B);R) and a ring
R 1) we have wgty(u; R) = wgtS(u; R).

Let us consider one technical condition on a fibrewise pointed space:

Theorem 1.12. For any space B having the homotopy type of a locally finite sim-
plicial complex, we may assume that d(B) is fibrewise well-pointed up to homotopy.

The following is the main result of our paper.

Theorem 1.13. For any fibrewise well-pointed space X over B, we have cat5(X) =
catg(X). So, if B is a locally finite simplicial complex, we have TC(B) =T cM@B) =
catE(d(B)) + 1.

In [19], Sakai showed, in his study of the fibrewise pointed L-S category of a
fibrewise well-pointed spaces, using Whitehead style definition, that we can utilise
Ao methods used in the study of L-S category (see lwase [7, 8]). Let us state the
Whitehead style definitions of fibrewise L-S categories following [19].

Definition 1.14. Let X be a fibrewise well-pointed space over B. The fibrewise

pointed L-S category catS(X) is the minimal number m = 0 such that the (m+1)-
m-+1
fold fibrewise diagonal Ag'“ : X - Tg X is compressible into the fibrewise fat
m-+1
wedge Tg X in T:g. If there are no such m, we say catg(X) = co.
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We remark that this new definition coincides with the ordinary one, if the total
space X is a finite simplicial complex.

The above Whitehead-style definition allows us to define the module weight,
cone length and categorical length, and moreover, to give their relationship as in
Section 8. To show that, we need a criterion given by fibrewise Ao structure on
the fibrewise loop space (see Sections 6-7).

2. Proof of Theorem 1.7

First, we show the equality TCM(B) = cﬁgjd (B))+1: assume TCM(B) = m+1,
m = 0 and that there are an open cover ;_,U; = BxB and a series of sections
si: Ui - P(B) of m: P(B) - d(B) satisfying sij(b,b) = ¢, for b [CBl, since we are
considering monoidal topological complexity. Then each Uj is fibrewise compressible
relative to A(B) into A(B) BB = d(B) by a homotopy H; : Ujx[0,1] - BxB
given by the following:

Hi(a,b;t) = (si(a,b)(t),b), (a,b) L, t [0, 1],

where we can easily check that kji-gjves a fibrewise compression of U; relative to
A(B) into A(B) [BKB. Since ;_,U; = BxB =d(B), we obtain catS(d(B)) <
m, and hence we have catg(d(B)) + 1 < T cM(B).
L—ﬁ@nversely assume that catS(d(B)) = m, m = 0 and there is an open cover
izo Ui = d(B) of d(B) = BxB where U; is fibrewise compressible relative to
A(B) into A(B) [Cd{B) = BxB: let us denote the compression homotopy of U;
by Hi(a, b; t) = (oij(a, b; t),b) for (a,b) [k and t []Q, 1], where cj(a,b;0) = a and
oi(a,b; 1) = b. Hence we can define a section s; : U; —» P(B) by the formula

si(a,b)(t) = oi(a,b;t) t C]0,1].

Since IiZZOIUi = BxB, we obtain TCM(B) < m+1 and hence we have TCM(B) <
cat(d(B)) + 1. Thus we have T CM(B) = catg(d(B)) + 1.

Second, we show the equality T C(@:I catg(d(B)) + 1: assume T C(B) = m+1,
m = 0 and that there is a open cover ;_,U; = BxB and a section s; : U; - P(B)
of m: P(B) - d(B). Then each Uj; is fibrewise compressible into A(B) (BB =
d(B) by a homotopy H; : U;x[0, 1] - BxB which is given by

Hi(avb;t) = (S(ar b)(t)! b)r (a1 b) m- t E[G! 1]:

where we can easily chgck-that H gives a fibrewise compression of U; into A(B) [
BxB = d(B). Since ,_,Ui = BxB = d(B), we obtain catg(d(B)) < m, and
hence we have catg(d(B)) + 1 < T C(B).
L—ﬁgnversely assume that catg(d(B)) = m, m = 0 and there is an open cover
i—o Ui = d(B) of d(B) = BxB where U; is fibrewise compressible into A(B) [
BxB = d(B): the compression homotopy is described as H;j(a, b;t) = (gi(a, b; t),b)
for (a,b) [k and t [0, 1], such that oj(a,b;0) = a and agj(a,b; 1) =b. Hence we
can define a section s;j : Uj -~ P(B) by the formula

si(a,b)(t) = oi(a,b;t) t []Q,1].

1
Since ;_,U; = BxB, we obtain TC(B) < m+1 and hence we have TC(B) <
catg(d(B)) + 1. Thus we have T C(B) = catg(d(B)) + 1. L
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3. Proof of Theorem 1.11
Assume that wgtS(u; R) = m, where u CHYBxB, A(B)) arlfl';ﬁ: Y - d(B)=
BxB a map of secat(f'w) < m. Then there is an open cover - Ui =Y and a
series of maps {o; : Ui - P(B); 1 <i < m} satisfying neg; = f|y,. LetY =Y [B]
with projection p; and section sg given by
psly =py, pgle=idg and s;:BLE Y [BI=Y.
Then we can extend f to a map f:y - d(B) by the formula
fly =f, fls =sa@) =A

By putting Ui = U; CBlwhich is open in Y, we obtain an open cover Ui=Y
and a series of maps Gi : Ui — P(B) satisfying ;i = f|g:

Gilu; = 0i,  Gils = sp(m)-

Hence there is a fibrewise homotopy ®; : Ui x[0,1] —» d(B) such that ®;(y,0) = f(y)
and ®j(y,1) CA(B) given by the following formula.

®i(y, 1) = G (), 8iy)(1), (v,1) CTx(0,1],

so that we have ®;(y,0) = (Gi(y)(0),8i(y)(1)) = m6i(y) = f(y) and ®;(y,1) =
Gi(y)(D),6i(y)(1)) CA(B). Moreover, for any (b, t) [CBI<|[0, 1], we have ®;(b,t) =
Gi(b)(®),Gi(0) (1)) = (spe)(1), sp()(1)) = (b,b). Thus ®; gives a fibrewise pointed
compression homotopy of ﬂoi into A(B). Then it follows that catg(f) < m and
hence we obtain f () = 0 and wgt;(u;R) = m. Thus we obtain wgt;(u;R) =
m = wgtS(u; R).

Conversely assume that wgt;(u; R) = m, where u [CH ?BXB,A(E%and f:
Y - BxB such that catS(f) < m. Then there exists an open covering -, Ui =Y
with U; [CSJ(B) and a sequence of fibrewise homotopies {¢; : Uijx[0,1] - BxB}
such that @i(y,0) = flu;(y), @i(y,1) LA(B) and pry°@i(y,t) = pryf(y) for
(y,t) [ x][0, 1]. Hence there is a sequence of maps {0 : Ui - P(B)} given by

oi(Y)(t) = priegi(y,t), y CO, t L]0, 1]

such that mteai(y) = (pry°@i(y, 0), pri°@i(y, 1)) = f(y) since pry°@i(y,t) = pryof(y)
for (y,t) COyx[0,1]. Thus we obtain secat(f %) < m, and hence f i) = 0. This
implies wgtS(u; R) = m = wgt;(u; R) and hence wgtS(u; R) = wgt,(u; R). 1

4. Proof of Theorem 1.12
The proof of Lemma 2 in 82 of Milnor [16] implies the following:
Lemma 4.1. The pair (BxB, A(B)) is an NDR-pair.
I?ﬂe{: For each vertex B of B, let Vg be Ith_%lstar_ neighbourhood in B and V =

s VpxVp [BKB. ThentheclosureV = ;VgxVp is asubcomplex of BxB. For

the barycentriqeierpinates {&} and {ng} ofl*ﬁp y, resp, we see that (x,y) VI
if and only if B Min(ég,ng) > 0 and that B Min(ég,ng) = 1 if and only if the
barycentric coordinates of x and y are the same, or equivalently, (x,y) [CZA(B).
Hence we can define a continuous map v : BxB - [—1, 1] by the following formula.

2 gMin(&g,ng) — 1, if (x,y) [\,

= if (x,y) MV,
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Then we have that v=1(1) = A(B). Let U = v~((0, 1]) an open neighbourhood of
A(B). Using Milnor’s map s, we obtain a pair of maps (u, h) as follows:

u(x,y) = Min{1,1-v(x,y)} and

h(x,y,t) = (s(x,y)(Min{t,w(x,y)}).y),
where w(Xx,y) = u(x,y) + v(x,y) = Min{1,1+v(x,y)}. Note that w(x,y) = 1 if
(x,y) [dand that w(x,y) = 0if (x,y) IVI. Then u=(0) = A(B), u~1([0,1)) =U
and h(x,y,1) = (y,y) CA(B) if (x,y) Q. Moreover, pr,oh(x,y,t) =y and

h(x,x,t) = (s(X,X)(t),x) = (x,x) for any x,y [CB and t []0,1]. Thus the data
(u, h) gives the fibrewise Stram structure on (Bx<B, A(B)). 1

5. Proof of Theorem 1.13

Let X be a fibrewise well-pointed space over B and X the fiberwise pointed
space obtained from X by giving a fibrewise whisker. More precisely, we define X
be the mapping cylinder of sx,

X =X L, dBx%[0,1], X [sk(b) C(M0) CBx[0,1] for any b [B,
with projection py; and section si given by the formulas

p)’ilx = Px, p)’ilBX[O,l](b! t) = b! for (b! t) X[O, 1]1
sz (b) = (b,1) [BIx[0,1] [XI

Then by the definition of Strgm structure, X is fibrewise pointed homotopy equiv-
alent to X the fibrewise whiskered space over B. So we have catS(X) = catE()?)
and catjy(X) = cats (X).
Assume that catg(X) = m = 0. Then it is clear by definition that catg(X) <
m = cat§(X).
|_—m€_f])nversely assume that catz(X) = m = 0. Then there is an open cover
i—o Ui = X such that U; is compressible into sx(B) [XI Hence there is a fibre-
wise homotopy @; : Ujx[0,1] - X such that ®;(x,0) = X, Pi(X,1) = sx(px (X))
and px = ®i(x, t) = px (x). We define U; as follows:

Ui = Ui L (sx) 1 (Ui)=[0, 1] x(%,l].

We also define a fibrewise pointed homotopy ®; : U;<[0,1] — X as follows:

1
X, t), X =x [N,
5x (), t=35), % = (b,5) [C(Ex)"1(Un)x(0, 1),
) %= (b, 1).b L) 1(UY),
X0 = sty R = (b,S) ClEx)L(U)*(L, 2),
=3 % = (b,2).b C(8x)(Uy),
.5), %= (b,s) CBIx(2,1].

It is then easy to see that Ui’s cover the entire X, and hence we have catE()?) <
m = catg(X). Thus cat3(X) = catg(X) and hence cat§(X) = catg(X). In
particular, we have T C(B) = T CM(B) for a locally finite simplicial complex B. [
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6. Fibrewise A, structures

From now on, we work in the category Lg. For any X a fibrewise pointed space
over B, we denote by px : X - B its projection and by sx : B - X its section.

We say that a pair (X, A) of fibrewise pointed spaces over B is a fibrewise NDR-
pair or that A is a fibrewise NDR subset of X, if the inclusion map A 5 X is a
fibrewise cofibration, in other words, the inclusion has the fibrewise (strong) Strem
structure (see Crabb-James [1]). Since B is the zero object in LS, for any given

fibrewise pointed space X over B, we always have a pair (X, B) in Lg, where we
regard sx (B) = B. When the pair (X, B) is fibrewise NDR, the space X is called
fibrewise well-pointed.

Proposition 6.1 (Crabb-James [1]). (D) If (X,A) and (XHAY are fibrewise
NDR-pairs, then so is (X, A)xg(XJAY = (XxgXIXxg AHAkgX?Y.
m m

(2) If (X, A) is a fibrewise NDR-pair, then so is (MgX, Tg (X, A)), which is
defined by induction for all m = 1:

(IEIBX,%B(X,A)) = (X,A),
(rlrl';lX, IrIF;;l(X,A)) = (HBX, 'nllB(X,A))xB(X,A)_

If X is a fibrewise pointed space over B, then by taking A = B, we obtain a
m+1 m+1
fibrewise subspace Tg (X, B) of Tg X, which is called an (m+1)-fold fibrewise fat-

A m+1 . . om+1 m+1 i
wedge of X, and is often denoted by Tg X. In addition, the pair (Mg X, Tg X) is
a fibrewise NDR-pair for all m = 0, if X is fibrewise well-pointed.

Examples 6.2. (1) Let X be a fibrewise pointed space over B with px = pr, :
X = FxB - B the canonical projection to the second factor and sx =
in, : B & FxB = E the canonical inclusion to the second factor. Then X
is a fibrewise pointed space over B.

(2) Let X = BxB, px = pr, : BxB - B the canonical projection to the
second factor and sx = Ag : B 5 BxB the diagonal. Then X is a
fibrewise pointed space over B.

(3) Let G be a topological group, EG the infinite join of G with right G action
and BG = EG/G the classifying space of G. By considering G as a left
G space by the adjoint action, we obtain a fibrewise pointed space X =
EGxgG with px : EGxXgG - BG with sectionsx : BG 5 EGxg{e} [1
EG xg G.

(4) Let B be a space, X = L(B) the space of free loops on B. Then px :
L(B) - B the evaluation map at 1 SI* [CClis a fibration with section
sx : B - L(B) given by the inclusion of constant loops. In view of Milnor’s
arguments, this example is homotopically equivalent to the example (3).

Definition 6.3. Let Pg(X) = I:IEJ[O, 1] - X| Ldms.t. Ledopy Px (IR)=b I:tlhe
fibrewise free path space, Lg(X) = {CI Pk(X)|[A)=0D)} the fibrewise free loop
space and LB (X) = {{IPk(X)|[{1)=[D)=sx °px ([(D))} the fibrewise pointed loop
space. For any m =0, we define an A, structure of LS (X) as follows.

m+1 m+1

(1) EZ*(LB(X)) as the homotopy pull-back in T2 of B 3 Mg X ~OTg X,
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m+1 m+1 m+1

(2) PZ'(LE(X)) as the homotopy pull-back in T & of X —2—. Mg X ~OTg X,

m+1

3) eX : Pm(LB(X)) - X as the mduced map from the inclusion Tg X 5
I'IB X by the diagonal AT+ : X - I'IB X and

4) p"B(x) : Em”(L X)) - Pm(L (X)) as a map of fibrewise pomted
spaces induced from the section sx : B - X, since the section B & I'IB X

ATHL m+1

is nothing but the composition Al *tesy : B = X —2—, Mg X.

We further investigate to understand an A stucture in a fiberwise view point,
using fibrewise constructions. Clearly, these constructions are not exactly the
Ganea-type fibre-cofibre constructions but the following.

Proposition 6.4 (Sakai). Let X be a fibrewise pointed space over B and m = 0.
Then P m+l(L (X)) has the homotopy type of a push-out of p"B(X) EQ(LE(X))
- PR(LB(X)) and the projection EZ""* (L5 (X)) - B.

This is a direct consequence of the following lemma.

Lemma 6.5. Let (X,A) and (X5 AY be fibrewise NDR-pairs of fibrewise pointed
spaces over B and Z a fibrewise pointed space over B with fibrewise maps f : Z - X
and g : Z - XY Then the homotopy pull-back Q¢f.g),k Of maps (f,g) : Z
XxgXHand k : Xxg APCAxg X0 X xgX'has naturally the homgtepy type of
the reduced homotopy push-out W = Qg ; Lol Qergyixj [eAB>*JI™) Q¢ of
P1: Qer.g)ixj — Qf. and p2 : Qcf,g).ixj — Qg,j,» Where J =[—1,1] and

Qs gy = (Izjmﬂ [Z<g Pa(X)x8 PaXJ| (10} ke 2 b A

Qr.gyixi = (2, 1D e gy« |([Q), [{1)) CAxgA

Qri = {(z, 1= Pe(X)|f(2)=0D), [(1)[A},

Qqj ={(z, ) [Zxp P(X|g(z)=L70), (1) AT,
p1(z, CT9 = (z, DJand p2(z, LI9 = (z, ).

Proof of Outline of the proof. The proof of Lemma 6.5 is quite similar to that of
Theorem 1.1 in Sakai [20] (which is based on lwase [7]) by replacing (Y, B) in [20]
by (X5 A, defining and using the following spaces.
L1 1
\’Eb(f,g),ixmli:r{_l} L Org).ixi %I Lkr ) ide=j X1} L g). k%I,
Urgiox =i = (2, LT COkf, gy | (M), (1)) [XxgA
Qet gy ixidy o= (@ LI [Oks gy | (), (1)) CAxpX

The precise construction of homotopy equivalences and homotopies is identical to
that in [20] and is left to the readers. 1

Theorem 6.6. Let X be a fibrewise well-pointed space over B. Then the sequence

{p"B(X) E’“+1(L (X)) -~ PR(LECX))} glves a fibrewise pointed version of A-
structure on the fibrewise pointed loop space LB g (X).

Thus in the case when X is a fibrewise well-pointed space over B, we assume
that Pm(L (X)) is an increasing sequence given by homotopy push-outs with a
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fibrewise fibration e : PQ(LE(X)) — X such that eX : SB(LE(X)) - X is a
fibrewise evaluation.

Examples 6.7. (1) Let X be a fibrewise pointed space over B with px =
pr, : FxB - B the canonical projection and sx = in, : B 3 FxB
the canonical inclusion. Then LE g(X) = L(F)=B is given by PLex) =
pr, : L(F)xB - B and SLex) = in, : B G L(F)xB.

(2) Let X = BxB be a fibrewise pointed space over B with px = pr, : BxB -
B and sx = Ag : B 3 BxB the diagonal. Then LE g(X) = L(B) the free
loop space on B, PLe(x) : L(B) - B the evalation map at 1 St [Cland
SLex) B2 L(B) the inclusion of constant loops.

Remark 6.8. When E is a cell-wise trivial fibration on a polyhedron B (see [12]),
we can see that the canonical map ef; : P°°(L (E)) - E is a homotopy equivalence
by a similar arguments given in the proof of Theorem 2.9 of [12].

7. Fibrewise L-S categories of fibrewise pointed spaces

The fibrewise pointed L-S category of an fibrewise pointed space is first defined by
James and Morris [13] as the least number (minus one) of open subsets which cover
the given space and are contractible by a homotopy fixing the base point in each fibre

(see also James [14] and Crabb-James [1]) and is redefined by Sakai in [19] as follows:
k+1
let X be a fibrewise pointed space over B. For given k = 0, we denote by Mg X

k+1
the (k+1)-fold fibrewise product and by TgX the (k+1)-fold fibrewise fat wedge.
m+1
Then cat8(X) < m if the (m+1)-fold flbreW|se diagonal map AT+ : X - Mg X
is compressible into the fibrewise fat wedge TB X in Lg. If there is no such m, we

say catS(X) = oo. Let us consider the case when cat8(X) < oo. The definition of
a fibrewise Ao structure yields the following criterion.

Theorem 7.1. Let X be a fibrewise pointed space over B and m = 0. Then
catB(X) = m if and only if idx : X - X has a lift to Pm(L (X)) S Xin L B

m-+1
Proof: If catS(X) < m, then the fibrewise diagonal AR : X - Mg X is com-
m+1

pressible into the fibrewise fat wedge TB X [Ig X in T: B Hence there is a map
g: X > Pg’(LB(X)) in T such that eX-0 [g1x in Lg. The converse is clear
by the definition of PJ"(LS (X)) 1

In the rest of this section, we work within the category . of fibrewise unpointed
spaces and maps between them. But we concentrate ourselves to consider its full
subcategory T :’of all fibrewise pointed spaces, so in T ; we have more maps than

in LB while we have just the same objects as in L:

k+1
Let X be a fibrewise pointed space over B. For given k = 0, we denote by Mg X

k+1
the (k+1)-fold fibrewise product and by Tg X the (k+1)-fold fibrewise fat wedge.
m+1

Then catg(X) < m if the (m+1)-fold fibrewise diagonal map A" : X - Mg X
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m+1
is compressible into the fibrewise fat wedge Tg X in TZE If there is no such m, we
say catg(X) = oo. Let us consider the case when catg(X) < co. The definition of
a fibrewise Ao structure yields the following.
Theorem 7.2. Let X be a fibrewise pointed space over B and m = 0. Then

catg(X) < m if and only if idx : X - X has a lift to PQ’(LE(X)) T X in the
category T .

m-+1
Proof: If catg(X) < m, then the fibrewise diagonal AT** : X - Tlg X is com-
m+1

m+1
pressible into the fibrewise fat wedge Tg X [Tl X in LB':.' Hence there is a map
0 X - PR(LE(X)) in T such that exie0 [g1x in T ;' The converse is clear
by the definition of PQ(LE(X)). 1

8. Upper and lower estimates

For X a fibrewise pointed space over B, we define a fibrewise version of Ganea’s
strong L-S category (see Ganea [6]) of X as CatE(X) and also a fibrewise version
of Fox’s categorical length (see Fox [5] and Iwase [10]) of X as catlen5(X).

Definition 8.1. Let X be a fibrewise pointed space over B.

(1) CatB(X) is the least number m = 0 such that there exists a sequence
{(Xi, hi)|hi : Aj - Xj—1, 0<i=m} of pairs of space and map satisfying X, =
B and Xy, e X in T:g with the following homotopy push-out diagrams:

Ai PA; |_—B_|

h; SX;

L1
Xi—y —L-x}

(2) catlen5(X) is the least number m = 0 such that there exists a sequence
{Xilhi : Ai - Xj—1, 0<i=m} of spaces satisfying Xo = B and X, [g K in
12 and that Ag : Xj —» XjxgXj is compressible into Xj>xgXj—; [BkgX;
in Xm><gXm.

A lower bound for the fibrewise L-S category of a fibrewise pointed space X over
B can be described by a variant of cup length: since X is a fibrewise pointed space
over B, there is a projection px : X - B with its section sx : B —» X. Hence we
can easily observe for any multiplicative cohomology theory h that

htex) £r%B) thTX, B),

where we may identify ht€X, B) with the ideal ker si™: ht¢X) - hXB).

Definition 8.2. For a fibrewise pointed space X over B and any multiplicative
cohomology theory h, we define

cupE(X;h) = Max{m=0| i, - - -, uy, CHAIHX, B)} s.t. ug---um B O}I,:I
cupB(X) = Max cupB(X; h)|h is a multiplicative cohomology theory .
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We often denote cupB( ; h) by cupB( ;R) when ht¢') = HY';R), where R is a
ring with unit.

Let us recall that the relationship between an Ac-structure and a Lusternik-
Schnirelmann category gives the key observation in [7, 8, 9].

On the other hand, Rudyak [17] and Strom [23] introduced a homotopy theo-
retical version of Fadell-Husseini’s category weight, which can be translated into our

setting as follows: for any fibrewise pointed space X over B, let {pkB(X) EX (LE(X))
- Pk LILB(X)); k=1} be the fibrewise Ao-structure of LS (X) in the sense of
Stashe [122] (see also [11] for some more properties). Let h be a generalisd coho-
mology theory.

Definition 8.3. For any u [Chi{X, B), we define
1 1
wgts(u; h) = Min m=0 ae,’;)%) 820 ,
where e is the composition of fibrewise maps PQ’(LE X)) B Pg (L (X))

Using this, we introduce some more invariants as follows.

Definition 8.4. For any fibrewise pointed space X over B, we define

wgtn (X; h) = Max{wgtx(u; h) |u ChKX, B)},

wgty; (X) = Max{wgt; (X; h)|h is a generalised cohomology theory},
wgtE (X;h) = Max_wgtg(u; h) |u Chi(X, B) -
wgtg(X) = Max wgtg(X;h)|h is a generalised cohomology theory .

We often denote wgt,( ; h) and wgtE( ; h) by wgt,( ; R) and wgtS( ; R) respec-
tively when ht@) = H;R), where R is a ring with unit. We define versions of
module weight for a fibrewise pointed space over B.

Definition 8.5. For a fibrewise E)Ointed space X over B, we define —

(1) MwgtB(X;h) = Min m=0 e) 15 a split mono of (unstable) h'h- ¢
~ modules
a generallsd cohometegy theory h.

1
(2) MwgtE(X) = Max Mwgt5(X; h)|h is a generalised cohomology theory .
Then we immediately obtain the following result.

Theorem 8.6. For any fibrewise pointed space X over B, we have
cupB(X) = wgtE(X) = MwgtE(X) < catB(X) < catlenE(X) < CatB(X).
By Lemma 4.1, we have the following as a corollary of Theorem 1.13.

Corollary 8.7. For any space B having the homotopy type of a locally finite sim-
plicial complex, we obtain

Z7(B) < wgt;(B) < MwgtE(d(B)) = T C(B)—1 < catlen5(d(B)) < CatB(d(B)).
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9. Higher Hopf invariants
For any fibrewise pointed map f : SE(V) — X in T2, we have its adjoint
adf :V - LB(X) such that
eroSB(adf) =f:SB(V) - X.

If catg(X) < m, then there is a fibrewise pointed map o : X ~ PZ'Lg(X)in T2
such that

erfo0 [Bdx : X - X.
Hence both the fibrewise maps ey o(o-f) and e}~ SB(ad f) are fibrewise pointed
homotopic to f in LS. Then we have

er' ~{Sg(adf) — (o)} B 1s]
where [ Henotes the fibrewise pointed homotopy and [gl denotes the fibrewise
trivial map in T 2. Thus there is a fibrewise pointed map HS(f) : SE(V) -
Eg*t LB (X) such that

pRE CVoHE (F) (B85 (ad f) — (a°F).

Definition 9.1. Let X be of cat8(X) =m, m =0. For f: SE(V) - X, we define
B — g X B
€ Hg(f) E{g(z‘el o Eéjdx E[SlEfL_ll/)r%(JS] =
(@) HR(F) = (SE)EHA(F)|el0 [Bldx [-35(V), X 4,

where, for two fibrewise spaces V and W, we denote by {V,W}g the homotopy set
of fibrewise stable maps from V to W.

Appendix A. Fibrewise homotopy pull-backs and push-outs

In this paper, we are using A structures which is constructed using tools in .
and Lg — especially, finite homotopy limits and colimits, in other words, fibrewise
homotopy pull-backs and push-outs in Ts and T:g. We show in this section that
such constructions are possible even when a fibrewise space has some singular fibres.

First we consider the fibrewise homotopy pull-backs in TB: let X, Y, Z and E
be fibrewise spaces over B and p : E — Z be a fibrewise fibration in T . Forany

fibrewise map f : X - Z in T there exists a pull-back X fi fE L Eof
XL z2Eas

f'E = {(x,e) [XxgE|f(x) = p(e)}

a subspace of X xgE together with fibrewise maps fp': f'8 — X and f : f'& -
E given by restricting canonical projections:

(F'o)(x,e) =x, fF(x,e)=e.

Theorem A.1 (Crabb-James [1]). Let p: E — Z be a fibrewise fibration. For any
fibrewise map f : W - Z in To %' f'B - W is also a fibrewise fibration.

Let ¢ : Pg(Z) —» Z be fibrewise fibrations given by m(DJ= [(@), t = 0,1 (see
also [1]). Then 1y and m; induce a map 1 : Pg(Z) - ZxgZ to the fibre product
of two copies of pz : Z - B.
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Proposition A.2. 1: Pg(Z) - ZxgZ is a fibrewise fibration.

Proof: For any fibrewise map ¢ : W - Pg(Z) and a fibrewise homotopy H :
Wx[0,1] = Wxg(lg) - ZxgZ such that H(w,0) = me@(w) for w W, we
define a fibrewise homotopy H : W %[0, 1] = Wxg(lg) - Pg(Z)([P{Z)) by

FRrgoH (W, s), ift=0
prgeH (w, s—3t), ifo<t<3,
Fiodo(W), ift=¢,
H(w,s)(t) = _ow)(352 if S <t< 38,
FA(W), ift= 3=s
pejeH (w, 3t—3+s), if 38 <t<1
prieH(w,s), ift=0

for (w,s) CWx=glg and t [[0Q,1], where pr, : ZxgZ [ZKZ - Z denotes the
canonical projection given by pry(zo,z1) = zx, k = 0,1 for any (zo,21) CAxgZ.
Then for any (w,s) W xglg, we clearly have

Hw, 0)(t) = p(w)(V), t C[0,1],

(H (W1 S)(O)v H (W1 S)(l)) = (prOOH (Wv S)v prloH (Wv S)) = H (Wv 5)1
and hgnce we have ﬁ(w, 0) = @(w) for any w and also meH = H. This implies
that H is a fibrewise homotopy of ¢ covering H. Thus 1 is a fibrewise fibration. 1

This yields the following corollary.

Corollary A.3. For any fibrewise maps f : X -~ Zandg:Y - Z in T. the
induced map (fxgg) @ : (Fxgg)"Ps(Z) -~ XxgY is a fibrewise fibration i |n T

We often call the fibrewise space (fxgg)™Pg(Z) together with the projections
pryo(Fxgg) ' : (Fxgg)"Pe(Z) ~ X and pry o(fxgg) ™ : (Fxgg) Ps(Z) - Y
the homotopy pull-back in T, of X L Z £ Y. We remark that the above
construction can be performed within Tg if X, Y, Z, fandg are all in s B
that we have a pointed version of a fibrewise homotopy pull-back:

Corollary A.4. For any fibrewise maps f : X -~ Zandg:Y - Zin LB, the

induced map (Fxgg) : (Fxgg)"Pe(Z) -~ XxgY is a fibrewise fibration in T:g.

Second we consider the fibrewise homotopy push-outs in T:g: letX,Y,Zand W
be fibrewise pointed spaces over B and i : Z - W be a fibrewise cofibration in T B,

For any flbreW|se map f : Z - X over B, there exists a push-out X I fow = Tw
ofX LzLwasa quotient space of X LgW by gluing f(z) with i(z) together
with fibrewise maps fand f induced from the canonical inclusions.

Theorem A.5 (Crabb-James [1]). Leti:Z — W be a fibrewise cofibration in LI
(or T2). For any fibrewise map f:Z — X in T (or T2, resp.), frin: X - fow
is also a fibrewise cofibration in . (or LB, resp.).

Let us recall that 15(2) is obtained from 15(Z) = Zxg(Bx[0,1]) = Zx[0,1]
by identifying the subspace sz (B)x[0,1] [ZIX[0, 1] with sz(B) by the canonical
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projection to the first factor : sz(B)x[0,1] - sz(B). Let i : Z — 15(Z) be

fibrewise cofibration in LE given by 1(z) = q(z,1),0=t=< 1, where q : Zx[0,1] -

IE(Z) denotes the identification map. Then 1p and 1; induce amap t: Z[gZ -
B(Z) from Z [gZ the push-out of two copies of sz : B — Z.

Proposition A.6. 1: Z[gZ - IS(Z) is a fibrewise cofibration.

Proof: For any fibrewise map ¢ : IS(Z) - W and a fibrewise homotopy H :
(Z2eZ)%[0,1] = (Z[gZ)*xpglg —~ W such that H(z,0) = ¢-1(z) for z CA[Z,
we define a fibrewise homotopz H:1g(2)%x[0,1] = 1g(Z)*g(Ig) -~ W by

EGino(z), s—3t), ifost< 3,
H@@ v).5) = 9@ 35)), if § <t=33,
ny(z),3t=3+s), if3=<t<1
for (q(z,t),s) IZEE(Z)XB Ig, whereing : Z 3 Z [gZ, k =0, 1 denote the canonical
inclusion given by ing(z) = (z, L) and iny(z) = (L,Jz), b = pz(z) for any z 4.
Then for any (q(z,t),s) CIE(Z)xglgs, we clearly have

H(@(z, 1))(0) = ¢(q(z, 1)),
H((z,0))(s) = H(ino(z),s), H(a(z,1))(s) = H(in1(z),s),

and hence we have H(q(z £)(0) = ¢(a(z,t)) for any q(z,1) - |5 g(Z) and also
He °(1xgl,g) = H. This implies that H is a fibrewise homotopy of ¢ extending H.
Thus uis a fibrewise cofibration. 1

This yields the following corollary.

Corollary A.7. For any fibrewise maps f : Z - X andg:Z - Y in TB the
induced map (f [gd) i X [gY - (Fgd) ™5 (2) is a fibrewise cofibration in e B

We often call the fibrewise space (f @)q (2) together with the inclusions
(f E0)cteing : X - (FLed)chp (Z) and (f Q) cteiny Y - (Fe0)hp(Z) as
homotopy push-out in T B L ofX fz%vy.

the similarly for a fibrewise space Z in T, we obtain a fibrewise cofibration

Z 1= Zx{0} (Zx{1} & Zx][0,1] = IB(Z) Thus we have the following.

Corollary A.8. For any fibrewise maps f : Z - X andg:Z - Y in Ts the
induced map (f CQ)): X Y- (f o)t g(2) is a fibrewise cofibration in T

Thus we also have an unpointed version of a fibrewise homotopy push-out.
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