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Abstract

We determine the L-S category of stunted quasi-projective space
Qn,m = Qn/Qm for n ≤ 4m + 3. As a special case of our main result,
the L-S category of Q3 is determined to satisfy cat Q3 = 3, which is in
a sharp contrast with the result catSp(3) Q3 = 2 by Fernández-Suárez,
Gómez-Tato and Tanré [4].

1. Introduction

In this paper, each space is assumed to have the homotopy type of a CW-
complex. The (normalized) Lusternik-Schnirelmann category of X, denoted
cat X is the least number m such that there is a covering of X by m + 1 open
subsets each of which is contractible in X.

Let H be the quaternion and S(Hn) be the unit sphere in Hn. In [8], James
has defined the (quaternionic) quasi-projective space Qn is as follows:

Qn = S(Hn)× S(H)/ ∼,

where ∼ is an equivalence relation given by

(u, q) ∼ (uz, z−1qz) for z ∈ S(H) and (u, 1) ∼ (v, 1).

Then Qn is a CW-complex having one cell e4r−1 of dimension 4r − 1 for
r = 1, . . . , n [8]. Hence, for m < n, Qm is a subcomplex of Qn and we denote
by Qn,m = Qn/Qm the stunted quasi-projective space. There is the following
result for cat Qn,m.

Theorem 1.1 (Kishimoto and Kono [9]).

cat Qn,m =

{
1 m + 1 ≤ n ≤ 2m + 1
2 2m + 2 ≤ n ≤ 3m + 2

and

cat Qn,m ≥ 3 for n ≥ 4m + 4.
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The main result of this paper is as follows:

Theorem 1.2. cat Qn,m = 3 for 3m + 3 ≤ n ≤ 4m + 3.

Corollary 1.1. When n = 3 and m = 0, cat Q3 = 3.

This result answers the question in Fernández-Suárez, Gómez-Tato and
Tanré [4], in which they have proved catSp(3) Q3 = 2 with cat Q3 itself left
unknown, where catX(A) denotes the L-S category of A in X in the sense of
Berstein and Ganea (see [1] for its precise definition).

In this paper, we follow the notations in Iwase [5]: let h∗ be a multiplicative
generalized cohomology. The cup-length of X with the cohomology theory h∗

is the least number m such that all (m + 1)-fold cup products vanish in the
reduced cohomology h̃∗(X). We denote this number by cup(X; h). To obtain
Theorem 1.2, we use the following fact due to Ganea [3] (see Iwase, Mimura
and Nishimoto [7] for details).

Fact 1.1. Let X be an (n−1)-connected CW-complex and h∗ be a mul-
tiplicative generalized cohomology. Then

cup(X; h) ≤ cat X ≤ dim X

n
.

2. Proof of Theorem 1.2

To obtain the lower bounds for cat Qn,m, we use the cohomology theory
introduced by Iwase and Mimura [6]: Let (X,A) be a pair of space. The
cohomology theory h∗ is defined by

h∗(X, A) = {X/A,S[0, 2]},
where S[0, 2] is the spectrum obtained from the sphere spectrum S by killing all
homotopy groups of dimensions > 2. Then h∗ is an additive and multiplicative
cohomology theory with the coefficient ring

h∗ = h∗(pt) ∼= Z[ε]/(ε3, 2ε),deg ε = −1,

where ε ∈ h−1 = πS
0 (Σ−1S) ∼= πS

1 (S) corresponds to the Hopf element η.
Since all the cells in Qn,m are concentrated in dimensions 3 modulo 4, we

have

h∗(Qn,m) ∼= h∗{1, x4m+3, x4m+7, · · · , x4n−1},
where deg x4i−1 = 4i− 1 for m + 1 ≤ i ≤ n. We need to show the following

Proposition 2.1. x2
4`+3 = ε · x8`+7 ∈ h8`+6(Q2`+2,`) for any ` ≥ 0.

Then we obtain x2
8m+7 = ε · x16m+15 ∈ h16m+14(Q4m+4,2m+1) and

x2
4m+3x8m+7 =(ε · x8m+7)x8m+7 = ε · x2

8m+7

=ε2 · x16m+15 ∈ h16m+13(Q4m+4,m).
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Hence we have

0 6=x4m+3x8m+7 = ε · x12m+11

∈h12m+10(Q4m+4,m) ∼= h12m+10(Q3m+3,m) ∼= Z/2.

Thus we obtain

x3
4m+3 =(ε · x8m+7)x4m+3 = ε · x4m+3x8m+7

=ε2x12m+11 ∈ h12m+9(Q3m+3,m)

and 3 ≤ cup(Q3m+3,m;h). By Fact 1.1, we have

3 ≤ cup(Q3m+3,m; h) ≤ cup(Qn,m;h) ≤ cat Qn,m for 3m + 3 ≤ n,

and

cat Qn,m ≤ cat Q4m+3,m ≤ 16m + 11
4m + 3

< 4 for n ≤ 4m + 3.

So, we obtain Theorem 1.2.

3. Proof of Proposition 2.1

Let γ : S8`+6 → Q2`+1,` be the attaching map of the (8`+7)-cell of Q2`+2,`.
There exist a CW-complex Q′2`+1,` such that ΣQ′2`+1,` = Q2`+1,`, since Q2`+1,`

is (4` + 2)-connected and dim Q2`+1,` = 8` + 3. We need the relation between
the attaching map γ and the cup product in the cohomology theory h∗. By the
parallel argument to Lemma 3.6 of [6], we obtain the following.

Lemma 3.1. Let h∗ be any multiplicative generalized cohomology theory
and let K = ΣQ∪f eq for a given map f from Sq−1 to a suspension of a space Q.
Let x and y be the elements of h∗(K) such that y corresponds to the generator
of h∗(Sr). Then

x2 = ±H̄h
1 (f) · y in h∗(K),

where ±H̄h
1 is the composition ρh ◦ λ2 of the Boardman-Steer Hopf invariant

λ2 : πq−1(ΣQ) → πq(Σ2Q ∧ Q) (Boardman and Steer [2]) with the Hurewicz
homomorphism ρh : πq(Σ2Q ∧ Q) → h2r(Sq) ∼= h2r−q given by ρh(g) =
Σ−q
∗ g∗(i∗(x)⊗ i∗(x)) (i : ΣQ → K is the inclusion).

Since Q′
2`+1,` is (4` + 1)-connected and dim Q′2`+1,` = 8` + 2, Q′

2`+1,` has
the homotopy type of the suspension. Hence, by [2], we have the equation

λ2(γ) = ΣhJ
2 (γ),

where hJ
2 is the 2nd James Hopf invariant.

We consider the adjoint map ad(γ) : S8`+5 → ΩQ2`+1,` in

ΩQ2`+1,` ⊂ ΩQ2`+2,` ⊂ ΩV2`+2,`,
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where ΩX is a loop space of a space X and Vn,m = Sp(n)/Sp(m). We recall
from [10] that the homology group of ΩSp(n) with coefficients in Z/2 has the
ring structure: H∗(ΩSp(n);Z/2) ∼= Z/2[u2, u6, · · · , u4n−2], where deg u4i−2 =
4i− 2 for 1 ≤ i ≤ n, and these generators satisfy the relations u4j+2Sq2 = u2

2j

for 1 ≤ j ≤ n − 1, where Sq∗ is the dual operation of the Steenrod operation.
So, we have the homology of ΩV2`+2,`:

H∗(ΩV2`+2,`;Z2) ∼= Z2[u4`+2, u4`+6, · · · , u8`+2, u8`+6]

with the relation

u8`+6Sq2 = u2
4`+2. (3.1)

Hence (8` + 6)-skeleton of Ω(V2`+2,`) has a cell decomposition:

(ΩV2`+2,`)(8`+6) '(S4`+2 ∪ e4`+6 ∪ · · · ∪ e8`+2)

∪S4`+2 (S4`+2 ∪[ι4`+2,ι4`+2] e8`+4) ∪ e8`+6,
(3.2)

where [ι4`+2, ι4`+2] : S8`+3 → S4`+2 is the Whitehead product of two copies of
identity map ι4`+2 : S4`+2 → S4`+2. By the relation (3.1), we have

(ΩV2`+2,`)(8`+6)/(ΩV2`+2,`)(8`+2) = S8`+4 ∪η8`+4 e8`+6, (3.3)

where ηk is a (k − 2)-fold suspension of the Hopf map η2 : S3 → S2 for k ≥ 2.
By the cell decomposition:

ΩQ2`+1,` '(S4`+2 ∪ e4`+6 ∪ · · · e8`+2)

∪S4`+2 (S4`+2 ∪[ι4`+2,ι4`+2] e8`+4)

∪ (cells in dimensions ≥ 8` + 8)

and

(ΩQ2`+1,`)(8`+4) = (ΩQ2`+2,`)(8`+4) = (ΩV2`+2,`)(8`+4),

we identify ad(γ) with a map:

ad(γ) : S8`+5 → (ΩQ2`+1,`)(8`+4) = (ΩV2`+2,`)(8`+4).

In consideration of (8` + 6)-skeleton:

(ΩQ2`+1,`)(8`+4) ∪ad(γ) e8`+6 = (ΩQ2`+2,`)(8`+6)

= (ΩV2`+2,`)(8`+6),

the attaching map of (8` + 6)-cell of (3.2) is equal to ad(γ). So, we have the
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following commutative diagram:

S8`+6

Σ ad(γ)

��

= // S8`+6

Σ ad(γ)

��
(ΣΩΣQ′2`+1,`)

(8`+5)

=

��

= // (ΣΩV2`+2,`)(8`+5)

proj

��

(ΣJ2)(8`+5)

proj

��
(ΣJ2)(8`+5)/(ΣJ1)(8`+4)

=

��

=// (ΣΩV2`+2,`)(8`+5)/(ΣΩV2`+2,`)(8`+4)

=

��
Σ(Q′2`+1,` ∧Q′2`+1,`)

(8`+5)

incl

��

= // S8`+5

Σ(Q′
2`+1,` ∧Q′2`+1,`),

where Jk is the k-stage James reduced product of Q′2`+1,` and proj and incl are
the projection and the inclusion, respectively. The left column is the definition
of the 2nd James Hopf invariant and the right column is equal to η8`+5 :
S8`+6 → S8`+5, by (3.3). Thus, we have

hJ
2 (γ) = (incl) ◦ η8`+5.

And using Lemma 3.1, we obtain the relation x2
4`+3 = ε·x8`+7 ∈ h8`+6(Q2`+2,`).

This completes the proof.
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