J. Math. Kyoto Univ. (JMKYAZ) 00-0 (2004), 000–000

Lusternik-Schnirelmann category of stunted quasi-projective spaces

By

Norio Iwase and Toshiyuki Miyauchi

Abstract

We determine the L-S category of stunted quasi-projective space $Q_{n,m} = Q_n/Q_m$ for $n \leq 4m + 3$. As a special case of our main result, the L-S category of Q_3 is determined to satisfy cat $Q_3 = 3$, which is in a sharp contrast with the result cat_{Sp(3)} $Q_3 = 2$ by Fernández-Suárez, Gómez-Tato and Tanré [4].

1. Introduction

In this paper, each space is assumed to have the homotopy type of a CWcomplex. The (normalized) Lusternik-Schnirelmann category of X, denoted cat X is the least number m such that there is a covering of X by m + 1 open subsets each of which is contractible in X.

Let \mathbb{H} be the quaternion and $S(\mathbb{H}^n)$ be the unit sphere in \mathbb{H}^n . In [8], James has defined the (quaternionic) quasi-projective space Q_n is as follows:

$$Q_n = S(\mathbb{H}^n) \times S(\mathbb{H}) / \sim,$$

where \sim is an equivalence relation given by

$$(u,q) \sim (uz, z^{-1}qz)$$
 for $z \in S(\mathbb{H})$ and $(u,1) \sim (v,1)$.

Then Q_n is a CW-complex having one cell e^{4r-1} of dimension 4r-1 for $r = 1, \ldots, n$ [8]. Hence, for m < n, Q_m is a subcomplex of Q_n and we denote by $Q_{n,m} = Q_n/Q_m$ the stunted quasi-projective space. There is the following result for cat $Q_{n,m}$.

Theorem 1.1 (Kishimoto and Kono [9]).

$$\operatorname{cat} Q_{n,m} = \begin{cases} 1 & m+1 \le n \le 2m+1 \\ 2 & 2m+2 \le n \le 3m+2 \end{cases}$$

and

$$\operatorname{cat} Q_{n,m} \ge 3 \text{ for } n \ge 4m + 4.$$

²⁰⁰⁰ Mathematics Subject Classification(s). Primary 55M30; Secondary 55P42, 57T10.

The main result of this paper is as follows:

Theorem 1.2. $\operatorname{cat} Q_{n,m} = 3 \text{ for } 3m + 3 \le n \le 4m + 3.$

Corollary 1.1. When n = 3 and m = 0, $\operatorname{cat} Q_3 = 3$.

This result answers the question in Fernández-Suárez, Gómez-Tato and Tanré [4], in which they have proved $\operatorname{cat}_{\operatorname{Sp}(3)} Q_3 = 2$ with $\operatorname{cat} Q_3$ itself left unknown, where $\operatorname{cat}_X(A)$ denotes the L-S category of $A \operatorname{in} X$ in the sense of Berstein and Ganea (see [1] for its precise definition).

In this paper, we follow the notations in Iwase [5]: let h^* be a multiplicative generalized cohomology. The cup-length of X with the cohomology theory h^* is the least number m such that all (m + 1)-fold cup products vanish in the reduced cohomology $\tilde{h}^*(X)$. We denote this number by $\operatorname{cup}(X;h)$. To obtain Theorem 1.2, we use the following fact due to Ganea [3] (see Iwase, Mimura and Nishimoto [7] for details).

Fact 1.1. Let X be an (n-1)-connected CW-complex and h^* be a multiplicative generalized cohomology. Then

$$cup(X;h) \le \operatorname{cat} X \le \frac{\dim X}{n}.$$

2. Proof of Theorem 1.2

To obtain the lower bounds for $\operatorname{cat} Q_{n,m}$, we use the cohomology theory introduced by Iwase and Mimura [6]: Let (X, A) be a pair of space. The cohomology theory h^* is defined by

$$h^*(X, A) = \{X/A, \mathcal{S}[0, 2]\},\$$

where S[0, 2] is the spectrum obtained from the sphere spectrum S by killing all homotopy groups of dimensions > 2. Then h^* is an additive and multiplicative cohomology theory with the coefficient ring

$$h^* = h^*(pt) \cong \mathbb{Z}[\varepsilon]/(\varepsilon^3, 2\epsilon), \deg \varepsilon = -1$$

where $\varepsilon \in h^{-1} = \pi_0^S(\Sigma^{-1}\mathcal{S}) \cong \pi_1^S(\mathcal{S})$ corresponds to the Hopf element η .

Since all the cells in $Q_{n,m}$ are concentrated in dimensions 3 modulo 4, we have

$$h^*(Q_{n,m}) \cong h^*\{1, x_{4m+3}, x_{4m+7}, \cdots, x_{4n-1}\},\$$

where deg $x_{4i-1} = 4i - 1$ for $m + 1 \le i \le n$. We need to show the following

Proposition 2.1.
$$x_{4\ell+3}^2 = \varepsilon \cdot x_{8\ell+7} \in h^{8\ell+6}(Q_{2\ell+2,\ell}) \text{ for any } \ell \ge 0.$$

Then we obtain $x_{8m+7}^2 = \varepsilon \cdot x_{16m+15} \in h^{16m+14}(Q_{4m+4,2m+1})$ and

$$\begin{aligned} x_{4m+3}^2 x_{8m+7} = & (\varepsilon \cdot x_{8m+7}) x_{8m+7} = \varepsilon \cdot x_{8m+7}^2 \\ = & \varepsilon^2 \cdot x_{16m+15} \in h^{16m+13}(Q_{4m+4,m}). \end{aligned}$$

Hence we have

$$0 \neq x_{4m+3} x_{8m+7} = \varepsilon \cdot x_{12m+11}$$

 $\in h^{12m+10}(Q_{4m+4,m}) \cong h^{12m+10}(Q_{3m+3,m}) \cong \mathbb{Z}/2.$

Thus we obtain

$$x_{4m+3}^3 = (\varepsilon \cdot x_{8m+7}) x_{4m+3} = \varepsilon \cdot x_{4m+3} x_{8m+7}$$
$$= \varepsilon^2 x_{12m+11} \in h^{12m+9}(Q_{3m+3,m})$$

and $3 \leq \operatorname{cup}(Q_{3m+3,m};h)$. By Fact 1.1, we have

$$3 \le \exp(Q_{3m+3,m};h) \le \exp(Q_{n,m};h) \le \operatorname{cat} Q_{n,m} \text{ for } 3m+3 \le n,$$

and

$$\operatorname{cat} Q_{n,m} \le \operatorname{cat} Q_{4m+3,m} \le \frac{16m+11}{4m+3} < 4 \text{ for } n \le 4m+3.$$

So, we obtain Theorem 1.2.

3. Proof of Proposition 2.1

Let $\gamma: S^{8\ell+6} \to Q_{2\ell+1,\ell}$ be the attaching map of the $(8\ell+7)$ -cell of $Q_{2\ell+2,\ell}$. There exist a CW-complex $Q'_{2\ell+1,\ell}$ such that $\Sigma Q'_{2\ell+1,\ell} = Q_{2\ell+1,\ell}$, since $Q_{2\ell+1,\ell}$ is $(4\ell+2)$ -connected and dim $Q_{2\ell+1,\ell} = 8\ell+3$. We need the relation between the attaching map γ and the cup product in the cohomology theory h^* . By the parallel argument to Lemma 3.6 of [6], we obtain the following.

Lemma 3.1. Let h^* be any multiplicative generalized cohomology theory and let $K = \Sigma Q \cup_f e^q$ for a given map f from S^{q-1} to a suspension of a space Q. Let x and y be the elements of $h^*(K)$ such that y corresponds to the generator of $h^*(S^r)$. Then

$$x^{2} = \pm \bar{H}_{1}^{h}(f) \cdot y \text{ in } h^{*}(K),$$

where $\pm \bar{H}_1^h$ is the composition $\rho^h \circ \lambda_2$ of the Boardman-Steer Hopf invariant $\lambda_2 : \pi_{q-1}(\Sigma Q) \to \pi_q(\Sigma^2 Q \land Q)$ (Boardman and Steer [2]) with the Hurewicz homomorphism $\rho^h : \pi_q(\Sigma^2 Q \land Q) \to h^{2r}(S^q) \cong h^{2r-q}$ given by $\rho^h(g) = \sum_{*}^{*q} g^*(i^*(x) \otimes i^*(x))$ ($i: \Sigma Q \to K$ is the inclusion).

Since $Q'_{2\ell+1,\ell}$ is $(4\ell+1)$ -connected and dim $Q'_{2\ell+1,\ell} = 8\ell+2$, $Q'_{2\ell+1,\ell}$ has the homotopy type of the suspension. Hence, by [2], we have the equation

$$\lambda_2(\gamma) = \Sigma h_2^J(\gamma),$$

where h_2^J is the 2nd James Hopf invariant.

We consider the adjoint map $\operatorname{ad}(\gamma): S^{8\ell+5} \to \Omega Q_{2\ell+1,\ell}$ in

$$\Omega Q_{2\ell+1,\ell} \subset \Omega Q_{2\ell+2,\ell} \subset \Omega V_{2\ell+2,\ell},$$

where ΩX is a loop space of a space X and $V_{n,m} = \operatorname{Sp}(n)/\operatorname{Sp}(m)$. We recall from [10] that the homology group of $\Omega \operatorname{Sp}(n)$ with coefficients in $\mathbb{Z}/2$ has the ring structure: $H_*(\Omega \operatorname{Sp}(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[u_2, u_6, \cdots, u_{4n-2}]$, where deg $u_{4i-2} =$ 4i-2 for $1 \leq i \leq n$, and these generators satisfy the relations $u_{4j+2}Sq_2 = u_{2j}^2$ for $1 \leq j \leq n-1$, where Sq_* is the dual operation of the Steenrod operation. So, we have the homology of $\Omega V_{2\ell+2,\ell}$:

$$H_*(\Omega V_{2\ell+2,\ell};\mathbb{Z}_2) \cong \mathbb{Z}_2[u_{4\ell+2}, u_{4\ell+6}, \cdots, u_{8\ell+2}, u_{8\ell+6}]$$

with the relation

$$u_{8\ell+6}Sq_2 = u_{4\ell+2}^2. aga{3.1}$$

Hence $(8\ell + 6)$ -skeleton of $\Omega(V_{2\ell+2,\ell})$ has a cell decomposition:

$$(\Omega V_{2\ell+2,\ell})^{(8\ell+6)} \simeq (S^{4\ell+2} \cup e^{4\ell+6} \cup \dots \cup e^{8\ell+2}) \\ \cup_{S^{4\ell+2}} (S^{4\ell+2} \cup_{[\iota_{4\ell+2}, \iota_{4\ell+2}]} e^{8\ell+4}) \cup e^{8\ell+6},$$
(3.2)

where $[\iota_{4\ell+2}, \iota_{4\ell+2}]: S^{8\ell+3} \to S^{4\ell+2}$ is the Whitehead product of two copies of identity map $\iota_{4\ell+2}: S^{4\ell+2} \to S^{4\ell+2}$. By the relation (3.1), we have

$$(\Omega V_{2\ell+2,\ell})^{(8\ell+6)} / (\Omega V_{2\ell+2,\ell})^{(8\ell+2)} = S^{8\ell+4} \cup_{\eta_{8\ell+4}} e^{8\ell+6},$$
(3.3)

where η_k is a (k-2)-fold suspension of the Hopf map $\eta_2 : S^3 \to S^2$ for $k \ge 2$. By the cell decomposition:

$$\Omega Q_{2\ell+1,\ell} \simeq (S^{4\ell+2} \cup e^{4\ell+6} \cup \dots e^{8\ell+2}) \\ \cup_{S^{4\ell+2}} (S^{4\ell+2} \cup_{[\iota_{4\ell+2}, \iota_{4\ell+2}]} e^{8\ell+4}) \\ \cup \text{ (cells in dimensions } \ge 8\ell+8)$$

and

$$(\Omega Q_{2\ell+1,\ell})^{(8\ell+4)} = (\Omega Q_{2\ell+2,\ell})^{(8\ell+4)} = (\Omega V_{2\ell+2,\ell})^{(8\ell+4)},$$

we identify $ad(\gamma)$ with a map:

$$\operatorname{ad}(\gamma): S^{8\ell+5} \to (\Omega Q_{2\ell+1,\ell})^{(8\ell+4)} = (\Omega V_{2\ell+2,\ell})^{(8\ell+4)}$$

In consideration of $(8\ell + 6)$ -skeleton:

$$(\Omega Q_{2\ell+1,\ell})^{(8\ell+4)} \cup_{\mathrm{ad}(\gamma)} e^{8\ell+6} = (\Omega Q_{2\ell+2,\ell})^{(8\ell+6)}$$
$$= (\Omega V_{2\ell+2,\ell})^{(8\ell+6)},$$

the attaching map of $(8\ell + 6)$ -cell of (3.2) is equal to $ad(\gamma)$. So, we have the

following commutative diagram:

where J^k is the k-stage James reduced product of $Q'_{2\ell+1,\ell}$ and proj and incl are the projection and the inclusion, respectively. The left column is the definition of the 2nd James Hopf invariant and the right column is equal to $\eta_{8\ell+5}$: $S^{8\ell+6} \rightarrow S^{8\ell+5}$, by (3.3). Thus, we have

$$h_2^J(\gamma) = (incl) \circ \eta_{8\ell+5}.$$

And using Lemma 3.1, we obtain the relation $x_{4\ell+3}^2 = \varepsilon \cdot x_{8\ell+7} \in h^{8\ell+6}(Q_{2\ell+2,\ell})$. This completes the proof.

> Norio Iwase Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan e-mail: iwase@math.kyushu-u.ac.jp Toshiyuki Miyauchi Graduate School of Mathematics,

GRADUATE SCHOOL OF MATHEMATICS KYUSHU UNIVERSITY, FUKUOKA, 812-8581, JAPAN e-mail: miyauchi@math.kyushu-u.ac.jp

References

- I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/62), 265-279.
- [2] J.M. Boardman and B. Steer, On Hopf invariants, Comment. Math. Helv. 42 (1967), 180–221.
- [3] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417–427.
- [4] L. Fernández-Suárez, A. Gómez-Tato and D. Tanré, Hopf-Ganea invariants and weak LS category, Top. Appl. 115 (2001), 305–316.
- [5] N. Iwase, The Ganea conjecture and recent developments on the Lusternik-Schnirelmann category (Japanese), Sūgaku 56 (2004), 281–296.
- [6] N. Iwase, M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), 199–212, Progr. Math., 215, Birkhäuser, Basel, 2004.
- [7] N. Iwase, M. Mimura, T. Nishimoto, L-S categories of non-simplyconnected compact simple Lie groups, Topology Appl. 150 (2005), 111– 123.
- [8] I. James, *The topology of Stiefel manifolds*, London Math. Soc. Lec. Notes 24, Cambridge University Press, Cambridge, 1976.
- [9] D. Kishimoto and A. Kono, *L-S category of quasi-projective spaces*, preprint.
- [10] A. Kono and K. Kozima, The space of loops on a symplectic group, Japan J. Math. 4 (1978), no. 2, 461–486.