Lusternik-Schnirelmann category of a sphere-bundle over a sphere

Dedicated to Professor J. R. Hubbuck on his 60 th birthday

Norio Iwase
Faculty of Mathematics, Kyushu University, Ropponmatsu Fukuoka, JAPAN.

Abstract

We determine the L-S category of a total space of a sphere-bundle over a sphere in terms of primary homotopy invariants of its characteristic map, and thus providing a complete answer to Ganea's Problem 4. As a result, we obtain a necessary and sufficient condition for a total space N to have the same L-S category as its 'once punctured submanifold' $N \backslash\{P\}, P \in N$. Also necessary and sufficient conditions for a total space M to satisfy Ganea's conjecture are described.

Key words: Lusternik-Schnirelmann category, higher Hopf invariant, sphere bundle, manifold, Ganea conjecture.
1991 MSC: Primary 55M30, Secondary 55P35, 55Q25, 55R35, 55S36.

1 Introduction

The (normalised) L-S category $\operatorname{cat}(X)$ of X is the least number m such that there is a covering of X by $m+1$ open subsets each of which is contractible in X, which equals to the least number m such that the diagonal map Δ_{m+1} : $X \rightarrow \prod^{m+1} X$ can be compressed into the 'fat wedge' $\mathrm{T}^{m+1}(X)$ (see James [8] and Whitehead [21]). By definition, we have $\operatorname{cat}(\{*\})=0$.

A simple definition, however, does not always suggest a simple way of calculation. In fact, to determine the L-S category of a sphere-bundle over a sphere in terms of homotopy invariants of its characteristic map is listed as Problem 4 of

[^0]Ganea [2] in 1971. Ganea's Problem 2 is also a basic problem on cat $\left(X \times S^{n}\right)$, where we easily see that $\operatorname{cat}\left(X \times S^{n}\right)=\operatorname{cat}(X)$ or $\operatorname{cat}(X)+1$: Can the latter case only occur on any X and $n \geq 1$? The affirmative answer had become known as "the Ganea conjecture" (see James [9]), particularly for manifolds.

Although a tight connection between L-S category and the Bar resolution (A_{∞}-structure) has been pointed out by Ginsburg [3] in 1963, a homological approach could not succeed to solve Ganea's problems on L-S category. By Singhof [18] followed by Montejano [11], Gómez-Larrañaga and GonzálezAcuña [4], Rudyak [16,17] and Oprea and Rudyak [15], the conjecture is validated for a large class of manifolds. The first closed manifold counter-example to the conjecture was given by the author [7] as a total space of a spherebundle over a sphere, using the A_{∞}-method with concrete computations of Toda brackets depending on results by Toda [20] and Oka [14]. Also, Lambrechts, Stanley and Vandembroucq [10] and the author [7] provided manifolds each of which has the same L-S category as its once punctured submanifold.

The purpose of this paper is to determine the L-S category of a sphere-bundle over a sphere in terms of a primary homotopy invariant of the characteristic map of a bundle, providing simpler proofs of manifold examples in [7]. Using it, we could obtain many closed manifolds each of which has the same L-S category as its once punctured submanifold and many closed manifold counterexamples to Ganea's conjecture on L-S category.

Throughout this paper, we follow the notations in [6,7]: In particular for a map $f: S^{k} \rightarrow X$, a homotopy set of higher Hopf invariants $H_{m}^{S}(f)=$ $\left\{\left[H_{m}^{\sigma}(f)\right] \mid \sigma\right.$ is a structure map of cat $\left.X \leq m\right\}$ (or its stabilisation $\mathcal{H}_{m}^{S}(f)=$ $\left.\Sigma_{*}^{\infty} H_{m}^{S}(f)\right)$ is referred simply as a (stabilised) higher Hopf invariant of f, which plays a crucial role in this paper. For a sphere map $f: S^{k} \rightarrow S^{\ell}$ with $k, \ell>1$, we identify $H_{1}^{S}(f)$ and $\mathcal{H}_{1}^{S}(f)$ with their unique elements, $H_{1}(f)$ and $\mathcal{H}_{1}(f)=\Sigma^{\infty} H_{1}(f)$, since a sphere S^{n} has the unique structure $\sigma\left(S^{n}\right): S^{n} \rightarrow \Sigma \Omega S^{n}$ for $\operatorname{cat}\left(S^{n}\right)=1, n>1$.

The author would like to express his gratitude to Hans Baues, Hans Scheerer, Daniel Tanré, Fred Cohen, Yuli Rudyak and John Harper for valuable conversations and Max-Planck-Institut für Mathematik for its hospitality during the author's stay in Bonn.

2 L-S category of a sphere-bundle over a sphere

Let $r \geq 1, t \geq 0$ and E be a fibre bundle over S^{t+1} with fibre S^{r}. Then E can be described as $S^{r} \cup_{\Psi} S^{r} \times D^{t+1}$, with $\Psi: S^{r} \times S^{t} \rightarrow S^{r}$ (see Whitehead [21]). Hence E has a CW decomposition $S^{r} \cup_{\alpha} e^{t+1} \cup_{\psi} e^{r+t+1}$ with $\alpha: S^{t} \rightarrow S^{r}$ and
$\psi: S^{r+t} \rightarrow Q=S^{r} \cup_{\alpha} e^{t+1}$ given by the following formulae:

$$
\alpha=\left.\Psi\right|_{\{*\} \times S^{t}},\left.\quad \psi\right|_{S^{r-1} \times D^{t+1}}=\chi_{\alpha^{\circ}} \mathrm{pr}_{2},\left.\quad \psi\right|_{D^{r} \times S^{t}}=\Psi \circ\left(\omega_{r} \times 1_{S^{t}}\right),
$$

where we denote by $\chi_{f}:(C(A), A) \rightarrow\left(C_{f}, B\right)$ the characteristic map for $f: A \rightarrow B$ and let $\omega_{r}=\chi_{\left(*: S^{r-1} \rightarrow\{*\}\right)}$. When $r=1$, the L-S categories of E and Q are studied by several authors; especially by Singhof [18] and OpreaRudyak [15] in the case when $r=t=1$. We summarise known results.

Fact 2.1 Let $r=1$. Then we have the following.

```
\((t=0) \quad \operatorname{cat}\left(Q \times S^{n}\right)=2, \operatorname{cat}(Q)=1, \operatorname{cat}(E)=2, \operatorname{cat}\left(E \times S^{n}\right)=3\).
\((t=1, \alpha= \pm 1) \quad \operatorname{cat}\left(Q \times S^{n}\right)=1, \operatorname{cat}(Q)=0, \operatorname{cat}(E)=1, \operatorname{cat}\left(E \times S^{n}\right)=2\).
\((t=1, \alpha=0) \quad \operatorname{cat}\left(Q \times S^{n}\right)=2, \operatorname{cat}(Q)=1, \operatorname{cat}(E)=2, \operatorname{cat}\left(E \times S^{n}\right)=3\).
\((t=1, \alpha \neq 0, \pm 1) \quad \operatorname{cat}\left(Q \times S^{n}\right)=3, \operatorname{cat}(Q)=2, \operatorname{cat}(E)=3, \operatorname{cat}\left(E \times S^{n}\right)=\)
    4.
\((t>1) \quad \operatorname{cat}\left(Q \times S^{n}\right)=2, \operatorname{cat}(Q)=1, \operatorname{cat}(E)=2, \operatorname{cat}\left(E \times S^{n}\right)=3\).
```

When $r>1$, we identify $H_{1}^{S}(\alpha)$ with its unique element $H_{1}(\alpha)$. We summarise the known results (due to Berstein-Hilton [1]) from [7, Facts 7.1, 7.2].

Fact 2.2 Let $r>1$. Then we have the following.

```
(t<r) cat (Q\times\mp@subsup{S}{}{n})=2,\operatorname{cat}(Q)=1,\operatorname{cat}(E)=2,\operatorname{cat}(E\times\mp@subsup{S}{}{n})=3.
(t=r,\alpha=\pm1\mp@subsup{S}{\mp@subsup{S}{}{r}}{})}\quad\operatorname{cat}(Q\times\mp@subsup{S}{}{n})=1,\operatorname{cat}(Q)=0,\operatorname{cat}(E)=1,\operatorname{cat}(E\times\mp@subsup{S}{}{n})
    2.
```



```
    3.
```



```
    3.
(t>r, H1 (\alpha)\not=0) cat (Q\times\mp@subsup{S}{}{n})=3 or 2, cat (Q) = 2, cat (E)=2 or 3,
    cat}(E\times\mp@subsup{S}{}{n})=3\mathrm{ or 4.
```

By [6] and [7, Theorem 5.2, 5.3, 7.3], the following is also known.
Fact 2.3 When $r>1, t \geq r$ and $\alpha \neq \pm 1$, we also have the following.
(1) $\quad \Sigma^{n} H_{1}(\alpha)=0$ implies $\operatorname{cat}\left(Q \times S^{n}\right)=2$, and $\Sigma^{n+1} H_{1}(\alpha) \neq 0$ implies $\operatorname{cat}\left(Q \times S^{n}\right)=3$.
(2) $\operatorname{cat}(E)=2$ if and only if $H_{2}^{S}(\psi) \ni 0$, and $\operatorname{cat}(E)=2$ implies $\operatorname{cat}\left(E \times S^{n}\right)$ $=3$ for all n.
(3) $\Sigma_{*}^{n} H_{2}^{S}(\psi) \ni 0$ implies cat $\left(E \times S^{n}\right)=3$, and $\Sigma^{n+r+1} h_{2}(\alpha) \neq 0$ implies $\operatorname{cat}\left(E \times S^{n}\right)=4$.

Remark 2.4 When α is in meta-stable range, $H_{1}(\alpha): S^{t} \rightarrow \Omega S^{r} * \Omega S^{r}$ is given by the second James-Hopf invariant $h_{2}(\alpha): S^{t} \rightarrow \Sigma S^{r-1} \wedge S^{r-1}$ composed with an appropriate inclusion to a wedge-summand. Thus we may regard
$h_{2}(\alpha)=H_{1}(\alpha)$ when α is in meta-stable range.
Our main result is as follows:

Theorem 2.5 Let $\operatorname{cat}(Q)=2$ with $t>r>1$, Then $H_{2}^{S}(\psi)$ contains 0 if and only if $\Sigma^{r} H_{1}(\alpha)=0$. More generally for a co-H-map $\beta: S^{v} \rightarrow S^{r+t}$ with $v<t+2 r-1, H_{2}^{S}(\psi \circ \beta)=\beta^{*} H_{2}^{S}(\psi)$ contains 0 if and only if $\Sigma^{r} H_{1}(\alpha) \circ \beta=0$.

The main result is obtained by the following lemma for Q of $\operatorname{cat}(Q)=2$ with $t>r>1$.

Lemma $2.6 H_{2}^{S}(\psi) \ni \pm\left[\left(\hat{i} * 1_{\Omega Q * \Omega Q)}\right) \circ \Sigma^{r} H_{1}(\alpha)\right]$, where the bottom-cell inclusion $\hat{i}: S^{r-1} \hookrightarrow \Omega Q$ denotes the adjoint of the inclusion $i: S^{r} \hookrightarrow Q$.

By combining above facts with Theorem 2.5, we obtain an answer to Ganea's Problem 4:

Theorem 2.7 (Table of L-S categories) For an S^{r}-bundle E over S^{t+1} and its once-punctured submanifold $E \backslash\{P\} \simeq Q$, we have the following table:

Conditions			L-S categories			
r	t	α	$Q \times S^{n}$	Q	E	$E \times S^{n}$
$r=1$	$t=0$		2	1	2	3
	$t=1$	$\alpha= \pm 1$	1	0	1	2
		$\alpha=0$	2	1	2	3
		$\alpha \neq 0, \pm 1$	3	2	3	4
	$t>1$		2	1	2	3
$r>1$	$t<r$		2	1	2	3
	$t=r$	$\alpha= \pm 1$	1	0	1	2
		$\alpha \neq \pm 1$	2	1	2	3
	$t>r$	$H_{1}(\alpha)=0$	2	1	2	3
		$H_{1}(\alpha) \neq 0 \& \Sigma^{r} H_{1}(\alpha)=0$	$3 \text { or } 2$ (1)	2	2	3
		$\Sigma^{r} H_{1}(\alpha) \neq 0$			3	3 or 4 (2)

(1): $\left\{\begin{array}{l}\Sigma^{n} H_{1}(\alpha)=0 \text { implies } \operatorname{cat}\left(Q \times S^{n}\right)=2 \text { and } \\ \Sigma^{n+1} H_{1}(\alpha) \neq 0 \text { implies } \operatorname{cat}\left(Q \times S^{n}\right)=3 .\end{array}\right.$ (2): $\left\{\begin{array}{l}\Sigma^{r+n} H_{1}(\alpha)=0 \text { implies } \operatorname{cat}\left(E \times S^{n}\right)=3 \text { and } \\ \Sigma^{r+n+1} h_{2}(\alpha) \neq 0 \text { implies } \operatorname{cat}\left(E \times S^{n}\right)=4 .\end{array}\right.$

3 Applications and examples

Firstly, Theorem 2.7 yields the following result.
Theorem 3.1 Let a manifold N be the total space of a S^{r}-bundle over S^{t+1} with a characteristic map $\Psi: S^{r} \times S^{t} \rightarrow S^{r}, t>r>1$, and let $\alpha=\left.\Psi\right|_{S^{t}}$. Then $\operatorname{cat}(N \backslash\{P\})=\operatorname{cat}(N)$ if and only if $H_{1}(\alpha) \neq 0$ and $\Sigma^{r} H_{1}(\alpha)=0$.

This theorem provides the following examples.
Example 3.2 Let p be an odd prime and $\alpha=\eta_{2} \circ \alpha_{1}(3) \circ \alpha_{1}(2 p)$. Then we have that $H_{1}(\alpha)=\alpha_{1}(3) \circ \alpha_{1}(2 p) \neq 0$ and $\Sigma^{2} H_{1}(\alpha)=0$ by [20]. Let $N_{p} \rightarrow S^{4 p-2}$ be the bundle with fibre S^{2} induced by $\Sigma\left(\alpha_{1}(3) \circ \alpha_{1}(2 p)\right): S^{4 p-2} \rightarrow S^{4}$ from the bundle $\mathbb{C} P^{3} \rightarrow \mathbb{H} P^{1}=S^{4}$ with fibre $S p(1) / U(1)=S^{2}$. By the arguments given in [7], we obtains that N_{p} has a $C W$-decomposition as $N_{p} \approx S^{2} \cup_{\alpha} e^{4 p-2} \cup_{\psi} e^{4 p}$. Then Theorem 3.1 implies that $\operatorname{cat}\left(N_{p}\right)=\operatorname{cat}\left(N_{p} \backslash\{P\}\right)=2$.

Example 3.3 ([7]) Let p be a prime ≥ 5 and $\alpha=\eta_{2^{\circ}} \circ \alpha_{1}(3) \circ \alpha_{2}(2 p)$ as in [7]. Then we have that $H_{1}(\alpha)=\alpha_{1}(3) \circ \alpha_{2}(2 p) \neq 0$ and $\Sigma^{2} H_{1}(\alpha)=0$ by [20]. Let $L_{p} \rightarrow S^{6 p-4}$ be the bundle with fibre S^{2} induced by $\Sigma\left(\alpha_{1}(3) \circ \alpha_{2}(2 p)\right)$: $S^{6 p-4} \rightarrow S^{4}$ from the bundle $\mathbb{C} P^{3} \rightarrow \mathbb{H} P^{1}=S^{4}$ with fibre $S p(1) / U(1)=S^{2}$. By the arguments given in [7], we obtains that L_{p} has a $C W$-decomposition as $L_{p} \approx S^{2} \cup_{\alpha} e^{6 p-4} \cup_{\psi} e^{6 p-2}$. Then Theorem 3.1 implies that $\operatorname{cat}\left(L_{p}\right)=\operatorname{cat}\left(L_{p} \backslash\right.$ $\{P\})=2$.

Secondly, Theorem 2.7 also yields the following result.
Theorem 3.4 Let a manifold M be the total space of a S^{r}-bundle over S^{t+1} with a characteristic map $\Psi: S^{r} \times S^{t} \rightarrow S^{r}, t>r>1$, and let $\alpha=\left.\Psi\right|_{S^{t}}$. If $\Sigma^{r} H_{1}(\alpha) \neq 0$ and $\mathcal{H}_{1}(\alpha)=0$, then M is a counter-example to the Ganea's conjecture on L-S category; more precisely, $\operatorname{cat}(M)=\operatorname{cat}\left(M \times S^{n}\right)=3$ if $\Sigma^{r} H_{1}(\alpha) \neq 0$ and $\Sigma^{n+r} H_{1}(\alpha)=0$.

This theorem provides the following manifold counter examples to Ganea's conjecture on L-S category.

Example 3.5 Let $p=2$ and $\alpha=\eta_{2} \circ \eta_{3}^{2} \circ \epsilon_{5}$. Then we have that $H_{1}(\alpha)=$ $\eta_{3}^{2} \circ \epsilon_{5} \neq 0, \Sigma^{2} H_{1}(\alpha) \neq 0$ and $\Sigma^{6} H_{1}(\alpha)=0$ by [20]. Let $M_{2} \rightarrow S^{14}$ be the bundle with fibre S^{2} induced by $\Sigma\left(\eta_{3}^{2}{ }^{\circ} \epsilon_{5}\right): S^{14} \rightarrow S^{4}$ from the bundle $\mathbb{C} P^{3} \rightarrow$ $\mathbb{H} P^{1}=S^{4}$ with fibre $S p(1) / U(1)=S^{2}$. By the arguments given in [7] we obtains that M_{2} has a $C W$-decomposition as $M_{2} \approx S^{2} \cup_{\alpha} e^{14} \cup_{\psi} e^{16}$. Then Theorem 3.4 implies that $\operatorname{cat}\left(M_{2} \times S^{n}\right)=\operatorname{cat}\left(M_{2}\right)=3$ for $n \geq 4$.

Example 3.6 ([7]) Let $p=3$ and $\alpha=\eta_{2} \circ \alpha_{1}(3) \circ \alpha_{2}(6)$ as in [7]. Then we have that $H_{1}(\alpha)=\alpha_{1}(3) \circ \alpha_{2}(6) \neq 0, \Sigma^{2} H_{1}(\alpha) \neq 0$ and $\Sigma^{4} H_{1}(\alpha)=0$ by [20].

Let $M_{3} \rightarrow S^{14}$ be the bundle with fibre S^{2} induced by $\Sigma\left(\alpha_{1}(3) \circ \alpha_{2}(6)\right): S^{14} \rightarrow$ S^{4} from the bundle $\mathbb{C} P^{3} \rightarrow \mathbb{H} P^{1}=S^{4}$ with fibre S^{2}. By the arguments given in [7] we obtains that M_{3} has a $C W$-decomposition as $M_{3} \approx S^{2} \cup_{\alpha} e^{14} \cup_{\psi} e^{16}$. Then Theorem 3.4 implies that $\operatorname{cat}\left(M_{3} \times S^{n}\right)=\operatorname{cat}\left(M_{3}\right)=3$ for $n \geq 2$.

Finally, Theorem 2.5 and [7, Theorem 5.2] imply the following result.
Theorem 3.7 Let a manifold X be the total space of a S^{r}-bundle over S^{t+1} with a characteristic map $\Psi: S^{r} \times S^{t} \rightarrow S^{r}, t>r>1$, and let $\alpha=\left.\Psi\right|_{S^{t}}$. When $H_{1}(\alpha) \neq 0$ and β is a co-H-map, we obtain that $X(\beta)=S^{r} \cup_{\alpha} e^{t+1} \cup_{\psi \circ \beta} e^{v+1}$ is of $\operatorname{cat}(X(\beta))=3$ if and only if $\Sigma^{r} H_{1}(\alpha) \circ \beta \neq 0$.

Remark 3.8 All examples obtained here still support the conjecture in [6].

4 Proof of Lemma 2.6

Let $\operatorname{cat}(Q)=2$ with $t>r>1$. In the remainder of this paper, we distinguish a map from its homotopy class to make the arguments clear.

Here, let us recall the definition of a relative Whitehead product: For maps $f: \Sigma X \rightarrow M$ and $g:(C(Y), Y) \rightarrow(K, L)$, we denote by $[f, g]^{\text {rel }}: X * Y=$ $C(X) \times Y \cup X \times C(Y) \rightarrow M \times L \cup\{*\} \times K$ the relative Whitehead product, which is given by

$$
\begin{aligned}
& {\left.[f, g]^{\mathrm{rel}}\right|_{C(X) \times Y}(t \wedge x, y)=(f(t \wedge x), g(y)) \quad \text { and }} \\
& {\left.[f, g]^{\mathrm{rel}}\right|_{X \times C(Y)}(x, t \wedge y)=(*, g(t \wedge y)) .}
\end{aligned}
$$

Also a pairing $F: M \times L \rightarrow M$ with axes 1_{M} and $h: L \rightarrow M$ (see Oda [13]) determines a map

$$
\left(F \cup \chi_{h}\right):(M \times L \cup\{*\} \times K) \rightarrow\left(M \cup_{h} K, M\right)
$$

by $\left.\left(F \cup \chi_{h}\right)\right|_{M \times L}=F$ and $\left.\left(F \cup \chi_{h}\right)\right|_{\{*\} \times K}=\chi_{h}$, where $\chi_{h}:(K, L) \rightarrow$ $\left(M \cup_{h} K, M\right)$ is a relative homeomorphism given by the restriction of the identification map $M \cup K \rightarrow M \cup_{h} K$. Then we can easily see that $\psi: S^{r+t} \rightarrow Q$ is given as

$$
\begin{equation*}
\psi=\left(\Psi \cup \chi_{\alpha}\right) \circ\left[\iota_{r}, C\left(\iota_{t}\right)\right], \tag{4.1}
\end{equation*}
$$

where $\iota_{k}: S^{k} \rightarrow S^{k}$ and $C\left(\iota_{k}\right): C\left(S^{k}\right) \rightarrow C\left(S^{k}\right)$ denote the identity maps.
We denote by $j_{i}^{Q}: P^{i}(\Omega Q) \hookrightarrow P^{\infty}(\Omega Q)$ the classifying map of the fibration $p_{i}^{\Omega Q}: E^{i+1}(\Omega Q) \rightarrow P^{i}(\Omega Q)$ and $e_{i}^{Q}=e_{\infty}^{Q} \circ j_{i}^{Q}$, where $e_{\infty}^{Q}: P^{\infty}(\Omega Q) \rightarrow Q$ is a homotopy equivalence extending the evaluation map $e_{1}^{Q}=e v: \Sigma \Omega Q \rightarrow Q$.

Let σ_{∞} be the homotopy inverse of e_{∞}^{Q}. Then we may assume that $\left.\sigma_{\infty}\right|_{S^{r}}=$ $j_{1}^{Q} \circ \sigma\left(S^{r}\right)$ for dimensional reasons.

Proposition 4.1 The following without the dotted arrows is a commutative diagram where the lower squares are pull-back diagrams.

Therefore, there is a lifting σ_{0}^{\prime} of Δ_{Q} and hence a lifting σ_{0} of the identity 1_{Q}.
Remark 4.2 The homotopy fibre $\Omega Q * \Omega Q * \Omega Q \rightarrow \mathrm{~T}^{3} Q$ of the inclusion

$$
\mathrm{T}^{3} Q=Q \times(Q \vee Q) \cup\{*\} \times(Q \times Q) \hookrightarrow Q \times(Q \times Q)
$$

is given by a relative Whitehead product $\left[e_{1}^{Q},\left(e_{1}^{Q} \times e_{1}^{Q}\right) \circ \chi_{[,,]}\right]^{\text {rel }}$, where ι denotes the identity $1_{\Sigma \Omega Q}$ and

$$
\chi_{[\iota, l]}:(C(\Omega Q * \Omega Q), \Omega Q * \Omega Q) \rightarrow(\Sigma \Omega Q \times \Sigma \Omega Q, \Sigma \Omega Q \vee \Sigma \Omega Q)
$$

denotes a relative homeomorphism.
A lifting σ_{0}^{\prime} of Δ_{Q} in diagram (4.2) is given by the following data:

$$
\left.\sigma_{0}^{\prime}\right|_{S^{r}}(y)=\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right)(y), \sigma\left(S^{r}\right)(y)\right) \quad \text { for } y \in S^{r},
$$

and for $u \wedge x \in(0,1] \times S^{t} /\{1\} \times S^{t}=Q \backslash S^{r}$ with $\mu_{t}(x)=\left(x_{1}, x_{2}\right)$,

$$
\left.\sigma_{0}^{\prime}\right|_{Q \backslash S^{r}}(u \wedge x)= \begin{cases}\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \circ \alpha \times \sigma\left(S^{r}\right) \circ \alpha\right) \circ H_{t}(2 u \wedge x), & \text { if } u \leq \frac{1}{2} \\ \left(\hat{\chi}_{\alpha}\left(2 u-1, x_{1}\right), \hat{\chi}_{\alpha}\left(2 u-1, x_{2}\right)\right), & \text { if } u \geq \frac{1}{2},\end{cases}
$$

where H_{t} is a homotopy $\Delta_{S^{t}} \sim \mu_{t}$ in $S^{t} \times S^{t}, \mu_{k}=\Sigma^{k-1} \mu_{1}: S^{k} \rightarrow S^{k} \vee S^{k}$ denotes the unique co-H-structure of S^{k} and $\hat{\chi}_{\alpha}$ is a null-homotopy $\sigma_{\infty} \chi^{\circ} \chi_{\alpha}$: $\left(C\left(S^{t}\right), S^{t}\right) \rightarrow\left(Q, S^{r}\right) \rightarrow\left(P^{\infty}(\Omega Q), \operatorname{im}\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right)\right)$ of $j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \alpha \sim *$.

Since the lower left square of diagram (4.2) is a homotopy pullback diagram, σ_{0}^{\prime} and the identity 1_{Q} defines a lifting $\sigma_{0}: Q \rightarrow P^{2}(\Omega Q)$ of 1_{Q}.

Proof of Proposition 4.1. By [6, Lemma 2.1] with $(X, A)=\left(P^{\infty}(\Omega Q),\{*\}\right)$, $(Y, B)=\left(P^{\infty}(\Omega Q), \Sigma \Omega Q\right), Z=P^{\infty}(\Omega Q)$ and $f=g=1_{P^{\infty}(\Omega Q)}$, we have the following homotopy pushout-pullback diagram:

where we replaced $P^{\infty}(\Omega Q)$ by Q in the bottom, since $P^{\infty}(\Omega Q)$ is the homotopy equivalent with Q by $e_{\infty}^{Q}: P^{\infty}(\Omega Q) \rightarrow Q$ and $\sigma_{\infty}: Q \rightarrow P^{\infty}(\Omega Q)$.

By [6, Lemma 2.1] with $(X, A)=\left(P^{\infty}(\Omega Q),\{*\}\right),(Y, B)=\left(P^{\infty}(\Omega Q), \Sigma \Omega Q\right)$, $Z=\{*\}$ and $f=g=*$, we have the following homotopy pushout-pullback diagram:

where $\chi_{p_{1}^{\Omega Q}}:\left(C\left(E^{2}(\Omega Q)\right), E^{2}(\Omega Q)\right) \rightarrow\left(P^{2}(\Omega Q), \Sigma \Omega Q\right)$ is a relative homeomorphism.

The above constructions give a standard ΩQ-projective plane $P^{2}(\Omega Q)$ and a standard projection $p_{2}^{\Omega Q}: E^{3}(\Omega Q) \rightarrow P^{2}(\Omega Q)$. In fact, the diagonal map Δ_{Q}^{3} : $Q \rightarrow Q \times Q \times Q$ is the composition $\left(1_{Q} \times \Delta_{Q}\right) \circ \Delta_{Q}$ and there is the following homotopy pushout-pullback diagram by [6, Lemma 2.1] with $(X, A)=(Q,\{*\})$,
$(Y, B)=(Q \times Q, Q \vee Q), Z=Q \times Q, f=\operatorname{pr}_{1}$ and $g=\Delta_{Q^{\circ}} \operatorname{pr}_{2}:$

By combining this diagram with diagrams (4.3) and (4.4), we obtain the desired diagram.
$Q E D$.

Since there is a right action of $S^{t} \times S^{t}$ on $S^{r} \times S^{r}$ by $\Psi^{2}=(\Psi \times \Psi) \circ(1 \times T \times 1)$: $S^{r} \times S^{r} \times S^{t} \times S^{t} \rightarrow S^{r} \times S^{r}$, we obtain the following.

Proposition 4.3 The map $\sigma_{0}^{\prime} \circ \psi: S^{t} \rightarrow P^{\infty}(\Omega Q) \times \Sigma \Omega Q \cup\{*\} \times P^{\infty}(\Omega Q)$ satisfies

$$
\sigma_{0}^{\prime} \circ \psi \sim\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mu_{r}, C\left(\mu_{t}\right)\right]^{\mathrm{rel}}
$$

where $\Psi_{0}^{2}=\left.\Psi^{2}\right|_{\left(S^{r} \vee S^{r}\right) \times\left(S^{t} \vee S^{t}\right)}:\left(S^{r} \vee S^{r}\right) \times\left(S^{t} \vee S^{t}\right) \rightarrow S^{r} \vee S^{r}$.
Proof. By (4.1), we know $\sigma_{0}^{\prime} \circ \psi=\sigma_{0}^{\prime} \circ\left(\Psi \cup \chi_{\alpha}\right) \circ\left[\iota_{r}, C\left(\iota_{t}\right)\right]^{\text {rel }}=\sigma_{0}^{\prime} \circ\left(\Psi \cup \chi_{\alpha}\right)=$ $\left(\left.\sigma_{0}^{\prime}\right|_{\operatorname{im} \sigma\left(S^{r}\right)} \Psi \Psi \cup \sigma_{0}^{\prime} \circ \chi_{\alpha}\right) \circ\left[\iota_{r}, C\left(\iota_{t}\right)\right]^{\text {rel }}$, where we have

$$
\begin{aligned}
& \left.\sigma_{0}^{\prime}\right|_{\operatorname{im} \sigma\left(S^{r}\right)} \circ \Psi=j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \Delta_{S^{r} \circ} \Psi=j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \Psi^{2} \circ\left(\Delta_{S^{r}} \times \Delta_{S^{t}}\right) \quad \text { and } \\
& \sigma_{0}^{\prime} \circ \chi_{\alpha}=\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \circ \alpha \times\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \circ \alpha\right) \circ H_{t}+\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right) \circ C\left(\mu_{t}\right),
\end{aligned}
$$

where the addition denotes the composition of homotopies. Using the same homotopy $H_{t}: \Delta_{S^{t}} \sim \mu_{t}$, we obtain homotopies

$$
\sigma_{0}^{\prime}{\lim \sigma\left(S^{r}\right)}^{\circ} \Psi \sim j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \Psi^{2} \circ\left(\Delta_{S^{r}} \times \mu_{t}\right) \quad \text { and } \quad \sigma_{0}^{\prime} \circ \chi_{\alpha} \sim\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right) \circ C\left(\mu_{t}\right)
$$

which fit together into a homotopy

$$
\sigma_{0}^{\prime} \circ\left(\Psi \cup \chi_{\alpha}\right) \sim\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi^{2} \circ\left(\Delta_{S^{r}} \times \mu_{t}\right) \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right) \circ C\left(\mu_{t}\right)\right)
$$

Then the homotopy $H_{r}: \Delta_{S^{r}} \sim \mu_{r}$ gives the homotopy relation

$$
\sigma_{0}^{\prime} \circ \psi \sim\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi^{2} \circ\left(\mu_{r} \times \mu_{t}\right) \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right) \circ C\left(\mu_{t}\right)\right) \circ\left[\iota_{r}, C\left(\iota_{t}\right)\right]^{\mathrm{rel}},
$$

which yields $\sigma_{0}^{\prime} \circ \psi \sim\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mu_{r}, C\left(\mu_{t}\right)\right]^{\mathrm{rel}} . Q E D$.

Hence by the definition of σ_{0} and ψ, we obtain the following proposition.
Proposition 4.4 We have $\hat{\Delta}_{Q} \circ p_{2}^{\Omega Q} \circ H_{2}^{\sigma_{0}}(\psi) \sim\left[j_{1}^{Q} \circ \sigma\left(S^{r}\right), \hat{\chi}_{\alpha}\right]^{\text {rel }}$.
Proof. By the definition of σ_{0}, we obtain

$$
\hat{\Delta}_{Q^{\circ} \circ \sigma_{0} \circ \psi \sim \sigma_{0}^{\prime} \circ \psi \sim\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mu_{r}, C\left(\mu_{t}\right)\right]^{\text {rel }} .}
$$

Let $\mathrm{in}_{i}: Z \rightarrow Z \vee Z$ be the inclusion to the i-th factor. Then $\left[\mu_{r}, C\left(\mu_{t}\right)\right]^{\text {rel }}:$ $S^{r+t} \rightarrow\left(S^{r} \vee S^{r}\right) \times\left(S^{t} \vee S^{t}\right)$ can be deformed as

$$
\begin{aligned}
{\left[\mu_{r}, C\left(\mu_{t}\right)\right]^{\mathrm{rel}} \sim } & {\left[\mathrm{in}_{1} \circ \iota_{r}+\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)+\mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\mathrm{rel}} } \\
\sim & {\left[\mathrm{in}_{1} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)\right]^{\text {rel }}+\left[\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\mathrm{rel}} } \\
& \quad+\left[\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)\right]^{\mathrm{rel}}+\left[\mathrm{in}_{1} \circ \iota_{r}, \mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\mathrm{rel}} \\
\sim & {\left[\mathrm{in}_{1} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)\right]^{\text {rel }}+\left[\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\text {rel }} } \\
& \quad+\left[\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)\right]^{\mathrm{rel}}+\left[\mathrm{in}_{1} \circ \iota_{r}, \mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\mathrm{rel}}
\end{aligned}
$$

in $\left(S^{r} \vee S^{r}\right) \times\left(S^{t} \vee S^{t}\right)$. Thus we have

$$
\begin{aligned}
\hat{\Delta}_{Q} \circ \sigma_{0} \circ \psi \sim & \left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mathrm{in}_{1} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)\right]^{\text {rel }} \\
& +\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\text {rel }} \\
& +\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mathrm{in}_{2} \circ \iota_{r}, \mathrm{in}_{1} \circ C\left(\iota_{t}\right)\right]^{\text {rel }} \\
& +\left(\left(\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right) \times \sigma\left(S^{r}\right)\right) \circ \Psi_{0}^{2} \cup\left(\hat{\chi}_{\alpha} \vee \hat{\chi}_{\alpha}\right)\right) \circ\left[\mathrm{in}_{1} \circ \iota_{r}, \mathrm{in}_{2} \circ C\left(\iota_{t}\right)\right]^{\text {rel }} \\
\sim & \operatorname{in}_{1} \circ\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \Psi \cup \hat{\chi}_{\alpha}\right) \circ\left[\iota_{r}, C\left(\iota_{t}\right)\right)^{\text {rel }} \\
& +\operatorname{in}_{2} \circ\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \Psi \cup \hat{\chi}_{\alpha}\right) \circ\left[\iota_{r}, C\left(\iota_{t}\right)\right]^{\text {rel }} \\
& +\left[\hat{\chi}_{\alpha}, j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right]^{\text {rel }} \circ \hat{T}+\left[j_{1}^{Q} \circ \sigma\left(S^{r}\right), \hat{\chi}_{\alpha}\right]^{\text {rel }},
\end{aligned}
$$

where $\hat{T}: S^{r+t}=S^{r-1} * S^{t} \rightarrow S^{t} * S^{r-1}=S^{r+t}$ is a switching map. Since $\left[\hat{\chi}_{\alpha}, j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right]^{\text {rel }} \sim *$ in $P^{\infty}(\Omega Q) \times \Sigma \Omega Q \cup\{*\} \times P^{\infty}(\Omega Q)$, we obtain

$$
\hat{\Delta}_{Q} \circ \sigma_{0} \circ \psi \sim \mathrm{in}_{1} \circ \sigma_{\infty} \circ \psi+\mathrm{in}_{2} \circ \sigma_{\infty} \circ \psi+\left[j_{1}^{Q} \circ \sigma\left(S^{r}\right), \hat{\chi}_{\alpha}\right]^{\mathrm{rel}} .
$$

On the other hand, we have

$$
\begin{aligned}
\hat{\Delta}_{Q^{\circ}} \Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right) & =\left(j_{1}^{Q} \times j_{1}^{Q}\right) \circ \Delta_{\Sigma \Omega Q^{\circ}} \Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right) \\
& =\left(j_{1}^{Q} \times j_{1}^{Q}\right) \circ\left(\Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right) \times \Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right)\right) \circ \Delta_{S^{r+t}} \\
& \sim\left(j_{1}^{Q} \circ \Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right) \vee j_{2}^{Q} \circ \Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right)\right) \circ \mu_{r+t} \\
& =\mathrm{in}_{1} \circ \sigma_{\infty} \circ \psi+\mathrm{in}_{2} \circ \sigma_{\infty} \circ \psi .
\end{aligned}
$$

Since $p_{2}^{\Omega Q} \circ H_{2}^{\sigma_{0}}(\psi)$ is the difference between $\sigma_{0} \circ \psi$ and $j_{1}^{Q} \circ \Sigma \Omega \psi \circ \sigma\left(S^{r+t}\right)$, we have the desired homotopy relation.
$Q E D$.

Next we show the following description of $\hat{\chi}_{\alpha}$ up to homotopy.
Proposition 4.5 For some $\delta_{0}: S^{t+1} \rightarrow \Sigma \Omega Q$, there is a homotopy relation

$$
\hat{\chi}_{\alpha} \sim j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q} \circ} C\left(H_{1}(\alpha)\right)+j_{1}^{Q} \circ \delta_{0}:\left(C\left(S^{t}\right), S^{t}\right) \rightarrow\left(P^{\infty}(\Omega Q), \operatorname{im}\left(j_{1}^{Q} \circ \sigma\left(S^{r}\right)\right)\right),
$$

where the addition is given by the coaction $\left(C\left(S^{t}\right), S^{t}\right) \rightarrow\left(C\left(S^{t}\right) \vee S^{t+1}, S^{t}\right)$.
Proof. Let $\chi_{\alpha}^{\prime}:\left(C\left(S^{t}\right), S^{t}\right) \rightarrow\left(P^{2}(\Omega Q), \Sigma \Omega Q\right)$ be the map given by the deformation of α to $p_{1}^{\Omega Q} \circ H_{1}(\alpha)$ in $\Sigma \Omega Q$ and by $\chi_{p_{1}^{\Omega Q} \circ} C\left(H_{1}(\alpha)\right):\left(C\left(S^{t}\right), S^{t}\right) \rightarrow$ $\left(P^{2}(\Omega Q), \Sigma \Omega Q\right)$ as in $[6$, Lemma 5.4, Remark 5.5], where we denote by C the functor taking cones. Then by definition, we have $\chi_{\alpha}^{\prime} \sim \chi_{p_{1}^{\Omega Q} \circ} C\left(H_{1}(\alpha)\right)$ in $\left(P^{2}(\Omega Q), \Sigma \Omega Q\right)$ and $\left.j_{1}^{Q} \circ \chi_{\alpha}^{\prime}\right|_{S^{t}}=j_{1}^{Q} \circ \sigma\left(S^{r}\right) \circ \alpha=\left.\hat{\chi}_{\alpha}\right|_{S^{t}}$. Hence the difference between $\hat{\chi}_{\alpha}$ and $j_{2}^{Q}{ }^{\circ} \chi_{\alpha}^{\prime}$ is given by a map $\delta: S^{t+1} \rightarrow P^{\infty}(\Omega Q) \simeq Q$, which can be pulled back to $\delta_{0}: S^{t+1} \rightarrow \Sigma \Omega Q\left(\subset P^{2}(\Omega Q)\right)$ (see the proof of [6, Theorem 5.6]). Thus we have $\hat{\chi}_{\alpha} \sim j_{2}^{Q} \circ \chi_{\alpha}^{\prime}+j_{1}^{Q} \circ \delta_{0} \sim j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q} \circ} C\left(H_{1}(\alpha)\right)+j_{1}^{Q} \circ \delta_{0} . Q E D$.

Now we prove Lemma 2.6 using Propositions 4.1, 4.4 and 4.5:

$$
\begin{aligned}
& {\left[j_{1}^{Q}, j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q}}\right]^{\mathrm{rel}} \circ H_{2}^{\sigma_{0}}(\psi) \sim \hat{\Delta}_{Q} \circ p_{2}^{\Omega Q} \circ H_{2}^{\sigma_{0}}(\psi) \sim\left[j_{1}^{Q} \circ \sigma\left(S^{r}\right), \hat{\chi}_{\alpha}\right]^{\mathrm{rel}}} \\
& \quad \sim\left[j_{1}^{Q} \circ \sigma\left(S^{r}\right), j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q}} \circ C\left(H_{1}(\alpha)\right)\right]^{\mathrm{rel}}+\left[j_{1}^{Q} \circ \sigma\left(S^{r}\right), j_{1}^{Q} \circ \delta_{0}\right] \\
& \quad= \pm\left[j_{1}^{Q}, j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q}}\right]^{\mathrm{rel}} \circ\left(\hat{i} * 1_{\Omega Q * \Omega Q}\right) \circ\left(1_{S^{r-1}} * H_{1}(\alpha)\right)+\left(j_{1}^{Q} \vee j_{1}^{Q}\right) \circ\left[\sigma\left(S^{r}\right), \delta_{0}\right] .
\end{aligned}
$$

Since $\left[\sigma\left(S^{r}\right), \delta_{0}\right] \sim 0$ in $\Sigma \Omega Q \times \Sigma \Omega Q$, we proceed as

$$
\left[j_{1}^{Q}, j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q}}\right]^{\mathrm{rel}} \circ H_{2}^{\sigma_{0}}(\psi) \sim \pm\left[j_{1}^{Q}, j_{2}^{Q} \circ \chi_{p_{1}^{\Omega Q}}\right]^{\mathrm{rel}} \circ\left(\hat{i} * 1_{\Omega Q * \Omega Q}\right) \circ \Sigma^{r} H_{1}(\alpha) .
$$

Since the relative Whitehead product $\left[j_{1}^{Q}, j_{2}^{Q}{ }^{\circ} \chi_{p_{1}^{\Omega Q}}\right]^{\text {rel }}$ induces a split monomorphism in homotopy groups, we have $H_{2}^{\sigma_{0}}(\psi) \sim \pm\left(\hat{i} * 1_{\Omega Q * \Omega Q}\right) \circ \Sigma^{r} H_{1}(\alpha)$. Thus we obtain $H_{2}^{S}(\psi) \ni\left[H_{2}^{\sigma_{0}}(\psi)\right]= \pm\left[\left(\hat{i} * 1_{\Omega Q * \Omega Q}\right) \circ \Sigma^{r} H_{1}(\alpha)\right]$. This completes the proof of Lemma 2.6.

5 Proof of Theorem 2.5

In this section, we always assume that $\beta: S^{v} \rightarrow S^{r+t}$ is a co-H-map and $v<t+2 r-1$. If $\left[\Sigma^{r} H_{1}(\alpha) \circ \beta\right]=0$, then we have $H_{2}^{S}(\psi \circ \beta) \ni\left[H_{2}^{\sigma_{0}}(\psi) \circ \beta\right]=$ $\pm\left[\left(\hat{i} * 1_{\Omega Q * \Omega Q)}\right) \Sigma^{r} H_{1}(\alpha) \circ \beta\right]=0$ by Lemma 2.6. Hence we show the converse. There are cofibre sequences as follows:

$$
S^{t} \xrightarrow{\alpha} S^{r} \xrightarrow{i} Q \xrightarrow{q} S^{t+1}, \quad S^{r+t} \xrightarrow{\psi} Q \stackrel{j}{\longrightarrow} E \xrightarrow{\hat{q}} S^{r+t+1} .
$$

By the arguments given in Section 4, we know there are 'standard' structures $\sigma\left(S^{r}\right): S^{r} \rightarrow P^{1}\left(\Omega S^{r}\right)$ and $\sigma_{0}: Q \rightarrow P^{2}(\Omega Q)$ for $\operatorname{cat}\left(S^{r}\right)=1$ and $\operatorname{cat}(Q)=2$, respectively, where $\left.\sigma_{0}\right|_{S^{r}}=\sigma\left(S^{r}\right)$ in $P^{2}(\Omega Q)$.

Let σ be a structure for $\operatorname{cat}(Q)=2$ with $H_{2}^{\sigma}(\psi) \circ \beta \sim 0$ in $E^{3}(\Omega Q)$. For dimensional reasons, $\left.\sigma\right|_{S^{r}}$ is homotopic to $\sigma\left(S^{r}\right)$ which is given by the bottom-cell inclusion. We regard $e_{2}^{Q}: P^{2}(\Omega Q) \rightarrow Q$ as a fibration with fibre $E^{3}(\Omega Q) \xrightarrow{p_{2}^{\Omega Q}}$ $P^{2}(\Omega Q)$ and σ_{0} as a cross-section of e_{2}^{Q}. Then by the definition of a structure, we have $e_{2}^{Q} \circ \sigma \sim 1_{Q}$. Thus we obtain the following homotopy relations:

$$
\left.\sigma\right|_{S^{r}} \sim \sigma\left(S^{r}\right)=\left.\sigma_{0}\right|_{S^{r}} \quad \text { in } P^{2}(\Omega Q), \quad e_{2}^{Q} \circ \sigma \sim e_{2}^{Q} \circ \sigma_{0}=1_{Q}
$$

Thus the difference between σ and σ_{0} is given by a map $\gamma_{0}: S^{t+1} \rightarrow P^{2}(\Omega Q)$ which can be lift to $E^{3}(\Omega Q)$:

$$
\sigma \sim \sigma_{0}+\gamma_{0} \quad \text { in } P^{2}(\Omega Q)
$$

where the addition is taken by the coaction $\mu: Q \rightarrow Q \vee S^{t+1}$ along the collapsing $q: Q \rightarrow S^{t+1}$. Thus we obtain that $\sigma \circ \psi \sim\left\{\sigma_{0}, \gamma_{0}\right\} \circ \mu \circ \psi$ in $P^{2}(\Omega Q)$, where $\left\{\sigma_{0}, \gamma_{0}\right\}: Q \vee S^{t+1} \rightarrow P^{2}(\Omega Q)$ is a map given by $\left.\left\{\sigma_{0}, \gamma_{0}\right\}\right|_{Q}=\sigma_{0}$ and $\left.\left\{\sigma_{0}, \gamma_{0}\right\}\right|_{S^{t+1}}=\gamma_{0}$.

By the definition of ψ, we have $\operatorname{pr}_{1} \circ \mu \circ \psi \sim \psi$ and $\operatorname{pr}_{2} \circ \mu \circ \psi \sim q \circ \psi \sim *$, and hence we obtain

$$
\mu \circ \psi \sim(\psi \vee *) \circ \mu+a\left[\iota_{r}^{\prime}, \iota_{t+1}^{\prime \prime}\right] \quad \text { in } Q \vee S^{t+1} \text { for some } a \in \mathbb{Z},
$$

where $\iota_{r}^{\prime}: S^{r} \hookrightarrow Q \hookrightarrow Q \vee S^{t+1}$ and $\iota_{t+1}^{\prime \prime}: S^{t+1} \hookrightarrow Q \vee S^{t+1}$ are inclusions. Hence by putting $\gamma=a \gamma_{0}$, we obtain

$$
\sigma \circ \psi \sim \sigma_{0} \circ \psi+\left[\sigma\left(S^{r}\right), \gamma\right] \quad \text { in } P^{2}(\Omega Q)
$$

which yields the following homotopy relation in $P^{2}(\Omega Q)$ for a co-H-map β :

$$
\begin{align*}
p_{2}^{\Omega Q} \circ H_{2}^{\sigma}(\psi) \circ \beta & \sim P^{2}(\Omega \psi) \circ \sigma\left(S^{r+t}\right) \circ \beta-\sigma \circ \psi \circ \beta \\
& \sim P^{2}(\Omega \psi) \circ \sigma\left(S^{r+t}\right) \circ \beta-\left(\sigma_{0} \circ \psi \circ \beta+\left[\sigma\left(S^{r}\right), \gamma\right] \circ \beta\right) \\
& \sim\left(P^{2}(\Omega \psi) \circ \sigma\left(S^{r+t}\right)-\sigma_{0} \circ \psi\right) \circ \beta-\left[\sigma\left(S^{r}\right), \gamma\right] \circ \beta \tag{5.1}\\
& \sim p_{2}^{\Omega Q} \circ H_{2}^{\sigma_{0}}(\psi) \circ \beta-\left[\sigma\left(S^{r}\right), \gamma\right] \circ \beta \\
& \sim \pm p_{2}^{\Omega^{r}}{ }^{\circ} \Sigma^{r} H_{1}(\alpha) \circ \beta-\left[\sigma\left(S^{r}\right), \gamma\right] \circ \beta
\end{align*}
$$

To proceed, we consider the following commutative ladder of fibre sequences.

Since the pair $\left(E^{3}(\Omega Q), E^{3}\left(\Omega S^{r}\right)\right)$ is $(t+2 r-1)$-connected and $t+1<r+t<$ $t+2 r-1, r>1$, we have $\pi_{t+1}\left(E^{3}(\Omega Q)\right) \cong \pi_{t+1}\left(E^{3}\left(\Omega S^{r}\right)\right)$ and $\pi_{r+t}\left(E^{3}(\Omega Q)\right) \cong$ $\pi_{r+t}\left(E^{3}\left(\Omega S^{r}\right)\right.$. Since γ can be lift to $E^{3}(\Omega Q)$ and we know $\pi_{t+1}\left(E^{3}(\Omega Q)\right) \cong$ $\pi_{t+1}\left(E^{3}\left(\Omega S^{r}\right)\right)$, we may regard that the image of γ is contained in $P^{2}\left(\Omega S^{r}\right)$. Hence γ vanishes in $P^{\infty}\left(\Omega S^{r}\right)$, and so is $\left[\sigma\left(S^{r}\right), \gamma\right]$. Thus $\left[\sigma\left(S^{r}\right), \gamma\right]$ can be lift to $\hat{\gamma}: S^{t+1} \rightarrow E^{3}\left(\Omega S^{r}\right)$ as $\left[\sigma\left(S^{r}\right), \gamma\right] \sim p_{2}^{\Omega S^{r}}$ ô in $P^{2}\left(\Omega S^{r}\right)$.

Therefore, the hypothesis $H_{2}^{\sigma}(\psi) \circ \beta \sim *$ together with the homotopy equation (5.1) implies the homotopy relation

$$
\begin{equation*}
\left.p_{2}^{\Omega S^{r}}\right|_{S^{r-1} * E^{2}\left(\Omega S^{r}\right)} \circ \Sigma^{r} H_{1}(\alpha) \circ \beta \sim \pm p_{2}^{\Omega S^{r}} \circ \hat{\gamma} \circ \beta \quad \text { in } P^{2}(\Omega Q) . \tag{5.2}
\end{equation*}
$$

Since $p_{2}^{\Omega Q}$ induces a split monomorphism in homotopy groups and $\pi_{v}\left(E^{3}(\Omega Q)\right)$ $\cong \pi_{v}\left(E^{3}\left(\Omega S^{r}\right)\right)$ for $v<t+2 r-1,(5.2)$ implies a homotopy relation

$$
\left.p_{2}^{\Omega S^{r}}\right|_{S^{r-1} * E^{2}\left(\Omega S^{r}\right)} \circ \Sigma^{r} H_{1}(\alpha) \circ \beta \sim \pm\left[\sigma\left(S^{r}\right), \gamma\right] \circ \beta \quad \text { in } P^{2}\left(\Omega S^{r}\right) .
$$

To show $\Sigma^{r} H_{1}(\alpha) \circ \beta$ is trivial, we use the following proposition obtained by a straight-forward calculation (see Mac Lane [12], Stasheff [19] or [5], for example) of Bar resolution:

Proposition 5.1 The composition map $\partial: E^{m+1}\left(\Omega S^{r}\right) \xrightarrow{p_{m}^{\Omega S^{r}}} P^{m}\left(\Omega S^{r}\right) \rightarrow$ $P^{m}\left(\Omega S^{r}\right) / \Sigma \Omega S^{r} \simeq \Sigma E^{m}\left(\Omega S^{r}\right)$ induces a homomorphism

$$
\partial_{*}: \tilde{H}_{*}\left(\wedge^{m+1} \Omega S^{r} ; \mathbb{Z}\right) \rightarrow \tilde{H}_{*}\left(\wedge^{m} \Omega S^{r} ; \mathbb{Z}\right)
$$

which is given by

$$
\partial_{*}\left(x^{a_{0}} \otimes x^{a_{1}} \otimes \cdots \otimes x^{a_{m}}\right)=\sum_{i=1}^{m}(-1)^{i} x^{a_{0}} \otimes \cdots \otimes x^{a_{i-1}+a_{i}} \otimes \cdots \otimes x^{a_{m}}
$$

where $a_{0}, \cdots, a_{m} \geq 1$ and $x \in H_{r-1}\left(\Omega S^{r} ; \mathbb{Z}\right)$ is the generator of the Pontryagin ring $H_{*}\left(\Omega S^{r} ; \mathbb{Z}\right)$.

Corollary 5.1.1 The composition map $\partial^{\prime}: S^{r-1} * E^{2}\left(\Omega S^{r}\right) \subset E^{3}\left(\Omega S^{r}\right) \xrightarrow{\partial}$ $\Sigma E^{2}\left(\Omega S^{r}\right) \rightarrow \Sigma E^{2}\left(\Omega S^{r}\right) / \Sigma\left(S^{r-1} * \Omega S^{r}\right)$ induces an isomorphism

$$
\partial_{*}: \tilde{H}_{*}\left(S^{r-1} \wedge \Omega S^{r} \wedge \Omega S^{r} ; \mathbb{Z}\right) \rightarrow \tilde{H}_{*}\left(\left(\Omega S^{r} / S^{r-1}\right) \wedge \Omega S^{r} ; \mathbb{Z}\right)
$$

which is given by $\partial_{*}^{\prime}\left(x \otimes x^{j} \otimes x^{k}\right)=-x^{j+1} \otimes x^{k}$ for $j, k \geq 1$.
Thus we obtain a left homotopy inverse of $p_{2}^{\Omega S^{r}}{\mid S^{r-1} * E^{2}\left(\Omega S^{r}\right)}: S^{r-1} * E^{2}\left(\Omega S^{r}\right) \rightarrow$ $P^{2}\left(\Omega S^{r}\right)$ as a composition map $P^{2}\left(\Omega S^{r}\right) \rightarrow P^{2}\left(\Omega S^{r}\right) / \Sigma \Omega S^{r} \approx \Sigma E^{2}\left(\Omega S^{r}\right) \rightarrow$ $\Sigma E^{2}\left(\Omega S^{r}\right) / \Sigma\left(S^{r-1} * \Omega S^{r}\right) \simeq S^{r-1} * E^{2}\left(\Omega S^{r}\right)$, where the image of $\Sigma^{r} H_{1}(\alpha)$ lies in $S^{r-1} * E^{2}\left(\Omega S^{r}\right)$. On the other hand by the fact that $\operatorname{im} \sigma\left(S^{r}\right) \subset \Sigma \Omega S^{r}$, we also know that the Whitehead product $\left[\sigma\left(S^{r}\right), \gamma\right]$ vanishes in the quotient space
$P^{2}\left(\Omega S^{r}\right) / \Sigma \Omega S^{r}$, and hence never appears non-trivially in $S^{r-1} * E^{2}\left(\Omega S^{r}\right)$. Thus we conclude that $\Sigma^{r} H_{1}(\alpha) \circ \beta$ is trivial.

References

[1] I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois. J. Math. 12 (1968), 421-432.
[2] T. Ganea, Some problems on numerical homotopy invariants, Symposium on Algebraic Topology, Lect. Notes in Math. 249, Springer Verlag, Berlin (1971) 13-22.
[3] M. Ginsburg, On the Lusternik-Schnirelmann Category, Ann. of Math. 77 (1963), 538-551.
[4] J. C. Gómez-Larrañaga and F. González-Acuña, Lusternik-Schnirelmann category of 3-manifolds, Topology 31 (1992), 791-800.
[5] N. Iwase, On the K-ring structure of X-projective n-space, Mem. Fac. Sci. Kyushu U. (A) Math., 38 (1984), 285-297.
[6] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. Lon. Math. Soc., 30 (1998), 623-634.
[7] N. Iwase, A_{∞}-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723.
[8] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
[9] I. M. James, Lusternik-Schnirelmann Category, "Handbook of algebraic topology", 1293-1310, North Holland, Amsterdam, 1995.
[10] P. Lambrechts, D. Stanley and L. Vandembroucq, Embedding up to homotopy of two-cones into Euclidean space, preprint.
[11] L. Montejano, A quick proof of Singhof's $\operatorname{cat}\left(M \times S^{1}\right)=\operatorname{cat}(M)+1$ theorem, Manuscripta Math. 42 (1983), 49-52.
[12] S. Mac Lane, "Homology", Springer Verlag, Berlin, 1963.
[13] N. Oda, Pairings and copairings in the category of topological spaces, Publ. RIMS Kyoto U. 28 (1992), 83-97.
[14] S. Oka, The stable homotopy Groups of Spheres I, Hiroshima Math. J. 1 (1971), 305-337.
[15] J. Oprea and Y. Rudyak, Detecting elements and Lusternik-Schnirelmann category of 3-manifolds, Proceedings of the Joint Summer Research Conference on Lusternik-Schnirelmann Category in the New Millennium (Mt.Holyoke, 2001), Cont. Math., to appear.
[16] Y. B. Rudyak, On the Ganea conjecture for manifolds, Proc. Amer. Math. Soc. 125 (1997), 2511-2512.
[17] Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37-55.
[18] W. Singhof, Minimal coverings of manifolds with balls, Manuscripta Math. 29 (1979), 385-415.
[19] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312.
[20] H. Toda, "Composition methods in homotopy groups of spheres", Princeton U. Press, Princeton N.Y., Ann. of math. studies 49, 1962.
[21] G. W. Whitehead, "Elements of Homotopy Theory", Springer Verlag, Berlin, GTM series 61, 1978.

[^0]: Email address: iwase@math.kyushu-u.ac.jp (Norio Iwase).
 1 This research was supported by Max-Planck-Institute für Mathematik

