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Abstract

A series of complexes Qp indexed by all primes p is constructed with cat Qp = 2 and
catQp×Sn = 2 for either n ≥ 2 or n = 1 and p = 2. This disproves Ganea’s conjecture
on LS category, or Lusternik-Schnirelmann category.

1 Introduction

Problem 2 paused by Ganea [4], Ganea’s conjecture on LS category states the following: The LS

category of a space is increased by one by taking the product with a sphere. A major advance

in this subject has been made by Hess [6] and Jessup [7] working in the rational category: The

rational version of the conjecture is true. Also by Singhof [10] and Rudyak [8], the conjecture

has been verified for a large class of manifolds.

In this paper, we work in the category of CW complexes with base points and the LS

category is considered as normalized, i.e., cat X is the least number n such that the diagonal

map ∆ : X → Xn+1 can be compressed into the ’fat wedge’ X [n+1]. Hence cat {∗} = 0. We

introduce the p-local version of category catp X for a nilpotent space X as the least number

n such that the diagonal map ∆ : X → Xn+1 can be compressed into X [n+1], at the prime p.

This immediately implies that catp X ≤ catX for a nilpotent space X.

Let us recall that an A∞-space, in the sense of Stasheff [11], is a space with an A∞-form.

Stasheff has shown that any given A∞-space is homotopy equivalent to the loop space of some

space, which is often called the A∞-structure of the given A∞-space. Our point of view is the
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other way around: For a given space, its loop space is an A∞-space with the given space as

its A∞-structure. More precisely, every space X has a filtration given by the projective spaces

Pm(ΩX) of its loop space ΩX. From this point of view, we recover the following fundamental

result due to Ganea (see [2]).

Theorem 1.1 (Ganea) Let X be a connected CW complex. Then catX ≤ m if and only if the

canonical inclusion eX
m : Pm(ΩX) ⊂ P∞(ΩX) ≅ X has a right homotopy inverse.

From the product structure of the projective spaces, we have the following well-known facts:

Theorem 1.2 Let X and Y be connected CW complexes. Then catX×Y ≤ m if and only if

the canonical inclusion
∪

a+b=m P a(ΩX)×P b(ΩY ) ⊂ P∞(ΩX)×P∞(ΩY ) ≅ X×Y has a right

homotopy inverse.

Corollary 1.2.1 catX×Y ≤ catX + catY . Hence catX×Sn is either catX or catX + 1.

Corollary 1.2.2 Let catX = m. Then catX×Sn = m if and only if X×Sn is dominated by

Pm(ΩX) ∪ Pm−1(ΩX)×Sn.

The proofs of the above results suggest that the obstruction to the existence of a compression

of X into Pm−1ΩX is given by a map to the m-fold join of ΩX; its n-fold suspension gives the

essential obstruction to the existence of a compression of X×Sn into PmΩX ∪ Pm−1ΩX×Sn.

This suggests how one might obtain counter examples to Ganea’s conjecture and, using Toda’s

results on the homotopy groups of spheres, we establish the existence of such examples. Al-

though some results below are well-known to the experts, we reprove them in a manner which

illuminates the computations needed for the above counter examples. The main result of this

paper is as follows.

Theorem 1.3 There exists a series of 1-connected 2 cell complexes Qp indexed by all primes

p. For an odd prime p, Qp satisfies catQp = catQp×Sn = 2 and catp Qp = catp Qp×Sn = 2

for n ≥ 2. For p = 2, Q2 satisfies catQ2 = catQ2×Sn = 2 and cat2 Q2 = cat2 Q2×Sn = 2 for

n ≥ 1. In addition, when n = 1 and p odd, we have catQp×S1 = catp Qp×S1 = 3.

These examples are in a sharp contrast to the Hess-Jessup theorem for rational case (see [7]

and [6]), or the Singhof-Rudyak theorem for manifolds (see [10] and [8]). We remark that

this construction in the case p = 2 is strongly related to the fact that S7 is a Hopf space

but S15 is not (Toda [13]), and that we could not give examples of Q at odd primes p with

catp Q×S1 = catp Q. They also suggest the following conjecture.
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Conjecture 1.4 If catX×Sk = catX for some k, then catX×Sn = catX for all n ≥ k.

The author would like to express his gratitude to John Hubbuck, Koyemon Irie and Yuli

Rudyak for valuable conversations, the University of Aberdeen for its hospitality and the mem-

bers of Graduate School of Mathematics Kyushu University for allowing me to be away for

a long term, without which this work could not be done. He also thanks the referee for the

valuable advice.

2 Push-out pull-back lemma

Let (X,A) and (Y,B) be CW pairs with i : A ⊂ X and j : B ⊂ Y the inclusions. We denote

by Ωi and Ωj the mapping fibres of i and j. For given f : Z → X and g : Z → Y , we also

define some pull-backs:

Ωi = {(a, ℓX) ∈ A × L(X)|∗ = ℓX(0), i(a) = ℓX(1)} ∼= {ℓX ∈ L(X)|∗ = ℓX(0), ℓX(1) ∈ A},

Ωj = {(b, ℓY ) ∈ B × L(Y )|∗ = ℓY (0), j(b) = ℓY (1)} ∼= {ℓY ∈ L(Y )|∗ = ℓY (0), ℓY (1) ∈ B},

Ωi,f = {(z, ℓX) ∈ Z × L(X)|f(z) = ℓX(0), ℓX(1) ∈ A},

Ωj,g = {(z, ℓY ) ∈ Z × L(Y )|g(z) = ℓY (0), ℓY (1) ∈ B},

where L(−) denotes the space of free paths on the space −. Similarly, for maps i×j : A×B ⊂

X×Y , k : X×B∪A×Y ⊂ X×Y and (f, g) = (f×g)∆Z : Z → X×Y , we define

Ωi×j = {(ℓX , ℓY ) ∈ L(X) × L(Y )|∗ = ℓX(0), ∗ = ℓY (0), ℓX(1) ∈ A, ℓY (1) ∈ B} = Ωi×Ωj,

Ωk = {(ℓX , ℓY ) ∈ L(X) × L(Y )|∗ = ℓX(0), ∗ = ℓY (0) and (ℓX(1), ℓY (1)) ∈ A×Y ∪X×B},

Ωi×j,(f,g) = {(z, ℓX , ℓY ) ∈ Z × L(X) × L(Y )|f(z) = ℓX(0), g(z) = ℓY (0), (ℓX , ℓY ) ∈ Ωi×j},

Ωk,(f,g) = {(z, ℓX , ℓY ) ∈ Z × L(X) × L(Y )|f(z) = ℓX(0), g(z) = ℓY (0), (ℓX , ℓY ) ∈ Ωk}.

Then there are natural projections φ : Ωi×j,(f,g) → Ωi,f and ψ : Ωi×j,(f,g) → Ωj,g given by

φ(z, ℓX , ℓY ) = (z, ℓX), ψ(z, ℓX , ℓY ) = (z, ℓY ).

We establish the following lemma.

Lemma 2.1 Let (X,A) and (Y,B) be connected CW pairs and Z a connected CW complex with

maps f : Z → X and g : Z → Y . Then the homotopy pull-back Ωk,(f,g) of (f, g) : Z → X×Y

and k : X×B∪A×Y ⊂ X×Y has naturally the homotopy type of the homotopy push-out of

φ : Ωi×j,(f,g) → Ωi,f and ψ : Ωi×j,(f,g) → Ωj,g.
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Ωi×j,(f,g) Ωi,f

HPO

Ωj,g Ωk,(f,g) X×B ∪ A×Y

HPB

Z X×Y

w
φ

u

ψ

y

u
z w w

u

y

u

k

w
(f,g)

Proof. We can determine subspaces E1, E2 and E0 in E = Ωk,(f,g) as follows:

E1 ={(z, ℓX , ℓY ) ∈ E|ℓY (1) ∈ B} ⊃ {(z, c(f(z)), ℓY ) ∈ E|ℓY (0) = g(z), ℓY (1) ∈ B} ∼= Ωj,g,

E2 ={(z, ℓX , ℓY ) ∈ E|ℓX(1) ∈ A} ⊃ {(z, ℓX , c(g(z))) ∈ E|ℓX(0) = f(z), ℓX(1) ∈ A} ∼= Ωi,f ,

E0 ={(z, ℓX , ℓY ) ∈ E|ℓX(0) = f(z), ℓY (0) = g(z), ℓX(1) ∈ A, ℓY (1) ∈ B} = Ωi×j,(f,g),

where c(w) denotes the constant path at w. Then we have E = E1 ∪E2 and E1 ∩E2 = E0. We

can easily show that Ωj,g and Ωi,f are deformation retracts of E1 and E2, respectively. Also,

the inclusions of E0 in E1 and E2 are, up to homotopy, given by ψ and φ. Hence E has the

homotopy type of the (unreduced) homotopy push-out Ωj,g ∪ {[0, 1] × Ωi×j,(f,g)} ∪ Ωi,f . QED.

3 Proof of Theorem 1.1

Let Em+1 be the homotopy fibre of the inclusion X [m+1] → Xm+1 and Pm, which is so-called

the Ganea space, be the homotopy pull-back of

X [m+1]

X Xm+1,

y

u
w

∆m+1

where X [m+1] = {(x0, ...xm) ∈ Xm+1|xt = ∗ for some t} and ∆m+1 denotes the diagonal.

Let us recall that catX ≤ m if and only if the diagonal map ∆m+1 is compressible into

X [m+1]. The latter condition is clearly equivalent to the existence of a homotopy cross-section

of the projection Pm → X.

Now we take Z = X, Y = Xm, f = 1X , g = ∆m, A = {∗}, and B = X [m] and we then have
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Ωk,(f,g) = Pm, Ωi,f ≅ ∗, Ωj,g = Pm−1 and the following pull-back diagram:

Ωj Ωi×j,(f,g) Ωi,f

PB

Ωj Ωj,g Z.

w

u

w

u
w w

Since f = 1X and A = {∗}, Ωi,f is contractible, and hence Ωi×j,(f,g) is homotopy equivalent

to Ωj the fibre of Ωj,g → Z, in this case. Here j is the inclusion map X [m] ⊂ Xm, and hence Ωj

is Em by definition. Thus we have the following push-out and pull-back diagram:

Em Pm−1

HPO

{∗} Pm X×X [m] ∪ {∗}×Xm

HPB

X X×Xm

w

u

y

u
z w w

u

y

u

k

w
∆m+1

Hence Pm has the homotopy type of a (unreduced) mapping cone of the canonical inclusion

Em ⊂ Pm−1, m ≥ 1.

Similarly using Lemma 2.1, we have the following push-out and pull-back diagram:

ΩX×Em Em

HPO

ΩX Em+1 X×X [m] ∪ {∗}×Xm

HPB

{∗} X×Xm

w
pr2

u

pr1

y

u
z w w

u

y

u
k

w
∗

Hence Em+1 has the homotopy type of the (unreduced) join of ΩX and Em. This implies

that {(Em+1, Pm); m ≥ 0} gives the A∞-structure for ΩX in the sense of Stasheff. Thus Pm

has the homotopy type of Pm(ΩX) the ΩX-projective m-space. This implies Theorem 1.1.

5



4 Product formulas

Firstly we prove Theorem 1.2. We define a modified A∞-structure for ΩX×ΩY as follows:

P̂m =
∪

a+b=m

P a(ΩX)×P b(ΩY ) ⊂ P∞(ΩX)×P∞(ΩY ),

Êm+1 =
∪

a+b=m

Ea+1(ΩX)×Eb+1(ΩY ) ⊂ E∞(ΩX)×E∞(ΩY ).

Then we immediately obtain that Êm is contractible in Êm+1 and P̂m+1 has the homotopy type

of the mapping cone of the projection Êm+1 → P̂m. By Stasheff [11], this gives an A∞-structure

for ΩX×ΩY and the inclusion Pm(ΩX×ΩY ) ⊂ P∞(ΩX×ΩY ) = P∞(ΩX)×P∞(ΩY ) can be

deformed into the subspace P̂m ⊂ P∞(ΩX)×P∞(ΩY ). Also we know that cat P̂m ≤ m. Then

by Theorem 1.1, Theorem 1.2 follows.

Remark 4.1 Since P̂m has the homotopy type of the mapping cone of Êm → P̂m−1, cat P̂m ≤

m for all m ≤ ∞.

This immediately implies Corollary 1.2.1.

Next we show Corollary 1.2.2: Let X satisfy catX×Sn = m = catX. Then by The-

orem 1.2, X×Sn is dominated by
∪

a+b=m P a(ΩX)×P b(ΩSn) and hence by Pm(ΩX)×{∗} ∪

Pm−1(ΩX)×P∞(ΩSn) ≅ Pm(ΩX) ∪ Pm−1(ΩX)×Sn. This implies the Corollary 1.2.2.

5 Counter Examples to Ganea’s conjecture

To show Theorem 1.3, it is sufficient to construct the following

Example 5.1 1) For an odd prime p, let α be the generator of the p-primary summand of

π4p−3(S
2) which is isomorphic with Z/pZ and Qp = S2 ∪α e4p−2. Then catQp = catp Qp = 2

and catQp×S1 = catp Qp×S1 = 3, but catQp×Sn = catp Qp×Sn = 2 for n ≥ 2.

2) For the prime 2, let α be the generator of the direct summand Z/4Z of π29(S
8) ∼= Z/4Z ⊕

(Z/2Z)3 and Q2 = S8 ∪2α e30. Then catQ2 = cat2 Q2 = 2, while catQ2×Sn = cat2 Q2×Sn = 2

for n ≥ 1.

In each case, we know that catq Qp = 1 and catq Qp×Sn = 2 for 0 ≤ q ̸= p and n ≥ 1.

All the examples in Example 5.1 are obtained by similar methods. We will concentrate on

part 1) of Example 5.1. First of all, let us recall that the Hopf map η : S3 → S2 induces an
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isomorphism η∗ : π∗(S
3) → π∗(S

2) for ∗ ≥ 3. In particular, η∗ : π4p−3(S
3) → π4p−3(S

2) ∼= Z/3Z

is an isomorphism. So let α and β = α2
1(3) be the corresponding generators in π4p−3(S

2) and

π4p−3(S
3). Let Qp be the mapping cone of α. To avoid too much calculation of homotopy

groups, we consider β rather than α. We show the following lemma which is well-known for

experts.

Lemma 5.2 The map β = α2
1(3) is not a suspension map but a co-Hopf map of order p, whose

iterated suspensions Σtβ are trivial for t ≥ 2 but Σβ ̸= 0.

Proof. We can easily obtain the latter part of the lemma by examing Theorem 13.4 in [14].

In fact, π4p−1(S
5) has no elements of order p. Thus Σ2β is trivial. However we know that the

suspension homomorphism π∗(X) → π∗+1(ΣX) is a split monomorphism for any Hopf space X

(due to James). Thus π4p−3(S
3) → π4p−2(S

4) is a split monomorphism, and hence, Σβ gives a

non-trivial generator of a direct summand of order p.

Thus it remains to show the first part of the lemma: Since the finite group π4p−4(S
2) has no

p-torsion, β cannot be a suspension. In [9], Saito has extended the results of Berstein-Hilton [1]

which describes the obstruction for a general map to be a co-Hopf map using Ganea’s criterion

for a co-Hopf space: Let f : X → Y be a map of simply connected co-Hopf spaces. Then

the obstruction to f being a co-Hopf map is an element H(f) ∈ [X, ΩY ∗ΩY ], where H is the

generalised Hopf invariant homomorphism H : [X,Y ] → [X, ΩY ∗ΩY ]. In our case, H(β) lies in

π4p−3(ΩS3∗ΩS3) ∼= π4p−3(ΩS3∧ΣΩS3)

∼= π4p−3(ΩS3∧Σ(S2 ∪ e4 ∪ ... ∪ e4p−4 ∪ (higher cells ≥ 4p − 2)))

∼= π4p−3(ΩS3∧Σ(S2 ∨ S4 ∨ ... ∨ S4p−4))

∼= π4p−3(Σ(S2 ∨ S4 ∨ ... ∨ S4p−4)∧(S2 ∨ S4 ∨ ... ∨ S4p−4))

∼= π4p−3(Σ{S2+2 ∨ S4+2 ∨ S2+4 ∨ ... ∨ S4p−6+2 ∨ ... ∨ S2+4p−6})

∼= π4p−3(Σ{S4 ∨ S6 ∨ S6 ∨ ... ∨ S4p−4 ∨ ... ∨ S4p−4})

∼= π4p−4(J(S4 ∨ S6 ∨ S6 ∨ ... ∨ S4p−4 ∨ ... ∨ S4p−4))

∼= π4p−4(J(S4)×J(S6 ∨ S6 ∨ ... ∨ S4p−4 ∨ ... ∨ S4p−4))

∼= π4p−4(J(S4)×J(S6)×J(S6)×...×J(S4p−4)×...×J(S4p−4))

∼= π4p−3(S
5)⊕π4p−3(S

7)⊕π4p−3(S
7)⊕...⊕π4p−3(S

4p−3)⊕...⊕π4p−3(S
4p−3),

which has no element of order p by [14], where J(X) denotes the James’ reduced product space

of X (see Whitehead [15]). Since the order of β is p, H(β) is trivial and we obtained the
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lemma. QED.

We show the following proposition which was shown by Gilbert [5] working with the notion

of wcat.

Proposition 5.3 The map α = ηβ = ηα2
1(3) is not a co-H-map and the obstruction is described

by the 2nd James-Hopf invariant h2(α) = β, which is a generator of the p-primary summand

of π4p−3(S
3) which is isomorphic with Z/pZ:

µ2α ≅ (α ∨ α)µ4p−3 +4p−3 [i1, i2]β

where we denote by µk : Sk → Sk ∨ Sk the (unique) co-Hopf structure of the sphere Sk and by

+k the multiplication induced by the co-Hopf structure of sphere Sk.

Proof. There is a well-known formula for the Hopf map η:

µ2η ≅ (η ∨ η)µ3 +3 [i1, i2]

in π3(S
2 ∨ S2) where it : X → X ∨X is the inclusion to the t-th factor. Since α ≅ ηβ, we have

the homotopy relation µ2α ≅ µ2ηβ ≅ {(η ∨ η)µ3 +3 [i1, i2]}β in π4p−3(S
2 ∨ S2). Since β is a

co-Hopf map by Lemma 5.2, this is homotopy equivalent to

(η ∨ η)µ3β +4p−3 [i1, i2]β ≅ (ηβ ∨ ηβ)µ4p−3 +4p−3 [i1, i2]β ≅ (α ∨ α)µ4p−3 +4p−3 [i1, i2]β.

This implies that h2(α) ≅ β which gives the obstruction to α being a co-Hopf map and

hk(α) = 0 for k ≥ 3. QED.

To determine the LS category of Qp and Qp×Sn, we need to show the following lemma.

Lemma 5.4 The following diagram, without the dotted arrow, commutes up to homotopy.

S4p−3 S2 Qp

S1∗S1

ΩQp∗ΩQp ΣΩQp Qp

P 2ΩQp

w
α

uβ

z w
i

y

u

ΣΩiΣj1

u

1Qp

i
i

i
i

i
i

i
ik

λy

u(Ωi∗Ωi)(j1∗j1)

w
p

Qp
1

w

evQp

0'
'')

ι
Qp
1

[
[[]

e
Qp
2

where i : S2 → Qp and jt : St → ΩSt+1 give the bottom cell inclusions and p
Qp

1 denotes the

Hopf construction of the loop addition of ΩQp, ι
Qp

1 : ΣΩQp → P 2ΩQp denotes the inclusion to

the mapping cone of p
Qp

1 and e
Qp

t : P tΩQp ⊂ P∞ΩQp ≅ Qp denotes the canonical inclusion.
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Proof. The commutativity of the right half square of the diagram and the triangle below are

clear. So we concentrate on showing the commutativity of the left half square of the diagram.

There is the following homotopy commutative diagram due to Ganea:

S1∗S1 S2 ∨ S2 S2 × S2

ΩQp∗ΩQp Qp ∨ Qp Qp × Qp.

w
[i1,i2]

y

u

(Ωi∗Ωi)(j1∗j1)

z w

y

u

i∨i

y

u

i×i

w
q

Qp
1

z w

By Proposition 5.3, we have

(i ∨ i)µ2α ≅ (iα ∨ iα)µ4p−3 +4p−3 (i ∨ i)[i1, i2]β ≅ (i ∨ i)[i1, i2]β ≅ q
Qp

1 (Ωi∗Ωi)(j1∗j1)β.

Also Ganea showed, for any co-Hopf space X, that there exists a map (shown as a dotted

arrow) corresponding uniquely to the co-Hopf structure so that the following diagram commutes

up to homotopy:
ΩX∗ΩX ΩX∗ΩX

X

ΣΩX X ∨ X

HPB

X X×X.

u

pX
1

u

qX
1\

\]
N
N
N
N
N
N
N
NNP

1X

h
h
h
h
h
h
hj

µX

w
πX

u

evX

y

u
w

∆X

(5.1)

Since a sphere has a unique co-Hopf structure, we have µ2 ≅ πS2
Σj1 and hence

(i ∨ i)µ2 ≅ (i ∨ i)πS2

Σj1 ≅ πQpΣΩiΣj1.

Thus we get the following relation:

πQpΣΩiΣj1α ≅ (i ∨ i)µ2α ≅ q
Qp

1 (Ωi∗Ωi)(j1∗j1)β ≅ πQpp
Qp

1 (Ωi∗Ωi)(j1∗j1)β.

Here the diagram 5.1 is a pull-back diagram. Since qX
1 induces a split monomorphism on

homotopy groups, ΣΩiΣj1α is determined, up to homotopy, by the equations

evQpΣΩiΣj1α ≅ ievS2Σj1α ≅ i1S2α ≅ ∗ ≅ evQpp
Qp

1 (Ωi∗Ωi)(j1∗j1)β,

πQpΣΩiΣj1α ≅ πQpp
Qp

1 (Ωi∗Ωi)(j1∗j1)β.

Therefore we have that ΣΩiΣj1α ≅ p
Qp

1 (Ωi∗Ωi)(j1∗j1)β. QED.
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Remark 5.5 There exists a map λ : Qp → P 2ΩQp given by the homotopy deforming ΣΩiΣj1α

in ΣΩQp to α′ = p
Qp

1 |S1∗S1β and by χ̂|C(S1∗S1)C(β), where we denote by C the functor taking

cones and χ̂ : (C(ΩQp∗ΩQp), ΩQp∗ΩQp) → (P 2ΩQp, ΣΩQp) the characteristic map of the

attached cone of the mapping cone space P 2ΩQp of p
Qp

1 .

The following theorem is a special case of a result of Berstein-Hilton [1], or Gilbert [5].

However we include a proof as it contains the idea used to determine the LS category of

Qp×Sn.

Theorem 5.6 catp Qp = catQp = 2 but catq Qp = 1 for q ̸= p.

Proof. For the prime p, we compute the homotopy group π4p−3(ΩQp∗ΩQp), where the element

(Ωi∗Ωi)(j1∗j1)β lies:

π4p−3(ΩQp∗ΩQp) ∼= π4p−3((ΩS2 ∪ (higher cells ≥ 4p − 3))∧Σ(ΩS2 ∪ (higher cells ≥ 4p − 3)))

∼= π4p−3(ΩS2∧ΣΩS2)

∼= π4p−3(Σ{S1+1 ∨ S2+1 ∨ S1+2 ∨ (higher spheres ≥ 4)}).

Hence π4p−3(S
1∗S1) is a direct summand of π4p−3(ΩQp∗ΩQp). As (Ωi∗Ωi)(j1∗j1) is the bottom

cell inclusion, (Ωi∗Ωi)(j1∗j1)β gives a generator of p-torsion subgroup of π4p−3(ΩQp∗ΩQp).

By Sugawara [12], the projection p
Qp

1 is a quasi-fibration with the fibre ΩQp which is con-

tractible in the total space ΩQp∗ΩQp. Thus we have the following (split) short exact sequence:

0 → πt(ΩQp∗ΩQp) → πt(ΣΩQp) → πt(Qp) → 0 (5.2)

Since ΣΩiΣj1 is the bottom cell inclusion, it gives a generator of π2(ΣΩQp) = Z. Hence, if

catQp = 1, in other words, if Qp is dominated by ΣΩQp, then there is an embedding of Qp in

ΣΩQp whose restriction to S2 is given by ΣΩiΣj1 and hence ΣΩiΣj1α should be trivial. This

contradicts the exactness of (5.2) at t = 4p − 3, and hence we obtain catp Qp = 2.

On the other hand, if q ̸= p, then β = 0 and, by Lemma 5.4, the bottom cell inclusion

ΣΩiΣj1 can be extended to a map λ′
1 : Qp → P 2ΩQp. The difference of 1Qp and λ′

1 in Qp is

described by γ′
1 ∈ π4p−2(Qp). By the exactness of (5.2) at t = 4p− 2, γ′

1 can be pulled back on

ΣΩQp to γ1 ∈ π4p−2(ΣΩQp). Thus we can obtain the genuine compression λ1 of 1Qp to ΣΩQp

by adding γ1 to λ′
1. This implies that catq Qp = 1 for q ̸= p and it completes the proof of the

theorem. QED.
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Remark 5.7 The difference between the identity 1Qp and the map e
Qp

2 λ is given by an ele-

ment evQpγ ∈ π4p−2(Qp), where γ ∈ π4p−2(ΣΩQp), since π4p−2(ΣΩQp) → π4p−2(Qp) is a split

surjection.

Finally we calculate the LS category of Qp×Sn. The attaching map of the top cell of Qp×Sn

is the map

α̂ : S4p−2∗Sn−1 = D4p−2×Sn−1 ∪ S4p−3×Dn → Qp×{∗} ∪ S2×Sn

which is given by

α̂|D4p−2×Sn−1 = χ×∗

α̂|S4p−3×Dn = α×χn

where χ : (D4p−2, S4p−3) → (Qp, S
2) denotes the characteristic map of the top cell of Qp and

χn : (Dn, Sn−1) → (Sn, {∗}) denotes the relative homeomorphism. Thus we have the following

equations for (λ×{∗} ∪ (ΣΩiΣj1)×1Sn)α̂:

(λ×{∗} ∪ (ΣΩiΣj1)×1Sn)α̂|D4p−2×Sn−1 = λχ×∗

(λ×{∗} ∪ (ΣΩiΣj1)×1Sn)α̂|S4p−3×Dn = ΣΩiΣj1α×χn

As for the space Qp×Sn, the space P 2ΩQp×Sn is also the mapping cone of

p̂
Qp

1 : (ΩQp∗ΩQp)∗Sn−1 = C(ΩQp∗ΩQp)×Sn−1∪ (ΩQp∗ΩQp)×Dn → P 2ΩQp×{∗}∪ΣΩQp×Sn

which is given by

p̂
Qp

1 |C(ΩQp∗ΩQp)×Sn−1 = χ̂×∗

p̂
Qp

1 |(ΩQp∗ΩQp)×Dn = p
Qp

1 ×χn

where χ̂ : (C(ΩQp∗ΩQp), ΩQp∗ΩQp) → (P 2ΩQp, ΣΩQp) denotes the characteristic map of the

attached cone of the mapping cone P 2ΩQp. By Remark 5.5, the bottom cell inclusion ΣΩiΣj1

can be extended to λ : Qp → P 2ΩQp which is a compression of the identity. More precisely, λ is

the homotopy given by the composition of the homotopy of ΣΩiΣj1α in ΣΩQp to α′ = p
Qp

1 |S3β

and the null-homotopy C(β) in C(ΩQp∗ΩQp). The former part of the homotopy λ also gives

the homotopy of ΣΩiΣj1α×χn to α′×χn. Thus we have that (λ×{∗} ∪ (ΣΩiΣj1)×1Sn)α̂ is

homotopic to α̂′ which is given by

α̂′|D4p−2×Sn−1 = χ̂|C(S1∗S1)C(β)×∗ = p̂
Qp

1 |C(S1∗S1)×Sn−1(C(β)×1Sn−1),

α̂′|S4p−3×Dn = (p
Qp

1 |S1∗S1β)×χn = p̂
Qp

1 |(S1∗S1)×Dn(β×1Dn).
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Thus α̂ is homotopic in P 2ΩQp ×{∗}∪ΣΩQp×Sn to p̂
Qp

1 |(S1∗S1)∗Sn−1(β∗1Sn−1). This yields the

following proposition.

Proposition 5.8 The following diagram, without the dotted arrow, commutes up to homotopy.

S4p−3∗Sn−1 Qp×{∗} ∪ S2×Sn Qp×Sn

(S1∗S1)∗Sn−1

(ΩQp∗ΩQp)∗Sn−1 P 2ΩQp × {∗} ∪ ΣΩQp×Sn P 2ΩQp×Sn Qp×Sn

w
α̂

u

β∗1Sn−1

z w

y

u

λ×{∗}∪(ΣΩiΣj1)×1Sn

u

λ×1Sn

\
\
\
\
\
\
\
\
\
\
\
\]

1Qp×1Sn

y

u

((Ωi∗Ωi)(j1∗j1))×1Sn−1

w
p̂

Qp
1

z w w
e
Qp
2 ×1Sn

Since β∗1Sn−1 ≅ ±Σ(β∧1Sn−1) ≅ ±Σnβ, we have established the following result.

Proposition 5.9 1Qp×1Sn can be compressed into P 2ΩQp × {∗} ∪ ΣΩQp×Sn, for n ≥ 2.

Proof. In the case when n ≥ 2, β∗1Sn−1 is trivial. Since the inclusion P 2ΩQp × {∗} ∪

ΣΩQp×Sn → P 2ΩQp×Sn induces a split epimorphism in the homotopy groups, a similar

argument to that used in the proof of Theorem 5.6 leads us the conclusion that there is a com-

pression δ of λ×1Sn to P 2ΩQp×{∗} ∪ ΣΩQp×Sn. Moreover, we may assume the compression

homotopy leaves the subspace Qp×{∗}∪S2×Sn fixed. By Remark 5.7, the identity 1Qp is given

from e
Qp

2 λ by adding an element evQpγ, γ ∈ π4p−2(ΣΩQp). We define a map δ2 by

δ2 : Qp×Sn µ×1Sn→ (Qp ∨ S10)×Sn = Qp×Sn ∪ S10×Sn P 2ΩQp×{∗} ∪ ΣΩQp×Sn,w
δ∪(γ×1Sn )

where µ denotes the co-action of S4p−2. Since δ is homotopic to λ in P 2ΩQp×Sn with the

subspace {∗}×Sn left fixed, δ2 is homotopic to

(λ + γ)×1Sn : Qp×Sn µ×1Sn→ (Qp ∨ S10)×Sn = Qp×Sn ∪ S10×Sn P 2ΩQp×Sn,w
(λ×1Sn)∪(γ×1Sn )

in P 2ΩQp×Sn which is a compression of 1Qp×1Sn . Thus δ2 : Qp×Sn → P 2ΩQp×{∗} ∪

ΣΩQp×Sn gives the compression of 1Qp×1Sn . QED.

Thus we have 2 = catp Qp ≤ catp Qp×Sn ≤ catQp×Sn ≤ cat (P 2ΩQp×{∗} ∪ ΣΩQp×Sn) ≤

2, for n ≥ 2, and hence we have established our main theorem.

Theorem 5.10 catQp×Sn = catp Qp×Sn = 2, for n ≥ 2, while catQp×S1 = catp Qp×S1 = 3.

In the case when n = 1, we have Σβ ̸= 0. Then a similar argument to that used in

the proof of Theorem 5.6 leads us the conclusion that catQp×S1 = catp Qp×S1 = 3 while

catQp = catp Qp = 2. The details are left to the reader.
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