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Abstract

We show a method to determine topological complexity from the fibrewise
view point, which provides an alternative proof for tc(K) = 4, where K
denotes Klein bottle.
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1. Introduction

The topological complexity is introduced in [Far03] by M. Farber for a
space X and is denoted by TC(X): TC(X) is the minimal number m > 1
such that X x X is covered by m open subsets U; (1 <i<m), each of which
admits a continuous section s; : U; — P(X) = {u : [0,1] — X} for the
fibration w : P(X) — XxX given by u — (u(0),u(1)). Similarly, the
monoidal topological complexity of X denoted by TCM(X) is the minimal
number m > 1 such that X x X is covered by m open subsets U; DAX (1<
i<m), each of which admits a section s; : U; > P(X) of w : P(X) - X xX
such that s;(x,x) is the constant path at x for any (z,x)€U; N AX. In this
paper, we denote tc(X) = TC(X)—1 and tc™(X) = TCM(X)-1.

Let F = (E,B;p,s) be a fibrewise pointed space, i.e, p : E — B is a
fibrewise space with a section s : B — E. For a fibrewise pointed space
E'=(E',B’;p',s') and a fibrewise pointed map f : E'— E, we have pointed
and unpointed versions of fibrewise L-S category, denoted by catS(f) and
caty(f), respectively: catB(f) is the minimal number m > 0 such that E’
is covered by (m+1) open subsets U; and f; = f|y, is fibrewise pointedly
fibrewise compressible into s(B), and catg(f) is the minimal number m >0
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such that E is covered by (m+1) open subsets U; and f; = f|y, is fibrewise-
unpointedly fibrewise compressible into s(B). We denote cath(idg) =catE (E)
and catg(idg) = catg (E) (see [IS10]). Then by definition, tc(X) <tcM(X) for
a space X, caty(E) <catB(E) for a fibrewise pointed space E, and catp(f) <
catB(f), caty(f) < catg(E) and catB(f) < catB(E) for a fibrewise pointed
map f: F'— E.

n [Sak10], the m-th fibrewise projective space By*QpFE of a fibrewise
loop space QpFE is introduced and characterized with a natural map eZ
P"QpE — E. Using them, we can characterise numerical invariants in [IS10]:
firstly, the fibrewise cup-length cupg(E;h) is given by

max {m>0‘3{u1 um YCH*(E,s(B)) U1 " “Um 7’é 0}

Secondly, the fibrewise categorical weight wgtg(E; k) is the smallest number
m such that e : P"QpE — E induces a monomorphism of generalised co-
homology theory h*. Thirdly, the fibrewise module weight Mwgtg(E; h) is
the least number m such that eZ : P"QpE — E induces a split monomor-
phism of generalised cohomology theory h* as an h,h-module. The latter two
invariants are versions of categorical weight introduced by Rudyak [Rud98]
and Strom [Str00] whose origin is in Fadell-Husseini [FH92].

Theorem 1.1. cupg(E;h) < wetpg(FE;h) < Mwgtg(E;h) < catg(E) <
cats(F).

Proof. Let catg(E) = m. Then there is a covering of E with m+1 open
subsets {U;|0 < i <m} such that each U; can be compressed into s(B) C
E. So, there is an unpointed fibrewise homotopy of id : £ — F to a map
r; © E — E satisfying r;(U;) C s(B), which gives an unpointed fibrewise
compression of the fibrewise diagonal A : F — Hm+1 E into the fibrewise
fat wedge H%nﬂ] EC Hm+1 E. Since a continuous construction on a space
can be extended on a cell-wise trivial fibrewise space by [IS08], the fibrewise
projective m-space [5"C)p E has the fibrewise homotopy type of the fibrewise
homotopy pull-back of Ag : F — HmH E and the inclusion H?H] E C

71 E. Hence by James-Morris [JM91], we have a map o : E — B*QpE
Wthh is an unpointed fibrewise homotopy inverse of e : P"QpE — E, and
hence we obtain Mwgtg(E;h) < m = catg(E). Combining this with [IS10,
Theorem 8.6]', we obtain the theorem. ]

L As is mentioned in [IS12], the equality of tc™ and tc stated in [IS10, Theorem 1.13]
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From now on, we assume that (E, B;p,s) is given by E=XxX, B=X,
p=7proj; : XxX —- X and s=A : X - X xX the diagonal map, and so
we have caty(E) = tc(X) and catB(E) = tcM(X) by [I1S10, IS12]. Hence we
obtain the following by Theorem 1.1.

Theorem 1.2. wgtp(E;h) < Mwgtg(E;h) < te(X) < teM(X).

If h is the ordinary cohomology with coefficients in R, we write cupg(E; h),
wgtg(F; h) and Mwgt(E; h) as cupg(F; R), wgtp(E; R) and Mwgt(E; R), re-
spectively. We might disregard R later in this paper, if R = Fy the prime
field of characteristic 2.

As an application, we give an alternative proof of a result recently an-
nounced by several authors. Let K, be the non-orientable closed surface of
genus ¢ > 1, and denote K =K.

Theorem 1.3 (Cohen-Vandembroucq [CV]). For ¢>2, we have wgt(K,) =
Mwgt(K,) = tc(K,) = tcM(K,) = 4 and TC(K,) = TCM(K,) = 5.

Corollary 1.4. The fibration S* — K — S' is an example answering a
question by negative, which is raised by Mark Grant in [Gra12]: is TC(E) <
TC(F) x TC(B) always true for a fibration F—FE — B?

2. Fibrewise Resolution of Klein Bottle

For ¢>1, m(K,) is given by = (b, b, ..., by_1|b---02_,=b*). We know
that K, is a CW complex with one 0O-cell *, ¢ 1-cells b,b,...,b,—1 and one
2-cell oy.

For a = b1b~%, we know 72 = {a*b’|k, ¢ € Z} with a b
1—(—1)*

relation aba = b. Let us denote £(¢) = , which is
either Oor 1, to obtain af b1 a2bf2 = gkrtke=2e(C)kzplitls
bil(akbf)b$1 — afkbf and ail(akbé)a¥1 — akiZs(Z)bZ_ We aJ o ra
denote 7 = 77! to simplify expressions. We know the //
multiplication of 77 =7 (2K3) is inherited from the loop .
addition. Hence the natural equivalence QK, — 77 is an b
Aso-map, since a discrete group has no non-trivial higher structure on a given
multiplication.

is appeared to be an open statement. But the inequality in [IS10, Theorem 8.6] does not
depend on the open statement.



Let E, = (E,, By;pg, sq) be the fibrewise pointed space, where E, =
K, xK,, By = K,, p, =proj; : K;xK, — K, and s, = A : K, = K, xK,.
When ¢=2, we abbreviate Ey, Ky, 05 and 7} as F, K, o and 7, respectively
in this paper.

Let K = |J m(K;a,*) = K be the universal covering of K, and K =

acK
K x,qm— K be the associated covering space, where ‘ad’ is the equivalence
relation on K x7 given by ([k-A],g) ~ ([k], hgh™") for g, h =[\] € 7 and

(k] € m(K;a,x). We regard K = |J m (K, a). Since the fibrewise pointed
acK

space K=K XaaT— K is a fibrewise discrete group over K, it has a fibrewise
projective space by [Sak10]. In this paper, we define PJ'K = K X,qP™m as
a fibrewise projective space, where the adjoint action is given as follows:

hlgilga| -+ - lgm] = [hgrh™" |hgmh™']
for h € 7, [g1]ga| - - |gm] € P™r. By the definition given above, P2°K might

be considered as the fibrewise Bar construction of K over K , since the fibre
P>m = Br is the Bar construction of 7w, where 7 is the fibre of K over K.

Proposition 2.1 (Example 6.2 (4) of [IS10]). PrQgE ~p PPK for all
m>1.

Proof. For [y]=g€, we denote by QL E and K9 the connected components
of v € QpE and ([¥],g) € Kxam = K, respectively. Then the image of
m(Q%LE) in 7T1(K) is the centralizer of g, which is the same as 7r1(K9) Thus,
there is a lift Qgp OLE — K9 of Q%p = Qpplasp © QpE — K whose
restriction to the fibre on a is the natural map : Q(K a)n Q TE—m(K,a)N
K9. Hence we obtam a lift QBp OpE — K of Qpp : QpE — K given
by QBp|Qg = — 09y 5D, whose restriction to the fibre on a is the natural map
: Q(K,a) = m(K,a). Moreover, the restriction of Qpp to each fibre is a
pomted homotopy equlvalence since K is a K(m, 1) space. Then by Dold
[Dol55], QBp QpE — K is a fibrewise homotopy equivalence. Here, since
the section : K — Q3 E of Qyp : Q3 E — K given by trivial loops is a
fibrewise cofibration, QBp is a fibrewise pointed homotopy equivalence by
James [Jam95]. Moreover, @ is a fibrewise A.-map since each fibre of
K — K is a discrete set. Thus FrQpE ~p P];’,”IA(, m>1. ]

Now, we are ready to give the cell decomposition of Pé”[? ~p PP'QpE.



Firstly, the cell structure of K is given as follows: let Ay = {x}, Ay =
{(I, b}, AQZ{U}.

_ E— 0ol )l (] e2
K= U Ueg=¢eUeUeUe,.
0<k<2neAy

From now on, ef will be denoted by [n] for n € Ay, which is in the cellular
chain group ZA =7Z{*,a,b,0}, A = Ag U Ay U Ay. The boundary of [n] for
n € Ay is expressed in ZA as follows:

dln] =[], 0x=0, da=0, db=0 and Jdo = 2a,
Secondly, P™r is a A-complex in the sense of Hatcher [Hat02]:

Prr= U e,

In this paper, €” will be denoted by [w] or [g1]---|gn] for w = (g1,...,9n)
which is in the cellular chain group éna Q" Zm = énB Zz™. The boundary of
n=0 n=0

[w] is expressed as follows:

Olw] = [0w], Oow = (g2, --,Gn), 1=0,
n . az = yo s 91441, s Un )y 0<i< )
o= S (—1)idw, O (91 -+ GiGis1, -+ 5 Gn) O<isn
i=0 Onw = (g1,--+,9n-1), i=mn,

which coincides with the boundary in m-th filtration of Bar resolution of .

For 7€ Ay, and wen", [T|{w}] repre-
sents the same product cell as [T|[{TwT}]  [*[{bwb}] [bL{‘:’}] [*[{w}]
with orientation reversed, and we have
[T{w}] = —[TH{7wr}], (g1, 90)T = __
(To17, ..., TgnT). To observe this, let us [al {bacwab}] y
look at the end point of 7, where the fibre
lies: A l1-cell TisapathT:71=[0,1] - K - ——— _
which has a lift to a path 7: I — K with [rl{pawab}] Pl{awa)]  [l{awa)]
an initial data [\] € 7 (K, 7(1)) given by 7(t) = [r-A1, 1] € m(K,7(t)),
where we denote 7(s) = 7(t4+(1—1)s).

Thirdly, since QgFE is fibrewise A.-equivalent to K , PF'QpE is fibrewise
pointed homotopy equivalent to PJ'K. A k+n-cell of PyQgE ~p Pg‘[? =
K X aq P is described as a product cell of a k-cell [5] in K and a A n-cell
[w] in P, and is denoted by 6?7:5) ~ Int(C0%)x Int(A"™).

BreB = BPR = U U (e Uil Uehil Ueid))

0<n<m wenm &

[ol{w}] 4 lal{w}]
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In this paper, ez;’k) will be denoted by [n|{w}] or [n|{g1]|--|gn}], for

(m:w) = (7: g1, - ., gn) € Axxa™, in the cellular chain group C*(PPK:7) =
m m+1 m-+2

B ZAXT"D B ZA X7 1P B ZAyxn" 2.

n=0 n=1

n=2

Let [w]=[g1]g2| - - - |gn] be a A n-cell in P"K with g; € (K, 7(1)). Then
the boundary of a product cell [7|[{w}] of w with a 1-cell [7] of K is the union
of cells [T|[{0w}], 0<i<n, |[w] and [rwT|=[Tg:17|Tg2T| - - |Tg,T]. Similarly,
the boundary of a product cell [o|{w}] of w with a 2-cell [¢] of K is the union
of cells [o|{diw}], 0<i<n, [al{w}], [B{w}], [a|{bawab}] and [b|{awa}].

Then the modulo 2 boundary formula of a cell in Pg‘l? in the cellular
chain group C* (PB(”}? : Z./27) is given by the following, where, for any m,n€Z

and p>2, m(:)n implies that m is equal to n modulo p.
p

Proposition 2.2. 1. Since O[t|{w}]=[*{w}] U [*|{TwT}] UO<LiJ<n[T]{8iw}],

we have J[T|{w}] 5 [« {w}]+[*{rwT}]+[T[{Ow}] for T€ Ay and we T,

n

where [T{0w}]=>"(=1)[r|{diw}].

2. Since Olo|{w}]=[a|{w}|V]al{bawab}]U[b|{w}]Ub[{awa}]U U [o[{0w}],

we have d[o|{w}] [a]{w}]—1—[a|{bawd@}]—i—[b\{w}]+[b|{awcjz§~_]7—l|—[a|{8w}]

©)
for wen™, where [o|{0w}] = > (=1)[c|{Ow}].
i=0

3. Topological Complexity of non-orientable surface

Since P71 ~ K, we have H*(P*>7) = Fo{1, z,y, 2} with z=zy=yr =122,
where x, y are dual to [a], [0], respectively, the generators of H;(P>m) =
Fyla)®Fy[b]. We regard x and y are in Z'(P>®n) and z=ally is in Z?(P>®r). A
simple computation shows that [a*b‘] is homologous to k[a]+£[b] in Z,(P>T),
and we have z[a*b] = k and y[a*b*] = ¢. By definition of a cup product in a
chain complex, we obtain the following equality:

z[a¥1 b ak2b"2] = (xUy)[a*1 6% |a*2b"2] = z[a® D] -y[a*2b%2] = kil in P™r,

where we denote z|pm,, y

pmy and z|pm, again by x, y and z, respectively.

Proposition 3.1. 1. ek . Pr — P>®rx 5 K induces, up to dimension
2 in the ordinary Fo-cohomology, a monomorphism if m > 2, and an
isomorphism if m>3.



2. el PmK%P‘X’K = F induces, up to dimension 4 in the ordinary Fo-
cohomology, a monomorphism if m>4, and an isomorphism if m>5.

Proof. Since P™r is the m-skeleton of P*m, the pair (P°°m, P™7r) is m-
connected, and so is the fibrewise pair (POOK PmK ) over K. It implies the
proposition. O

By Proposition 3.1 (1), we can easily see the following propostion.

Proposition 3.2. The cocycle z represents the generator of H*(P™r) = F,
for m > 3.

Associated with the filtration {F;(m)=p;(K®)} of B"K ~p B"Q3E,
given by the CW filtration {*} = K© c K ¢ K® = K of K with
KW= {x}U €lay U e(py = S'VS', we have Serre spectral sequence E;*(m) =
Er*(BK) converging to H*(B"K) with EP!(m) = HPY(F,(m), F,_y(m)) =
HP(K® K®=1: H9(P™7)) the cohomology with local coefficients.

From now on, we denote a = (a®b"), 7 = (a*b",a*b®) and w =
(a*1b’, a*2b" a*3b%). Let functions : [a¥1b%|- - |a*"bf] — k; and ¢; by (k;)
and (¢;), respectively for 1 <i<mn. Then for a function f : Z*"*— Z, we obtain
a function (f({k;},{€:})) : [a*b% |-+ |a* "] — f({ki},{6;}). By Proposi-
tion 3.1, HY(PSK) = F, is generated by (e£)*([z2®2]), which comes from
E??(5) = H*(Fy(5), F1(5)) for dimensional reasons. By the isomorphism
HY(Fy(5), F1(5)) & H*(P°r), (ef)*[z®2] corresponds to [z] € H*(P5m) by
Proposition 3.2, and hence a representing cocycle w € Z4(1%5IA() of (ef)*[z®2]
can be chosen as a homomorphism defined by the formulae

wlo|{7}] = 2[7] = kily,  w|p ) = 0.
When 3 <m <5, we denote w\PBmf( again by w e Z4(Fy(m), F1(m)), which is
representing a generator of E;*(m). Furthermore, [w]#£0 in E22(m) if m >4
by Proposition 3.1.

Our main goal is to show [w] = 0 in H*(B}K): we remark here that
e(0) 5 { for (€7, since e({)=0 <= (—1)'=1 <= [ is even.

Firstly, let us introduce a numerical function given by the floor function.
Defninition 3.3. t(m) = [ %3] for m € Z.

Then we have t(0) =0 and we obtain the following.

Proposition 3.4. 1. {(—m) 5 t(m)+m,
2



2. t(m+n+20) 5 t(m)+t(n)+mn+t, for m,n,leZ.

Proof. This proposition can be obtained by straight-forward calculations,
and so we left it to the reader. O

Corollary 3.5. 1. t(ky)[07]| =t(koHH(k1+kot+2e(C1) ko HE (k1) = (€1+k1 ) ko,
2. (kit(ko))[Ow] = kot (k3)+ (k1+ka)t(ks) +kit(kotks+2e(lo)ks) +kit(ke) =
k1 (la+ks)ks.

Secondly, let an element ue C3(R3K) be given by the formulae below:
u[*|{w}] = klt(/fg)égk‘g + kl (€2k3+k2£3+]€2)t(k‘3),
ula{r}] =0, w[b{r}] = (k1t(k2))[r] and ulo[{a}] = 0.

Then du enjoys the following formulae by Propositions 2.2, 3.4 and Corollary
3.5 in C*(BK):

L (6u)[o|{}] 5 ula[{7}] + ulal[{a~ P2 pf g ka2 R)pt2 )]
Fulbl{T}] + ulb[{ah T |aF2 2R ) 4 ufo[{O7}]
= 0+ ha(t(k) (ko4 26(62)) 40 = hae(ls) = bl = wlol{7)]

2. (u){al{w}] = ulsl{w}] + ur{ah O b e gl

+ulal{Ow}]
(j) k1 (t(k2)+t(]€2+25(€2>>>€3k3

‘l'k’l (fzk’g—i—kgég—i—k’g)(t(k3)+t(kﬁ3+2€(£3))) + 0
(j) k1£<€2)€3]€3 + ]{?1 (£2k3+k2£3+k2)€(£3) (j) 0= w[a|{w}]
3. (Qu)pbHw}] = ul{w} + ul#[{a™"1b% [a~*2b2]a™ b }] + u[b|{Ow}]
5 i (t(ko)+t(—ko))lsks + ki (boks+kolz+ks)(t(k3)+t(—k3))
+ (K1t (k2))[0w]
(j) k?lk’gggkg + k?l (€2k3+k2€3+k32)k3 + ]{31(62—’—]{72)]{73 (j) 0= w[b|{w}]

Thus we obtain that du 5 w in C*(P3K), which enables us to show the

following.

Theorem 3.6. tcM(K) = tc(K) = wgtp(F) = wgtp(2®2) = 4.



Proof. By the above arguments, we have (ef)*(2®2) = [w] = [du] =
in H*(B;’[A(), and hence 0 # z®z € ker (ef)* which implies wgtg(F)
wgtg(z®z) > 4. On the other hand, Theorem 1.2 implies wgtg(F)
te(K) < tcM(K) < 2cat(K) < 2dim K =4. It implies the theorem.

OINIV o

Remark 3.7. Let uge C2(B2K) and wy € C3(P2K) be as follows:
uo[x[{7}] = (t(k1)loky + (Crkothilotkn)t(kr))[7],  wola{a}] =0,
uolbl{a}] = t(k1)[a], uolol{+}] =05 wolo|{a}] = yla] = f1, wolp @) = 0.
Then we can observe ¢ (uo)( )wo and [wo] =0 in H*(B2K), which would imply

wgtp(2®y) = 3.

Let ¢ > 2. Then by sending b to b, 1)1 to ab, and all other b;’s to 1,
1<i<gq, we obtain a homomorphism ¢, : 7{ —, since (ab)?=0? in 7. Then
¢4 induces maps B¢, : K,=Bm,— Br=K and " gbq PmK —>PmK such
that eﬁqo%m@ = (gqugbq)oef. Since ¢} : H*(K) — HQ(KQ) is an isomor-
phism, z, := ¢%(z) is the generator of H*(K,) =F,. Hence (efq)*(zq@)zq) =
(63Eq)*o(qbq><¢q)*(z®z) = (%3@)*0(65)*@@2) = 0 by Theorem 3.6, and we
obtain 4 < wgtp(2,82,) < wgtp(E,). It implies the following.

Theorem 3.8. tc"(K,) = tc(K,) = wgtp(FE,) = wgtp(z,0z,) = 4 for all
q=>2.
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