Splitting off Rational Parts in Homotopy Types

Norio Iwase ${ }^{\mathrm{a}, 1}$ Nobuyuki Oda ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan
${ }^{\text {b }}$ Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan

Abstract

It is known algebraically that any abelian group is a direct sum of a divisible group and a reduced group (See Theorem 21.3 of [6]). In this paper, conditions to split off rational parts in homotopy types from a given space are studied in terms of a variant of Hurewicz map, say $\bar{\rho}:\left[S_{\mathbb{Q}}^{n}, X\right] \rightarrow H_{n}(X ; \mathbb{Z})$ and generalised Gottlieb groups. This yields decomposition theorems on rational homotopy types of Hopf spaces, T-spaces and Gottlieb spaces, which has been known in various situations, especially for spaces with finiteness conditions.

Key words: Rational splitting; Hopf sapce; G-space; T-space
1991 MSC: Primary 55P45, Secondary 55Q15, 55P62

Introduction

The Gottlieb group is introduced by Gottlieb [7,8] and the generalised Gottlieb set is introduced by Varadarajan [19]. Dula and Gottlieb obtained a general result on splitting a Hopf space off from a fibration as Theorem 1.3 of [5].

In this paper, we work in the category of spaces having homotopy types of CW complexes with base points and pointed continuous maps. A relation $f \sim g$
Email addresses: iwase@math.kyushu-u.ac.jp (Norio Iwase), odanobu@cis.fukuoka-u.ac.jp (Nobuyuki Oda).
${ }^{1}$ The first named author is supported by the Grant-in-Aids for Scientific Research \#14654016 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
${ }^{2}$ The second named author is supported by the Grant-in-Aids for Scientific Research \#15340025 from the Japan Society for the Promotion of Science.
indicates a pointed homotopy relation of maps f and g and a relation $X \simeq Y$ indicates a homotopy equivalence relation of spaces X and Y. We also denote by $[X, Y]$ the set of pointed homotopy classes of maps from X to Y.

We adopt some more conventional notations: $X_{\mathbb{Q}}$ stands for the rationalisation of a space $X, K(\pi, n)$ for the Eilenberg-Mac Lane space of type $(\pi, n), G(V, X)$ for the generalised Gottlieb subset of $[V, X]$ and $H_{n}(X)$ for $H_{n}(X ; \mathbb{Z})$. We introduce a variant of Hurewicz map $\bar{\rho}:\left[S_{\mathbb{Q}}^{n}, X\right] \rightarrow H_{n}(X)$ by $\bar{\rho}(\alpha)=\alpha_{*}\left(\left[S^{n}\right] \otimes 1\right)$ for $\alpha \in\left[S_{\mathbb{Q}}^{n}, X\right]$, where α_{*} is the homomorphism given by $\alpha_{*}: H_{n}\left(S^{n}\right) \otimes \mathbb{Q}=$ $H_{n}\left(S_{\mathbb{Q}}^{n}\right) \rightarrow H_{n}(X)$. Our main result is described as follows:

Theorem 2.2. Let $R=\oplus_{\lambda \in \Lambda} \mathbb{Q}$ be a \mathbb{Q}-vector space of dimension $\# \Lambda \leq$ ∞. Let X be 0 -connected and $R \subset \bar{\rho}\left(G\left(S_{\mathbb{Q}}^{n}, X\right)\right) \subseteq H_{n}(X), n \geq 2$. Then X decomposes as

$$
X \simeq Y \times K(R, n)
$$

Theorem 2.2 gives unified proof to the splitting phenomena on rational G space, T-space and Hopf space without assuming any finiteness conditions, which are proved under various situations by a number of authors: Scheerer [17] obtained decomposition theorems of rational Hopf spaces without assuming the finite type assumptions. Oprea [16] obtained decomposition theorems by using minimal model method in rational homotopy theory. Aguadé [2] obtained a decomposition theorems on rational T-spaces of finite type.

1 Preliminaries

We regard the one point union $X \vee Y$ of spaces X and Y as a subspace $X \times * \cup$ $* \times Y$ of the product space $X \times Y$ with the inclusion map $j: X \vee Y \rightarrow X \times Y$. For any collection of a finitely or infinitely many spaces $X_{\lambda}(\lambda \in \Lambda)$, we denote the wedge sum (or one point union) by $\bigvee_{\lambda \in \Lambda} X_{\lambda}$ and the direct sum (or weak product) by $\oplus_{\lambda \in \Lambda} X_{\lambda}=\left\{\left(x_{\lambda}\right) \in \prod_{\lambda \in \Lambda} X_{\lambda} \mid x_{\lambda}=*\right.$ except for finitely many $\left.\lambda\right\}$. Then we have $\bigvee_{\lambda \in \Lambda} X_{\lambda} \subset \oplus_{\lambda \in \Lambda} X_{\lambda}$, where $\oplus_{\lambda \in \Lambda} X_{\lambda}$ is a dense subset of the product space $\prod_{\lambda \in \Lambda} X_{\lambda}$ and has the weak topology with respect to finite products of X_{λ} 's.

Let X_{∞} be the James reduced product space of a 0 -connected space X of finite type, so that $X_{\infty} \simeq \Omega(\Sigma X)$ by James [11]. Then X_{∞} is a nice CW approximation of a space $\Omega \Sigma X$ to work in the category of spaces having homotopy types of CW complexes.

We apply rationalisation or \mathbb{Q}-localisation to any 0 -connected nilpotent spaces or any nilpotent groups (see [4], [10] or [14] for the precise definition of the
rationalisation of a space or a nilpotent group). The rationalisation $\ell_{\mathbb{Q}}: X \rightarrow$ $X_{\mathbb{Q}}$, or simply $X_{\mathbb{Q}}$ does exist for such spaces X such that $\ell_{\mathbb{Q}}$ induces the following isomorphisms:

$$
\pi_{n}\left(X_{\mathbb{Q}}\right) \cong \pi_{n}(X) \otimes \mathbb{Q} \quad \text { and } \quad H_{n}\left(X_{\mathbb{Q}}\right) \cong H_{n}(X) \otimes \mathbb{Q}
$$

for any integer $n \geq 1$, where $G \otimes \mathbb{Q}$ denotes the rationalisation of a nilpotent group G (cf. [4], [10] or [14]). Moreover the universality of rationalisation yields a bijection

$$
\ell_{\mathbb{Q}}^{*}:\left[X_{\mathbb{Q}}, Y_{\mathbb{Q}}\right] \cong\left[X, Y_{\mathbb{Q}}\right]
$$

for any such spaces X and Y. The rationalisation enjoys the following fact.
Fact 1.1 (1) $S_{\mathbb{Q}}^{2 m+1} \simeq K(\mathbb{Q}, 2 m+1)$ for any integer $m \geq 0$.
(2) $\Omega\left(S_{\mathbb{Q}}^{2 m+1}\right) \simeq\left(\Omega S^{2 m+1}\right)_{\mathbb{Q}} \simeq K(\mathbb{Q}, 2 m)$ for any integer $m \geq 1$.
(3) $\left(X_{\infty}\right)_{\mathbb{Q}} \simeq\left(X_{\mathbb{Q}}\right)_{\infty}$ for X a 0-connected nilpotent space of finite type.

Proof. (1) and (2) are well-known. We give here a brief explanation for (3): The suspension functor Σ and the loop functor Ω enjoys the properties $\Sigma\left(X_{\mathbb{Q}}\right) \simeq(\Sigma X)_{\mathbb{Q}}$ for any 0 -connected space X and $\Omega\left(X_{\mathbb{Q}}\right) \simeq(\Omega X)_{\mathbb{Q}}$ for any 1 -connected space X. Then it follows that $\left(X_{\infty}\right)_{\mathbb{Q}} \simeq(\Omega(\Sigma X))_{\mathbb{Q}} \simeq$ $\Omega\left(\Sigma\left(X_{\mathbb{Q}}\right)\right) \simeq\left(X_{\mathbb{Q}}\right)_{\infty}$.

We state two propositions to be used in the proof of the main theorem.
Proposition 1.2 Let X be a 0-connected space of finite type and $f: X \rightarrow Y$ a map. If $f \in G(X, Y)$, then there is an extension $\bar{f}: X_{\infty} \rightarrow Y$ of f such that $\bar{f} \in G\left(X_{\infty}, Y\right)$.

Proof. We may assume that there is a map $\mu: Y \times X \rightarrow Y$ such that $\mu \mid Y \times\{*\}=1_{Y}: Y \rightarrow Y$ and $\mu \mid\{*\} \times X=f: X \rightarrow Y$. We put $\mu_{1}=\mu$ and, for any n we define

$$
\mu_{n}=\mu \circ\left(\mu_{n-1} \times 1_{X}\right): Y \times X^{n}=\left(Y \times X^{n-1}\right) \times X \rightarrow Y \times X \rightarrow Y
$$

by induction on n. Then we observe that μ_{n} factors through $Y \times X^{n} \rightarrow Y \times X_{n}$, where X_{n} denotes the set of products of at most n elements of X in the James reduced product space X_{∞} (cf. James [11]). Since X_{∞} has a weak topology with respect to X_{n}, we have done.

Proposition 1.3 Let $\alpha_{\lambda}: X_{\lambda} \rightarrow Z$ be a map for any $\lambda \in \Lambda$. If $\alpha_{\lambda} \in G\left(X_{\lambda}, Z\right)$ for each $\lambda \in \Lambda$, then the map $\alpha: \bigvee_{\lambda \in \Lambda} X_{\lambda} \rightarrow Z$ defined by $\alpha \mid X_{\lambda}=\alpha_{\lambda}: X_{\lambda} \rightarrow$ Z can be extended to a map $\bar{\alpha}: \oplus_{\lambda \in \Lambda} X_{\lambda} \rightarrow Z$ with $\bar{\alpha} \in G\left(\oplus_{\lambda \in \Lambda} X_{\lambda}, Z\right)$.

Proof. Since each X_{λ} has a homotopy type of a CW complex, we may assume that there is a map $\mu_{\lambda}: Z \times X_{\lambda} \rightarrow Z$ such that $\mu_{\lambda} \mid\{*\} \times X_{\lambda}=\alpha_{\lambda}: X_{\lambda} \rightarrow Z$
and $\mu_{\lambda} \mid Z \times\{*\}=1_{Z}: Z \rightarrow Z$ for each $\lambda \in \Lambda$. For any n and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, we define

$$
\mu_{\lambda_{1}, \cdots, \lambda_{n}}=\mu_{\lambda_{n}} \circ\left(\mu_{\lambda_{1}, \cdots, \lambda_{n-1}} \times 1_{X_{\lambda_{n}}}\right): Z \times\left(X_{\lambda_{1}} \times \cdots \times X_{\lambda_{n-1}} \times X_{\lambda_{n}}\right) \rightarrow Z
$$

by induction on n. For any index set Λ, we assume that Λ is totally-ordered. Since $\oplus_{\lambda \in \Lambda} X_{\lambda}$ has a weak topology with respect to $X_{\lambda_{1}} \times \cdots \times X_{\lambda_{n}}, \lambda_{1}, \cdots, \lambda_{n}$ ($n \geq 0$), the collection of maps $\mu_{\lambda_{1}, \cdots, \lambda_{n}}$ defines a pairing $\mu: Z \times\left(\oplus_{\lambda \in \Lambda} X_{\lambda}\right) \rightarrow$ Z with axes $\left(1_{Z}, \bar{\alpha}\right)$ (cf. [15]).

2 Proof of the main result

Proposition 2.1 Let P be an idempotent endomorphism of $H_{n}(X), n \geq 2$. Suppose that $R=\operatorname{im} P \subseteq H_{n}(X)$ is a rational vector space and is in im $\bar{\rho}$. Then we have maps $\alpha: S^{n}(R) \rightarrow X$ and $\beta: X \rightarrow K(R, n)$ such that

$$
\begin{aligned}
& \beta \circ \alpha \sim \iota_{R}^{n}: S^{n}(R) \rightarrow K(R, n), \text { and } \\
& P=\alpha_{*} \circ\left(\iota_{R *}^{n}\right)^{-1} \circ \beta_{*}: H_{n}(X) \rightarrow H_{n}(K(R, n)) \cong H_{n}\left(S^{n}(R)\right) \rightarrow H_{n}(X),
\end{aligned}
$$

where $S^{n}(R)$ denotes the Moore space of type (R, n) and ι_{R}^{n} corresponds to the identity element in $\operatorname{Hom}(R, R)=\operatorname{Hom}\left(\pi_{n}\left(S^{n}(R)\right), \pi_{n}(K(R, n))\right) \cong\left[S^{n}(R), K(R, n)\right]$.

Proof. Let $\left\{\bar{\rho}\left(\alpha_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ be a basis of $R=\operatorname{im} P$, and hence $R \cong \oplus_{\lambda \in \Lambda} \mathbb{Q}$. Since $S^{n}(R)=\bigvee_{\lambda \in \Lambda} S_{\mathbb{Q}}^{n}$, we define $\alpha: S^{n}(R) \rightarrow X$ by its restrictions to all factors:

$$
\left.\alpha\right|_{S_{\mathbb{Q}}^{n}}=\alpha_{\lambda}: S_{\mathbb{Q}}^{n} \rightarrow X .
$$

Since α_{*} is an isomorphism onto $R \subseteq H_{n}(X)$, we have its inverse $\phi: R \rightarrow$ $H_{n}\left(S^{n}(R)\right)$ so that $\phi \circ \alpha_{*}=\operatorname{id}_{H_{n}\left(S^{n}(R)\right)}$ and $\alpha_{*} \circ \phi=\operatorname{id}_{R}$. Now we define a homomorphism $s: H_{n}(X) \rightarrow \operatorname{im} P \cong H_{n}\left(S^{n}(R)\right)$ by $s=\phi \circ P$: Since $\operatorname{im} \alpha_{*}$ is in the image of an idempotent endomorphism P, we have $s \circ \alpha_{*}=\phi \circ P \circ \alpha_{*}=$ $\phi \circ \alpha_{*}=$ id. Also we have $\alpha_{*} \circ s=\alpha_{*} \circ \phi \circ P=P$. Thus s satisfies the following formulae:

$$
\begin{aligned}
& s \circ \alpha_{*}=\operatorname{id}: H_{n}\left(S^{n}(R)\right) \rightarrow H_{n}\left(S^{n}(R)\right), \\
& \alpha_{*} \circ s=P: H_{n}(X) \rightarrow H_{n}(X) .
\end{aligned}
$$

Let us recall that α induces the following commutative diagram:
where Ψ and Ψ^{\prime} are homomorphisms defined by taking the n-th homology groups, and are isomorphisms by the universal coefficient theorem. Since Ψ^{\prime} is an isomorphism, we define β to be the unique element $\Psi^{\prime-1}\left(\iota_{R *}^{n} \circ s\right)$ so that $\beta_{*}=\iota_{R *}^{n} \circ s$.

Firstly by $P=\alpha_{*} \circ s$, we have $P=\alpha_{*} \circ s=\alpha_{*} \circ\left(\iota_{\mathbb{Q} *}^{n}\right)^{-1} \circ \beta_{*}$.
Next we show $\beta \circ \alpha \sim \iota_{\mathbb{Q}}^{n}$. By the commutativity of the diagram (2.1), we have

$$
\Psi\left(\alpha^{*}(\beta)\right)=\left(\alpha_{*}\right)^{*} \circ \Psi^{\prime}(\beta)=\left(\alpha_{*}\right)^{*}\left(\iota_{\mathbb{Q} *}^{n} \circ s\right)=\iota_{\mathbb{Q} *}^{n} \circ s \circ \alpha_{*}=\iota_{\mathbb{Q} *}^{n}=\Psi\left(\iota_{\mathbb{Q}}^{n}\right) .
$$

Since Ψ is an isomorphism, we also have $\beta \circ \alpha=\alpha^{*}(\beta) \sim \iota_{\mathbb{Q}}^{n}$.

Let us recall that $G\left(S_{\mathbb{Q}}^{n}, X\right) \subset\left[S_{\mathbb{Q}}^{n}, X\right] \xrightarrow{\bar{\rho}} H_{n}(X)$. In the following theorem, we do not assume that X is rationalised nor that X is $(n-1)$-connected.

Theorem 2.2 Let $R=\oplus_{\lambda \in \Lambda} \mathbb{Q}$ be a \mathbb{Q}-vector space of dimension $\# \Lambda \leq$ ∞. Let X be 0 -connected and $R \subset \bar{\rho}\left(G\left(S_{\mathbb{Q}}^{n}, X\right)\right) \subseteq H_{n}(X), n \geq 2$. Then X decomposes as

$$
X \simeq Y \times K(R, n)
$$

Proof. Since a divisible submodule R is a direct summand of $H_{n}(X)$, there is an idempotent endomorphism $P: H_{n}(X) \rightarrow H_{n}(X)$ with im $P=R$. We fix a basis of R as $\left\{\bar{\rho}\left(\alpha_{\lambda}\right) \mid \alpha_{\lambda} \in G\left(S_{\mathbb{Q}}^{n}, X\right), \lambda \in \Lambda\right\}$.

By Proposition 2.1, there are maps $\alpha: S^{n}(R) \rightarrow X, \beta: X \rightarrow K(R, n)$ such that

$$
\begin{aligned}
& \beta \circ \alpha \sim \iota_{R}^{n}: S^{n}(R) \rightarrow K(R, n), \\
& P=\alpha_{*} \circ\left(\iota_{R *}^{n}\right)^{-1} \circ \beta_{*}: H_{n}(X) \rightarrow H_{n}(K(R, n)) \cong H_{n}\left(S^{n}(R)\right) \rightarrow H_{n}(X) .
\end{aligned}
$$

Then we extend the map α onto $K(R, n) \supseteq S^{n}(R)$ as $\bar{\alpha}: K(R, n) \rightarrow X$ by dividing our arguments in two cases:
(Case 1) n is an odd positive integer >1, namely, $n=2 m+1$ for some $m \geq 1$. Then we have $K(\mathbb{Q}, 2 m+1) \simeq S_{\mathbb{Q}}^{2 m+1}$, and hence by Proposition 1.3 we obtain the desired map.
(Case 2) n is an even positive integer, namely, $n=2 m$ for some $m \geq 1$. Since $\alpha_{\sigma} \in G\left(S_{\mathbb{Q}}^{2 m}, X\right)$, the map $\alpha_{\sigma}: S_{\mathbb{Q}}^{2 m} \rightarrow X$ can be extended to the James reduced product space by Proposition 1.2, say,

$$
\bar{\alpha}_{\sigma}:\left(S_{\mathbb{Q}}^{2 m}\right)_{\infty} \longrightarrow X, \bar{\alpha}_{\sigma} \in G\left(\left(S_{\mathbb{Q}}^{2 m}\right)_{\infty}, X\right),
$$

where we know $\left(S_{\mathbb{Q}}^{2 m}\right)_{\infty} \simeq\left(S_{\infty}^{2 m}\right)_{\mathbb{Q}} \simeq\left(\Omega \Sigma S^{2 m}\right)_{\mathbb{Q}} \simeq\left(\Omega S^{2 m+1}\right)_{\mathbb{Q}} \simeq \Omega\left(S_{\mathbb{Q}}^{2 m+1}\right)$ $\simeq \Omega K(\mathbb{Q}, 2 m+1) \simeq K(\mathbb{Q}, 2 m)$. Thus we have $\bar{\alpha}_{\sigma} \in G(K(\mathbb{Q}, 2 m), X)$. Hence
by Proposition 1.3, there is a map $\bar{\alpha}: K(R, 2 m)=\oplus_{\lambda \in \Lambda} K(\mathbb{Q}, 2 m) \rightarrow X$ extending $\alpha: S^{n}(R) \rightarrow X$. Then we obtain $\beta \circ \bar{\alpha} \sim \operatorname{id}_{K(R, n)}$, since the identity map id : $K(R, n) \rightarrow K(R, n)$ is the unique extension of $\iota_{R}^{n}: S^{n}(R) \rightarrow K(R, n)$, up to homotopy.

Thus in either case, we obtain a map $\bar{\alpha} \in G(K(R, n), X)$ such that

$$
\beta \circ \bar{\alpha} \sim \mathrm{id}: K(R, n) \longrightarrow K(R, n) .
$$

Let Y be the homotopy fibre of $\beta: X \rightarrow K(R, n)$. Then by Theorem 1.3 of Dula and Gottlieb [5], we obtain

$$
X \simeq Y \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y \times K(R, n)
$$

This completes the proof of the theorem.

3 Applications

A 0-connected space X is called a T-space if the fibration $\Omega X \rightarrow X^{S^{1}} \rightarrow X$ is trivial in the sense of fibre homotopy type (Aguadé [2]). If X is a 0 -connected Hopf space, then X is a T-space. Aguadé showed that 1-connected space X of finite type is a rational T-space if and only if X has the same rational homotopy type as a generalised Eilenberg-Mac Lane space, i.e., a product of (infinitely many) Eilenberg-Mac Lane spaces (Theorem 3.3 of [2]). Woo and Yoon showed that a space X is a T-space if and only if $G(\Sigma A, X)=[\Sigma A, X]$ for any space A by Theorem 2.2 of [20]. So, it might be more appropriate to call such space a generalised G-space. Then we have the following result by Theorem 2.2.

Theorem 3.1 Let $R=\oplus_{\lambda \in \Lambda} \mathbb{Q}$ be a finite or an infinite dimensional \mathbb{Q} vector space. Let X be a 0 -connected T-space and $R \subset \pi_{n}(X), n \geq 2$. If $\bar{\rho} \mid R: R \rightarrow H_{n}(X)$ is an injection and $\left[S_{\mathbb{Q}}^{n}, X\right]=G\left(S_{\mathbb{Q}}^{n}, X\right)$, then X decomposes as

$$
X \simeq Y \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y \times K(R, n), \quad \text { for a } T \text {-space } Y
$$

Proof. Firstly, we observe that $\ell_{\mathbb{Q}}^{*}$ is surjective: Let a be a generator of the \mathbb{Q}-vector space $R \subseteq \pi_{n}(X)$. Then we can use the telescope construction (cf. Adams [1], Sullivan [18]) to obtain a map $\alpha: S_{\mathbb{Q}}^{n} \rightarrow X$ such that $\alpha \circ \ell_{S^{n}} \sim$ $a: S^{n} \rightarrow X$. Thus we can choose a \mathbb{Q}-vector space $\bar{R} \subseteq\left[S_{\mathbb{Q}}^{n}, X\right]$ such that $\bar{R} \stackrel{\ell_{0}^{*}}{\cong} R$, and hence we have $\bar{\rho}(\bar{R})=\rho(R) \cong R$. Then by Theorem 2.11 of [20] and Theorem 2.2, we obtain the result.

Theorem 3.1 implies the following result as a direct consequence.
Corollary 3.2 Let $n \geq 2$. Let $R=\oplus_{\lambda \in \Lambda} \mathbb{Q}$ be a finite or an infinite dimensional \mathbb{Q}-vector space and assume that $R \subset \pi_{n}(X)$. If X is $(n-1)$-connected T-space, then X splits as

$$
X \simeq Y \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y \times K(R, n), \quad \text { for a } T \text {-space } Y
$$

A space X is called a G-space if $G_{n}(X)=\pi_{n}(X)$ for all n (cf. [8]). As a special case of Theorem 2.2, we have the following result for rational G-space. We remark that $\pi_{n}\left(X_{\mathbb{Q}}\right)=G_{n}\left(X_{\mathbb{Q}}\right)$ implies $\left[S_{\mathbb{Q}}^{n}, X_{\mathbb{Q}}\right]=G\left(S_{\mathbb{Q}}^{n}, X_{\mathbb{Q}}\right)$ for any n.

Theorem 3.3 Let $n \geq 2$. Assume that a rational space $X_{\mathbb{Q}}$ is an $(n-1)$ connected G-space. If $\pi_{n}\left(X_{\mathbb{Q}}\right) \cong \oplus_{\lambda \in \Lambda} \mathbb{Q}$, a finite or an infinite dimensional \mathbb{Q}-vector space, then $X_{\mathbb{Q}}$ decomposes as

$$
X_{\mathbb{Q}} \simeq Y_{\mathbb{Q}} \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y_{\mathbb{Q}} \times K\left(\pi_{n}\left(X_{\mathbb{Q}}\right), n\right),
$$

where $Y_{\mathbb{Q}}$ is an n-connected G-space.
Theorem 3.3 implies the following theorem (cf. [17]). For finite complexes or finite Postnikov pieces, it is known by Haslam [9] and Mataga [13].

Theorem 3.4 If X is a 1-connected space, then the following are equivalent:
(1) $X_{\mathbb{Q}}$ is a G-space.
(2) $X_{\mathbb{Q}}$ is a T-space.
(3) $X_{\mathbb{Q}}$ is a Hopf space.
(4) $X_{\mathbb{Q}}$ has the homotopy type of a generalised Eilenberg-Mac Lane space.

Corollary 3.5 Any k-invariant of a 1-connected G-space is rationally trivial.
We remark that Corollary 3.5 doesn't imply that a k-invariant of a 1 -connected G-space is of finite order. Now, $H_{*}\left(K\left(\oplus_{\lambda \in \Lambda} \mathbb{Q}, 2 m+1\right) ; \mathbb{Q}\right)$ is isomorphic to an exterior alebra and $H_{*}\left(K\left(\oplus_{\lambda \in \Lambda} \mathbb{Q}, 2 m\right) ; \mathbb{Q}\right)$ is isomorphic to a polynomial algebra as Hopf algebras. Thus we obtain a generalisation of Theorem 3.2 of Borel [3]:

Corollary 3.6 Let X be a 1-connected rational G-space, i.e., a G-space in the rational homotopy category. Then $X_{\mathbb{Q}}$ is a Hopf space and the Hopf algebra $H^{*}(X ; \mathbb{Q})$ is isomorphic (as an algebra) to the tensor product of the dual algebra of a polynomial algebra on even degree generators and the dual algebra of an exterior algebra on odd degree generators.

We remark that $\pi_{q}(X) \otimes \mathbb{Q}$ may be infinite dimensional for each $q \geq 1$, and hence $H_{q}(X ; \mathbb{Q})$ and its dual $H^{q}(X ; \mathbb{Q}) \cong \operatorname{Hom}\left(H_{q}(X ; \mathbb{Q}) ; \mathbb{Q}\right)$ may be distinct as \mathbb{Q}-modules for each $q \geq 1$. For example, the dual of an exterior algebra on $\left\{\alpha_{\lambda}\right\}$ is not an exterior algebra on $\left\{\bar{\alpha}_{\lambda}\right\}$, in general, where $\bar{\alpha}_{\lambda}$ is the dual to α_{λ} (cf. [12]).

References

[1] J. F. Adams, The sphere, considered as an H-space $\bmod p$, Quart. J. Math. Oxford. Ser. (2) 12 (1961), 52-60.
[2] J. Aguadé, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938-955.
[3] A. Borel, Topics in the homology theory of fibre bundles, (Lecture Note in Math. 36), Springer, Berlin 1967.
[4] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, (Lecture notes in Math., 304), Springer, Berlin 1972.
[5] G. Dula and D. H. Gottlieb, Splitting off H-spaces and Conner-Raymond splitting theorem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990), 321-334.
[6] L. Fuchs, Infinite abelian groups, Vol. I, (Graduate Texts in Mathematics, 61), Academic Press, New York-London, 1970.
[7] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), $840-856$.
[8] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969), $729-756$.
[9] H. B. Haslam, G-spaces mod F and H-spaces $\bmod F$, Duke Math. J. 38, (1971), 671-679.
[10] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, (Mathematics studies, 15), North-Holland, Amsterdam, 1975.
[11] I. M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
[12] S. Mac Lane, "Homology", Springer Verlag, Berlin, 1963.
[13] Y. Mataga, Localization of G-spaces, Proc. Japan Acad. 50 (1974), 448-452.
[14] M. Mimura, G. Nishida and H. Toda, Localization of $C W$-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624.
[15] N. Oda, Pairings and copairings in the category of topological spaces, Publ. RIMS Kyoto Univ. 28 (1992), 83-97.
[16] J. Oprea, Decomposition theorems in rational homotopy theory, Proc. Amer. Math. Soc. 96 (1986), 505-512.
[17] H. Scheerer, On rationalized H - and co-H-spaces. With an appendix on decomposable H - and co- H-spaces, Manuscripta Math. 51 (1985), 63-87.
[18] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1-79.
[19] K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
[20] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc. Ser. A 59 (1995), 193-203.

