Splitting off Rational Parts in Homotopy Types

Norio Iwase^{a,1} Nobuyuki Oda^{b,2}

^aFaculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan ^bDepartment of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan

Abstract

It is known algebraically that any abelian group is a direct sum of a divisible group and a reduced group (See Theorem 21.3 of [6]). In this paper, conditions to split off rational parts in homotopy types from a given space are studied in terms of a variant of Hurewicz map, say $\overline{\rho} : [S^n_{\mathbb{Q}}, X] \to H_n(X; \mathbb{Z})$ and generalised Gottlieb groups. This yields decomposition theorems on rational homotopy types of Hopf spaces, *T*-spaces and Gottlieb spaces, which has been known in various situations, especially for spaces with finiteness conditions.

Key words: Rational splitting; Hopf sapce; G-space; T-space 1991 MSC: Primary 55P45, Secondary 55Q15, 55P62

Introduction

The Gottlieb group is introduced by Gottlieb [7,8] and the generalised Gottlieb set is introduced by Varadarajan [19]. Dula and Gottlieb obtained a general result on splitting a Hopf space off from a fibration as Theorem 1.3 of [5].

In this paper, we work in the category of spaces having homotopy types of CW complexes with base points and pointed continuous maps. A relation $f \sim g$

Email addresses: iwase@math.kyushu-u.ac.jp (Norio Iwase),

odanobu@cis.fukuoka-u.ac.jp (Nobuyuki Oda).

 $^{^1\,}$ The first named author is supported by the Grant-in-Aids for Scientific Research #14654016 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

 $^{^2\,}$ The second named author is supported by the Grant-in-Aids for Scientific Research #15340025 from the Japan Society for the Promotion of Science.

indicates a pointed homotopy relation of maps f and g and a relation $X \simeq Y$ indicates a homotopy equivalence relation of spaces X and Y. We also denote by [X, Y] the set of pointed homotopy classes of maps from X to Y.

We adopt some more conventional notations: $X_{\mathbb{Q}}$ stands for the rationalisation of a space $X, K(\pi, n)$ for the Eilenberg-Mac Lane space of type $(\pi, n), G(V, X)$ for the generalised Gottlieb subset of [V, X] and $H_n(X)$ for $H_n(X; \mathbb{Z})$. We introduce a variant of Hurewicz map $\overline{\rho} : [S^n_{\mathbb{Q}}, X] \to H_n(X)$ by $\overline{\rho}(\alpha) = \alpha_*([S^n] \otimes 1)$ for $\alpha \in [S^n_{\mathbb{Q}}, X]$, where α_* is the homomorphism given by $\alpha_* : H_n(S^n) \otimes \mathbb{Q} =$ $H_n(S^n_{\mathbb{Q}}) \to H_n(X)$. Our main result is described as follows:

Theorem 2.2. Let $R = \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$ be a \mathbb{Q} -vector space of dimension $\#\Lambda \leq \infty$. Let X be 0-connected and $R \subset \overline{\rho}(G(S^n_{\mathbb{Q}}, X)) \subseteq H_n(X), n \geq 2$. Then X decomposes as

$$X \simeq Y \times K(R, n).$$

Theorem 2.2 gives unified proof to the splitting phenomena on rational G-space, T-space and Hopf space without assuming any finiteness conditions, which are proved under various situations by a number of authors: Scheerer [17] obtained decomposition theorems of rational Hopf spaces without assuming the finite type assumptions. Oprea [16] obtained decomposition theorems by using minimal model method in rational homotopy theory. Aguadé [2] obtained a decomposition theorems on rational T-spaces of finite type.

1 Preliminaries

We regard the one point union $X \vee Y$ of spaces X and Y as a subspace $X \times * \cup * \times Y$ of the product space $X \times Y$ with the inclusion map $j : X \vee Y \to X \times Y$. For any collection of a finitely or infinitely many spaces X_{λ} ($\lambda \in \Lambda$), we denote the wedge sum (or one point union) by $\bigvee_{\lambda \in \Lambda} X_{\lambda}$ and the direct sum (or weak product) by $\bigoplus_{\lambda \in \Lambda} X_{\lambda} = \{(x_{\lambda}) \in \prod_{\lambda \in \Lambda} X_{\lambda} \mid x_{\lambda} = * \text{ except for finitely many } \lambda\}$. Then we have $\bigvee_{\lambda \in \Lambda} X_{\lambda} \subset \bigoplus_{\lambda \in \Lambda} X_{\lambda}$, where $\bigoplus_{\lambda \in \Lambda} X_{\lambda}$ is a dense subset of the product space $\prod_{\lambda \in \Lambda} X_{\lambda}$ and has the weak topology with respect to finite products of X_{λ} 's.

Let X_{∞} be the James reduced product space of a 0-connected space X of finite type, so that $X_{\infty} \simeq \Omega(\Sigma X)$ by James [11]. Then X_{∞} is a nice CW approximation of a space $\Omega \Sigma X$ to work in the category of spaces having homotopy types of CW complexes.

We apply rationalisation or \mathbb{Q} -localisation to any 0-connected nilpotent spaces or any nilpotent groups (see [4], [10] or [14] for the precise definition of the rationalisation of a space or a nilpotent group). The rationalisation $\ell_{\mathbb{Q}} : X \to X_{\mathbb{Q}}$, or simply $X_{\mathbb{Q}}$ does exist for such spaces X such that $\ell_{\mathbb{Q}}$ induces the following isomorphisms:

$$\pi_n(X_{\mathbb{Q}}) \cong \pi_n(X) \otimes \mathbb{Q}$$
 and $H_n(X_{\mathbb{Q}}) \cong H_n(X) \otimes \mathbb{Q}$

for any integer $n \ge 1$, where $G \otimes \mathbb{Q}$ denotes the rationalisation of a nilpotent group G (cf. [4], [10] or [14]). Moreover the universality of rationalisation yields a bijection

$$\ell^*_{\mathbb{Q}} : [X_{\mathbb{Q}}, Y_{\mathbb{Q}}] \cong [X, Y_{\mathbb{Q}}]$$

for any such spaces X and Y. The rationalisation enjoys the following fact.

Fact 1.1 (1) $S_{\mathbb{Q}}^{2m+1} \simeq K(\mathbb{Q}, 2m+1)$ for any integer $m \ge 0$. (2) $\Omega(S_{\mathbb{Q}}^{2m+1}) \simeq (\Omega S^{2m+1})_{\mathbb{Q}} \simeq K(\mathbb{Q}, 2m)$ for any integer $m \ge 1$. (3) $(X_{\infty})_{\mathbb{Q}} \simeq (X_{\mathbb{Q}})_{\infty}$ for X a 0-connected nilpotent space of finite type.

Proof. (1) and (2) are well-known. We give here a brief explanation for (3): The suspension functor Σ and the loop functor Ω enjoys the properties $\Sigma(X_{\mathbb{Q}}) \simeq (\Sigma X)_{\mathbb{Q}}$ for any 0-connected space X and $\Omega(X_{\mathbb{Q}}) \simeq (\Omega X)_{\mathbb{Q}}$ for any 1-connected space X. Then it follows that $(X_{\infty})_{\mathbb{Q}} \simeq (\Omega(\Sigma X))_{\mathbb{Q}} \simeq$ $\Omega(\Sigma(X_{\mathbb{Q}})) \simeq (X_{\mathbb{Q}})_{\infty}$.

We state two propositions to be used in the proof of the main theorem.

Proposition 1.2 Let X be a 0-connected space of finite type and $f: X \to Y$ a map. If $f \in G(X,Y)$, then there is an extension $\overline{f}: X_{\infty} \to Y$ of f such that $\overline{f} \in G(X_{\infty},Y)$.

Proof. We may assume that there is a map $\mu : Y \times X \to Y$ such that $\mu | Y \times \{ * \} = 1_Y : Y \to Y$ and $\mu | \{ * \} \times X = f : X \to Y$. We put $\mu_1 = \mu$ and, for any n we define

$$\mu_n = \mu \circ (\mu_{n-1} \times 1_X) : Y \times X^n = (Y \times X^{n-1}) \times X \to Y \times X \to Y$$

by induction on n. Then we observe that μ_n factors through $Y \times X^n \to Y \times X_n$, where X_n denotes the set of products of at most n elements of X in the James reduced product space X_{∞} (cf. James [11]). Since X_{∞} has a weak topology with respect to X_n , we have done.

Proposition 1.3 Let $\alpha_{\lambda} : X_{\lambda} \to Z$ be a map for any $\lambda \in \Lambda$. If $\alpha_{\lambda} \in G(X_{\lambda}, Z)$ for each $\lambda \in \Lambda$, then the map $\alpha : \bigvee_{\lambda \in \Lambda} X_{\lambda} \to Z$ defined by $\alpha | X_{\lambda} = \alpha_{\lambda} : X_{\lambda} \to Z$ can be extended to a map $\overline{\alpha} : \bigoplus_{\lambda \in \Lambda} X_{\lambda} \to Z$ with $\overline{\alpha} \in G(\bigoplus_{\lambda \in \Lambda} X_{\lambda}, Z)$.

Proof. Since each X_{λ} has a homotopy type of a CW complex, we may assume that there is a map $\mu_{\lambda} : Z \times X_{\lambda} \to Z$ such that $\mu_{\lambda} | \{ * \} \times X_{\lambda} = \alpha_{\lambda} : X_{\lambda} \to Z$

and $\mu_{\lambda}|Z \times \{*\} = 1_Z : Z \to Z$ for each $\lambda \in \Lambda$. For any *n* and $\lambda_1, \lambda_2, \cdots, \lambda_n$, we define

$$\mu_{\lambda_1,\cdots,\lambda_n} = \mu_{\lambda_n} \circ (\mu_{\lambda_1,\cdots,\lambda_{n-1}} \times 1_{X_{\lambda_n}}) : Z \times (X_{\lambda_1} \times \cdots \times X_{\lambda_{n-1}} \times X_{\lambda_n}) \to Z$$

by induction on n. For any index set Λ , we assume that Λ is totally-ordered. Since $\bigoplus_{\lambda \in \Lambda} X_{\lambda}$ has a weak topology with respect to $X_{\lambda_1} \times \cdots \times X_{\lambda_n}, \lambda_1, \cdots, \lambda_n$ $(n \geq 0)$, the collection of maps $\mu_{\lambda_1, \cdots, \lambda_n}$ defines a pairing $\mu : Z \times (\bigoplus_{\lambda \in \Lambda} X_{\lambda}) \to Z$ with axes $(1_Z, \overline{\alpha})$ (cf. [15]). \Box

2 Proof of the main result

Proposition 2.1 Let P be an idempotent endomorphism of $H_n(X)$, $n \ge 2$. Suppose that $R = \operatorname{im} P \subseteq H_n(X)$ is a rational vector space and is in $\operatorname{im} \overline{\rho}$. Then we have maps $\alpha : S^n(R) \to X$ and $\beta : X \to K(R, n)$ such that

$$\beta \circ \alpha \sim \iota_R^n : S^n(R) \to K(R,n), \text{ and}$$
$$P = \alpha_* \circ (\iota_R^n)^{-1} \circ \beta_* : H_n(X) \to H_n(K(R,n)) \stackrel{\cong}{\leftarrow} H_n(S^n(R)) \to H_n(X),$$

where $S^n(R)$ denotes the Moore space of type (R, n) and ι_R^n corresponds to the identity element in $\operatorname{Hom}(R, R) = \operatorname{Hom}(\pi_n(S^n(R)), \pi_n(K(R, n))) \cong [S^n(R), K(R, n)].$

Proof. Let $\{\overline{\rho}(\alpha_{\lambda}) \mid \lambda \in \Lambda\}$ be a basis of $R = \operatorname{im} P$, and hence $R \cong \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$. Since $S^n(R) = \bigvee_{\lambda \in \Lambda} S^n_{\mathbb{Q}}$, we define $\alpha : S^n(R) \to X$ by its restrictions to all factors:

$$\alpha|_{S^n_{\mathbb{Q}}} = \alpha_{\lambda} : S^n_{\mathbb{Q}} \to X.$$

Since α_* is an isomorphism onto $R \subseteq H_n(X)$, we have its inverse $\phi : R \to H_n(S^n(R))$ so that $\phi \circ \alpha_* = \operatorname{id}_{H_n(S^n(R))}$ and $\alpha_* \circ \phi = \operatorname{id}_R$. Now we define a homomorphism $s : H_n(X) \to \operatorname{im} P \cong H_n(S^n(R))$ by $s = \phi \circ P$: Since $\operatorname{im} \alpha_*$ is in the image of an idempotent endomorphism P, we have $s \circ \alpha_* = \phi \circ P \circ \alpha_* = \phi \circ \alpha_* = id$. Also we have $\alpha_* \circ s = \alpha_* \circ \phi \circ P = P$. Thus s satisfies the following formulae:

$$s \circ \alpha_* = \mathrm{id} : H_n(S^n(R)) \to H_n(S^n(R)),$$

 $\alpha_* \circ s = P : H_n(X) \to H_n(X).$

Let us recall that α induces the following commutative diagram:

$$\begin{bmatrix} X, K(R, n) \end{bmatrix} \xrightarrow{\Psi'} \operatorname{Hom}(H_n(X), H_n(K(R, n)))$$

$$\begin{array}{c} \alpha^* \downarrow \\ & \downarrow^{(\alpha_*)^*} \\ \begin{bmatrix} S^n(R), K(R, n) \end{bmatrix} \xrightarrow{\Psi} \operatorname{Hom}(H_n(S^n(R)), H_n(K(R, n))), \end{array}$$

$$(2.1)$$

where Ψ and Ψ' are homomorphisms defined by taking the *n*-th homology groups, and are isomorphisms by the universal coefficient theorem. Since Ψ' is an isomorphism, we define β to be the unique element ${\Psi'}^{-1}(\iota_{R*}^n \circ s)$ so that $\beta_* = \iota_{R*}^n \circ s$.

Firstly by $P = \alpha_* \circ s$, we have $P = \alpha_* \circ s = \alpha_* \circ (\iota_{\mathbb{Q}}^n)^{-1} \circ \beta_*$.

Next we show $\beta \circ \alpha \sim \iota_{\mathbb{O}}^n$. By the commutativity of the diagram (2.1), we have

$$\Psi(\alpha^*(\beta)) = (\alpha_*)^* \circ \Psi'(\beta) = (\alpha_*)^* (\iota_{\mathbb{Q}*}^n \circ s) = \iota_{\mathbb{Q}*}^n \circ s \circ \alpha_* = \iota_{\mathbb{Q}*}^n = \Psi(\iota_{\mathbb{Q}}^n).$$

Since Ψ is an isomorphism, we also have $\beta \circ \alpha = \alpha^*(\beta) \sim \iota_{\mathbb{O}}^n$.

Let us recall that $G(S^n_{\mathbb{Q}}, X) \subset [S^n_{\mathbb{Q}}, X] \xrightarrow{\overline{\rho}} H_n(X)$. In the following theorem, we do *not* assume that X is rationalised nor that X is (n-1)-connected.

Theorem 2.2 Let $R = \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$ be a \mathbb{Q} -vector space of dimension $\#\Lambda \leq \infty$. Let X be 0-connected and $R \subset \overline{\rho}(G(S^n_{\mathbb{Q}}, X)) \subseteq H_n(X), n \geq 2$. Then X decomposes as

$$X \simeq Y \times K(R, n).$$

Proof. Since a divisible submodule R is a direct summand of $H_n(X)$, there is an idempotent endomorphism $P: H_n(X) \to H_n(X)$ with im P = R. We fix a basis of R as $\{\overline{\rho}(\alpha_{\lambda}) \mid \alpha_{\lambda} \in G(S^n_{\mathbb{Q}}, X), \lambda \in \Lambda\}$.

By Proposition 2.1, there are maps $\alpha : S^n(R) \to X, \beta : X \to K(R, n)$ such that

$$\beta \circ \alpha \sim \iota_R^n : S^n(R) \to K(R, n),$$

$$P = \alpha_* \circ (\iota_R^n)^{-1} \circ \beta_* : H_n(X) \to H_n(K(R, n)) \stackrel{\cong}{\leftarrow} H_n(S^n(R)) \to H_n(X).$$

Then we extend the map α onto $K(R, n) \supseteq S^n(R)$ as $\overline{\alpha} : K(R, n) \to X$ by dividing our arguments in two cases:

(Case 1) n is an odd positive integer > 1, namely, n = 2m + 1 for some $m \ge 1$. Then we have $K(\mathbb{Q}, 2m+1) \simeq S_{\mathbb{Q}}^{2m+1}$, and hence by Proposition 1.3 we obtain the desired map.

(Case 2) n is an even positive integer, namely, n = 2m for some $m \ge 1$. Since $\alpha_{\sigma} \in G(S_{\mathbb{Q}}^{2m}, X)$, the map $\alpha_{\sigma} : S_{\mathbb{Q}}^{2m} \to X$ can be extended to the James reduced product space by Proposition 1.2, say,

$$\overline{\alpha}_{\sigma}: (S^{2m}_{\mathbb{Q}})_{\infty} \longrightarrow X, \ \overline{\alpha}_{\sigma} \in G((S^{2m}_{\mathbb{Q}})_{\infty}, X),$$

where we know $(S^{2m}_{\mathbb{Q}})_{\infty} \simeq (S^{2m}_{\infty})_{\mathbb{Q}} \simeq (\Omega \Sigma S^{2m})_{\mathbb{Q}} \simeq (\Omega S^{2m+1})_{\mathbb{Q}} \simeq \Omega(S^{2m+1}_{\mathbb{Q}})_{\mathbb{Q}} \simeq \Omega(S^{2m+1}$

by Proposition 1.3, there is a map $\overline{\alpha} : K(R, 2m) = \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, 2m) \to X$ extending $\alpha : S^n(R) \to X$. Then we obtain $\beta \circ \overline{\alpha} \sim \operatorname{id}_{K(R,n)}$, since the identity map id : $K(R, n) \to K(R, n)$ is the unique extension of $\iota_R^n : S^n(R) \to K(R, n)$, up to homotopy.

Thus in either case, we obtain a map $\overline{\alpha} \in G(K(R, n), X)$ such that

$$\beta \circ \overline{\alpha} \sim \mathrm{id} : K(R, n) \longrightarrow K(R, n).$$

Let Y be the homotopy fibre of $\beta : X \to K(R, n)$. Then by Theorem 1.3 of Dula and Gottlieb [5], we obtain

$$X \simeq Y \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y \times K(R, n).$$

This completes the proof of the theorem.

3 Applications

A 0-connected space X is called a *T*-space if the fibration $\Omega X \to X^{S^1} \to X$ is trivial in the sense of fibre homotopy type (Aguadé [2]). If X is a 0-connected Hopf space, then X is a *T*-space. Aguadé showed that 1-connected space X of finite type is a rational *T*-space if and only if X has the same rational homotopy type as a generalised Eilenberg-Mac Lane space, i.e., a product of (infinitely many) Eilenberg-Mac Lane spaces (Theorem 3.3 of [2]). Woo and Yoon showed that a space X is a *T*-space if and only if $G(\Sigma A, X) = [\Sigma A, X]$ for any space A by Theorem 2.2 of [20]. So, it might be more appropriate to call such space a generalised *G*-space. Then we have the following result by Theorem 2.2.

Theorem 3.1 Let $R = \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$ be a finite or an infinite dimensional \mathbb{Q} vector space. Let X be a 0-connected T-space and $R \subset \pi_n(X)$, $n \geq 2$. If $\overline{\rho}|R: R \to H_n(X)$ is an injection and $[S^n_{\mathbb{Q}}, X] = G(S^n_{\mathbb{Q}}, X)$, then X decomposes as

$$X \simeq Y \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y \times K(R, n), \quad for \ a \ T\text{-space } Y.$$

Proof. Firstly, we observe that $\ell_{\mathbb{Q}}^*$ is surjective: Let a be a generator of the \mathbb{Q} -vector space $R \subseteq \pi_n(X)$. Then we can use the telescope construction (cf. Adams [1], Sullivan [18]) to obtain a map $\alpha : S_{\mathbb{Q}}^n \to X$ such that $\alpha \circ \ell_{S^n} \sim a : S^n \to X$. Thus we can choose a \mathbb{Q} -vector space $\bar{R} \subseteq [S_{\mathbb{Q}}^n, X]$ such that $\bar{R} \stackrel{\ell_{\mathbb{Q}}^*}{\cong} R$, and hence we have $\bar{\rho}(\bar{R}) = \rho(R) \cong R$. Then by Theorem 2.11 of [20]

 $R \cong R$, and hence we have $\rho(R) = \rho(R) \cong R$. Then by Theorem 2.11 of [20] and Theorem 2.2, we obtain the result.

Theorem 3.1 implies the following result as a direct consequence.

Corollary 3.2 Let $n \ge 2$. Let $R = \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$ be a finite or an infinite dimensional \mathbb{Q} -vector space and assume that $R \subset \pi_n(X)$. If X is (n-1)-connected T-space, then X splits as

$$X \simeq Y \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y \times K(R, n), \quad for \ a \ T\text{-space} \ Y.$$

A space X is called a G-space if $G_n(X) = \pi_n(X)$ for all n (cf. [8]). As a special case of Theorem 2.2, we have the following result for rational G-space. We remark that $\pi_n(X_{\mathbb{Q}}) = G_n(X_{\mathbb{Q}})$ implies $[S_{\mathbb{Q}}^n, X_{\mathbb{Q}}] = G(S_{\mathbb{Q}}^n, X_{\mathbb{Q}})$ for any n.

Theorem 3.3 Let $n \geq 2$. Assume that a rational space $X_{\mathbb{Q}}$ is an (n-1)connected G-space. If $\pi_n(X_{\mathbb{Q}}) \cong \bigoplus_{\lambda \in \Lambda} \mathbb{Q}$, a finite or an infinite dimensional \mathbb{Q} -vector space, then $X_{\mathbb{Q}}$ decomposes as

$$X_{\mathbb{Q}} \simeq Y_{\mathbb{Q}} \times \bigoplus_{\lambda \in \Lambda} K(\mathbb{Q}, n) \simeq Y_{\mathbb{Q}} \times K(\pi_n(X_{\mathbb{Q}}), n),$$

where $Y_{\mathbb{O}}$ is an n-connected G-space.

Theorem 3.3 implies the following theorem (cf. [17]). For finite complexes or finite Postnikov pieces, it is known by Haslam [9] and Mataga [13].

Theorem 3.4 If X is a 1-connected space, then the following are equivalent:

- (1) $X_{\mathbb{Q}}$ is a *G*-space.
- (2) $X_{\mathbb{O}}$ is a *T*-space.
- (3) $X_{\mathbb{Q}}$ is a Hopf space.
- (4) $X_{\mathbb{O}}$ has the homotopy type of a generalised Eilenberg-Mac Lane space.

Corollary 3.5 Any k-invariant of a 1-connected G-space is rationally trivial.

We remark that Corollary 3.5 doesn't imply that a k-invariant of a 1-connected G-space is of finite order. Now, $H_*(K(\bigoplus_{\lambda \in \Lambda} \mathbb{Q}, 2m+1); \mathbb{Q})$ is isomorphic to an exterior alebra and $H_*(K(\bigoplus_{\lambda \in \Lambda} \mathbb{Q}, 2m); \mathbb{Q})$ is isomorphic to a polynomial algebra as Hopf algebras. Thus we obtain a generalisation of Theorem 3.2 of Borel [3]:

Corollary 3.6 Let X be a 1-connected rational G-space, i.e., a G-space in the rational homotopy category. Then $X_{\mathbb{Q}}$ is a Hopf space and the Hopf algebra $H^*(X;\mathbb{Q})$ is isomorphic (as an algebra) to the tensor product of the dual algebra of a polynomial algebra on even degree generators and the dual algebra of an exterior algebra on odd degree generators. We remark that $\pi_q(X) \otimes \mathbb{Q}$ may be infinite dimensional for each $q \geq 1$, and hence $H_q(X; \mathbb{Q})$ and its dual $H^q(X; \mathbb{Q}) \cong \operatorname{Hom}(H_q(X; \mathbb{Q}); \mathbb{Q})$ may be distinct as \mathbb{Q} -modules for each $q \geq 1$. For example, the dual of an exterior algebra on $\{\alpha_{\lambda}\}$ is not an exterior algebra on $\{\bar{\alpha}_{\lambda}\}$, in general, where $\bar{\alpha}_{\lambda}$ is the dual to α_{λ} (cf. [12]).

References

- J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford. Ser. (2) 12 (1961), 52–60.
- [2] J. Aguadé, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938–955.
- [3] A. Borel, Topics in the homology theory of fibre bundles, (Lecture Note in Math. 36), Springer, Berlin 1967.
- [4] A. K. Bousfield and D. M. Kan, *Homotopy limits, completions and localizations*, (Lecture notes in Math., **304**), Springer, Berlin 1972.
- [5] G. Dula and D. H. Gottlieb, Splitting off H-spaces and Conner-Raymond splitting theorem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990), 321–334.
- [6] L. Fuchs, Infinite abelian groups, Vol. I, (Graduate Texts in Mathematics, 61), Academic Press, New York-London, 1970.
- [7] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), 840 - 856.
- [8] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969), 729 - 756.
- [9] H. B. Haslam, G-spaces mod F and H-spaces mod F, Duke Math. J. 38, (1971), 671–679.
- [10] P. Hilton, G. Mislin and J. Roitberg, *Localization of nilpotent groups and spaces*, (Mathematics studies, 15), North-Holland, Amsterdam, 1975.
- [11] I. M. James, *Reduced product spaces*, Ann. of Math. **62** (1955), 170–197.
- [12] S. Mac Lane, "Homology", Springer Verlag, Berlin, 1963.
- [13] Y. Mataga, Localization of G-spaces, Proc. Japan Acad. 50 (1974), 448–452.
- [14] M. Mimura, G. Nishida and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593–624.
- [15] N. Oda, Pairings and copairings in the category of topological spaces, Publ. RIMS Kyoto Univ. 28 (1992), 83–97.
- [16] J. Oprea, Decomposition theorems in rational homotopy theory, Proc. Amer. Math. Soc. 96 (1986), 505–512.

- [17] H. Scheerer, On rationalized H- and co-H-spaces. With an appendix on decomposable H- and co-H-spaces, Manuscripta Math. 51 (1985), 63–87.
- [18] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1–79.
- [19] K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141–164.
- [20] M. H. Woo and Y. S. Yoon, *T*-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc. Ser. A 59 (1995), 193–203.