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Synopsis
For an H-space with a generating subspace, we construct a space whose K-cohomology is a direct sum

of a truncated polynomial algebra and an ideal, which enables technical restrictions to be removed
from several known results in the homotopy theory of H-spaces.

0. Introduction

We consider an H-space in the category of connected finite CW-complexes with
base point and mappings preserving base points (or in the p-localised category of
such spaces and mappings at a prime p). On that category, the coefficient ring of
(co)homology theories is the ring of integers (or localised integers, respectively)
which we denote by R. We call a subspace Q of a space X a generating subspace
if the inclusion j: Q— X induces an isomorphism j': OK*(X; R)— K*(Q;R),
where we denote by QK*(—; R) the indecomposable quotients and by K*(—; R)
the augmentation ideal of the Z/2Z-graded complex K-cohomology K*(—; R);
that is, the generators of K*(X; R) are represented by Q. Classical Lie groups
U(n), SU(n) and SP(n) have such generating subspaces [10].

Let us consider an A,,-space X for m =2 (see [15]). Then there exist projective
spaces P(k), k=m with P(m)oP(m—1)>...o5P(1)=2X where X is the
suspension functor. If X is A,-primitive (see [8]), then K*(P(k); R) has the form
M(k) @ S, where M(k) is a polynomial algebra truncated at height k + 1 and S,
is a free R-module and an ideal (see [7]). In addition y'(S;) c S, for all Adams
operations y'. However, it is not known if every A,-space supports an
A,,-primitive A,,-structure, although it is automatically A,,_;-primitive. We
construct a space Q(m) by expanding P(m —1) when X has a generating
subspace Q and show by refining the arguments in [1] or [7], that K*(Q(m); R)
has the form M(m) @ S,,, which enables us to compute Adams operations *
without assuming the A,,-primitivity.

From now, we often abbreviate the coefficient ring of (co)homology theories
which we always assume to be the ring R. If X is a 1-connected finite H-space,
then K*(X) has no torsion by [11] and [12]. Since Chern character filtration
makes K*(X) a torsion free graded Hopf algebra, K*(X) is an exterior algebra on
odd dimensional generators.

Our main theorem is stated as follows.

THEOREM 0.1. Let X be a connected A,,-space with a generating subspace Q,
m =2. Then there exists a space Q(m) with P(m)>Q(m)>P(m—1)>ZX >

* Dedicated to Professor Shoré Araki on his sixtieth birthday.
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2Q. If X is 1-connected or, more generally, has no torsion in its K-cohomology,
then there is an isomorphism of R-algebras

K*(Q(m)=M®@®S,, where

(1) the restriction of the homomorphism K*(Q(m))— K*(ZQ) to M is
surjective, and for any choice of pull-backs {u;, 1 =i =r} of additive generators of
K*(ZQ) where r is the rank of X,

(2) M=R"*Nu,, ..., u,is a polynomial algebra truncated at height m + 1,

(3) Y*(M -M)c M - M c M for all k, where M is the augmentation ideal of M,

(4) S,, is an ideal and a free R-module with S,, - K*(Q(m)) =0,

(5) the restriction of the homomorphism K*(Q(m))— K*(P(m —1)) to §,, is
injective with image in S,,, _,.

The author does not know the wy*-invariance of §,, unless assuming the
A,.-primitivity, in general. But in some cases, M can be chosen to be closed
under the action of y* for all k.

If, in particular, the restriction of M to P(m — 1) is closed under the action of
y*, so is M. More generally, we obtain:

CoroLLARY 0.2. If, in addition, there exists a submodule L < K*(P(m —1))
with L c QK*(P(m —1)) and y*(L)c L for all k and the restriction of the
homomorphism K*(P(m —1))— K*(P(m —1))/S,._, to L is injective, then there
is a submodule L'c QM with L'|ppn_y=L and y*(L')cL'+M-M. In
particular, if further L= K*(£Q) for m Z2, then we may assume that y*(M) c M
for all k.

In the p-localised category, we have another sufficiency condition obtained by
Corollary 0.2.

CoroLLARY 0.3. In the case m = p a prime, if K*(X) has a spherical generator
x=f(y), y e K*(Sy") where f: X— S5 is an A,_, mapping, then we can
choose a generator u in M such that Y*(u) — k™u is in M - M for all k.

This corollary is related to the results of [19], in the case p =2. But in the case
p =3, we need the additional hypothesis that f is an A,_;-mapping.

The spaces Q(2) and Q(3) for pull-backs of Sp(2) were introduced in [13] and
[14] to show the non-existence of A,,-structures (m =2, 3) on the pull-backs of
Sp(2). To show the ring structure of K*(Q(m)), A,,-primitivity is established by
dimensional arguments in [13] and [14].

We would like to bring to the reader’s attention an H-space without torsion in
its (ordinary) homology with coefficient in R. If H«(X) is torsion free, then
H*(X) is also an exterior algebra on odd dimensional generators. Then by the
arguments of the proof of Theorem 0.1, we obtain:

Tueorem 0.4. If, further, X has no torsion in its homology, then there is an
isomorphism of R-algebras H*(Q(m))=N @ T,,, where N=R""*[uv,, ..., v,]
and T,, is an ideal and a free R-module.

These results enable us to remove technical restrictions from several known
results in the homotopy theory of H-spaces.
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It is known that the first non-vanishing homotopy group of a 2-torsion free
finite H-space must occur in dimension 1, 3 or 7. In our case, this can also be
proved using the same argument as that given in [17]. Moreover from [18], we
obtain the following:

ProposiTioN 0.5. Let X be a 2-torsion free finite H-space with a generating
subspace Q. If there is a submodule L < H*(ZX;F,) with L=H*(Q;F,) and
Sq‘'Lc L for all Steenrod square operations Sq', then the first non-vanishing
homotopy group occurs in dimension 1, 3 or 7. Furthermore, the action of
Steenrod squares satisfies

Sq*(QH*"'(X; F,)) = QH* ™7 (X; F,)

and Squ(QH2i+2j—1(X; [Fz)) — 0’
if (*5") is odd.

From [3, Theorem 1.1(b)], we remove the condition ‘“‘the space is (mod 2)
standard”. This, together with [3, Theorem 1.1(2)], implies:

CoroLLARY 0.6. The space of a Stiefel manifold which supports a (mod 2)
H-space is that of a Lie group or S’.

From a theorem from [5], we remove the condition “X is A,-primitive” and
obtain:

ProposITION 0.7. Let X =S8" X... X 8" be a 1-connected mod p A,-space for
an odd prime p. Then

(i) for each i, m;e{3,5,...,2p —1}
and

(i) rankg H*(X) = rankg H?'(X).

Hence, from the results of [5] and [2], we can remove the condition “X is
As;-primitive” and obtain the following corollary to Proposition 0.7.

CoRrOLLARY 0.8. Let X=8""X...X 8" be a connected mod 3 As-space. Then
X has the mod 3 homotopy type of a product of Lie groups U(1)’s , SU(2)’s and
SU(3)’s.

Before we state our last corollary, we mention that the condition
“j': QK*(X)— K*(Q) is isomorphic” can be weakened slightly.

THEOREM 0.9. If we assume that j': QK*(X)— K*(Q) is surjective, then we
obtain another complex Q(m, j) with similar properties to those of Q(m), except
that M and S,, must be replaced by M(m,j)=R"*u,, ..., u]/R™(j') and
S..(j), respectively, where R™(j') is the ideal generated by alI products of m
elements u;’s whose restrictions to =X are in the kernel of =j'. If the space has no
torsion, a similar result holds for the ordinary cohomology.

Using this together with the proof of Corollary 0.2, we can remove the
condition “X is A,-primitive”’ from [4, Theorem 1.1] and obtain:

CoroLLARY 0.10. Let the integral homology of X have no 2-torsion. Then
87 X X does not support (mod 2) an Aj-structure.
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1. The construction of Q(m)

Let X be an A,,-space with generating subspace j: Q — X. By the definition of
an A,,-structure in [15], there exists a sequence of quasi-fibrations p,: E*(X)—
P(k — 1) for k =m with fibre X, where P*(X) is called the projective k-space,
with the following properties:

E*=X=x...*X (homotopic to k-fold join),} (1.1)

P(k) = P(k — 1) U,, D*,

where EX ¢ D*, D¥"! c E* and D* is contractible for k = m.

To use the results of [16], both p, and the homotopy equivalence above have to
be triad mappings. By the proofs of [15, Theorems 11 and 12], there are
homotopy equivalences:

M: E¥=E*'U,_ X x CE*"'=S EX,
Ai: P(k —1)=P(k-2)U,,  CE* 'S P(k—1),

where v,_,: E¥"'— P(k — 2) is obtained by ignoring the first factor from u,_, and
te_1: X X E¥"'— E*7! satisfies the following conditions:

Mi—1|xx (o) ~ idy for k =2 and * for k =3,

Hk—l'Ek-l ~ id g, (1.2)
and therefore

Vk—1""Pk-1

where “ ~"’ means ‘“‘is homotopic to”’. By using these homotopy equivalences, p,
can be regarded as a triad mapping as in [7]. We define m,: EX— P(k — 1) by
setting 7y |gr-1=px_y and 7 |xxcgx1 =preges, the projection to the factor
CE*~'. Then m, can be regarded as p, up to homotopy and is a triad mapping
with respect to the standard triad decomposition of CE*™! given in [7]. Also we
note that X*Y=CXXYUXXCY and CXXYNXXCY=XXY. Then by
the proof of [15, Theorem 11], we obtain:

ProprosITION 1.1. There exists a series of homotopy equivalences h;: X *. . . *
X — E* such that
@G) hy=1id,
(ii) hk+1|Xx(*) =id, hyiy
and
(1“) hk+1lXx(X*. . .*X)(xr e) = (xr ﬁk(x! hk(e)))r

where fi,: X X E¥— E* gives the inverse action of u,: X X E*— E*.
8

(RIX(X*. . X)) = Aohy

Remark 1.2. No proof is given for [15, Corollary 26]; indeed, the result is not
correct for j = 1 or i. Moreover X X @' cannot map into &; in the way described in
[15] except for the case when X is a monoid. But one can avoid these difficulties
[6]. By changing faces of the Stasheff complex, we obtain [15, Corollary 26] for
2=j=i—1 (the other cases are not needed). We define u directly by using [15,
Corollary 26] and one can show the homotopy equivalence of (&;, %;_,) and
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((€-1U, X x C%_1), &_1). We remark further that X X &;_, is not included in &;
by the above homotopy equivalence. The details will appear in [9].
Let us define Q(m) as the homotopy cofibre of the following mapping:

fop=Apomtpoh,o(j*...%j):Q*...Q—>P(m—1), (1.3)

where A, and h,, are the homotopy equivalence. Then it follows that Q(m) >
P(m —1)> P(1)=2X o> ZQ, where we denote by = the suspension functor. We
may regard P(m) as the mapping cone of A,,° 7, °h,, which includes Q(m).

2. Proof of Theorem 0.1

We establish the algebra structure of K*(Q(m)). Firstly, we mention that
K*(X) is an exterior algebra on odd dimensional elements. Let P be the module
generated by representatives of QK*(X)=K*(Q) for m =2 or the module of
primitives for m = 3. We choose and fix the R-module basis of P as {x;; 1=i=r}.

Let us recall the ring structure of K*(P(m — 1)). By a corollary of [7], it follows
that X is A,,_,-primitive, that is, there are elements &, in K*(P(m — 1)) such that
u;|sx = s'(x;), where we denote by s' the suspension isomorphism. In addition, by
[7, Theorem A], there is the following isomorphism of algebras:

K*(P(k — 1))ER["][u1, e, U B Sy,
with _
Sk = 6x(Sk), (2.1)

;=2 K*(X)®...®D®...®K*(X), k=m,
i=1

where 9§, is the Mayer—Vietoris coboundary for P(k) for Kk =m, D is the module
of decomposables of K*(X) and we regard K*(E¥) as K*(X)®. .. ® K*(X) by
the homotopy equivalence (1.1).

Again by a corollary of [7], the obstruction to be A,,-primitive lies in S, of the
E-term. So, in the E,-term, the obstruction s,,(«;) lies in S, and depends on the
choice of pullback u;. Let us recall the definition of Q(m) (1.3). Since
S,.=Ker(j*...*j)", we find that #,,(u;)=0. Hence every u; is extendable to
Q(m). We fix a system of extensions to K*(Q(m)) of u; and denote it by the same
symbol u;.

ProposiTION 2.1. Each j'(x;) is transgressive with respect to #,, in the sense of
[16] and its transgression image is u;.

Proof. The inclusion mapping j and the homotopy equivalence h,, induce the
following commutative diagram (see p. 6). Here vertical lines are connecting
homomorphisms for suitable pairs and all other lines except for A}, and (Ch,,)'
are induced by inclusions. Firstly, we mention that s,,:K**'(P(m—1))—
K (Q*...*Q) factors through K (Q*...%xQ, Q)->K"*(Q*...%Q).
Then by #,(«;) =0, it follows that the image of u; by the homomorphism
K (P(m—1))— K™ (Q*...*Q, Q) induced by #,, can be written as 6(x’),
where x'e€e K*(Q) and 6 is the connecting homomorphism K*(Q)—
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K*Y(Q=#...xQ, Q). Since j' is surjective, we can choose x e P such that
j'(x)=x'. Then by the commutativity of the diagram opposite, together with that
of [7, (3.2)], it follows that the restriction to =Q of u; coincides with s'(x’). On
the other hand, the restriction to =X of u; is s'(x;) by the choice of u;. Since the
restriction of j' to P is injective, we obtain that x = x; and x’ = j'(x;). This implies
the proposition.

We prepare one more proposition to determine the image of the connecting
homomorphism 9,, for the exact sequence associated with the triad mapping #,,,.

ProposITION 2.2 Each element of P®...® Pc K*(E™™") is primitive with
respect t0 fp|ox(ox. . +0) in the sense of [16]. The respective projections of e to Q
and Q *...xQ are given by x and e, respectively, where x = v'(e) for m=2,0
for m=3; v is the homotopy inversion of the H-space X and we regard
P®...QP as K*(Q*...%¥Q) by the homomorphism (j*...%j)'o
hl_;: KXE™ Y= K*(Q*...*Q).

Proof. In the case m =2, by Proposition 1.1, (1.2) and (1.3), it follows
that #,|pxp = m20h,°(j X ), 720 ho|xxx = i, ﬁl“Xx(*) =v and | (yxx = id.
By dimensional arguments, it follows that p;(x;)—v(x)®1-1®x; lies
in DOK*(X)®K*(X)®@D cKer(jxj). In the case m=3, similarly
we obtain that 'ﬁ:lex(Q*...tQ) = fm—1°( X (Bpp_1°(j*. . . *]))), ﬁm—1|x><(.) ~ %
and  flp,_1|(yxgn1 ~id. _Again by dimensional arguments, it follows that
fit._i(e) —1X e lies in S, cKer (j X (j*...*j))'. This completes the proof of
Proposition 2.2.

By using the exact sequence induced by #,,, we obtain the following short exact
sequence of R-modules:

0— Coker #,,— K*(Q(m))— Ker #.,—0,

where Coker 7}, is isomorphic to Im §,, by the connecting homomorphism §
Ker &, = R"™[u,, ..., u,]®S,, as R-modules and S, = S,, N Ker #,.

Let us determine Coker #,, and its image in K*(Q(m)). By (1.3),
we may regard Im #}, as (P ®...® P)NIm x},. Also (P®...® P)NImx, =
(P®...®P)NImx},°8,,_,, since (PR...® P)Ux,,(u;)=0 by dimensional
arguments. By the definition of the Stasheff spectral sequence [5, (3.1)], x},°6,,_,
gives the first differential d,. Then by the proof of [7, Proposition 3.6] in the case
m =3, and by dimensional arguments in the case m =2, (P®...®P)NImd, is

- %, ®%)®...®x, ).

m»

the module generated by the set {x; ®... ® (x; ®x
Thus we obtain that

ij+l

rankg Coker &, =r(r+1)...(r+m—1)/m!
=#{(i1, . e ,im);léiléizé. . .éimér}.

On the other hand, by [16, Corollary 1.4] and Proposition 2.2, it follows that
Im §,,—, is generated by the set {u; ...u; ;1=i,=...=i,=r}cK*(Q(m))

imd

by using the Chern character similarly to [7, Proposition 4.2]. Hence we obtain
the following short exact sequence of R-algebras as R-modules:

0—M— K*(Q(m))—§,,—0,
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where M =R"*"[u,, ..., u] is the polynomial algebra truncated at height
m+1 and is a subalgebra of K*(Q(m)), and S,, is the pullback of S/, S,,_,,
which is a free R-module since R is a principal ideal domain. Hence we obtain
K*(Q(m))=M @®3S,,. Clearly the ring structure of M does not depend on the
choice of u;’s. By the multiplicative property of Adams operations y*, the
module of decomposables in K*(Q(m)) is closed under the action of Adams
operations y*. So we have obtained (1), (2) and (5) of Theorem 0.1. To
determine the complete ring structure, we prepare

ProposiTION 2.3. Let 6,,_,, A,, and A,, be the Mayer—Vietoris coboundary for
XP(m—1), E"(X) and Q*...xQ and §,,_,(w)eS,,, where weS,,. Then
(ﬂlex(Q*. . .*Q))!(w) = 0'

Proof. From the commutativity of [7, (2.2)] together with (1.3), we obtain

Am o(ﬁ"m'Qx(Q*, . .*Q))!(W) = (] *o.. *j)!ohinc Am ° (nmIXXE’""(X))!
= ﬁ:m ° 6m—l(w) = 0)

since 8,,_;(w) is in $,, < Ker #,,. By 7, (2.1)], this implies(#,,| o x(o-. . +0))'(W) =
xX1+1x%xe for some x € K*(Q) and e e K*(Q *...* Q). On the other hand,
using Proposition 1.1 and Remark 1.2, we obtain

(B | @ X (Q*. .. x0))'(W)
= xj*e e x ) e (Bl xxxe. . ox)' e (| xxemo100) (W)
=X G*e o %)) 0 (B xxixe, . oxy)' (8" X T+ 1 X W+ Zu, Xv,)
=/ () X1+ 1X(j*. .. %j) by (W) + Zu; X v,
where u, X v, € K*(X) ® K*(E™'(X)) and u, X v, eK*(Q)®K*(Q* ..*%Q).
Let us recall that w is in S,_,=Ker(j*...*j)ohl,_, and the inclusion
X— E™'(X) is null-homotopic for m=3. In the case m =2, by similar
considerations as in the proof of Proposition 2.2, we obtain that x’ =v'(w)e D =
Kerj'. So we obtain x =j'(x')=0and e = (j *. .. *j) oh,,_;(w) =0. This implies
the proposition.
This fact means, in the sense of [16], every w € S, is primitive with respect to
Tom|ox (0. . 0y and the respective projections are null. Therefore we obtain

S, u;=0 for 1=i=r.

Hence S, is actually an ideal of K*(Q(m)). On the other hand, an element of S,
is a transgression image of 0, since the restriction to ZQ is clearly 0. Hence by
Proposition 2.3, we obtain that S.°S,=0 and therefore obtain that
S,. - K*(Q(m))=0. This implies (3), because K*(Q(m))- K*(Q(m))=M - M.
Also this, together with the fact that S, =S, c,,_,, implies (4). Hence the
isomorphism K*(Q(m))=M @3S, gives the complete description of the ring
structure of K*(Q(m)). This implies Theorem 0.1.

3. Proofs of Corollary 0.2 and Corollary 0.3

By Theorem 0.1(1), we can choose a system of generators of M to include the
pull-backs of generators which are included in L. Then we put L’ to be the
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subalgebra span by all such pull-backs in M. Then it follows that L' = M and the
restriction to P(m — 1) of L' is L. Then by (5) and (3) of Theorem 0.1, it follows
that y*(L') < L' + Ker {K*(Q(m))— K*(P(m — 1))} = L' + M - M. This implies
Corollary 0.2.

Next, we show Corollary 0.3. Let P(p — 1) be the projective (p — 1)-space of
Sz'. Then by [8, Theorem 3.1], Zf:ZX— Sy =58t cP(p—1) can be
extendable to P(p — 1) the projective (p — 1)-space of X, say f: P(p —1)—
P(p —1). It is known that K*(P(p —1))=R"![z], where z is an extension of
s'(y) to P(p —1) and R = Z,,. Then it follows that u =f'(z) is an extension of
Sfl(s!(y)) and y*z—k"z is decomposable for all k. Hence y*u—k"u is
decomposable and u is a generator corresponding to x. Then by Corollary 0.2, we
can choose a generator u' in K*(Q(m)) such that the restriction to P(m — 1) of u’
is u and y*u' — k"u’ € M . M. This implies Corollary 0.3.

4. Proof of Proposition 0.5

By the hypothesis of Proposition 0.5, the [F,-cohomology of X is an exterior
algebra on odd dimensional generators. Since 75: H*(ZX; F,)— H*(Q *Q; F,) is
injective on the module generated by the elements s*(x;x;) where s* denotes the
suspension isomorphism and x;’s are odd generators, it follows that

T%=0 for i=3d-2, 4.1
T3+'=0 for i=4d—-2; T5=0 for k=6d-3. (4.2)
By Corollary 0.2, we may choose N ¢ H*(Q(2); F,) such as
Sq*(N) <N,

where N is a polynomial algebra truncated at height 3. Hence N satisfies the
condition of [18, Theorem 1.4]. This yields the description of the action of
Steenrod squares. Then by using Adams secondary operations on Q(2) (rather
than P(2)) with (4.1) and (4.2), we obtain Proposition 0.5 by the arguments given
in [17].

5. Proof of Corollary 0.6

From (Hubbuck, pers. comm.) if a space Y has no torsion in its homology,
there is a Kronecker product  , ): K,(Y) x K‘(Y)— R. This enables us to dualise
the action of Adams operations y* for all k, where we regard the action on
K'(Y) as the action on K°(2Y). Since the induced right action on K«(Y) of y* is
determined uniquely by the duality ( , ), the action is natural, that is, commutes
with the homomorphism induced from a mapping between such spaces.

Let G, = U(n) or Sp(n). By [10], there is a generating variety Q, c G, with
0, N G, = Q. Hence, there is an inclusion from the collapsing space Q,,_,/Q)_;
to the Stiefel manifold O, , = G,/G,. This inclusion Q,_,/Q;_; =G, gives a
generating subspace of G, , in our sense by [10, Proposition 3.8] using
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Atiyah—Hirzebruch spectral sequence. Hence we obtain Q(2) for O,, ,:
Gn «— On

| 5.1)

J
On,k On,k

The multiplication u: G, X G,— G, induces an action ¢: G, X O,,— O, .- by
[10]. Then K«(G,) is an exterior algebra and K«(0, ,) is a quotient module of
K+«(G,). Let D be the module of decomposables in K«(G,). Then it follows that

K*(Gn) =D ®]'(k*(Qn))
Then by the commutativity of (5.1), it follows that
K+(0,1) =7(D) @ j|(K+(Qn ) (5.2)

since O, ; has no torsion in its homology and & induces a surjection in homology.
We remark here that the spaces above have no torsion in their homology. Then it
follows that

(D)y* =D,
(m(D))y* = m(D),
(K@i ))¥* < ju(K (@0 i)
We put L to be the dual of j,(K«(Q,.)) which annihilates z,(D). Then by (5.2)
and the duality, it follows that
Y*(L)c L forall k.

By Corollary 0.2, we can choose M in K*(Q(2)) such that y*(M)c M. Then
by replacing XP(2) in [3] with our Q(2), we obtain Corollary 0.6 using the
arguments given in [3] and Proposition 0.5.

6. Proofs of Proposition 0.7 and Corollary 0.8

Clearly the wedge sum Q=S"v...vS" gives a generating subspace of
X=8"x...x8" Since E™ has a (modp) homotopy type of wedge sum of
spheres, we can choose a spherical module basis of K*(E™) and S,,_,. The
restrictions u; of generators of M to P(p —1) satisfy y*u;—k"ujeS,_, ®
M - M, and u; has the exact filtration degree n;. Then by dimensional arguments,
it follows that

YA (p(u))) - ki (uf) € (S, ) N S, 6.1)

where S, =%, K*(X)®...®D®...® K*(X) and D is the module of decom-
posables. We choose v; in K*(E”) such as

wh(ul) = ague + 2, av;, (6.2)
j=1
where y*(v;) = k"*v; for all k. Then by (6.2), it follows that

YA () = K + 3 KK = Day,
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for all k. Then by (6.1), it follows that

zl k"'(kl - 1)alU] € Jt,!,(Sp_l) ﬂ gp' (6.3)
j=

We also decompose S,_; as the direct sum of y*-eigenvectors such as Sp-1=
Y. 8%, where y*(w) = k“w for any w € S,. Then by (6.3) we obtain that

k™(k! — 1)a;v; € m,(SS7) N S,
cm(S,_) NS, (6.4)

By the proof of [7, Proposition 3.6], it follows that S,/m5(S,_,) NS, has no
torsion. Hence (6.4) implies that v; € 7, (S71”)NS,. So we may choose an
element w; € S,_; such as n,’,(wj) =v; and put u; = u; — X;=; a; . w;. Then by (6.2),
it follows that

”;!z(ui) =ayYy
and
Y<(p(u;)) = ki (u;) (6.5)
for all k.
On the other hand, we obtain that

Y (u;) — k"u; €S, ;mod M - M.

Since 7, is injective on S,_; (see [7, 4]), it follows, by (6.5), that y*(u,)=
k™u; mod M - M. Hence by (1) and (2) of Theorem 0.1, we may assume that M is
generated by u;’s. Then by Corollary 0.2, it follows that y*(M) < M for all k.
Hence we can apply the arguments of the proof of the theorem of [5] to our M
and N. Then we obtain part (i) of Proposition 0.7.

We will show part (ii) by refining the arguments of [5]. We fix i; 1=Si=
rank N,. Then two formulae [§, (2.2)] and [5, (2.3)], in the case g = p imply the
following formula:

2
,.21 kPP =Dp"RYk)SE"(u, ) = A{ p*uf,; mod p°, (6.6)

where k =p —1, A;#0 mod p and Z{u, ;} = ON,. The arguments given after [5,
(2.3)] show that the only possibility of contributing the elements u5 ;. by the
mapping Rj(k), lies on the elements of the form u?7'v,, where v, is in QON;. By
our hypothesis of connectivity, Q(p) is 2-connected and ON, = 0. Then by (6.6),
it follows that

P°R3(k)S5 *(u,,;) = p*ub,;mod (p°) + I, 6.7)
where [ is the submodule of N,z generated by the independent elements with u? ,.,

1=i'=rank ON,. Using the above, we find that the only possibility of contribut-
ing the elements u5 ;. lies on the elements of the form u?;?. v,, where v, is in
ON,. Then by (6.7), it follows that there exists an element v, ,; in QN, for each i
such that

Sg_z(up,i) = A %v, ,;mod (p) + I,

6.8
uz;zRg(k)(UZ,,‘) = uz’,' mod (p) + 1, ( )
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where I, is the submodule of N, _,)., generated by the independent elements
with ub v, for 1=i' =rank ON, and v, € ON,. Then by (6.8), it follows that

R3(k)(vy,;) =u’,mod (p) + 1,

where I' is the submodule of N,, generated by the independent elements
with uf,,,-,, 1=i'=rank ON,. This implies that rank H3(X;Z)=rank ON, =
rank N,,/I' = rank ON,, = rank H*~'(X; Z). This completes the proof of Proposi-
tion 0.7.

Let us turn our attention to the case when p = 3. The hypothesis of Corollary
0.8 implies that X is homotopy equivalent to T X X where T is a product of S'’s
and X is the universal covering of X. The homotopy associativity of X inherits the
universal covering and X satisfies the condition of Proposition 0.7. Hence X has
the homotopy type of a product of $>’s and S* x $>s. Let us recall that S' = U(1)
and $*=SU(2), and that SU(3) is 3-regular and has the mod 3 homotopy type of
§3 x §5. This implies Corollary 0.8.

7. Proof of Corollary 0.10

Under the hypothesis of Corollary 0.10, we put Q =S5’ X {*} = §” X X. Then the
inclusion j: Q = 87 X X satisfies the condition that j': QK*(S7 X X)— K*(§7) is
surjective. Then by Theorem 0.9, it follows that there exists a complex Q(3, j) with
properties  K*(Q(3, ))=M(@3,)) ®$(j), M=M@3,j)=RY[E, (n})/R*(j');
H*(Q(3, ))=NG, ) ® T(j) and N=N(@3, j)=R"[x,, {y}]/R*(j*), where &,
and 7! correspond to generators of K*(S’) and K*(X), respectively: subscripts
denote, following [4], the exact filtrations.

We may assume that X is simply connected without any loss of generality, since
the homotopy associativity inherits the universal cover as well as the Hopf
structure. By dimensional arguments, the generators &, and x, are A -primitive,
that is, these two elements are extendable to P(3). Then we can choose &, such
that y*(E)=k*6, in QM@ S;(j), since OM=QK*(S" x X)=K*(S")®
QK*(X) and Im {K*(P(3))— K(Q(3,j))} NSs(j) is mapped injectively to
Im {K*(P(3))— K*(P(2))} NS, =Ker 3N S,=0. We remark here that, for
other generators 7}, y*(n!) are possibly not in M, while p*(M - M)c M - M. In
[4], the calculations on y*(n}) or ®*(y}) are used in those on Y*(&,) or ®*(x,)
and hence, are used to calculate y*(n}- ni) = yv*(n}) - v*(ni). Hence we may
ignore the part in $(j) appearing in the description of ¥*(n%). By [4, (3.1)], the
elements of height 3 except for &3 have no contribution to &,, &5 and &;. Hence
the calculations given in [4] are all valid for our M or N modulo, the elements of
height 3 far from &3 or x3. So by the proof of [4, Theorem 1.1], we obtain
Corollary 0.10.
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