LUSTERNIK-SCHNIRELMANN CATEGORY OF Spin(9)

NORIO IWASE ${ }^{\dagger}$ AND AKIRA KONO

Abstract

We first give an upper bound of $\operatorname{cat}(E)$ the L-S category of a principal G-bundle E for a connected compact group G with a characteristic map $\alpha: \Sigma V \rightarrow G$. Assume that there is a cone-decomposition $\left\{F_{i} \mid 0 \leq i \leq m\right\}$ of G in the sense of Ganea, that is compatible with multiplication. Then we have $\operatorname{cat}(E) \leq \operatorname{Max}(m+n, m+2)$ for $n \geq 1$, if α is compressible into $F_{n} \subseteq F_{m} \simeq G$ with trivial higher Hopf invariant $H_{n}(\alpha)$ (see Iwase [10]). Second, we introduce a new computable lower bound, $\operatorname{Mwgt}\left(X ; \mathbb{F}_{2}\right)$, for cat (X). The two new estimates imply cat $(\mathbf{S p i n}(9))=\operatorname{Mwgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)=8>6=\operatorname{wgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)$, where $\operatorname{wgt}(-; R)$ is a category weight due to Rudyak and Strom.

Introduction

In this paper, we work in the category of connected CW-complexes and continuous maps. The Lusternik-Schnirelmann category $\operatorname{cat}(X)$, L-S category for short, is the least integer m such that there is a covering of X by $(m+1)$ open subsets each of which is contractible in X. Ganea introduced a stronger notion of L-S category, $\operatorname{Cat}(X)$ the strong L-S category of X, which is equal to the cone-length by Ganea [4], that is, the least integer m such that there is a set of cofibre sequences $\left\{A_{i} \rightarrow X_{i-1} \hookrightarrow X_{i}\right\}_{1 \leq i \leq m}$ with $X_{0}=\{*\}$ and $X_{m} \simeq X$. Then by Ganea [4], we have $\operatorname{cat}(X) \leq \operatorname{Cat}(X) \leq \operatorname{cat}(X)+1$. Throughout this paper, we follow the notations in [12], which is based on [9, 10]: For a map $f: S^{k} \rightarrow X$, a homotopy set of higher Hopf invariants $H_{m}(f)=\left\{\left[H_{m}^{\sigma}(f)\right] \mid \sigma\right.$ is a structure map of cat $\left.(X) \leq m\right\}$ (or its stabilisation $\mathcal{H}_{m}(f)=\Sigma_{*}^{\infty} H_{m}(f)$) is referred simply as a (stabilized) higher Hopf invariant of f, which plays a crucial role in this paper.

A computable lower estimate is given by the classical cup-length. Here we give its definition in a slightly general fashion, which is inspired by the proof of cat $(\mathbf{S p}(2))=$ 3 given in [14]:

[^0]Definition 0.1 (I. [12]). (1) Let h be a multiplicative generalized cohomology.

$$
\operatorname{cup}(X ; h)=\operatorname{Min}\left\{m \geq 0 \mid \forall\left\{v_{0}, \cdots, v_{m} \in \tilde{h}^{*}(X)\right\} v_{0} \cdot v_{1} \cdots \cdots v_{m}=0\right\}
$$

(2) $\operatorname{cup}(X)=\operatorname{Max}\left\{\operatorname{cup}(X ; h) \left\lvert\, \begin{array}{l}h \text { is a multiplicative generalized } \\ \text { cohomology }\end{array}\right.\right\}$.

Then we have $\operatorname{cup}(X ; h) \leq \operatorname{cup}(X) \leq \operatorname{cat}(X)$ for any multiplicative generalized cohomology h. When h is the ordinary cohomology with a coefficient ring R, we denote $\operatorname{cup}(X ; h)$ by $\operatorname{cup}(X ; R)$. This definition immediately implies the following.

Remark 0.2. $\operatorname{cup}(X)=\operatorname{Min}\left\{m \geq 0 \mid \tilde{\Delta}^{m+1}: X \rightarrow \wedge^{m+1} X\right.$ is stably trivial $\}$.
Let $\left\{p_{k}^{\Omega X}: E^{k}(\Omega X) \rightarrow P^{k-1}(\Omega X) ; k \geq 1\right\}$ be the A_{∞}-structure of ΩX in the sense of Stasheff [19] (see also Iwase-Mimura [13] for some more properties). The relation between an A_{∞}-structure and a L-S category gives the key observation in $[9,10,11]$ to producing counter-examples to the Ganea conjecture on L-S category. On the other hand, Rudyak [18] and Strom [20] introduced a homotopy theoretical version of Fadell-Husseini's category weight (see [3]), which can be described as follows, for an element $u \in h^{*}(X)$ and a generalized cohomology h :

$$
\begin{aligned}
& \operatorname{wgt}(u ; h)=\operatorname{Min}\left\{m \geq 0 \mid\left(e_{m}^{X}\right)^{*}(u) \neq 0 \text { in } h^{*}\left(P^{m}(\Omega X)\right)\right\}, \\
& \operatorname{wgt}(X ; h)=\operatorname{Min}\left\{\begin{array}{l|l}
m \geq 0 & \begin{array}{l}
\left(e_{m}^{X}\right)^{*}: h^{*}(X) \rightarrow h^{*}\left(P^{m}(\Omega X)\right) \\
\text { is a monomorphism }
\end{array}
\end{array}\right\},
\end{aligned}
$$

where e_{m}^{X} denotes the map $P^{m}(\Omega X) \hookrightarrow P^{\infty}(\Omega X) \simeq X$. Then we easily see

$$
\begin{equation*}
\operatorname{wgt}(X ; h)=\operatorname{Max}\left\{\operatorname{wgt}(u ; h) \mid u \in \tilde{h}^{*}(X)\right\} . \tag{0.1}
\end{equation*}
$$

We remark that $\operatorname{wgt}(u ; h)=s$ if and only if u represents a non-zero class in $E_{\infty}^{s, *}$ of bar spectral sequence $\left\{\left(E_{r}^{*, *}, d_{r}^{*, *}\right) \mid r \geq 1\right\}$ converging to $h^{*}(X)$ with $E_{2}^{* *} \cong$ $\operatorname{Ext}_{h_{(\Omega X)}^{* *}}^{*}\left(h_{*}, h_{*}\right)$. When h is the ordinary cohomology with a coefficient ring R, we denote $\operatorname{wgt}(X ; h)$ by $\operatorname{wgt}(X ; R)$. In this paper, we introduce new computable invariants as follows:

Definition 0.3. Let h be a generalized cohomology: A homomorphism $\phi: h^{*}(X) \rightarrow$ $h^{*}(Y)$ is called a h-morphism if it preserves the actions of all (unstable) cohomology operations on h^{*}.

Definition 0.4 (I. [12]). Let h be a generalized cohomology and X a space. A module weight $\operatorname{Mwgt}(X ; h)$ of X with respect to h is defined as follows:

$$
\operatorname{Mwgt}(X ; h)=\operatorname{Min}\left\{\begin{array}{l|l}
m \geq 0 & \begin{array}{l}
\text { There is an h-morphism } \phi: h^{*}\left(P^{m}(\Omega X)\right) \rightarrow \\
h^{*}(X), \text { which is a left homotopy inverse of }\left(e_{m}^{X}\right)^{*}
\end{array}
\end{array}\right\}
$$

When h is the ordinary cohomology with coefficients in a ring R, we denote $\operatorname{Mwgt}(X ; h)$ by $\operatorname{Mwgt}(X ; R)$. These invariants satisfy the following inequalities:

$$
\operatorname{cup}(X ; R) \leq \operatorname{wgt}(X ; R) \leq \operatorname{Mwgt}(X ; R) \leq \operatorname{cat}(X)
$$

Similar to the above definition of $\operatorname{cup}(X)$, we define the following invariants:
Definition 0.5 (I. [12]).

$$
\text { (1) } \operatorname{wgt}(X)=\operatorname{Max}\left\{\operatorname{wgt}(X ; h) \left\lvert\, \begin{array}{l}
h \text { is a generalized } \\
\text { cohomology }
\end{array}\right.\right\}
$$

(2) $\operatorname{Mwgt}(X)=\operatorname{Max}\{\operatorname{Mwgt}(X ; h) \mid h$ is a generalized cohomology $\}$

Remark 0.6. Let rcat(-) be Rudyak's stable L-S category, which is denoted as $r(-)$ in [18]. Then we have $\operatorname{cup}(X) \leq \operatorname{wgt}(X)=r \operatorname{cat}(X) \leq \operatorname{Mwgt}(X) \leq \operatorname{cat}(X)$.

Let us denote by $Z^{(k)}$ the k-skeleton of a CW complex Z. To give an upperbound for L-S category of the total space of a fibre bundle $F \hookrightarrow E \rightarrow B$, we need a refinement of results of Varadarajan [21] and Hardie [6], and corresponding result for strong category of Ganea [4]:

Theorem $0.7([21,6,4])$. (1) $\quad \operatorname{cat}(E)+1 \leq(\operatorname{cat}(F)+1) \cdot(\operatorname{cat}(B)+1)$
(2) $\operatorname{Cat}(E)+1 \leq(\operatorname{Cat}(F)+1) \cdot(\operatorname{Cat}(B)+1)$.

In [16], Iwase-Mimura-Nishimoto gave such a refinement in the case when the base space B is non-simply connected. But in this paper, we give another refinement in the case when the fibre bundle is a principal bundle over a double suspension space: Let G be a compact Lie group with a cone-decomposition of length m :

$$
\text { (} m \text { cofibre sequences) } \quad K_{i} \xrightarrow{\rho_{i}} F_{i-1} \hookrightarrow F_{i}, \quad i \geq 1,
$$

with $F_{0}=\{*\}$ and $F_{i}=F_{m} \simeq G, i \geq m$. Then we obtain $\sigma_{k}: F_{k} \rightarrow P^{k} \Omega F_{k}$ for all $k \leq m$ as a right homotopy inverse of $e_{k}: P^{k} \Omega F_{k} \rightarrow P^{\infty} \Omega F_{k} \simeq F_{k}$ by induction on $k \geq 1$. Thus we have the following commutative diagram:

where $e_{k} \circ \sigma_{k} \sim 1_{F_{k}}$ for all $k \leq m$.

Theorem 0.8. Let $G \hookrightarrow E \rightarrow \Sigma^{2} V$ be a principal bundle with characteristic map $\alpha: A=\Sigma V \rightarrow G$. Then we have $\operatorname{cat}(E) \leq \operatorname{Max}(m+n, m+2)$ for $n \geq 1$, if
(1) α is compressible into $F_{n} \subseteq F_{m} \simeq G$,
(2) $H_{n}^{\sigma_{n}}(\alpha)=0$ and
(3) the restriction of the multiplication $\mu: G \times G \rightarrow G$ to $F_{j} \times F_{n} \subseteq F_{m} \times F_{m} \simeq$ $G \times G$ is compressible into $F_{j+n} \subseteq F_{m} \simeq G, j \geq 0$ as $\mu_{j, n}: F_{j} \times F_{n} \rightarrow F_{j+n}$ such that $\left.\mu_{j, n}\right|_{F_{j-1} \times F_{n}}=\mu_{j-1, n}$.

Remark 0.9. If we choose $n=m+1$, then the assumptions (1) through (3) above are automatically satisfied. Thus we always have $\operatorname{Cat}(E) \leq 2 \operatorname{Cat}(G)+1$ which is a special case of Ganea's theorem (see Theorem 0.7 (2)).

For $\operatorname{Spin}(9)$, we first observe the following result.

Theorem 0.10. $\operatorname{Mwgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right) \geq 8>6=\operatorname{wgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)$.

These results imply the following result.

Theorem 0.11. $\operatorname{cat}(\operatorname{Spin}(9))=\operatorname{Mwgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)=8$.

1. Proof of Theorem 0.8

From now on, we work in the homotopy category, and so we do not distinguish G and F_{m}. Let $G \hookrightarrow E \rightarrow \Sigma^{2} V$ be a principal bundle with characteristic map $\alpha: A=\Sigma V \rightarrow G$. The assumptions (1) and (3) in Theorem 0.8 allows us to construct a filtration $\left\{E_{k}\right\}_{0 \leq k \leq n+m}$ of E : By using the James-Whitehead decomposition (see Theorem 1.15 of Whitehead [22]), we have

$$
E=G \cup_{\psi} G \times C A, \quad \psi=\mu \circ\left(1_{G} \times \alpha\right): G \times A \rightarrow G .
$$

Firstly, we define two filtrations of E as follows:

$$
\begin{aligned}
& E_{k}= \begin{cases}F_{k}, & k \leq n, \\
F_{k} \cup_{\psi_{k-n-1}} F_{k-n-1} \times C A, & n<k \leq m+n,\end{cases} \\
& E_{k}^{\prime}= \begin{cases}F_{k}, & k<n, \\
F_{k} \cup_{\psi_{k-n}} F_{k-n} \times C A, & n \leq k \leq m+n,\end{cases}
\end{aligned}
$$

where $\psi_{j}=\mu_{j, n} \circ(\alpha \times 1): F_{j} \times A \rightarrow F_{j+n}$ and $E=E_{m+n}^{\prime}$ which immediately imply that $\operatorname{cat}(E)=\operatorname{cat}\left(E_{m+n}^{\prime}\right)$.

By using the assumption (3), we obtain the following cofibre sequences, similarly to the arguments given in [16]:

$$
\begin{aligned}
& K_{k+1} \rightarrow E_{k} \hookrightarrow E_{k+1}, \text { for } 0 \leq k<n, \\
& K_{k+1} \vee\left(K_{k-n} * A\right) \rightarrow E_{k} \hookrightarrow E_{k+1}, \text { for } n \leq k<m+n, \\
& K_{k-n} * A \rightarrow E_{k} \hookrightarrow E_{k}^{\prime},
\end{aligned}
$$

Similarly to the arguments given in [15, 16], we obtain

$$
\begin{equation*}
\operatorname{cat}\left(E_{k}\right) \leq k \text { and } \operatorname{cat}\left(E_{k}^{\prime}\right) \leq k+1 \quad \text { for any } k \geq n \tag{1.1}
\end{equation*}
$$

by induction on k. The following lemma can be deduced in a similar but easier manner to the main theorem of [11], using $H_{n}^{\sigma_{n}}(\alpha)=0$, the assumption (2):

Lemma 1.1. $\operatorname{cat}\left(E_{j+n}^{\prime}\right) \leq j+n$ for all $j \geq 0$ and $n \geq 2$.
Lemma 1.1 and (1.1) imply $\operatorname{cat}(E)=\operatorname{cat}\left(E_{m+n}^{\prime}\right) \leq \operatorname{Max}(m+n, m+2)$, and hence we are left to show Lemma 1.1.

Proof of Lemma 1.1. We define a map $\hat{\psi}_{j}$ as follows:

$$
\hat{\psi}_{j}=\sigma_{j+n} \circ \mu_{j, n} \circ\left(e_{j} \times \alpha\right): P^{j} \Omega F_{j} \times A \rightarrow P^{j+n} \Omega F_{j+n}
$$

Then we have $\hat{\psi}_{j} \circ\left(\sigma_{j} \times 1\right)=\sigma_{j+n} \circ \mu_{j, n} \circ\left(e_{j} \times \alpha\right) \circ\left(\sigma_{j} \times 1\right) \sim \sigma_{j+n} \circ \mu_{j, n} \circ(1 \times \alpha)=$ $\sigma_{j+n} \circ \psi_{j}$ and $e_{j+n} \circ \hat{\psi}_{j}=e_{j+n} \circ \sigma_{j+n} \circ \mu_{j, n} \circ\left(e_{j} \times \alpha\right) \sim \mu_{j, n} \circ\left(e_{j} \times \alpha\right)=\psi_{j} \circ\left(e_{j} \times 1\right)$.

Thus the following diagram is commutative up to homotopy:

Therefore, the space $E_{j+n}^{\prime}=F_{j+n} \cup_{\psi_{j}} F_{j} \times C A$ is dominated by $P^{j+n} \Omega F_{j+n} \cup_{\hat{\psi}_{j}}$ $P^{j} \Omega F_{j} \times C A$. Since α satisfies $H_{n}^{\sigma_{n}}(\alpha)=0$, we have the following commutative diagram up to homotopy:

where $\operatorname{ad} \alpha: V \rightarrow \Omega F_{n}$ is the adjoint map of $\alpha: A=\Sigma V \rightarrow F_{n}$. Thus $\sigma_{n} \circ \alpha$ is compressible into $\Sigma \Omega F_{n}$, and hence we have

$$
\begin{aligned}
\hat{\psi}_{j} \sim & \sigma_{j+n} \circ \mu_{j, n} \circ\left(1 \times\left(e_{n} \circ \sigma_{n}\right)\right) \circ\left(e_{j} \times \alpha\right) \sim \sigma_{j+n} \circ \mu_{j, n} \circ\left(e_{j} \times e_{n}\right) \circ\left(1 \times\left(\sigma_{n} \circ \alpha\right)\right) \\
& \sim \sigma_{j+n} \circ \mu_{j, n} \circ\left(e_{j} \times e_{n}\right) \circ(1 \times \Sigma \mathrm{ad} \alpha)=\left.\hat{\psi}_{j}^{\prime}\right|_{P^{i} \Omega F_{j} \times \Sigma \Omega F_{n}} \circ(1 \times \Sigma \operatorname{ad} \alpha),
\end{aligned}
$$

where $\hat{\psi}_{j}^{\prime}=\sigma_{j+n} \circ \mu_{j, n} \circ\left(e_{j} \times e_{n}\right)$. Since $\operatorname{Cat}\left(P^{i} \Omega F_{j} \times \Sigma \Omega F_{n}\right) \leq i+1$, we have that $\left.\hat{\psi}_{j}^{\prime}\right|_{P^{i} \Omega F_{j} \times \Sigma \Omega F_{n}}$ can be compressible into $P^{i+1} \Omega F_{j+n}$ for $i \leq j$. This yields the following cone-decomposition of $P^{j+n} \Omega F_{j+n} \cup_{\hat{\psi}_{j}} P^{j} \Omega F_{j} \times C A$:

$$
\begin{aligned}
& \Omega F_{j+n} \rightarrow\{*\} \hookrightarrow P^{1} \Omega F_{j+n}, \\
& E^{2} \Omega F_{j+n} \vee A \rightarrow P^{1} \Omega F_{j+n} \hookrightarrow P^{2} \Omega F_{j+n} \cup C A, \\
& E^{i+2} \Omega F_{j+n} \vee E^{i} \Omega F_{j} * A \rightarrow P^{i+1} \Omega F_{j+n} \cup P^{i-1} \Omega F_{j} \times C A \\
& \\
& \qquad \begin{array}{r}
\hookrightarrow P^{i+2} \Omega F_{j+n} \cup P^{i} \Omega F_{j} \times C A, \quad 0<i \leq j, \\
E^{j+i} \Omega F_{j+n} \rightarrow P^{j+i-1} \Omega F_{j+n} \cup P^{j} \Omega F_{j} \times C A \\
\\
\\
\hookrightarrow P^{j+i} \Omega F_{j+n} \cup P^{j} \Omega F_{j} \times C A, \quad 2<i \leq n,
\end{array}
\end{aligned}
$$

for any $j \geq 0$ and $n \geq 2$. This implies $\operatorname{Cat}\left(P^{j+n} \Omega F_{j+n} \cup_{\hat{\psi}_{j}} P^{j} \Omega F_{j} \times C A\right) \leq j+n$ for all $j \geq 0$ and $n \geq 2$, and hence $\operatorname{cat}\left(E_{j+n}^{\prime}\right)=\operatorname{cat}\left(F_{j+n} \cup F_{j} \times C A\right) \leq j+n$ for all $j \geq 0$ and $n \geq 2$.

This completes the proof of Theorem 0.8.

2. BAR SPECTRAL SEQUENCE

To calculate our module weight $\operatorname{Mwgt}\left(X ; \mathbb{F}_{2}\right)$ together with $\operatorname{wgt}\left(X ; \mathbb{F}_{2}\right)$, we need to know the module structure of $H^{*}\left(P^{m}(\mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$ over the Steenrod algebra modulo 2. By Borel [1], Bott [2], Ishitoya-Kono-Toda [7], Hamanaka-Kono [5] and Kono-Kozima [17], the following are known:

$$
\begin{aligned}
& H^{*}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes \wedge_{\mathbb{F}_{2}}\left(x_{5}, x_{7}, x_{15}\right), \\
& \quad S q^{2} x_{3}=x_{5}, S q^{1} x_{5}=x_{6}, \quad x_{i} \in H^{i}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right), \\
& H_{*}\left(\Omega \operatorname{Spin}(9) ; \mathbb{F}_{2}\right)=\wedge_{\mathbb{F}_{2}}\left(u_{2}\right) \otimes \mathbb{F}_{2}\left[u_{4}, u_{6}, u_{10}, u_{14}\right] \\
& \quad u_{4} S q^{2}=u_{2}, u_{10} S q^{2}=u_{4}^{2}, u_{14} S q^{4}=u_{10}, \quad u_{2 i} \in H_{2 i}\left(\Omega \operatorname{Spin}(9) ; \mathbb{F}_{2}\right),
\end{aligned}
$$

where we denote by $\wedge_{R}\left(a_{i_{1}}, \cdots, a_{i_{t}}\right)$ the exterior algebra on $a_{i_{1}}, \cdots, a_{i_{t}}$ over R. We remark that the cohomology suspension of $x_{2 i+1}$ is non-trivially given by $u_{2 i}$
for $i=1,2,3$ and 7 . To determine $H^{*}\left(P^{m}(\mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$, we have to study the bar spectral sequence $\left(E_{r}^{*, *}, d_{r}^{*, *}\right)$ converging to $H^{*}\left(\mathbf{S p i n}(9) ; \mathbb{F}_{2}\right)$:

$$
\begin{aligned}
& E_{1}^{s, t} \cong \tilde{H}^{s+t}\left(P^{s}(\Omega \operatorname{Spin}(9)), P^{s-1}(\Omega \operatorname{Spin}(9)) ; \mathbb{F}_{2}\right) \cong \tilde{H}^{t}\left(\bigwedge^{s} \Omega \operatorname{Spin}(9) ; \mathbb{F}_{2}\right), \\
& D_{1}^{s, t} \cong \tilde{H}^{s+t}\left(P^{s}(\Omega \operatorname{Spin}(9)) ; \mathbb{F}_{2}\right) \\
& E_{2}^{*, *} \cong \operatorname{Ext}_{H_{*}\left(\Omega \operatorname{Spin}(9) ; \mathbb{F}_{2}\right)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{1,2}\right] \otimes \wedge_{\mathbb{F}_{2}}\left(x_{1,4}, x_{1,6}, x_{1,10}, x_{1,14}\right), \\
& E_{\infty}^{*, *} \cong \tilde{H}^{*}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{1,2}\right] /\left(x_{1,2}^{4}\right) \otimes \wedge_{\mathbb{F}_{2}}\left(x_{1,4}, x_{1,6}, x_{1,14}\right)
\end{aligned}
$$

where $x_{1,2}, x_{1,4}, x_{1,6}$ and $x_{1,14}$ are permanent cycles by [17]. Therefore, there is only one differential $d_{a}\left(x_{1,10}\right)(a \geq 2)$ which is possibly non-trivial, and we have $E_{a}^{*, *} \cong E_{2}^{*, *}$ and $E_{a+1}^{*, *} \cong E_{\infty}^{*, *}$. Since x_{3} is of height 4 in $H^{*}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)$, we have $d_{a}\left(x_{1,10}\right)=x_{1,2}^{4}$, and hence $a=3$. Thus we have the following:

$$
\begin{aligned}
& d_{r}=0 \text { if } r \neq 3, d_{3}\left(x_{1, i}\right)=0 \text { if } i \neq 10, d_{3}\left(x_{1,10}\right)=x_{1,2}^{4}, \\
& E_{2}^{*, *} \cong E_{3}^{*, *} \cong \mathbb{F}_{2}\left[x_{1,2}\right] \otimes \wedge_{\mathbb{F}_{2}}\left(x_{1,4}, x_{1,6}, x_{1,10}, x_{1,14}\right), \\
& E_{4}^{*, *} \cong E_{\infty}^{*, *} \cong \mathbb{F}_{2}\left[x_{1,2}\right] /\left(x_{1,2}^{4}\right) \otimes \wedge_{\mathbb{F}_{2}}\left(x_{1,4}, x_{1,6}, x_{1,14}\right) .
\end{aligned}
$$

By truncating the above computations with the same differential d_{r} to the spectral sequence for $P^{m}(\mathbf{S p i n}(9))$ of Stasheff's type (similar to the computation in [8]), we are lead to the following proposition, and we leave the details to the reader.

Proposition 2.1. Let $A=\mathbb{F}_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes \wedge_{\mathbb{F}_{2}}\left(x_{5}, x_{7}, x_{15}\right)$. Then for $m \geq 0$, we have

$$
H^{*}\left(P^{m}(\mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right) \cong \begin{cases}A^{[0]} \cong \mathbb{F}_{2}, & \text { if } m=0 \\ A^{[m]} \oplus x_{11} \cdot A^{[m-1]} \oplus S_{m}, & \text { if } 3 \geq m \geq 1 \\ A^{[m]} \oplus x_{11} \cdot\left(A^{[m-1]} / A^{[m-4]}\right) \oplus S_{m}, & \text { if } m \geq 4\end{cases}
$$

as modules, where $A^{[m]}(m \geq 0)$ denotes the quotient module $A / D^{m+1}(A)$ of A by the submodule $D^{m+1}(A) \subseteq A$ generated by all the products of $m+1$ elements in positive dimensions, $x_{11} \cdot\left(A^{[m-1]} / A^{[m-4]}\right)(m \geq 4)$ denotes a submodule corresponding to a submodule in $\mathbb{F}_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes \wedge_{\mathbb{F}_{2}}\left(x_{5}, x_{7}, x_{11}, x_{15}\right)$ and S_{m} satisfies $S_{m} \cdot \tilde{H}^{*}\left(P^{m}(\mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)=0$ and $\left.S_{m}\right|_{P^{m-1}(\mathbf{S p i n}(9))}=0$.

Some more comments might be required to the second direct summand of the above expressions of $H^{*}\left(P^{m}(\operatorname{Spin}(9)) ; \mathbb{F}_{2}\right), m \geq 4$. The multiplication with x_{11} is a fancy notation to describe the module basis and not a usual product. However, we may regard it is a partial product in the sense introduced in the next section.

3. Partial products

Since a diagonal map $\Delta_{n}^{\Omega X}=\Omega\left(\Delta_{n}^{X}\right): \Omega X \rightarrow \prod^{n} \Omega X=\Omega\left(\prod^{n} X\right)$ is a loop map, it induces a map of projective spaces:

$$
P^{m}\left(\Delta_{n}^{\Omega X}\right): P^{m}(\Omega X) \rightarrow P^{m}\left(\Omega\left(\prod^{n} X\right)\right)
$$

such that $e_{m}^{\Pi^{n} X} \circ P^{m}\left(\Delta_{n}^{\Omega X}\right) \sim \Delta_{n}^{X} \circ e_{m}^{X}$. As is seen in the proof of Theorem 1.1 in [9], there is a natural map

$$
\begin{array}{r}
\varphi_{m}^{X}: P^{m}\left(\Omega\left(\prod^{n} X\right)\right) \rightarrow \bigcup_{\substack{i_{1}+\cdots+i_{n}=m}} P^{i_{1}}(\Omega X) \times \cdots \times P^{i_{n}}(\Omega X) \\
\subset P^{m}(\Omega X) \times \cdots \times P^{m}(\Omega X)
\end{array}
$$

such that $\left(e_{m}^{X} \times \cdots \times e_{m}^{X}\right) \circ \varphi_{m}^{X}=e_{m}^{\Pi^{n} X}$. Let $\Delta_{n}^{X, m}=\varphi_{m}^{X} \circ P^{m}\left(\Delta_{n}^{\Omega X}\right)$, which we call the n-th partial diagonal of X of height m, or simply a partial diagonal

$$
\begin{array}{r}
\Delta_{n}^{X, m}: P^{m}(\Omega X) \rightarrow \bigcup_{\substack{i_{1}+\cdots+i_{n}=m}} P^{i_{1}}(\Omega X) \times \cdots \times P^{i_{n}}(\Omega X) \\
\subset P^{m}(\Omega X) \times \cdots \times P^{m}(\Omega X)
\end{array}
$$

such that $\left(e_{m}^{X} \times \cdots \times e_{m}^{X}\right) \circ \Delta_{n}^{X, m} \sim \Delta_{n}^{X} \circ e_{m}^{X}$. This partial diagonal also yields the reduced version

$$
\begin{aligned}
\bar{\Delta}_{n}^{X, m}: P^{m}(\Omega X) \rightarrow & \bigcup_{i_{1}+\cdots+i_{n}=m} \\
& P^{i_{1}}(\Omega X) \wedge \cdots \wedge P^{i_{n}}(\Omega X) \\
& \subset P^{m-n+1}(\Omega X) \wedge \cdots \wedge P^{m-n+1}(\Omega X)
\end{aligned}
$$

such that $\left(e_{m-n+1}^{X} \wedge \cdots \wedge e_{m-n+1}^{X}\right) \circ \bar{\Delta}_{n}^{X, m} \sim \bar{\Delta}_{n}^{X} \circ e_{m}^{X}$, where $\bar{\Delta}_{n}^{X}: X \rightarrow \bigwedge^{n} X$ denotes the reduced diagonal. Let us call $\bar{\Delta}_{n}^{X, m}$ the n-th reduced partial diagonal of X of height m, or simply a reduced partial diagonal.

As is well-known, the product of a multiplicative generalized cohomology h is given by (reduced) diagonal, i.e.,

$$
v_{1} \cdots \cdots v_{n}=\left(\bar{\Delta}_{n}^{X}\right)^{*}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \in \bar{h}^{*}(X), \quad \text { for any } v_{1}, \cdots, v_{n} \in \bar{h}^{*}(X)
$$

where \bar{h} denotes the reduced cohomology associated with h. So it is natural to define a 'partial' product as the following way:

Definition 3.1. For any elements $v_{1}, \cdots, v_{n} \in \bar{H}^{*}\left(\Sigma \Omega X ; \mathbb{F}_{2}\right)$ which are restrictions of elements in $\bar{H}^{*}\left(P^{m-n+1}(\Omega X) ; \mathbb{F}_{2}\right)$, we define a partial product $v_{1} \cdots \cdots v_{n}=$ $\left(\bar{\Delta}_{n}^{\Omega X, m}\right)^{*}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ in $\bar{H}^{*}\left(P^{m}(\Omega X) ; \mathbb{F}_{2}\right)$.

Remark 3.2. Since x_{11} can be extended to an element in $\bar{H}^{*}\left(P^{3}(\Omega \operatorname{Spin}(9)) ; \mathbb{F}_{2}\right)$, we have partial products $x_{11} \cdot v_{1} \cdots \cdots v_{n-1}=\left(\bar{\Delta}_{n-1}^{\mathbf{S p i n}(9), m}\right)^{*}\left(x_{11} \otimes v_{1} \otimes \cdots \otimes v_{n-1}\right)$ for any elements $v_{1}, \cdots, v_{n-1} \in \bar{H}^{*}\left(P^{3}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right), m-2 \leq n \leq m$. In the direct sum decomposition of $H^{*}\left(P^{m}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$ given in Proposition 2.1, the direct summand $x_{11} \cdot\left(A^{[m-1]} / A^{[m-4]}\right)$ is generated by such partial products.

4. Proof of Theorem 0.10

We know $x_{3}^{3} x_{5} x_{7} x_{15}$ and $x_{11} \cdot x_{3}^{3} x_{5} x_{7}$ exist non-trivially in $H^{*}\left(P^{8}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$ but $x_{11} \cdot x_{3}^{3} x_{5} x_{7}$ does not exist in $H^{*}\left(P^{9}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$ by Proposition 2.1. To observe what happens on the element $x_{11} \cdot x_{3}^{3} x_{5} x_{7}$ in $H^{*}\left(P^{8}(\Omega \operatorname{Spin}(9)) ; \mathbb{F}_{2}\right)$, we must recall the bar spectral sequence $\left(E_{r}^{*, *}, d_{r}^{*, *}\right)$:

$$
\left[\left(p_{9}^{\Omega \mathbf{S} \operatorname{pin}(9)}\right)^{*}\left(x_{11} \cdot x_{3}^{3} x_{5} x_{7}\right)\right]=d_{3}\left(x_{1,2}^{3} x_{1,4} x_{1,6} x_{1,10}\right)= \pm x_{1,2}^{7} x_{1,4} x_{1,6} \neq 0 \text { in } E_{3}^{*, *}
$$

where we denote by $[\beta]$ the corresponding class in $E_{3}^{*, *}$ to an element $\beta \in E_{1}^{*, *}$. Thus $\left(p_{9}^{\Omega \boldsymbol{S p i n}(9)}\right)^{*}\left(x_{3}^{3} x_{5} x_{7} x_{11}\right) \neq 0$ in $E_{1}^{9, *}=\tilde{H}^{*}\left(\bigwedge^{9} \Omega \mathbf{S p i n}(9) ; \mathbb{F}_{2}\right)$, and hence $x_{11} \cdot x_{3}^{3} x_{5} x_{7}$ does not exist in $\tilde{H}^{*}\left(P^{9}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$, but does in $\tilde{H}^{*}\left(P^{8}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$.

By [17], we know $S q^{4}\left(x_{11}\right)=x_{15}$ in $H^{*}\left(P^{1}(\mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$, and hence $S q^{4}\left(x_{11}\right)=$ x_{15} modulo S_{3} in $H^{*}\left(P^{3}(\mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$ for dimensional reasons. Thus we have

$$
\begin{align*}
& S q^{4}\left(x_{11} \cdot x_{3}^{3} x_{5} x_{7}\right)=x_{3}^{3} x_{5} x_{7} x_{15}, \quad \text { in } H^{*}\left(P^{7}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right) \tag{4.1}\\
& S q^{4}\left(x_{11} \cdot x_{3}^{3} x_{5} x_{7}\right)=x_{3}^{3} x_{5} x_{7} x_{15}+w, \quad w \in S_{8} \text { in } H^{*}\left(P^{8}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)
\end{align*}
$$

The equation (4.1) implies that any left inverse epimorphism of $\left(e_{7}^{\mathbf{S p i n}(9)}\right)^{*}$

$$
\phi: H^{*}\left(P^{7}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(\mathbf{S p i n}(9) ; \mathbb{F}_{2}\right)
$$

does not preserve the action of the modulo 2 Steenrod operations: if such a epimorphism ϕ did preserve the action of the modulo 2 Steenrod operations, the element $\phi\left(x_{3}^{3} x_{5} x_{7} x_{15}\right)=x_{3}^{3} x_{5} x_{7} x_{15}$ in $H^{*}\left(\mathbf{S p i n}(9) ; \mathbb{F}_{2}\right)$ should lie in the image of $S q^{4}$, since $x_{3}^{3} x_{5} x_{7} x_{15}$ lies in the image of $S q^{4}$ in $H^{*}\left(P^{7}(\Omega \mathbf{S p i n}(9)) ; \mathbb{F}_{2}\right)$ by (4.1). It contradicts to the fact that $H^{32}\left(\mathbf{S p i n}(9) ; \mathbb{F}_{2}\right)=0$. Thus we have $\operatorname{Mwgt}\left(\mathbf{S p i n}(9) ; \mathbb{F}_{2}\right) \geq 8$.

On the other hand, we can easily see that each generator of $H^{*}\left(\mathbf{S p i n}(9) ; \mathbb{F}_{2}\right) \cong$ $\mathbb{F}_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes \wedge_{\mathbb{F}_{2}}\left(x_{5}, x_{7}, x_{15}\right)$ has category weight 1 , and hence by (0.1), we have $\operatorname{wgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)=6$. This completes the proof of Theorem 0.10.

5. Proof of Theorem 0.11

By [15], we can easily see that $\operatorname{Spin}(7)$ admits a cone-decomposition which satisfies the condition 3 in Theorem 0.8. Since $\left.x_{15} \in H^{15}(\operatorname{Spin}(7)) ; \mathbb{F}_{2}\right)$ is the modulo 2 reduction of a generator of $H^{15}(\boldsymbol{\operatorname { S p i n }}(7) ; \mathbb{Z}) \cong \mathbb{Z}$, the image of the attaching map α of the 15 -cell corresponding to x_{15} must lie in $\operatorname{Spin}(7)^{(13)}$ the 13 -skeleton of $\mathbf{S p i n}(7)$, where $\mathbf{S p i n}(7)^{(13)}$ is contained in $F_{3}(\mathbf{S p i n}(7))$. To observe that the attaching map α satisfies the condition of Theorem 0.8 with $n=3$, we need to show that $H_{3}^{\sigma_{3}}(\alpha)=0$. Then we obtain $\operatorname{cat}(\mathbf{S p i n}(9)) \leq \operatorname{Cat}(\mathbf{S p i n}(7))+n=5+3=8$ by Theorem 0.8 , while we know $\operatorname{Mwgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right) \geq 8$ by Theorem 0.10 , and hence

$$
\operatorname{cat}(\operatorname{Spin}(9))=\operatorname{Mwgt}\left(\operatorname{Spin}(9) ; \mathbb{F}_{2}\right)=8
$$

Let $\sigma_{3}: F_{3}(\mathbf{S p i n}(7)) \rightarrow P^{3}\left(\Omega F_{3}(\mathbf{S p i n}(7))\right)$ be the canonical structure map of $\operatorname{cat}\left(F_{3}(\mathbf{S p i n}(7))\right)=3$. Then we are left to show that $H_{3}^{\sigma_{3}}(\alpha)=0$. By definition,

$$
H_{3}^{\sigma_{3}}(\alpha): S^{14} \rightarrow E^{4}\left(\Omega F_{3}(\mathbf{S p i n}(7))\right),
$$

where $F_{3}(\boldsymbol{\operatorname { S p i n }}(7))=\mathbf{G}_{2}^{(11)} \cup_{\Sigma \mathbb{C} P^{2}} \Sigma \mathbb{C} P^{3} \cup($ higher cells $\geq 8)$. Since $\Omega \mathbf{G}_{2}^{(11)}$ has the homotopy type of $\mathbb{C} P^{2} \cup$ (higher cells ≥ 6), we know $\Omega F_{3}(\operatorname{Spin}(7))$ has the homotopy type of $\mathbb{C} P^{3} \cup($ higher cells $\geq 6)$. Thus we observe that $E^{4}\left(\Omega F_{3}(\operatorname{Spin}(7))\right)$ has the homotopy type of

$$
\Sigma^{3} \mathbb{C} P^{3} \wedge S^{2} \wedge S^{2} \wedge S^{2} \cup \Sigma^{3} \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \cup(\text { higher cells } \geq 15)
$$

It is well-known that $\Sigma \mathbb{C} P^{3}=\Sigma \mathbb{C} P^{2} \cup_{\omega_{3}} e^{7}, \omega_{3}: S^{6} \rightarrow S^{3} \subset \Sigma \mathbb{C} P^{3}$, and hence we have $\Sigma^{3} \mathbb{C} P^{3} \wedge S^{2} \wedge S^{2} \wedge S^{2}=\Sigma^{3} \mathbb{C} P^{2} \wedge S^{2} \wedge S^{2} \wedge S^{2} \cup_{2 \nu_{11}} e^{15}$, since $\omega_{n}=$ $2 \nu_{n}$ for $n \geq 5$. An easy computation on the cohomology groups shows that $\mathbb{C} P^{2} \wedge \mathbb{C} P^{2}$ has the homotopy type of $\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \cup_{\beta} e^{8}, \beta: S^{7} \xrightarrow{\mu} S^{7} \vee S^{7}$ $\xrightarrow{3 \nu_{4} \vee \eta} S^{4} \vee S^{6} \subset \Sigma^{2} \mathbb{C} P^{2} \vee S^{6}$, where μ denotes the unique co-Hopf structure of S^{7}. Then we obtain, up to higher cells in dimension ≥ 10, that $\left[\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \cup_{\beta}\right.$ $\left.e^{8}\right] \wedge \mathbb{C} P^{2}=\left(\Sigma^{2} \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \vee \Sigma^{6} \mathbb{C} P^{2}\right) \cup_{\Sigma^{2} \beta} e^{10}=\left(\Sigma^{2} \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \cup_{3 \nu_{6}} e^{10}\right) \vee \Sigma^{6} \mathbb{C} P^{2}=$ $\left(\Sigma^{4} \mathbb{C} P^{2} \cup_{3 \nu_{6}} e^{10} \vee S^{8}\right) \cup_{\Sigma^{2} \beta} e^{10} \vee \Sigma^{6} \mathbb{C} P^{2}=\Sigma^{4} \mathbb{C} P^{2} \cup_{3 \nu_{6}} e^{10} \vee \Sigma^{6} \mathbb{C} P^{2} \vee \Sigma^{6} \mathbb{C} P^{2}$. Hence we have, up to higher cells in dimension ≥ 12, that $\left[\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \cup_{\beta}\right.$ $\left.e^{8}\right]\left(\wedge \Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right)=\left(\Sigma^{6} \mathbb{C} P^{2} \cup_{3 \nu_{8}} e^{12}\right) \vee \Sigma^{8} \mathbb{C} P^{2} \vee \Sigma^{8} \mathbb{C} P^{2} \vee \Sigma^{8} \mathbb{C} P^{2}$. Thus we obtain that $E^{4}\left(\Omega F_{3}(\mathbf{S p i n}(7))\right)=\Sigma^{3} \mathbb{C} P^{3} \wedge S^{2} \wedge S^{2} \wedge S^{2} \cup \Sigma^{3} \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \wedge \mathbb{C} P^{2} \wedge \mathbb{C} P^{2}$ has the
homotopy type of

$$
\begin{aligned}
& \Sigma^{3} \mathbb{C} P^{3} \wedge S^{2} \wedge S^{2} \wedge S^{2} \cup \Sigma^{3}\left[\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \cup_{\beta} e^{8}\right] \wedge\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \\
& \cup\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \wedge\left[\left(\Sigma^{2} \mathbb{C} P^{2} \vee S^{6}\right) \cup_{\beta} e^{8}\right] \cup(\text { higher cells } \geq 15), \\
& =\left(\Sigma^{9} \mathbb{C} P^{2} \cup_{3 \nu_{11}} e^{15} \cup_{2 \nu_{11}} e^{15}\right) \\
& \vee \Sigma^{11} \mathbb{C} P^{2} \vee \Sigma^{11} \mathbb{C} P^{2} \vee \Sigma^{11} \mathbb{C} P^{2} \cup(\text { higher cells } \geq 15) \\
& =\left(\Sigma^{9} \mathbb{C} P^{2} \cup_{\nu_{11}} e^{15}\right) \vee \Sigma^{11} \mathbb{C} P^{2} \vee \Sigma^{11} \mathbb{C} P^{2} \vee \Sigma^{11} \mathbb{C} P^{2} \cup(\text { higher cells } \geq 15) .
\end{aligned}
$$

Then an elementary computation shows that $\pi_{14}\left(E^{4}\left(\Omega F_{3}(\mathbf{S p i n}(7))\right)\right)=0$, and hence $H_{3}^{\sigma_{3}}(\alpha)=0$. This completes the proof of Theorem 0.11.

6. Acknowledgements

The authors thank the University of Aberdeen for its hospitality during their stay in Aberdeen.

References

[1] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes (French), Amer. J. Math. 76 (1954), 273-342.
[2] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[3] E. Fadell and S. Husseini, Category weight and Steenrod operations, Papers in honor of Jos Adem (Spanish), Bol. Soc. Mat. Mexicana 37 (1992), 151-161.
[4] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois. J. Math. 11 (1967), 417-427.
[5] H. Hamanaka and A. Kono, Homotopy-commutativity in spinor groups, J. Math. Kyoto Univ. 40 (2000), 389-405.
[6] K. A. Hardie, A note on fibrations and category, Michigan Math. J. 17, (1970), 351-352.
[7] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod 2 cohomology of simple Lie groups, Publ. Res. Inst. Math. Sci. 12 (1976/77), 141-167.
[8] N. Iwase, On the K-ring structure of X-projective n-space, Mem. Fac. Sci. Kyushu Univ. Ser. A Math., 38 (1984), 285-297.
[9] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc., 30 (1998), 623-634.
[10] N. Iwase, A_{∞}-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723.
[11] N. Iwase, Lusternik-Schnirelmann category of a sphere-bundle over a sphere, Topology 42 (2003), 701-713.
[12] N. Iwase, The Ganea conjecture and recent developments on the Lusternik-Schnirelmann category (Japanese), Sūgaku 56 (2004), 281-296.
[13] N. Iwase and M. Mimura, Higher homotopy associativity, Algebraic Topology (Arcata, 1986), 193-220, Lecture Notes in Math. 1370, Springer, Berlin, 1989.
[14] N. Iwase, M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), 199212, Progr. Math., 215, Birkhäuser, Basel, 2004.
[15] N. Iwase, M. Mimura, T. Nishimoto, On the cellular decomposition and the LusternikSchnirelmann category of Spin(7), Topology Appl., 133 (2003), 1-14.
[16] N. Iwase, M. Mimura, T. Nishimoto, L-S categories of non-simply-connected compact simple Lie groups, Topology Appl. 150 (2005), 111-123.
[17] A. Kono nd K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan 45 (1993), 495-510.
[18] Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37-55.
[19] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312.
[20] J. Strom, Essential category weight and phantom maps, Cohomological methods in homotopy theory (Bellaterra, 1998), 409-415, Progr. Math., 196, Birkhäuser, Basel, 2001.
[21] K. Varadarajan, On fibrations and category, Math. Z. 88 (1965), 267-273.
[22] G. W. Whitehead, "Elements of Homotopy Theory", Graduate Texts in Mathematics, 61, Springer Verlag, Berlin, 1978.
E-mail address, Iwase: iwase@math.kyushu-u.ac.jp
E-mail address, Kono: kono@kusm.kyoto-u.ac.jp
(Iwase) Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan
(Kono) Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 607-8502, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 55M30, Secondary 55N20, 57T30.
 Key words and phrases. Lusternik-Schnirelmann category, spinor groups, partial products.
 ${ }^{\dagger}$ supported by the Grant-in-Aid for Scientific Research \#15340025 from Japan Society for the Promotion of Science.

