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Abstract

Let FF — X — B be a fibre bundle with structure group G, where B is (d—1)-
connected and of finite dimension, d > 1. We prove that the strong L-S category of
X is less than or equal to m+ dirgB , if F" has a cone decomposition of length m under
a compatibility condition with the action of G on F'. This gives a consistent prospect
to determine the L-S category of non-simply connected Lie groups. For example,
we obtain cat (PU(n)) < 3(n—1) for all n > 1, which might be best possible, since
we have cat (PU(p")) = 3(p"—1) for any prime p and r > 1. Similarly, we obtain
the L-S category of SO(n) for n < 9 and PO(8). We remark that all the above Lie

groups satisfy the Ganea conjecture on L-S category.
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1 Introduction

The Lusternik-Schnirelmann category cat (X), L-S category for short, is the
least integer m such that there is a covering of X by (m+1) open subsets each
of which is contractible in X.

Ganea [5] introduced a stronger notion of L-S category, Cat (X), which is
equal to the cone-length, that is, the least integer m such that there is a set of
cofibre sequences {A; — X;_1 — X hi<i<m with Xy = {*} and X,,, homotopy
equivalent to X.

The weak L-S category wcat (X) is the least integer m such that the reduced
diagonal map A" : X — A" X is trivial where A™™ X is the smash
product. The stabilised version of the invariant wcat (X) is given as the least
integer m such that the reduced diagonal map A+ : X — A™TLX is stably
trivial. Let us denote it by cup(X), the cup-length of X.

In 1971, Ganea [6] posed 15 problems on L-S category and its related topics:
Computation of L-S category for various manifolds is given as the first problem
and the second problem is known as the Ganea conjecture on L-S category.
These problems especially the first two problems have attracted many authors
such as James and Singhof [15], [28], [25], [26], [27], [16], G6émez-Larranaga
and Gonzélez-Acuna [7], Montejano [18], Oprea and Rudyak [20], [21], [19]
and the authors [10], [11], [12], [13], [14]. In [11,12], the first author gave a
counter example as a manifold to the Ganea conjecture on L-S category.

Especially for L-S category of compact connected simple Lie groups, the fol-
lowings have already been known:

cat (Sp(1)) = cat (SU(2)) = cat (Spin(3)) = 1,
cat (SU(3)) = 2, cat (SO(3)) = 3,

since Sp(1) = SU(2) = Spin(3) = S?, SU(3) = TCP? U e® and SO(3) = RP3.

Schweitzer [24] showed
cat (Sp(2)) =3

using functional cohomology operations. Singhof [25,27] showed

cat (SU(n)) = n—1,
cat (Sp(n)) >n+1, ifn>2.

Also we know
cat (Gg) =4
by [15] (see [13]). James and Singhof [16] showed

cat (SO(5)) = 8.



The first and second authors [13] and Ferndndez-Suédrez, Gémez-Tato, Strom
and Tanré [4] proved

cat (Sp(3)) = 5,
cat (Sp(n)) >n+2 ifn >3,

by showing the reduced diagonal A® is given by the Toda bracket {n,v,n} =
v2. The authors [14] showed

cat (Spin(7)) =5, cat (Spin(8)) =6

using explicit cone decompositions of Spin(7) and SU(4). Then the Ganea
conjecture on L-S category holds for all these Lie groups, since the L-S and
the strong L-S categories are equal to the cup-length:

Fact 1.1 Ifcat (X) = cup X, then the Ganea conjecture on L-S category holds
for X, i.e., cat (X xS™) = cat (X)+1 for alln > 1.

In fact, we have cup(X x S™) = cup(X)+1 in general.

For any multiplicative cohomology theory h, we define cup(X;h), the cup-
length with respect to h, by the least integer m such that ug----- Uy, = 0 for
any m-+1 elements u; € iz*(X ). When h is the ordinary cohomology theory
with coefficient ring R, cup(X;h) is often denoted as cup(X; R).

Theorem 1.2 For any CW-complex X we have

cup(X) = max{cup(X;h) | h is any multiplicative cohomology theory}.

Proof. 1t is easy to see that cup(X) > cup(X; h), and hence we have cup(X) >
max{cup(X;h) | h is any multiplicative cohomology theory}. Thus we must
show

cup(X) < max{cup(X;h) | h is any multiplicative cohomology theory}.

Let m = max{cup(X;h) | h is any multiplicative cohomology theory} and hx
be the multiplicative cohomology theory represented by the following wedge
sum of iterated smash products of suspension spectrum >*°X:

SOVIERX VIECPA2X V- VIECAX V-

Let © € h%(X) be the element which is represented by the inclusion map into
the second factor X*°X of the above wedge sum. Then by the definition of the
cup-length, we have (/™! = (0 which is represented by the reduced diagonal
map A" 0 X — A" X in the (m+2)-nd factor £ A" X of the above
wedge sum. Hence we have cup(X) < m the desired inequality. Thus we obtain
the result. O



Let P™(Q2X) be the m-th projective space, in the sense of Stasheff [29], such
that there is a homotopy equivalence P*°(2X) ~ X. The following theorem
is obtained by Ganea (see also [10] and Sakai [23]).

Theorem 1.3 (Ganea [5]) cat (X) < m if and only if there is a map o :
X — P™(QX) such that oo ~ 1x, where e\ : P"(QX) — P*(QX) ~ X.

Using this, Rudyak [21,22] introduced a stable L-S category, rcat (X), which
is the least integer m such that there is a stable map o : X — P™(QX)
satisfying eXoo ~ 1x, another stabilised version of L-S category.

Rudyak [20] [21] and Strom [30] introduced the following invariant to calculate
rcat (X): Let wgt(X;h) be the least integer m such that the homomorphism
(eX)* : h*(X) — h*(P™(QX)) is injective for any cohomology theory h. When
h is the ordinary cohomology theory with coefficient ring R, wgt(X; h) is often
denoted as wgt(X; R).

Since a product of any m+1 elements of A*(P™(QX)) is trivial, we have
cup(X;h) < wgt(X;h) for any multiplicative cohomology theory h. Hence
we have cup(X) < wgt(X), where we denote wgt(X) = max{wgt(X;h) |
h is any cohomology theory}.

Remark 1.4 For any ring R, we know cup(Sp(2); R) = wgt(Sp(2); R) =2 <
3 = cat (Sp(2)). But an easy calculation of algebra structure of KO*(Sp(2))
yields cup(Sp(2); KO) = wgt(Sp(2); KO) = 3 = cat (Sp(2)).

The following theorem is due to Rudyak [21,22], although we do not know the
precise relation between wecat (X) and rcat (X).

Theorem 1.5 For any CW complex X, we have
rcat (X) = wgt X
and hence we have the following relations among categories:

cup(X) < weat (X), rcat (X) < cat (X) < Cat (X).

Using this stabilised version of L-S category, we have the following theorem.

Theorem 1.6 (Rudyak [21,22]) If cat(X) = rcat(X), then the Ganea
conjecture on L-S category holds for X.

In fact, we have rcat (X x S™) = rcat (X)+1 in general ([21,22]).



2 Main results

From now on, we work in the category of connected CW-complexes and con-
tinuous maps. We denote by Z® the k-skeleton of a CW complex Z.

Theorem 2.1 (James [15],Ganea [5]) Let X be a (d — 1)-connected space
of finite dimension. Then cat (X) < Cat (X) < [dlmT(X)], where [a] denotes the
biggest integer < a.

In this paper, we extend this for a total space of a fibre bundle, to determine
L-S categories of SO(n) for n < 9, PO(8) and PU(p") (and the other quotient
groups of SU(p")), which also gives an alternative proof of a result due to

James and Singhof [16] on SO(5).

We assume that B is a (d—1)-connected finite dimensional CW complex (d >
1), whose cells are concentrated in dimensions 0,1,--- ;s mod d for some s,
(0<s<d—1). Let F — X — B be a fibre bundle with structure group G, a
compact Lie group. Then we have the associated principal bundle G — E = B
with G-action ¢ : GXF — F on F' and hence X = ExgF.

Let K; 5 F,_, — F, (1<i<m) be m cofibre sequences with Fy = {*} and F,,
homotopy equivalent to F'. We consider the following compatibility condition
of the above cone decomposition of F' and the action of G on F.

Assumption 1 ¢|G(d.<i+1)+3_1)ij  GUEHDFs=D B — F s compressible into
Fij, 0<i,5 <it+j<m.

Remark 2.2 (1) Let F' = G and X = E be the total space of a principal
bundle over a path-connected space B and d = 1. Then any cone decompo-
sition of F such that F; = F™) with 0 < ny < ng < --+ < ny, = dim(F)
satisfies Assumption 1 with s = 0.

(2) Let F— X — B be a trivial bundle. Then any cone decomposition of F'
satisfies the compatibility Assumption 1 with s = d—1.

Our main result is stated as follows:

Theorem 2.3 Let B be a (d—1)-connected finite dimensional CW complex
(d > 1), whose cells are concentrated in dimensions 0,1,--- s mod d for
some s, 0 < s < d—1. Let ' — X — B be a fibre bundle with fibre F' whose
structure group is a compact Lie group G. If F' has a cone decomposition with
the compatibility Assumption 1 for d, then Cat (X) < m + [%].

Corollary 2.4 If F has a cone decomposition with the compatibility Assump-

tion 1 for s = d—1 and also m = Cat (F), then Cat (X) < Cat (F) + [42E].



Remark 2.5 Without Assumption 1, we only have
Cat (X)+1 < (Cat (F)+1)-(Cat (B)+1)

which is obtained immediately from the definition of Cat by Ganea [5] and the
corresponding results of Varadarajan [31] and Hardie [8] for cat. For example,
the principal bundle Sp(1) — Sp(2) — S” does satisfy Assumption 1 for
d < 3, but not if d > 4, and we have Cat (Sp(2)) < Cat (Sp(1))+[5] = 3 >
2 = Cat (Sp(1))+[1]. In fact by Schweitzer [24], we know Cat (Sp(2)) = 3.
Remark 2.6 By Remark 2.2 (2), Theorem 2.3 generalises Theorem 2.1.

By applying this, we first obtain the following general result:

Theorem 2.7 Let C,, < SU(n) be a central (cyclic) subgroup of order m.
Then we have Cat (SU(n)/C,,) < 3(n—1) for alln > 1.

This might be best possible, because we also obtain the following result.
Theorem 2.8 We have

Cat (SU(p")/Cyps) = cat (SU(p")/Cps) = rcat (SU(p")/Cpe) = 3(p"—1)
where p is a prime and 1 < s < r.

Similarly we obtain the following result.

Theorem 2.9 We have

Cat (SO(6)) = cat (SO(6)) = cup(SO(6)) = 9,

Cat (SO(7)) = cat (SO(7)) = cup(SO(7)) = 11,
Cat (SO(8)) = cat (SO(8)) = cup(SO(8)) = 12,
Cat (SO(9)) = cat (SO(9)) = cup(SO(9)) = 20,
Cat (PO(8)) = cat (PO(8)) = cup(PO(8)) = 18

Remark 2.10 Theorem 2.3 also provides an alternative proof for a result of
James-Singhof [16], that is, Cat (SO(5)) = cat (SO(5)) = cup(SO(5)) = 8 (see
Section 4).

We summarise all the known cases in the following table, where each number
given in the right hand side of a connected, compact, simple Lie group indicates



its L-S category.

rank 1 2 3 4 n (>5)
A, | SU@) 1] su@) |2| su@) [3]suG) 4] SUm+D) |n
SO(6) | 9 :
PU(2) 3| PU(3) [6| PU) | 9 | PU(5) [12] PU(n+1) |-
B, |Spin(3)|1[Spin(5)|3|Spin(7)| 5 |Spin(9)| — |Spin(2n+1)|—
S0(3) 3] SO(5) |8| sO(7) |11] S0(9) 20| SO(2n+1) |-
Cn | Sp(1) |1] Sp(2) |3] Sp(3) |5 | Sp(4) |—| Sp(n) |-
PSp(1)|3|PSp(2) (8| PSp(3)| — |PSp(4)|—| PSp(n) |—
D, Spin(6)| 3 |Spin(8)| 6 | Spin(2n) |—
SO(6) | 9| SO(B) |12| SO(2n) |-
PO(6) | 9| PO(8) 18] PO(2n) |-
Ss(2n) |-
Except. Gy |4 Fy, |—| B B Es |-
types

» N

where indicates the unknown case.

Remark 2.11 We recall that Ay, = By = C1, By = Cy and A3 = D3, and
that the semi-spinor group Ss(2n) is defined only for n even.

Taking into account the above table, we get the following by Theorem 1.6:

Corollary 2.12 The Ganea conjecture on L-S category holds for every con-
nected, compact, simple Lie group G when L-S category is known as above.

The paper is organised as follows; In Section 3 we prove Theorem 2.3. In
Section 4 we determine cat (SO(n)) for n = 5,6,7,8,9 and cat (PO(8)). In
Section 5 we prove Theorem 2.7 and determine cat (SU(p")/C)s).

3 Proof of Theorem 2.3

Let B; be the (d-i+s)-skeleton of B and n=[9%E] the biggest integer not

exceeding 925 Then by Ganea [5], Theorem 2.1 implies that there are n
cofibre sequences A; 2y B;_1 — B;, 1<i<n with By = {*}, B, = B. Note



that A; is (d-i—2)-connected and of dimension (d-i+s—1). Hence we obtain
Bi == Bi—l U/\i C(Al), )\1 : Az — Bi—l
By = {x}, B,~B.

)

Then there is a filtration of E by E|p,, 0 < i < n, as follows (see Whitehead
[32], for example):

E

5=E

Bi_1 UAi O(AZ)XG, AZ . AZXG — K
E|p, = {*}xG, E|p, ~FE,

Bi_1> 1§Z§na

and \; = A;|4, : A; — E|p,_, gives a lift of \; : 4; — B;_;. Then by induction
on 7, we have

E’Bi = {*}XG UA1 C(Al)XG UA2 s UAi C(AZ)XG,
A AxG 249, Bl @
= ({+}xG Uy, C(A))XG -+ Uy, C(Ai1)xG) xG

Ixp

L LG Uy, C(A)XG - Uy, , C(A1)xG = E

Bi—l )
where p is the multiplication of G. For dimensional reasons, we may regard

At (A, ATTT) o (B

d-i+a—1
Bi,pE( vha )|Bi,1)7 OSG,SS,

and u(GWxGW) ¢ G up to homotopy. Then we have the following de-
scriptions for all £ > d-i—1 and j > d—1:

E® |5 = ({x}xG Uy, C(A1)XG Uy, -+ Uy, C(4)x @)™ |

{*}XG(k) U, UZZO(C(Agd—M—l))XG(k—d—Z))
+Un, Ui (G4 x Gldi0)

()

A, s ALY L -0 22060 paiten) Gl

i—1
{*} XG(d'i-‘y-f—l)
= Ua, Z:O(O(Agd-‘ra—l))XG(d~(i—l)+€—a—1)) XG(j_g)
< Up, 2:0<C(Azgd_.§i—1)+a—1))XG(dH,a,l))

Ixp, {*}XG(d~i+j—1) Un, ZZO(C’(Agd-&-a—l))XG(d-(i—1)+j_a_1))
... UAFI Z:0<C(A§d_~§i—1)+a—1))XG(dJrjfafl))



(d-it+j—1)

= ({#}xG Uy, C(A1)XG Uy, -+ Uy, C(A;_1)xG)
_ E(d~7,+j—1)

Bi 1

Similarly, we obtain the following filtration {E} }o<x<nim of EXcF.

& Fk UA/1 C(Al)XFk,1 UA/2 s UA;c C(Ak)XFO, k < n,
k pr—
F. UA/l C(Al)XFk,l UA/2 UA% C(An)XFk,n, n < k,

i—1

(G(d%” Un, Up—olCAT D) x Gt rimam)
XFj
)

S\in . .
A; : Azxﬂ —FJ) E(d.H—S_l)lB' X_Fj

Uniy U= 0<C(A§d,.1171)+a71 )xG(d+S—a—1)

)

e [ Frjo1 Ung Uso(CATT )< Frjoo)
(d-(i—1)+a—1)
- Un, Uaso(C(AT ) Fj)

= I'j+j-1 UAll C(Al)XFH_j_Q s UA; C(Aifl)Xij

-1

!
Ez—i—j 1

Bi_17

since ¢ (G@(EHDFs—a=D s ) C op(GE D=V vy C Fyy; by Assumption 1.
The above definition of A} also determines a map

wi,j . E(d-(i+1)+571)’ XF N Er:+]

so that A/ = ¢;_; j0(\;x1). Let us recall that F; = F;_; U, ; O(K;) for 1 <
j < m. Then the definition of Ej implies

Ellc—l U O(Kk> U C(Al)XO(Kk_l) U
for k <n,
B — - U O(Ak_1)><C(K1) U O(Ak) X{*}
=
El/cfl U O(Kk) U C(Al)XC(kal) U
for k£ > n.
U O(An_1>XO(Kk_n+1> U C(An) XO(Kk_n)

To observe the relation between Cat (E;_,) and Cat (E}), we introduce the
following two relative homeomorphisms:

x(p;) : (C(K;), Kj) — (Fj1 UC(K;), Fia) (= (F), Fji))



X(S\J : (C(Al), Az) — (E(d'i+s_1)‘3i U C(Al), E(d'i+s_1)
(C (E(d'i+s)‘3., E(d~i+s—1)

Bifl)
Bz‘fl))'

Then the attaching map of C'(A;)xC(Kj) is given by the Whitehead product
IX(N), x(py)] = AixK; = (C(A)xK;) U (A;xC(K;)) — B, ;_, defined as
follows:

- Ai)x1 “i+s
) X3 leagr, = CLAYx Iy 2OV B0 py
C E(d-(i+1)+s—1) B; ><ij1 M E@{Jrjfl B & Ez{+j*1’
~ 5\1‘ ( ) +s—
XD, X(i)llaixciry + AixC(EG) 222 B, F,
m E£+j_1 B, C© Ez{-q-j—l'

This implies immediately that Cat (E}) < Cat (Fj_;) + 1. Then by induction
on k, we obtain that Cat (E}) < k. Thus we have Cat (X) = Cat (ExgF) =

Cat (E,,,) < m+n < m+92E8 This completes the proof of Theorem 2.3.

4 Proof of Theorem 2.9

As is well known, we have the following principal bundles (see for example [2],
[34] and [9] in particular for the last fibration):

Sp(1) — Sp(2) — 57,
SU(3) — SU(4) — S7,

Gy — Spin(7) — S,
Spin(7) — Spin(9) — S*°,
Gy — Spin(8) — S7 x S7.

Each scalar matrix (—1) € Sp(2) and (—1) € SU(4) acts on S” as the antipo-
dal map, and so does the center of Spin(7). Similarly the center of Spin(9) acts
on S'° as the antipodal map. Recall that the center of Spin(8) is isomorphic
to Z/2 x 7.2, each generator of which acts on S” as the antipodal map respec-
tively. Since there are isomorphisms Sp(2) = Spin(5) and SU(4) = Spin(6),
we obtain principal bundles:

Sp(1) — SO(5) — RP",
SU(3) — SO(6) — RP7,

Gy — SO(7) — RP7,
Spin(7) — SO(9) — RP™,
Gy — PO(8) — RP" x RP".
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Cone decompositions of the fibres except Spin(7) are given as follows (see
Theorem 2.1 of [13] for Gy):

* C Sp(1) = S?,
% C SU(3)® < SU(3),
«C G c G c G ¢ G,

where SU(3)® = G = »CP?, SU®3) = SUB)® uCs™, ¥ ~ P uc(ssu
™), G§ ~ GPUC(S8Ue!®) and G = G UCS™3. Since these fibres satisfy
the conditions in Remark 2.2 (1), we obtain Cat (SO(5)) < 8, Cat (SO(6)) <
9, Cat (SO(7)) < 11 and Cat (PO(8)) < 18 using Theorem 2.3. By virtue
of the mod 2 cup-lengths we have that cup(SO(5)) > 8, cup(SO(6)) > 9,
cup(SO(7)) > 11 and cup(PO(8)) > 18 respectively. Thus we obtain the
results for SO(5), SO(6), SO(7) and PO(8).

A cone decomposition of Spin(7) is given as follows in [14]:
x=Fy C Fy C Fy C F3 C Fy C F5 = Spin(7),

where I} = SU(4)(), F, = SU(4)12 U e, F3 =SU4)UebUe’ Uell Ue'® and
F, = Spin(7)"®. We need here to check if the filtration satisfies Assumption 1;
the only problem is to determine whether ¥|gyim® xp : SPin(7)® xFy — F
is compressible into F}; or not. Since Spin(7)®) and F are included in SU(4) C
Fy, we have Im (¢[spi7y@xr,) C Fi. Then we obtain Cat (SO(9)) < 20 using
Theorem 2.3. The mod 2 cup-length implies that cup(SO(9)) > 20. Thus we
obtain the result for SO(9).

Since SO(8) is homeomorphic to SO(7) x S”, we easily see that
Cat (SO(8)) < Cat (SO(7)) + Cat (S7) = 12

by Takens [?]. The mod 2 cup-length implies that cup(SO(8)) > 12. Thus we
obtain the result for SO(8). This completes the proof of Theorem 2.9.

5 Proof of Theorems 2.7 and 2.8

Firstly, we show Theorem 2.7. The following principal bundle is well-known:
SU(n—1) — SU(n) — S 1.

The central (cyclic) subgroup C,, of SU(n) acts on S**~1 freely and hence we
obtain a principal bundle:

SU(n—1) — SU(n)/C,, — L**~(m),

11



where L?"~1(m) is a lens space of dimension 2n—1.
A cone decomposition of SU(n—1) is constructed by Kadzisa [17]:
xCVcVic.---cV"?=8U(n-1),

where V¥ C SU(n—1) is a representing subspace of the quotient module
H*(SU(n—1))/D*! and D! is the submodule generated by products of
k+1 elements in positive degrees, which satisfies V*-V7/ C V™ for any ¢ and
j. Thus V is the subcomplex S3 U e® Ue’ U--- U e* 3 of SU(n—1) which
is homeomorphic to SCP™"" 2 (see [33], for example). Then Assumption 1 is
automatically satisfied, and hence using SU(n—1)*) C V¥, we obtain

Cat (SU(n)/C,) < 3(n—1)
by Theorem 2.3. This completes the proof of Theorem 2.7.

Secondly, we show Theorem 2.8. By Rudyak [20] [21] and Strom [30], we know
the following proposition.

Proposition 5.1 (Rudyak [20] [21], Strom [30]) Let h be a cohomology theory.
For an element u € h*(X), let wgt(u; h) be the minimal number k such that
(e)"(u) # 0 where eff : P*QX — P®QX ~ X, which satisfies

(1) We have wgt(0; h) = 0o and oo > wgt(u; h) > 1 for any u # 0 in h*(X).
(2) For any cohomology theory h, we have

min {wgt(u; h), wgt(v; h)} < wgt(u +v; h).
(8) For any multiplicative cohomology theory h, we have
wgt(u; h) + wgt(v; h) < wgt(u-v; h).
(4) wet(X: h) = max{wet(u; h) | u € h*(X),u # 0.

Le us recall that, for any compact Lie group G, the ordinary cohomology of
QG is concentrated in even degrees. Then, for any element u of even degree
in H*(G;Z/p), we have wgt(u; HZ/p) > 2, since P'(QG) = 2Q(G).

The cohomology rings of SU(p")/C)s for a prime p and 1 < s < r are given as
follows (see [3]):

H*(SU(p")/Cype: Z)p) = Z/plaa) ) (x5 ) @ A1, T3, . . ., Topr_3).

Note that 22 = x5 if p = 2 and s = 1. Then, using Proposition 5.1, we obtain
wgt(SU(p")/Chs: HZ/p) > wet(xy-ah ‘eas - xopr_g: HZ/p) > 3(p" — 1),

since wgt(zo; HZ/p) > 2. Thus we have the following lemma.

12



Lemma 5.2 rcat (SU(p")/Cps) > 3(p"—1) for any prime p and 1 < s <r.

By using Theorem 2.7, we obtain Theorem 2.8.
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