
CATEGORICAL LENGTH, RELATIVE L-S CATEGORY AND
HIGHER HOPF INVARIANTS

NORIO IWASE†

Abstract. We first introduce a homotopy-theoretical version of Fox’s cate-
gorical sequence in terms of a new reltive L-S cateory, which gives a better

upper estimate ‘the categorical length’ for the L-S category than Ganea’s cone
length. Then we discuss how higher Hopf invariants fit with the categorical se-
quence through our relative L-S category. We also clarify the relations among

our new relative L-S category and other three known relative L-S categories in-
troduced by Fadell and Husseini, by Berstein and Ganea and by Arkowitz and
Lupton. The main goal of this paper is to show that the categorical length is
equal to the L-S category. In addition, the definition of cup length and module

weight for our relative L-S category are given.

1. Introduction

Throughout this paper, we work in T the category of topological spaces and
maps. A closed subset is always assumed to be a neighbourhood deformation
retract, and a pair is assumed to be an NDR-pair in the sense of G. Whitehead [21].
The one-point-space is denoted by ∗. The (normalised) Lusternik-Schnirelmann
category cat(X), L-S category for short, is introduced in [16] as the least number
m such that there is a covering of X by m+1 closed subsets Uj , 0 ≤ j ≤ m, where
each Uj is contractible in X. By modifying the idea due to R. Fox [7], T. Ganea
[8] gives the following definition of a strong version of L-S category for a space X:
the strong L-S category Cat(X) is the least number m such that there is a space
Y ≅ X with a covering of Y by m+1 closed subsets Uj , 0 ≤ j ≤ m where each Uj

is contractible in itself. By Ganea [8], it is shown that

cat(X) ≤ Cat(X) ≤ cat(X) + 1.

Remark 1.1. Fadell and Husseini [6] introduced a notion of a relative L-S category
as follows: for a pair (K,A), catFH(K,A) is given as the least number m such that
there is a covering of K by m+1 closed subsets V ⊃ A and Uj, 1 ≤ j ≤ m where V
is compressible relative A into A in K and each Uj is contractible in K. It is also
clear by definition that catFH(K, ∗) = cat(K).

These definitions, however, do not suggest any effective way to compute the
(strong) L-S category but do suggest how to give some upper estimates: in [7],
Fox introduced a notion of ‘categorical sequence’ for a space X as a sequence
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F0 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ Fm of closed subsets such that F0 ≅ ∗ in X, Fm = X and
Fi r Fi−1 is contractible in X, i > 0. It is also shown by Fox that the least such
number m gives exactly the L-S category of X. But unfortunately, we did not know
any effective way to construct a categorical sequence.

Similar to the categorical sequence, Ganea introduced in [8] a notion of ‘cone
decomposition’ for a space X as a sequence F0 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ Fm of closed
subsets such that F0 ≅ ∗, Fm = X and Fi ≅ Fi−1∪hi C(Ki), i > 0. It is also shown
by Ganea that the least such number m gives exactly the strong L-S category of
X. Unlike the categorical sequence, we can construct a cone decomposition using
a cell-decomposition of a space, if one knows an explicit definition of the given
space. Thus the cone decomposition gives a nice upper estimate if the given space
is not too complicated. For a complicated space X, we could not know whether
cat(X) = Cat(X) or cat(X) = Cat(X) − 1.

By G. Whitehead [21], the definition of L-S category is interpreted in terms of
deformation of a diagonal map as the following definition for a space X.

Definition 1.2. The L-S category cat(X) of X is the least number m such that
the m+1 fold diagonal map ∆m+1 : X →

∏m+1
X is compressible into Tm+1 X =

{(x0, x1, ..., xm) ∈
∏m+1

X | ∃i xi = ∗} ⊆
∏m+1

X the ‘fat wedge’.

Similarly to the above, one can give an alternative definition of a relative L-S
category for a pair (K,A) to fit with Whitehead’s definition of L-S category.

Definition 1.3. Let A ⊆ K. Then the L-S category cat(K,A) is the least number
m ≥ 0 such that restriction to K of the m+1 fold diagonal map ∆m+1

K : K →∏m+1
K is compressible relative A into Tm+1(K,A) = A×

∏m
K ∪ K×Tm K ⊆∏m+1

K the ‘fat wedge’ of a pair (K,A).

Remark 1.4. For any map f : A → K, we may assume that f is an inclusion up
to homotopy, and hence the definition of relative L-S category implies a definition
of catFH(f) the L-S category of f in the sense of Fadell and Husseini.

In the present paper, we alter the Fox’s definition of a categorical sequence to
fit with Whitehead’s definition of L-S category:

Definition 1.5. A categorical sequence for a space X is a sequence of closed
subspaces F0 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ Fm such that Fm ≅ X, F0 ≅ ∗ in X and
∆i : Fi

∆→ Fi×Fi ⊂ Fm×Fm is compressible into Fi−1×Fm ∪ Fm×∗ relative Fi−1

for any i > 0, where we identify Fi−1 with its diagonal image in Fi−1×Fi−1 ⊂
Fi−1×Fm ∪ Fm×∗. Let us call the least such m ≥ 0 the ‘categorical length’ of X
and denote by catlen(X).

Inspired by the definition of a relative L-S category due to Fadell and Husseini,
we introduce a relative version of categorical sequence as follows:

Definition 1.6. A categorical sequence for a pair (X,A) is a sequence of pairs
(F0, A) ⊂ · · · ⊂ (Fi, A) ⊂ · · · ⊂ (Fm, A) such that (Fm, A) ≅ (X,A) relative A,
F0 ≅ A relative A in X and ∆i : Fi

∆→ Fi×Fi ⊂ Fm×Fm is compressible into
Fi−1×Fm ∪ Fm×A relative Fi−1, i > 0. Let us call the least such m ≥ 0 the
‘categorical length’ of (X,A) and denote by catlen(X,A).

To describe the categorical sequence in terms of a relative L-S category, we give
a definition of a new extended version of relative L-S category: from now on, we
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work in the category T A, in which an object is a pair (X,A) with an inclusion
iX : A ↪→ X and a morphism is a map of pairs f : (X,A) → (Y,A) with iY = f◦iX .
We remark that, if A = ∗ the one point space, then T A is the usual category of
connected spaces and based maps. We say that (X,K; A) is a pair in T A when
(X,A) and (K,A) are objects in T A and (X,K) is a pair in T , that (X,K,L; A)
is a triple in T A when (X,A), (K,A), (L,A) are objects in T A and (X,K,L) is a
triple in T , and that (X; K,L; A) is a triad in T A when (X,A), (K,A), (L,A) are
objects in T A and (X; K,L) is a triad in T .

We remark, for any pair (X,K; A) in T A, that the diagonal image of A in∏m+1
X is in the subspace Tm+1(X,L). Thus for any (X,A) ⊃ (L,A) ∈ T A, we

regard (
∏m+1

X,A) ⊃ (Tm+1(X,L), A) ∈ T A.

Definition 1.7. Let (X; K,L; A) be a triad in T A. Then cat(X; K,L; A) is the
least number m such that the restriction of the m+1 fold diagonal map of X to K,
∆m+1|K : K →

∏m+1
X, is compressible relative A into Tm+1(X,L).

Definition 1.8. Let (X; K,L; A) be a triad in T A. Then Cat(X;K,L; A) is the
least number m such that there is a space Y ≅ X relative A with a covering of Y
by m+1 closed subsets V ⊃ A and Uj, 1 ≤ j ≤ m where A is a deformation retract
of V and each Uj is contractible in itself.

Using Harper’s arguments on the homotopy of maps to the total space of a
fibration in [10], Cornea [4] has given a proof of the following:

Proposition 1.9. Let (X,A) be an object in T A, (Y,K; A) be a pair in T A with
the inclusion j : (K,A) ↪→ (Y,A) and f : (X,A) → (Y,A) be a map in T A. If
f |X : X → Y has a compression σ : X → K such that j◦σ ∼ f and σ◦iX ∼ iK

in T , then there is a map σ′ : (X,A) → (K,A) a compression relative A of f such
that σ ∼ σ′|X : X → K.

One of its direct consequence is described as follows.

Corollary 1.10. Let (X; K.L; A) be a triple in T A. Then cat(X; K,L; A) is the
same as the least number m such that ∆m+1|K : K →

∏m+1
X is compressible

to a map s : K → Tm+1(X,L) such that s|A is homotopic to the diagonal map
∆A : A →

∏m+1
A ⊂ Tm+1(X,L).

Remark 1.11. (1) cat(X; X, ∗; ∗) = cat(X) and cat(X; ∗, ∗; ∗) = 0.
(2) We often abbreviate cat(X; X,L;A) by cat(X,L;A), cat(X;K,A;A) by

cat(X; K,A), cat(X; X,A) by cat(X,A) and cat(X; K, ∗) by cat(X; K).
(3) We may replace inclusions (L,A) ↪→ (X,A) and (K,A) ↪→ (X,A) by maps

f : (L, A) → (X,A) and g : (K,A) → (X,A) in T A, since every such
map is an inclusion map up to homotopy relative A by taking the mapping
cylinder of K ∪A L

g∪Af−−−→ X. Then we often denote cat(X; K,L; A) by
cat(g, f). By applying (1), we have cat(g, ∗) = cat(g).

Note that there are two other relative L-S categories by Berstein and Ganea [2]
and by Arkowitz and Lupton [1].

Remark 1.12. Arkowitz and Lupton defined their relative L-S category for a map
h : X → Y . Since a map is up to homotopy a fibration, we may assume that h is
a fibration with fibre L = h−1(∗) ⊂ X. Then the relative L-S category of h in the
sense of Arkowitz and Lupton is depending only on the pair (X,L) by its definition.
Thus we often denote it by catAL(X,L) in this paper.
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In §3, we show the following relationship of our extended version of relative L-
S category with existing the three known relative L-S categories catFH(X,A) by
Fadell and Husseini, catBG(X,K) by Berstein and Ganea and catAL(X,L) (see
Remark 1.12 above) by Arkowitz and Lupton.
Theorem 3.1. The known three relative L-S categories are described to be special
cases of our new relative L-S category as follows:

(1) Let X ⊃ K ⊃ L = A = ∗. Then cat(X; K, ∗; ∗) = catBG(X,K) the realtive
L-S category in the sense of Berstein and Ganea [2]. More generally for a
map g : K → X in T∗, we have cat(g, ∗) = catBG(g).

(2) Let X = K ⊃ L = A ⊃ ∗. Then cat(X; X,A; A) = catFH(X,A) the relative
L-S category in the sense of Fadell and Husseini [6].

(3) Let h : X → Y be a fibration with fibre L ⊂ X and K = X ⊃ L ⊃ A = ∗.
Then cat(X; X,L; ∗) = catAL(X,L) the relative L-S category in the sense
of Arkowitz and Lupton [1].

We also introduce a new higher Hopf invariant: let (X;K,L; A) be a triad in
T A, V be a co-loop co-H-space, i.e, a one-point-union of a 1-connected co-H-space
with finitely-many circles, and α : V → K be a map in T such that X ⊃ K̂ =
K ∪α CV ⊃ K. If cat(X;K,L; A) ≤ m, then a relative higher Hopf invariant
H

(X;K,L;A)
m (α) is defined as a subset of [V, Ω(X,L) ∗ Ω(X) ∗ · · ·

m
∗ Ω(X)]. If K ⊃ L

and cat(K; K,L; A) ≤ m, then an absolute higher Hopf invariant H
(K,L;A)
m (α) is

defined as a subset of [V, Ω(K,L)∗Ω(K)∗ · · ·
m

∗Ω(K)] (see §4 for more details). The
following result clarifies how a higher Hopf invariant determines whether a cone
decomposition reduces to a categorical sequence or not.
Theorem 4.3. Let (X; K,L; A) be a triad in T A, V be a co-loop co-H-space and
α : V → K be a map in T such that X ⊃ K̂ = K ∪α CV ⊃ K. If cat(X; K,L; A) ≤
m and H

(X;K,L;A)
m (α) = 0, then cat(X; K̂, L; A) ≤ m.

We often abbreviate H
(X;K,A;A)
m (α) by H

(X;K,A)
m (α), H

(X;K,∗)
m (α) by H

(X;K)
m (α),

H
(K,A;A)
m (α) by H

(K,A)
m (α) and H

(K,∗)
m (α) by HK

m (α). Note that the definition of
the absolute higher Hopf invariant HK

m (α) coincides with the ordinary definition of
the higher Hopf invariant Hm(α) in the sense of [12].

The main goal of this paper is stated as follows:
Theorem 5.2. For any X in T , we have cat(X) = catlen(X). More generally,
for any object (X,A) ∈ T A, we have catFH(X,A) = catlen(X,A).
Corollary 5.4. Let (X,A) be an object in T A. If catFH(X,A) = m > 0, then
there exists a sequence for pairs {(Fi, A) ; 0≤i≤m} such that (F0, A) ≅ (A, A) in
(Fm, A), (Fm, A) ≅ (X,A) relative A and cat(X; Fi, A) ≤ i, i > 0. Moreover we
have cat(Fm/Fi−1; Fi/Fi−1) ≤ 1 with a partial co-action Fi → Fm/Fi−1∨Fm along
the collapsion Fi → Fi/Fi−1 ⊆ Fm/Fi−1, i > 0. In particular, Fm/Fm−1 is a
co-H-space coacting on Fm along the collapsion Fm → Fm/Fm−1.

2. A∞-decomposition of a map

In [8], Ganea introduced a so-called ‘fibre-cofibre’ construction for a map, which
can be interpreted as the pullback construction from the view-point of Definition 1.3
the definition of relative L-S category by Fadell and Husseini [6]. We may regard
this construction as an A∞-decomposition of a map using the pushout-pullback
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diagram (see [11, Lemma 2.1] and also Sakai [18] for the detailed proof in a general
context): let (X; K,L; A) be a triad in T A.

Let us recall that, in T , the homotopy fibre of Tm
i=0(X,Ai) ↪→

∏m+1
X has the

homotopy type of the join Ω(X,A0) ∗ · · ·
m+1

∗ Ω(X,Am) by Ganea. We denote by

Em(Ω(X)) = Ω(X) ∗ · · ·
m

∗ Ω(X) which has the homotopy type of the homotopy

fibre of Tm(X, ∗) ↪→
∏m

X. The homotopy fibre of the inclusion Tm+1(X,L) ↪→∏m+1
X has the homotopy type of Em+1(Ω(X,L)) = Ω(X,L) ∗Ω(X) ∗ · · ·

m
∗Ω(X):

by the homotopy pushout-pullback diagram in T , which is given by [11, Lemma
2.1] with (Y,B) = (

∏m
X, Tm X), Z = ∗ and f = g = ∗.

(2.1)

Ω(X,L)×Em(Ω(X)) Em(Ω(X))

HPO

Ω(X,L) Em+1(Ω(X,L)) Tm+1(X,L)

HPB

∗ ∏m+1
X.

//
pr2

²²

pr1

²²
// //

²² ²²
//

Thus we see that the homotopy fibre of the inclusion Tm+1(X,L) ↪→
∏m+1

X has
the homotopy type of Ω(X,L) ∗ Em(Ω(X)) = Em+1(Ω(X,L)) by the induction
hypothesis.

Similarly, we define Pm(Ω(X,L)) inductively from P 0(Ω(X,L)) = L as the
homotopy pushout in the following homotopy pushout-pullback diagram which is
given by [11, Lemma 2.1] with (Y,B) = (

∏m
X, Tm X), Z = X and (f, g) =

(1X , ∆m
X):

(2.2)

Em(Ω(X,L)) Pm−1(Ω(X,L))

HPO

∗ Pm(Ω(X,L)) Tm+1(X,L)

HPB

X
∏m+1

X,

//
p
Ω(X,L)
m−1

²² ²²
// //q(X,L)

m

²²

e(X,L)
m

²²
//∆m+1

where q
(X,L)
m covers the diagonal map ∆m+1 : X →

∏m+1
X. Then we de-

fine p
Ω(X,L)
m+1 : Em+1(Ω(X,L)) → Pm(Ω(X,L)) as the homotopy fibre of e

(X,L)
m :

Pm(Ω(X,L)) → X given in the diagram, where e
(X,L)
0 : L ↪→ X is nothing but

the canonical inclusion. These constructions due to Ganea [8] yields the following
ladder of fibrations which have the same fibre Ω(X), giving a generalisation of an
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A∞-structure (see Stasheff [19]):

(2.3)

Ω(X,L) · · · Em+1(Ω(X,L)) · · · E∞(Ω(X,L))

L · · · Pm(Ω(X,L)) · · · P∞(Ω(X,L))

Â Ä //
∗
≀

²²
p
Ω(X,L)
1

Â Ä //
∗
≀ Â Ä //

∗
≀

²²
p
Ω(X,L)
m+1

Â Ä //
∗
≀

²²
pΩ(X,L)
∞

Â Ä // Â Ä // Â Ä // Â Ä //

with e
(X,L)
∞ : P∞(Ω(X,L)) = ∪

m
Pm(Ω(X,L)) → X given by e

(X,L)
∞ |P m(Ω(X,L)) =

e
(X,L)
m with fibre E∞(Ω(X,L)). Since E∞(Ω(X,L)) = ∪

m
Em(Ω(X,L)) is weekly

contractible, e
(X,L)
∞ : P∞(Ω(X,L)) = ∪

m
Pm(Ω(X,L)) → X is a weekly equivalence.

If further X is a CW complex, then there is a right homotopy inverse h(X,L) : X

→ P∞(Ω(X,L)) of e
(X,L)
∞ , where h(X,L) is also a weak equivalence.

The ladder (2.3) is natural with respect to a map of triads in T A as follows.

Lemma 2.1. For any map f : (X;K,L; A) → (X ′;K ′, L′;A) of triads in T A,
there is the following commutative diagram with f |(X,L) : (X,L) → (X ′, L′) and
f |L : L → L′ the restrictions of f .

Em(Ω(X,L)) Em+1(Ω(X,L))

Em(Ω(X ′, L′)) Em+1(Ω(X ′, L′))

Pm−1(Ω(X,L)) Pm(Ω(X,L))

Pm−1(Ω(X ′, L′)) Pm(Ω(X ′, L′))

**VVVV Em(Ω(f |(X,L)))

Â Ä //

²²

p
Ω(X,L)
1

**VVVV
Em+1(Ω(f |(X,L)))

²²

p
Ω(X,L)
m+1

Â Ä //

²²

pΩ(X′,L′)
m

²²

p
Ω(X′,L′)
m+1

**VVVV
P m−1(Ω(f |(X,L)))

Â Ä //

**VVVV
P m(Ω(f |(X,L)))Â Ä //

We give here another kind of naturality of the ladder (2.3) in T A induced from
the structure map σ : K → Pm(Ω(X,L)) of cat(X; K,L; A) ≤ m.

Lemma 2.2. For any triad (X;K,L; A) in T A with a compression σ : K →
Pm(Ω(X,L)) relative A of the inclusion K ↪→ X, there is a sequence of maps
σn : Pn(Ω(X,K)) → Pm+n(Ω(X,L)) (n ≥ 0) with σ0 = σ, which makes the
following diagram commutative up to homotopy relative A.

(2.4)

Pn−1(Ω(X,K)) Pn(Ω(X,K)) X

Pm+n−1(Ω(X,L)) Pm+n(Ω(X,L)) X

Â Ä //

²²
σn−1

//e(X,K)
n

²²
σn

²²
idX

Â Ä // //
e
(X,L)
m+n

Proof: We construct σn inductively on n ≥ 1: assuming that we have done up
to n − 1, we consider σn. The homotopy commutativity relative A of the (2.5)
without the dotted arrow induces a map of fibres in T , namely σ̂n : En(Ω(X,K)) →
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Em+n(Ω(X,L)).

(2.5)

En(Ω(X,K)) Pn−1(Ω(X,L)) X

Em+n(Ω(X,L)) Pm+n−1(Ω(X,L)) X.

//pΩ(X,K)
n

²²
σ̂n

//
e
(X,K)
n−1

²²

σn−1

²²

idX

//
p
Ω(X,L)
m+n //

e
(X,L)
m+n−1

Using a standard argument in the homotopy theory, the homotopy commutativity of
the left-hand square of the diagram (2.5) with dotted arrow σ̂ implies the existence
of σn : Pn(Ω(X,L)) → Pm+n(Ω(X,L) which makes the diagram (2.4) commutative
up to homotopy relative A.

Thus there is a sequence of maps σn (n ≥ 0) and σ̂n (n ≥ 1) which makes the
diagram (2.4) commutative up to homotopy. ¤ ¤

3. Properties of a new relative L-S category

Our new relative L-S category enjoys the following relationship with the known
three different relative L-S categories:

Theorem 3.1. The known three relative L-S categories are described to be special
cases of our new relative L-S category as follows:

(1) Let X ⊃ K ⊃ L = A = ∗. Then cat(X; K, ∗; ∗) = catBG(X,K) the realtive
L-S category in the sense of Berstein and Ganea [2]. More generally for a
map g : K → X in T∗, we have cat(g, ∗) = catBG(g).

(2) Let X = K ⊃ L = A ⊃ ∗. Then cat(X; X,A; A) = catFH(X,A) the relative
L-S category in the sense of Fadell and Husseini [6].

(3) Let h : X → Y be a fibration with fibre L ⊂ X and K = X ⊃ L ⊃ A = ∗.
Then cat(X; X,L; ∗) = catAL(X,L) the relative L-S category in the sense
of Arkowitz and Lupton [1].

Proof: First we show the following lemma:

Lemma 3.2. cat(X; K,L; A) ≤ m if and only if the inclusion g : K ↪→ X is
compressible into Pm(Ω(X,L)) ⊂ P∞(Ω(X,L)) ≅ X relative A as σ : K →
Pm(Ω(X,L)) the structure map for cat(X;K,L; A) ≤ m.

Proof: Let us assume that cat(X; K,L; A) ≤ m. Then by the definition of cat(X; K,L; A),
the diagonal map ∆m+1|K : K ↪→ X →

∏m+1
X is compressible relative A into

Tm+1(X,L). This implies that there exists a map σ from K to Pm(Ω(X,L)),
which is a compression relative A of the inclusion g : K ↪→ X. Conversely, we
assume that there is a compression relative A of the inclusion g : K ↪→ X into
Pm(Ω(X,L)). Composing with qm : Pm(Ω(X,L)) → Tm+1(X,L), we obtain a
compression relative A of the diagonal map ∆m+1|K : K ↪→ X →

∏m+1
X into

Tm+1(X,L). ¤ ¤

Using this lemma, we obtain the following three propositions, which completes
the proof of Theorem 3.1. ¤ ¤

Proposition 3.3 (Theorem 3.1 (1)). Assume X ⊃ K ⊃ L = A = ∗. Then
cat(X;K, ∗; ∗) = catBG(X,K) the relative L-S category in the sense of Berstein
and Ganea [2].
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Proof: By Lemma 3.2 with A = ∗, cat(X; K, ∗; ∗) ≤ m if and only if the inclusion g :
K ↪→ X is compressible into Pm(Ω(X)), which is equivalent with catBG(X,K) ≤ m
by its definition. ¤ ¤

Proposition 3.4 (Theorem 3.1 (2)). Assume X = K ⊃ L = A ⊃ ∗. Then
cat(X;X,A;A) = catFH(X,A) the relative L-S category in the sense of Fadell and
Husseini [6].

Proof: By Lemma 3.2 with X = K and L = A, cat(X;X,A;A) ≤ m if and only if
there is a right homotopy inverse of e

(X;X,A)
m : Pm(Ω(X,A)) → X relative A, which

is equivalent with catFH(X,K) ≤ m by its definition. ¤ ¤

Proposition 3.5 (Theorem 3.1 (3)). Assume h : X → Y be a fibration with fibre
L ⊂ X and K = X ⊃ L ⊃ A = ∗. Then cat(X; X,L; ∗) = catAL(X,L) the relative
L-S category in the sense of Arkowitz and Lupton [1].

Proof: By Lemma 3.2 with X = K and A = ∗, cat(X; X,L; ∗) ≤ m if and only
if there is a right homotopy inverse of e

(X;X,A)
m : Pm(Ω(X,A)) → X, which is

equivalent with catAL(X,L) ≤ m by its definition. ¤ ¤

Among relative L-S categories, we state the relationship as follows:

Theorem 3.6. (1) Let (X; K,L;A) be a triad in T A. Then we obtain

cat(X; K,L; A) ≤ cat(X;K,A; A) ≤ cat(X;L,A; A) + cat(X;K,L; A),

cat(X; K,L;A) ≤ cat(X,L; A) ≤ cat(X,K; A) + cat(X; K,L; A).

More generally, for any maps f : (L, A) → (X,A) and g : (K,A) →
(X,A), we have

cat(g, f) ≤ cat(g, ∗A) ≤ cat(f, ∗A) + cat(g, f),

cat(g, f) ≤ cat(1(X,A), f) ≤ cat(1X , g) + cat(g, f),

where 1X : (X,A) = (X,A) denotes the identity and ∗A : (A,A) ↪→ (X,A)
denotes the trivial inclusion.

(2) If (X ′, L′; A) ⊃ (X,L; A) and (K ′, A′) ⊂ (K,A), then we have

cat(X ′; K ′, L′; A′) ≤ Min{cat(X ′; K,L′; A), cat(X;K ′, L; A′)}
≤ Max{cat(X ′; K,L′; A), cat(X;K ′, L; A′)} ≤ cat(X; K,L;A).

More generally, for any maps f ′ : (L′, A) → (X ′, A), f : (L,A) → (X,A),
g : (K,A) → (X,A), h : (X,A) → (X ′, A), k : (K ′, A′) → (K,A) and
ℓ : (L,A) → (L′, A), which satisfies the relation f ′◦ℓ = h◦f , we have

cat(h◦g◦k, f ′) ≤ Min{cat(h◦g, f ′), cat(g◦k, f)}
≤ Max{cat(h◦g, f ′), cat(g◦k, f)} ≤ cat(g, f).

The following corollaries are immediate consequences of Theorem 3.6:
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Corollary 3.7. (1) For a triad (X; K,L; ∗) in T∗, we have

cat(X; K,L; ∗) ≤ cat(X; K) = catBG(X,K)

≤ cat(X; L) + cat(X;K,L; ∗) = catBG(X,L) + cat(X; K,L; ∗),
cat(X; K,L; ∗) ≤ cat(X,L; ∗) = catAL(X,L)

≤ cat(X,K; ∗) + cat(X; K,L; ∗) = catAL(X,K) + cat(X; K,L; ∗).

(2) For a pair (X,L; A) in T A, we have

cat(X,L; A) ≤ cat(X,A) = catFH(X,A)

≤ cat(X; L,A) + cat(X,L; A) ≤ cat(X; L,A) + catFH(X,L).

If we further assume that A = ∗, we have

cat(X,L) ≤ cat(X) ≤ cat(X; L) + cat(X,L).

(3) For maps f : L ⊂ X, f ′ : ∗ ⊂ Y , g = 1X : X → X, h : X → Y ,
k = 1X : X → X and ℓ : L → ∗ in T∗ with h|L = ℓ, we have

catBG(h) = cat(h, ∗) = cat(h◦g, f ′) ≤ cat(g, f) = catAL(X,L),

where catAL(X,L) must be denoted by catAL(h) or even cat(h), if L is the
fibre of a fibration h and we follow the notations in [1].

Corollary 3.8. In Definition 1.6, we have cat(X; Fi, Fi−1; A) ≤ 1 for the filtration
{Fi}. Hence we have cat(X; Fi, A; A) ≤ i for every i.

Proof: Proof of Theorem 3.6. The proofs for the general maps are left to the reader,
and we concentrate ourselves to show the theorem for spaces.

Firstly, we show (1) for a triad (X; K,L; A) in T A: To show cat(X; K,L; A)
≤ cat(X; K,A; A), we assume that cat(X; K,A; A) = m. By Lemma 3.2 for the
triad (X; K,A; A), cat(X; K,A;A) ≤ m if and only if there is a compression σ
: K → Pm(Ω(X,A)) relative A of the inclusion K ↪→ X. By Lemma 2.1 for
the inclusion (X; K,A; A) ↪→ (X; K,L;A), the composition Pm(Ω(f |X,A))◦σ :
K → Pm(Ω(X,L)) gives the compression of the inclusion K ↪→ X, which implies
cat(X;K,L; A) ≤ m = cat(X; K,A; A).

To show cat(X;K,L; A) ≤ cat(X,L; A), we assume that cat(X,L; A) = m. By
Lemma 3.2 for the triad (X; X,L; A), cat(X,L; A) ≤ m if and only if there is a
compression σ : X → Pm(Ω(X,L)) relative A of the identity 1X . By restricting σ
to K, we obtain a compression σ|K : K → Pm(Ω(X,L)) relative A of the inclusion
K ↪→ X, which implies cat(X; K,L;A) ≤ m = cat(X.L; A).

To show the inequality cat(X;K,A; A) ≤ cat(X; L,A; A) + cat(X;K,L; A), we
assume that cat(X; L,A; A) = m and cat(X; K,L;A) = n. By Lemma 3.2 for
the triad (X; L,A; A), cat(X; L,A; A) ≤ m if and only if there is a compression
σ : L → Pm(Ω(X,A)) relative A of the inclusion L ↪→ X. Then by Lemma 2.2 for
the triad (X; L,A; A), we have the following commutative ladder with σ0 = σ up
to homotopy relative A:

Pn−1(Ω(X,L)) Pn(Ω(X,L)) X

Pm+n−1(Ω(X,A)) Pm+n(Ω(X,A)) X.

Â Ä //

²²
σn−1

//e(X,L)
n

²²
σn

²²
idX

Â Ä // //
e
(X,A)
m+n
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Again by Lemma 3.2 for the triad (X; K,L;L), cat(X; K,L; A) ≤ n if and only if
there is a compression τ : K → Pn(Ω(X,L)) relative A of the inclusion K ↪→ X.
Then the composition σn◦τ : K → Pm+n(Ω(X,A)) gives a compression rela-
tive A of the inclusion K ↪→ X, which implies that cat(X; K,A;A) ≤ m + n =
cat(X;L, A; A) + cat(X; K,L; A).

To show the inequality cat(X,L; A) ≤ cat(X,K; A)+cat(X; K,L; A), we assume
that cat(X; K,L;A) = m and cat(X,K; A) = n. By Lemma 3.2 for the triad
(X; K,L; A), cat(X; K,L;A) ≤ m if and only if there is a compression τ : K →
Pm(Ω(X,L)) relative A of the inclusion K ↪→ X. Then by Lemma 2.2 for the
triad (X;K,L; A), we have the following commutative ladder with τ0 = τ up to
homotopy relative A:

Pn−1(Ω(X,K)) Pn(Ω(X,K)) X

Pm+n−1(Ω(X,L)) Pm+n(Ω(X,L)) X.

Â Ä //

²²
τn−1

//e(X,K)
n

²²
τn

²²
idX

Â Ä // //
e
(X,L)
m+n

Again by Lemma 3.2 for the triad (X; X,K;A), cat(X,K;A) ≤ n if and only if there
is a compression ρ : X → Pn(Ω(X,K)) relative A of the identity 1X : X → X.
Then the composition τn◦ρ : X → Pm+n(Ω(X,L)) gives a compression relative
A of the identity 1X : X → X, which implies that cat(X,L; A) ≤ m + n =
cat(X,K; A) + cat(X; K,L; A).

Secondly, we show (2) for a triad (X; K,L;A) with spaces X ′ ⊃ X, (K ′, A′) ⊂
(K,A) and (L′, A′) ⊂ (L,A). It is sufficient to show that cat(X ′;K,L′; A) ≤
cat(X;K,L; A) and cat(X; K ′, L; A′) ≤ cat(X; K,L; A):

To show cat(X ′; K,L′; A) ≤ cat(X; K,L; A), we assume that cat(X; K,L; A) =
m. By Lemma 3.2 for the triad (X; K,L; A), cat(X;K,L; A) ≤ m if and only if
there is a compression σ : K → Pm(Ω(X,L)) relative A of the inclusion K ↪→ X.
Since X ′ ⊃ X, we have the inclusion of triads : (X; K,L;A) ↪→ (X ′; K,L′;A).
Then by Lemma 2.1 for the map of triads j : (X; K,L; A) ↪→ (X ′;K,L′;A), we
have the following commutative ladder up to homotopy relative A:

Pm−1(Ω(X,L)) Pm(Ω(X,L)) X

Pm−1(Ω(X ′, L′)) Pm(Ω(X ′, L′)) X ′

Â Ä //

²²
jm−1

//e(X,L)
m

²²
jm

Ä _

²²
j|X

Â Ä // //e(X′,L′)
m

with j0 = idL and jk = P k(Ω(j|(X,L))), 1 ≤ k ≤ m. Thus the map jm◦σ gives a
compression relative A of the inclusion K ↪→ X ⊂ X ′, and hence cat(X ′; K,L′; A)
≤ m = cat(X; K,L; A).

To show cat(X; K ′, L; A′) ≤ cat(X; K,L;A), we may assume that A = A′, since
it is clear by definition that cat(X; K,L; A′) ≤ cat(X; K,L;A) if A′ ⊂ A: let
us assume that cat(X; K,L;A) = m. By Lemma 3.2 for the triad (X; K,L;A),
cat(X;K,L; A) ≤ m if and only if there is a compression σ : K → Pm(Ω(X,L))
relative A of the inclusion K ↪→ X. Hence the restriction σ|K′ of the map
σ to K ′ gives a compression relative A of the inclusion K ′ ↪→ X, and hence
cat(X;K ′, L; A) ≤ m = cat(X; K,L; A). ¤ ¤
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4. A higher Hopf invariant for a triad

Let us consider the following exact sequences of abelian groups and algebraic
loops:

0 → [ΣV,Em+1(Ω(X,L))]
p
(X,L)
m+1 ∗−→ [ΣV, Pm(Ω(X,L))]

e(X,L)
m ∗−→ [ΣV,X] → 0(4.1)

1 → [V,Em+1(Ω(X,L))]
p
(X,L)
m+1 ∗−→ [V, Pm(Ω(X,L))]

e(X,L)
m ∗−→ [V,X].(4.2)

Since the fibre Ω(X) of the fibration p
(X,L)
m+1 is contractible in the total space

Em+1(Ω(X,L)) of p
(X,L)
m+1 , we know e

(X,L)
m ∗ : [ΣV, Pm(Ω(X,L))] → [ΣV,X] is an epi-

morphism of abelian groups and p
(X,L)
m+1 ∗ : [ΣV,Em+1(Ω(X,L))] → [ΣV, Pm(Ω(X,L))]

is a monomorphism of abelian groups. Similarly, p
(X,L)
m+1 ∗ : [V,Em+1(Ω(X,L))] →

[V, Pm(Ω(X,L))] is a monomorphism of algebraic loops. Thus we obtain the fol-
lowing proposition:

Proposition 4.1. (1) e
(X,L)
m ∗ : [ΣV, Pm(Ω(X,L))] → [ΣV,X] is an epimor-

phism of abelian groups.
(2) p

(X,L)
m+1 ∗ : [ΣV,Em+1(Ω(X,L))] → [ΣV, Pm(Ω(X,L))] is a monomorphism of

abelian groups.
(3) p

(X,L)
m+1 ∗ : [V,Em+1(Ω(X,L))] → [V, Pm(Ω(X,L))] is a monomorphism of

algebraic loops.

We give here a definition of Higher Hopf invariants in a slightly different form
as follows:

Definition 4.2. (1) Let (X; K,L; A) be a triad in T A, V be a co-loop co-H-
space, and α : V → K a map in T such that X ⊃ K̂ = K ∪α CV ⊃ K. We
assume that cat(X;K,L; A) ≤ m. By Lemma 3.2 for the triad (X; K,L; A),
cat(X; K,L; A) ≤ m implies that the inclusion i : K ↪→ X is compressible
into Pm(Ω(X,L)) relative A as a map σ : K → Pm(Ω(X,L)). Since
e
(X,L)
m ◦σ◦α ∼ i◦α is trivial in K̂ ⊂ X, we obtain a unique lift Hσ

m(α) :
V → Em+1(Ω(X,L)) ≅ Ω(X,L) ∗ Ω(X) ∗ · · ·

m
∗ Ω(X) of σ◦α. We define

H
(X;K,L;A)
m (α) as follows:

H(X;K,L;A)
m (α) =

{
[Hσ

m(α)]
∣∣∣ σ : K → Pm(Ω(X,L)) is a compression rela-
tive A of the inclusion K ↪→ X.

}
⊂ [V, Ω(X,L) ∗ Ω(X) ∗ · · ·

m
∗ Ω(X)].

(2) Let (K,L; A) be a pair in T A and let α : V → K a map in T . We
assume that cat(K,L;A) ≤ m. By Lemma 3.2 for the triad (K; K,L; A),
cat(K,L;A) ≤ m implies that the identity 1K : K → K is compressible
into Pm(Ω(K,L)) relative A as a map σ : K → Pm(Ω(K,L)). By Lemma
2.1 for the inclusion j : (K; K, ∗; ∗) ↪→ (K; K,L; ∗), the following ladder is
commutative up to homotopy:

∗ ΣΩ(K) Pm(Ω(K)) K

L P 1(Ω(K,L)) Pm(Ω(K,L)) K,

Ä _

²²

Â Ä //
Ä _

²²
j1

Â Ä //
Ä _

²²
jm

//eK
m

²²
idK

Â Ä // Â Ä // //
e(K,L)

m
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where eK
1 = eK

m|ΣΩ(K) : ΣΩ(K) → K is given by the evaluation map (see
Ganea [8] or [12]). Since V is a co-loop co-H-space, the evaluation map
eV
1 : ΣΩ(V ) → V admits a right homotopy inverse, say the co-H-structure

map ρV : V → ΣΩ(V ) for V , by Ganea [9]. Then we have eK
1 ◦ΣΩ(α)◦ρV ∼

α◦eV
1 ◦ρV ∼ α, and hence e

(K,L)
1 ◦j1◦ΣΩ(α)◦ρV ≅ idK◦ eK

1 ◦ΣΩ(α)◦ρV ∼ α.
Since both the maps e

(K,L)
1 ◦σ◦α, e

(K,L)
1 ◦σ◦α and e

(K,L)
1 ◦j1◦ΣΩ(α)◦ρV are

homotopic to α, the difference d(α) = σ◦α − j1◦ΣΩ(α)◦ρV is trivial in K.
Thus we obtain a unique lift Hσ

m(α) : V → Em+1(Ω(K,L)) ≅ Ω(X,L) ∗
Ω(X) ∗ · · ·

m
∗ Ω(X) of d(α). We define H

(K,L;A)
m (α) as follows:

H(K,L;A)
m (α) =

{
[Hσ

m(α)]
∣∣∣ σ is a compression relative A of the identity
1K .

}
⊂ [V, Ω(K,L) ∗ Ω(K) ∗ · · ·

m
∗ Ω(K)].

We then show the following result which clarifies how a higher Hopf invariant
determines whether a cone decomposition reduces to a categorical sequence or not.

Theorem 4.3. Let (X; K,L;A) be a triad in T A, V be a co-loop co-H-space and
α : V → K be a map in T such that X ⊃ K̂ = K ∪α CV ⊃ K. If cat(X; K,L; A) ≤
m and H

(X;K,L;A)
m (α) = 0, then cat(X; K̂, L; A) ≤ m.

Proof: Let (X; K,L; A) be a triad in T A, V be a co-loop co-H-space and α : V → K

be a map in T such that X ⊃ K̂ = K ∪α CV ⊃ K. Assuming cat(X;K,L; A) ≤ m

and H
(X;K,L;A)
m (α) = 0, we show cat(X; K̂, L;A) ≤ m: by the assumption, there is

a compression σ : K → Pm(Ω(X,L)) relative A of the inclusion K ↪→ X such that
σ◦α ∼ p

(X,L)
m+1 ◦Hσ

m(α) ∼ ∗, and hence there is a map σ̂ : K̂ → Pm(Ω(X,L)) whose
restriction to K is σ. Since e

(X,L)
m ◦σ and the inclusion K ↪→ X are homotopic

relative A, the difference between e
(X,L)
m ◦σ̂ and the inclusion K̂ ↪→ X is given

by an element [δ] ∈ [ΣV,X]. By Proposition 4.1 (1), we have a map δ̂ : ΣV →
Pm(Ω(X,L)) such that e

(X,L)
m ◦δ̂ ∼ δ. By subtracting δ̂ from σ̂, we obtain a genuine

compression σ′ = σ̂ − δ̂ : ΣV → Pm(Ω(X,L)) of the inclusion K̂ → Pm(Ω(X,L))
relative A, where the subtraction is given by the co-action of ΣV under K∪αC2V =
K̂ the map cone of α. This implies that cat(X; K̂, L; A) ≤ m. ¤ ¤

We describe here the relationship among higher Hopf invariants. The following
definition is essentially due to Berstein and Hilton [3]:

Definition 4.4. Let (X; K,L; A) and (X ′;K ′, L′;A) be triads in T A, V be a co-loop
co-H-space, and s : K → Tm+1(X,L) and s′ : K ′ → Tm+1(X ′, L′) be compressions
of ∆m+1◦i : K ↪→

∏m+1
X and ∆m+1◦i′ : K ′ ↪→

∏m+1
X ′ relative A, respectively,

so that cat(X; K,L; A) ≤ m and cat(X ′; K ′, L′; A) ≤ m. A map f : (X; K,L; A) →
(X ′; K ′, L′; A) of triads in T A is called m-primitive (with respect to s and s′), if
s′◦f |K ∼ Tm+1(f |(X′,L′))◦s.

Let (X; K,L; A) and (X ′; K ′, L′; A) be triads in T A, and let cat(X; K,L; A)
≤ m and cat(X ′; K ′, L′; A) ≤ m with compressions s : K → Tm+1(X,L) and
s′ : K ′ → Tm+1(X ′, L′) of ∆m+1◦i : K ↪→

∏m+1
X and ∆m+1◦i′ : K ′ ↪→

∏m+1
X ′

relative A, respectively. By using the lower right square of the diagram (2.2), we
obtain structure maps σ, σ′ for cat(X; K,L; A) ≤ m and cat(X ′;K ′, L′;A) ≤ m
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corresponding to s and s′, respectively by s ∼ q
(X,L)
m ◦σ and s′ ∼ q

(X′,L′)
m ◦σ′ relative

A.

Lemma 4.5. Let f : (X; K,L; A) → (X ′; K ′, L′; A) be a map of triads in T A. Then
f is m-primitive with respect to s and s′, if and only if σ′◦f |K ∼ Pm(Ω(f |(X,L)))◦σ
relative A for the corresponding structure maps σ and σ′.

Proof: Assume that f satisfies that σ′◦f |K ∼ Pm(Ω(f |(X,L)))◦σ. By composing

q
(X′,L′)
m : Pm(Ω(X ′, L′)) → Tm+1(X ′, L′) with the both sides, we obtain

s′◦f |K ∼ q(X′,L′)
m ◦σ′◦f |K

∼ q(X′,L′)
m ◦Pm(Ω(f |(X,L)))◦σ

∼ Tm+1(f |(X,L))◦q(X,L)
m ◦σ

∼ Tm+1(f |(X,L))◦s
relative A, and hence f is m-primitive with respect to s and s′. Conversely assume
that f is m-primitive with respect to s and s′. Then the naturality of the lower right
square of the diagram (2.2) immediately induces the homotopy relation σ′◦f |K ∼
Pm(Ω(f |(X,L)))◦σ relative A. ¤ ¤

Theorem 4.6. Let (X; K,L; A) and (X ′;K ′, L′;A) be triads in T A, V be a co-
loop co-H-space, and s : K → Tm+1(X,L) and s′ : K ′ → Tm+1(X ′, L′) be com-
pressions of the inclusions i : K ↪→ X and i′ : K ′ ↪→ X ′ relative A, respec-
tively, so that cat(X; K,L; A) ≤ m and cat(X ′; K ′, L′; A) ≤ m, respectively. Let
f : (X; K,L; A) → (X ′;K ′, L′;A) be a map of triads in T A and let α : V → K be a
map in T such that X ⊃ K̂ = K ∪α CV ⊃ K and X ′ ⊃ K̂ ′ = K ′ ∪f |K◦α CV ⊃ K.
If f is m-primitive with respect to s and s′, then we have

Em+1(Ω(f |(K,L)))#◦H(X;K,L;A)
m (α) ⊂ H(X′;K′,L′;A)

m (f |K◦α).

Proof: By Lemma 2.1 for f : (X; K,L; A) → (X ′;K ′, L′;A) a map of triads in T A,
the following diagram is commutative up to homotopy relative A:

Em+1(Ω(X,L)) Pm(Ω(X,L)) X

Em+1(Ω(X ′, L′)) Pm(Ω(X ′, L′)) X ′.

//pΩ(X,L)
m

²²
Em+1(Ω(f |(X,L)))

//e(X,L)
m

²²
P m(Ω(f |(X,L)))

Ä _

²²
f |X

//
pΩ(X′,L′)

m

//
e(X′,L′)

m

Since f is m-primitive with respect to s and s′, we have the homotopy relation
relative A Pm(Ω(f |(X,L)))◦σ ∼ σ′◦f |K for the corresponding compressions σ and
σ′ relative A of the inclusions i : K ↪→ X and i′ : K ′ ↪→ X ′, resp. Thus we have
the following homotopy relation:

pΩ(X′,L′)
m ◦Em+1(Ω(f |(X,L)))◦Hσ

m(α)

∼ Pm(Ω(f |(X,L)))◦pΩ(X,L)
m ◦H(X;K,L;A)

m (α)

∼ Pm(Ω(f |(X,L)))◦σ◦α ∼ σ′◦f |K◦α ∼ pΩ(X′,L′)
m ◦Hσ′

m (f |K◦α).

Hence we obtain Em+1(Ω(f |(X,L)))◦Hσ
m(α) ∼ Hσ′

m (f |K◦α), since p
Ω(X′,L′)
m ∗ is monic

by Proposition 4.1 (3). Thus we have Em+1(Ω(f |(X,L)))#H
(X;K,L;A)
m (α) ⊂ H

(X′;K′,L′;A)
m (f |K◦α).

¤ ¤
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Theorem 4.7. Let (X,K,L; A) be a triple in T A, V be a co-loop co-H-space, and
α : V → K be a map in T such that X ⊃ K̂ = K∪α CV ⊃ K. If cat(K,L; A) ≤ m,
then we have

Em+1(Ω(j|(K,L)))#◦H(K,L;A)
m (α) ⊂ H(X;K,L;A)

m (α),

where j : (K; K,L;A) → (X;K,L; A) is the inclusion.

Corollary 4.8. For the filtration {Fi} in Definition 1.6, we have

Em+1(Ω(ji|(Fi,Fi−1)))#◦H(Fi,Fi−1;A)
i (α) ⊂ H

(X;Fi,Fi−1;A)
i (α)

for every i, where ji : (Fi; Fi, Fi−1; A) ↪→ (X; Fi, Fi−1; A) denote the inclusion.

Proof: Proof of Theorem 4.7 Let (X,K,L; A) be a triple in T A, V be a co-loop co-
H-space and α : V → K be a map in T such that X ⊃ K̂ = K∪α CV ⊃ K. Assum-
ing cat(K,L; A) ≤ m, we show Em+1(Ω(j|(K,L)))#H

(K,L;A)
m (α) ⊂ H

(X;K,L;A)
m (α),

where j : (K; K,L;A) → (X; K,L; A) denotes the inclusion: By Lemma 2.1 for
j : (K; K,L;A) → (X; K,L;A) an inclusion map of triads in T A, the following
diagram is commutative up to homotopy relative A:

Em+1(Ω(K,L)) Pm(Ω(X,L)) K

Em+1(Ω(X,L)) Pm(Ω(X,L)) X.

//pΩ(K,L)
m

²²
Em+1(Ω(j|(K,L)))

//e(K,L)
m

²²
P m(Ω(j|(K,L)))

Ä _

²²
j|K

//
pΩ(X,L)

m

//
e(X,L)

m

By the definition of a higher Hopf invariant, we obtain p
Ω(K,L)
m ◦Hσ

m(α) ∼ σ◦α −
j1◦ΣΩ(α)◦ρV , and hence we have the homotopy relation

pΩ(X,L)
m ◦Em+1(Ω(j|(K,L)))◦Hσ

m(α) ∼ Pm(Ω(j|(K,L)))◦pΩ(K,L)
m ◦Hσ

m(α)

∼ Pm(Ω(j|(K,L)))◦σ◦α − Pm(Ω(j|(K,L)))◦j1◦ΣΩ(α)◦ρV

∼ Pm(Ω(j|(K,L)))◦σ◦α − j1◦ΣΩ(j|(K,L))ΣΩ(α)◦ρV

∼ Pm(Ω(j|(K,L)))◦σ◦α − j1◦ΣΩ(j|(K,L)◦α)◦ρV

∼ Pm(Ω(j|(K,L)))◦σ◦α,

since j|(K,L)◦α ∼ ∗ in X. This implies that Em+1(Ω(j|(K,L)))◦Hσ
m(α) is homotopic

to H
P m(Ω(j|(K,L)))◦σ
m (α), and hence Em+1(Ω(j|(K,L)))#◦H(K,L;A)

m (α) ⊂ H
(X;K,L;A)
m (α).

¤

5. Categorical sequence

Let FX
i , 0 ≤ i ≤ m, and FY

j , 0 ≤ j ≤ n, be categorical sequences for (X,A) ∈ T A

and (Y,A) ∈ T A, respectively. Then for a map f : (X,A) → (Y,A), we say that
f preserves categorical sequences, if f(FX

i ) ⊂ FY
i for all i ≥ 0. We first show the

following:

Lemma 5.1. Let (X,A) ∈ T A be dominated by (Y,A) ∈ T A with a categorical
sequence of length m. Then there is a categorical sequence for (X,A) of length
m compatible with the given categorical sequence for (Y,A), i.e., the inclusion
i : (X,A) ↪→ (Y,A) and the retraction r : (Y,A) → (X,A) preserve categorical
sequences.
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The above lemma yields the relation between the L-S category and the length
of a categorical sequence:

Theorem 5.2. For any X in T , we have cat(X) = catlen(X). More generally, for
any object (X,A) ∈ T A, we have catFH(X,A) = catlen(X,A).

Proof: Assume catlen(X,A) = m with a categorical sequece (FX
i , A), 0 ≤ i ≤ m for

(X,A). Then by Corollary 3.8, we have cat(X,A) = cat(X;X,A) = cat(X; FX
m , A)

≤ m = catlen(X,A). Hence we have cat(X,A) ≤ catlen(X,A). Conversely assume
cat(X,A) = m. Then the pair (X,A) is dominated by (Pm(Ω(X,A)), A) which has
the cone decomposition (P i(Ω(X,A)), A), 0 ≤ i ≤ m as the canonical categorical
sequence. Thus by Lemma 5.1, we have that (X,A) has also a categorical sequence
of length m, and hence that catlen(X,A) ≤ m = cat(X,A). It completes the proof
of Theorem 5.2. ¤

Proof: Proof of Lemma 5.1. Let (FY
i , A), 0 ≤ i ≤ m, be a categorical sequence

for (Y,A) ∈ T A and σ : X → Y and ρ : Y → X be maps such that ρ◦σ ∼ 1X .
Then we define Fi as the homotopy pullback of σ and the inclusion ιi : FY

i ↪→ FY
m .

Since the image of σ|A is the same as the inclusion A ⊆ FY
0 ↪→ FY

m , the space A is
canonically embedded in F0 and hence in Fi ⊃ F0 for any i ≥ 0.

F F0 Fi Fm X

PB PB PB HPB

∗ A FY
i FY

m FY
m ,

²²

Â Ä //

²²

σ0

Â Ä //ι̂0

²²

σi

Â Ä //ι̂i

²²

σm

//îd

²²

σ

Â Ä // Â Ä //
ι0

Â Ä //
ιi id

where F denotes the homotopy fibre of σ and Fm is the homotopy pullback of σ
and the identity of FY

m . Since ρ◦σ ∼ 1X , ρ|F Y
i

can be compressed into Fi and we
have the following commutative diagram:

∗ A FY
i FY

m FY
m

F F0 Fi Fm X.

Â Ä //

²²

Â Ä //
ι0

²²

ρ0

Â Ä //
ιi

²²

ρi

id

²²

ρm

²²

ρ

Â Ä // Â Ä //ι̂0 Â Ä //ι̂i //îd

Then by the definition of categorical sequence, there is a compression νY
i : FY

i →
FY

m× ∗ ∪FY
i−1×FY

m of the diagonal map ∆F Y
i

: FY
i → FY

i ×FY
i ⊆ FY

m×FY
m relative

to FY
i−1:

FY
i FY

i ×FY
i FY

m×FY
m

FY
m× ∗ ∪FY

i−1×FY
m

//
∆

F Y
i

++WWWWWWWWWWWWWWWWWWWWWWW

νY
i

Â Ä //

* ­

77oooooooooo
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By composing ρi and σi, we obtain a compression of the diagonal map ∆Fi : Fi →
Fi×Fi ⊆ Fm×Fm as follows:

Fm×∗ ∪ Fi−1×Fm

Fi Fi×Fi Fm×Fm

FY
i FY

i ×FY
i FY

m×FY
m

FY
m× ∗ ∪FY

i−1×FY
m

µ r

$$JJJJJJJJJJJJJJ

²²

σi

//
∆Fi

44

νi

Â Ä //

//
∆

F Y
i

**TTTTTTTTTTTTTTTTTTTTTTTTTT

νY
i

Â Ä //

OO

ρm×ρm

, ¯

::ttttttttttttt

OO

ρm,i−1

This implies cat(X ′; X ′, FX
m−1;A) ≤ 1, and hence X ′ = FX

m ⊃ Fm−1 ⊃ · · · ⊃ F0 =
A gives a categorical sequence for X. ¤ ¤

The following lemma is our version of the result of Arkowitz and Lupton [1]:

Lemma 5.3. Let X be a space in T with cat(X) = m and {Fi ; 0≤i≤m} be a
categorical sequence for X. Then there is a map µ : Fi → Fm/Fi−1 ∨Fm in T with
axes Fi → Fm/Fi−1 and the inclusion Fi ↪→ Fm.

Proof: By the definition of a categorical sequence, the diagonal map ∆ : Fi →
Fi×Fi ⊆ Fm×Fm is compressible into Fi−1×Fm ∪ Fm×∗ as Fi

µ̂−→ Fi−1×Fm ∪
Fm×∗ ⊆ Fm×Fm. Since Fm/Fi−1 ∨ Fm can be regarded as the pushout of the
second projection pr2 : Fi−1×Fm → Fm and the canonical inclusion ι : Fi−1×Fm ↪→
Fi−1×Fm ∪ Fm×∗, we have the following diagram:

Fi

Fi−1×Fm Fi−1×Fm ∪ Fm×∗ Fm×Fm

PO PO

Fm Fm/Fi−1 ∨ Fm Fm/Fi−1 × Fm,

²²

µ̂

''OOOOOOOOOOOOOOOOO

∆

Â Ä //

²²

pr2

Â Ä //

²²

q̂
Fi
i

²²

q
Fi
i × idFi

Â Ä //in2 Â Ä //j

where qFi
i : Fi → Fi/Fi−1 ⊆ Fm/Fi−1 denotes the canonical collapsing map in T .

Let µ be the composition q̂Fi
i ◦µ̂ : Fi → Fi/Fi−1 ∨ Fm so that j◦µ is homotopic to

(qFi
i × idFi)◦∆. Thus µ has axes qFi

i : Fi → Fi/Fi−1 ⊆ Fm/Fi−1 and the inclusion
Fi ↪→ Fm. ¤ ¤

Corollary 5.4. Let (X,A) be an object in T A. If catFH(X,A) = m > 0, then
there exists a sequence for pairs {(Fi, A) ; 0≤i≤m} such that (F0, A) ≅ (A, A) in
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(Fm, A), (Fm, A) ≅ (X,A) relative A and cat(X; Fi, A) ≤ i, i > 0. Moreover we
have cat(Fm/Fi−1;Fi/Fi−1) ≤ 1 with a ‘partial co-action’ Fi → Fm/Fi−1 ∨ Fm

along the collapsion Fi → Fi/Fi−1 ⊆ Fm/Fi−1, i > 0. In particular, Fm/Fm−1 is
a co-H-space coacting on Fm along the collapsion Fm → Fm/Fm−1.

6. Examples of categorical sequences

In [3], Berstein and Hilton showed that the L-S category of the cell complex
Q(α) = Sr ∪α eq+1, α ∈ πq(Sr) is determined by the Hopf invariant H1(α) ∈
πq+1(Sr×Sr, Sr∨Sr) (∼= πq(Ω(Sr) ∗ Ω(Sr)) by Ganea). We can easily observe
that F0 = ∗, F1 = Sr and F2 = Q(α) give a cone decomposition of Q(α) of
length 2. If H1(α) = 0, then by Theorem 4.3, we obtain that F ′

0 = F0 = ∗,
F ′

1 = F1 ∪α eq+1 = F2 = Q(α) give a categorical sequence of length 1.
In [13], the author showed that the L-S category of total space E(β) = Q(β)∪ψ(β)

eq+r+1, β ∈ πq(Sr), ψ(β) ∈ πq+r(Q(β)) is determined by ΣrH1(β) ∈ πq+r(Ω(Sr) ∗
Ω(Q(β)) ∗ Ω(Q(β))), if H1(β) ̸= 0. We can easily observe that F0 = ∗, F1 = Sr,
F2 = Q(β) and F3 = E(β) give a cone decomposition of E(β) of length 3. If
ΣrH1(α) = 0, then by Theorem 4.3, we obtain that F ′

0 = F0 = ∗, F ′
1 = F1 = Sr,

F ′
2 = F2 ∪ψ(β) eq+r+1 = F3 = E(β) give a categorical sequence of length 2.
In [15], Kono and the author showed that there is a cone decomposition Ei,

0 ≤ i ≤ 8 and E′
8 of Spin(9) of length 9, while the L-S category of Spin(9) is

8 by a combination of a higher Hopf invariant and the cone decomposition: We
can easily see that Lemma 1.1 in [15] implies that the higher Hopf invariant of the
attaching map of the top cell of Spin(9) must vanish, since the structure map of
cat(E′

8) = 8 can be chosen to be compatible to the structure map of cat(E8) = 8
by the argument given in the proof of Lemma 1.1 in [15]. Hence by Theorem 4.3,
we obtain that Ei, 0 ≤ i ≤ 7 and E′

8 give the categorical sequence of length 8.

7. Cup length and Module weight for the relative L-S category

A computable lower estimate is given by the classical cup-length. Here we give
the definition for our new relative L-S category.

Definition 7.1. For any two maps f : (L,A) ⊂ (X,A) and g : (K,A) → (X,A) in
T A, we define cup length for (g, f) = (X; K,L; A)

(1) Let h be a multiplicative generalized cohomology theory.

cup(g, f ; h) = Min
{

m≥0
∣∣∣∣ ∀{v0 ∈ h∗(X,L); v1, · · · , vm ∈ h∗(X,A)}
g∗(v0·v1··vm) = 0 in h∗(K,A)

}
.

(2) cup(g, f) = Max
{

cup(g, f ; h)
∣∣∣∣ h is a multiplicative generalized coho-
mology theory

}
.

Then we have cup(g, f ; h) ≤ cup(g, f) ≤ cat(g, f) for any multiplicative gener-
alized cohomology h. When h is the ordinary cohomology with a coefficient ring
R, we denote cup(g, f ; h) by cup(g, f ; R). This definition immediately implies the
following.

Remark 7.2. For (g, f) = (X;K,L; A), using the arguments in [14], we have
cup(g, f) = Min

{
m≥0

∣∣∣ ∆̃m+1
K : K/A → X/L ∧

∧m
X/A is stably trivial

}
.

Let us recall that Rudyak [17] and Strom [20] introduced a homotopy theoretical
version of Fadell-Husseini’s category weight (see [5]). But unfortunately, we could
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not succeed to give a version of category weight for our new relative L-S category. In
this paper, we give instead a version of module weight which is a better computable
lower estimate for our relative L-S category than cup length: let f : (L,A) ⊂ (X,A)
and g : (K,A) → (X,A) be maps in T A and let h be a generalized cohomology
theory.

Definition 7.3 (I. [14]). A homomorphism φ : h∗(Y,L) → h∗(K,A) of h∗-modules
is called a (unstable) h-morphism if it preserves the action of any (unstable) coho-
mology operation on h∗.

Definition 7.4. A (unstable) module weight Mwgt(g, f ; h) of (g, f) with respect to
h is defined as follows.

Mwgt(g, f ; h) = Min

m≥0

∣∣∣∣∣∣
There is a (unstable) h-morphism φ :
h∗(Pm(Ω(X,L)), L) → h∗(K,A) such that
φ◦(eX

m)∗ = g∗ : h∗(X,L) → h∗(K,A).


When h is the ordinary cohomology theory with coefficients in a ring R, we

denote Mwgt(g, f ; h) by Mwgt(g, f ; R).

Remark 7.5. The invariants introduced in this paper satisfy the following inequal-
ity for any generalised cohomology theory h∗:

cup(g, f ;h) ≤Mwgt(g, f ; h) ≤ cat(g, f) = catlen(g, f),

and hence for any ring R, we have

cup(g, f ; R) ≤Mwgt(g, f ; R) ≤ cat(g, f) = catlen(g, f).

Similar to the above definition of cup(g, f), we define the following invariants.

Definition 7.6. For any (g, f) = (X;K,L; A), we define

Mwgt(g, f) = Max
{

m≥0
∣∣∣∣ Mwgt(g, f ; h) = m for some generalized cohomol-
ogy theory h

}
Remark 7.7. cup(g, f) ≤ Mwgt(g, f) ≤ cat(g, f) = catlen(g, f).
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