Co-H-spaces and the Ganea conjecture

Norio Iwase*
Address: Graduate School of Mathematics, Kyushu University, Japan.
e-mail: iwase@math.kyushu-u.ac.jp

March 31, 1998

Abstract

A non-simply connected co-H-space X is, up to homotopy, the total space of a fibrewisesimply connected pointed fibrewise co-Hopf fibrant $j: X \rightarrow B \pi_{1}(X)$, which is a space with a co-action of $B \pi_{1}(X)$ along j. We construct its homology decomposition, which yields a simple construction of its fibrewise localisation. Our main result is the construction of a series of co-H-spaces, each of which cannot be split into a one-point-sum of a simply connected space and a bunch of circles, thus disproving the Ganea conjecture.

Problem 10 posed by Tudor Ganea [8], known as the Ganea conjecture (e.g, $\S 6$ in Arkowitz [1]), states: Does a co-H-space have the homotopy type of a one-point-sum of a bunch of circles (one-point-sum of S^{1} 's or a point) and a simply connected space?

If a CW complex X is a co- H -space, the co- H -structure gives a co-action (see Berstein and Dror [3] or Oda [16]) of the classifying space $B \pi_{1}(X)$ of $\pi_{1}(X)$ along $j: X \rightarrow B \pi_{1}(X)$, the classifying map of the universal covering $p(X): \widetilde{X} \rightarrow X$. It is known by Eilenberg-Ganea [6] or [11], that $\pi_{1}(X)$ is free and $B \pi_{1}(X)$ has the homotopy type of a bunch of circles, say B. Let $i: B \rightarrow X$ be a map representing a collection of generators of the free group $\pi_{1}(X)$ and $c: X \rightarrow C=X / B$ be the collapsing map from X to its cofibre. Clearly, we may choose the map i so that $j o i \sim 1_{X}$. It is also known by Corollary 3.4 and Theorem 3.3 in [11] that, for a given μ, a co-H-structure for X, there is a 'natural' map $s=s(\mu): C=X / B \rightarrow X$ which is a right homotopy inverse of c. More precisely, if $f:(X, \mu) \rightarrow\left(X^{\prime}, \mu^{\prime}\right)$ is a co-H-map, then $f \circ s(\mu)=s\left(\mu^{\prime}\right) \circ f^{\prime}$, where $f^{\prime}: X / B \rightarrow X^{\prime} / B^{\prime}$ is the unique map induced from f. Hence

[^0]one obtains two 'natural' homology equivalences $X \rightarrow B \vee C$ and $B \vee C \rightarrow X$, both of which induce isomorphisms of fundamental groups. As is well-known, these properties, however, do not guarantee that the two spaces have the same homotopy type.
Definition. A co-H-space is standard if it splits into a one-point-sum of a simply connected co-H-space and a bunch of circles.

Berstein and Dror [3] showed that a co-H-space is standard if the associated co-action is co-associative. Hilton, Mislin and Roitberg [10] showed that a co-H-space is standard if $e=i \circ j$ is 'loop-like' in $[X, X]$. We summarise here the relevant results of [3], [10].

Theorem 0.1 ([3], [10]) For a co-H-space complex X, the condition 1) below is equivalent with the conditions 2) to 5) below by several authors.

1) (Ganea [8]) A co-H-space is standard.
2) (Berstein-Dror [3]) The co-action of B along $j: X \rightarrow B$ associated with the co- H-structure of X can be chosen as co-associative.
3) (Hilton-Mislin-Roitberg [10]) The co-H-structure of X can be chosen to make the co-shear map a homotopy equivalence.
4) (Hilton-Mislin-Roitberg [10]) The co-H-structure of X can be chosen to be a co-loop, i.e, there is a natural algebraic-loop structure on the homotopy set functor $[X,-]$.
5) (Hilton-Mislin-Roitberg [10]) The co-H-structure of X can be chosen to make $e=i o j$ looplike from the left (or right).

However, we don't know any algorithm to get a nice co-H-structure from a given one.
On the other hand, there are some results on the conjecture which are shown without making any assumption on the co-H-structure itself: In [9], Henn verified the almost rational version of the conjecture:

Theorem 0.2 ([9]) An almost rational co-H-space is standard. Moreover it can be split into a one-point-sum of a rational spheres with dimensions ≥ 2 and a bunch of circles.

In [14], Komatsu verified the conjecture for co-H-spaces with reduced homology groups free abelian and concentrated in one dimension other than 1. In [11], the Ganea conjecture is verified for co- H -spaces up to dimension 3:

Theorem 0.3 ([14], [11]) A co-H-space X is standard if the reduced homology group $\bar{H}_{q}(X)$ is trivial unless $q=1, n+1$ or $n+2$, with $H_{n+2}(X)$ torsion free, for some $n \geq 1$.

The author would like to express his gratitude to John Hubbuck, Michael Crabb and Kouyemon Iriye for conversations, the University of Aberdeen for its hospitality and the members of the Graduate School of Mathematics Kyushu University for allowing me to be away for a long term, without which this work could not be done.

1 Results

From now on, we work in the category of spaces having the homotopy type of a path-connected CW complex of finite type. The triple $(j: X \rightarrow B, F, i: B \rightarrow X)$ stands for a pointed fibrant (see James [13] and [12], while the notion goes back to Quillen [17]), i.e. j is a fibration with fibre F and i is a closed cross-section of j. In the category of a pointed fibrants, there are (categorical) coproducts and products: For pointed fibrants (j_{1}, F_{1}, i_{1}) and (j_{2}, F_{2}, i_{2}), the former, denoted by $X_{1} \vee_{B} X_{2}$, is the push-out of the folding map $\nabla_{B}: B \rightarrow B \vee B$ and the section map $i_{1} \vee i_{2}$, and the latter, denoted by $X_{1} \times{ }_{B} X_{2}$, is the pull-back of the diagonal map $\Delta_{B}: B \rightarrow B \times B$ and the fibration $j_{1} \times j_{2}$.

We assume that a pointed fibrant (j, F, i) is fibrewise-simply connected, i.e. F is simply connected. Then j and i induce maps $\widetilde{j}: \widetilde{X} \rightarrow \widetilde{B}$ and $\widetilde{i}: \widetilde{B} \rightarrow \widetilde{X}$ of universal coverings, and we have another pointed fibrant $(\widetilde{j}, F, \widetilde{i})$. We consider the following property:

$$
\begin{align*}
& H_{*}(\widetilde{X}, \widetilde{B}) \stackrel{\cong}{\leftrightarrows} \mathbb{Z} \pi \otimes H_{*}(X, B) \\
& p(X)_{*} \mid \stackrel{\text { commutative } \mid \mathbb{Z} \otimes_{\mathbb{Z} \pi}(-)}{=} H_{*}(X, B), \tag{1.1}\\
& H_{*}(X, B) \xlongequal{=}
\end{align*}
$$

where $\pi=\pi_{1}(X)$. By [11] and Fox [7], we have the following result.
Theorem 1.1 A co-H-space is, up to homotopy, a fibrewise co-H-space over $B \pi$ satisfying the above property (1.1).

Proof. We may assume that a co-H-space X is, up to homotopy, the total space of a fibration $j: X \rightarrow B=B \pi$ the classifying map of $p(X): \widetilde{X} \rightarrow X$. Then by [11], j satisfies (1.1) and the natural map $\hat{p}(X): B \vee \widetilde{X} \rightarrow X$ (given by $\left.\hat{p}(X)\right|_{B}=i$ and $\left.\hat{p}(X)\right|_{\tilde{X}}=p(X)$) has a homotopy section s. Let us recall that the universal covering of a co- H -space is also a co- H -space, since the Lusternik-Schnirelmann category of \widetilde{X} cannot exceed that of X by Fox [7]. Hence there is a co-H-structure $\widetilde{\mu}$ on \widetilde{X}. By the definition of limits and colimits in the category of pointed fibrants, we know that $\hat{p}\left(X_{1}\right) \vee_{B} \hat{p}\left(X_{2}\right):\left(B \vee \widetilde{X_{1}}\right) \vee_{B}\left(B \vee \widetilde{X_{2}}\right)=B \vee \widetilde{X_{1}} \vee \widetilde{X_{2}} \rightarrow X_{1} \vee{ }_{B} X_{2}$ is given by $\left.\hat{p}\left(X_{1}\right) \vee_{B} \hat{p}\left(X_{2}\right)\right|_{B \vee \widetilde{X_{t}}}=\hat{p}\left(X_{t}\right)$, for $t=1,2$. By putting $\mu_{B}=\left(\hat{p}(X) \vee_{B} \hat{p}(X)\right) \circ\left(1_{B} \vee \widetilde{\mu}\right) \circ s$, we get a fibrewise co-H-structure on $j: X \rightarrow B$.
qed.
It is known that a simply connected CW complex has a Cartan-Serre-Whitehead decomposition, or a homology decomposition (see [5]). The property (1.1) yields the following result.

Theorem 1.2 If j satisfies (1.1), then there exists a sequence of fibrewise-simply connected pointed fibrants ($j_{n}: X_{n} \rightarrow B, F_{n}, i_{n}: B \rightarrow X_{n}$) satisfying (1.1) with $X_{1}=B, F_{1}=\{*\}$ and $j_{1}=1_{B}=i_{1}$, which satisfies the following conditions for each $n \geq 1$:

1) $l_{n}: X_{n} \hookrightarrow X_{n+1}$ and $X_{n} \hookrightarrow \bigcup_{m} X_{m} \simeq X$ are maps of pointed fibrants.
2) There is a map $h_{n}: S_{n} \xrightarrow{h_{n}^{\prime}} F_{n} \subset X_{n}$, where S_{n} denotes the Moore space of type $\left(H_{n+1}(X, B), n\right)$ such that $S_{n} \xrightarrow{h_{n}} X_{n} \xrightarrow{l_{n}} X_{n+1}$ is a cofibre sequence up to homotopy.
3) The inclusion $m_{n}: X_{n} \subset X$ induces an isomorphism of fundamental groups.
4) The inclusion $m_{n}: X_{n} \subset X$ induces an isomorphism of homology groups of the universal coverings in dimensions $\leq n$ and $H_{q}\left(\widetilde{X}_{n}, \widetilde{B}\right)=0$ for $q>n$.

Remark. The properties imply $h_{1} \sim 0, X_{2} \simeq B \vee \Sigma S_{1}$ and $X_{n+1} \simeq C\left(h_{n}\right)$, the cofibre of h_{n}. We call this an almost homology decomposition for a fibrewise-simply connected and pointed fibrant satisfying (1.1). For the k^{\prime}-invariants of a co-H-space, we can show the following results.

Theorem 1.3 If (j, F, i) admits a fibrewise co-H-structure satisfying (1.1), then there are induced fibrewise co-H-structures on (j_{n}, F_{n}, i_{n}) such that the inclusions $l_{n}: X_{n} \hookrightarrow X_{n+1}$ and $m_{n+1}: X_{n+1} \hookrightarrow X$ are fibrewise co-H-maps and the k^{\prime}-invariants h_{n} are of finite order, $n \geq 1$.

Corollary 1.3.1 If X is a co-H-space, then each k^{\prime}-invariant h_{n} is of finite order, $n \geq 1$.
A fibrewise localisation and a fibrewise completion of a pointed fibrant is constructed by May [15]. If we make the additional assumption (1.1), there is a much simpler construction of fibrewise localisation using Theorem 1.2:

Theorem 1.4 Let \mathbb{P} be a set of primes. If j is a fibrewise-simply connected pointed fibrant satisfying (1.1), there is a fibrewise \mathbb{P}-localisation $\ell_{\mathbb{P}}^{B}: X \rightarrow X_{\mathbb{P}}^{B}$ which induces an isomorphism of fundamental groups and a homomorphism between reduced homology groups of the fibres which is given by tensoring with $\mathbb{Z}_{\mathbb{P}}$, the ring of \mathbb{P}-local integers.

When $B \simeq B \pi_{1}(X)$, a fibrewise \mathbb{P}-localisation was constructed by Bendersky [2]. In that case, we will refer to a fibrewise localisation as an almost localisation.
Remark. By Theorem 1.4 and Corollary 1.3.1, we obtain another proof of Theorem 0.2.
By using the arguments given in [11], we obtain the following result (see Sections 5-8):
Theorem 1.5 There is a series of co-H-spaces $R_{n}, n \geq 4$, with reduced homology groups free abelian and concentrated in dimensions $1, n+1$ and $n+5$, such that each R_{n} is not standard.

We say that a co-H-space X is of stable dimension k if its reduced homology $\bar{H}_{q}(X)$ is trivial unless $q=1$ or $n+1 \leq q \leq n+k$, with $\bar{H}_{n+k}(X)$ torsion free, for some $n \geq 1$. We still don't know about the Ganea conjecture for a co-H-space of stable dimensions 3 and 4 .

In the localised homotopy category, we have been unable to construct any counter examples to the conjecture. So we may state here the following local version of the Ganea conjecture:

Conjecture 1.6 The almost p-localisation of a co-H-space is standard, for any prime p.
Using the arguments given in Section 8, one can show that the non-trivial k^{\prime}-invariants of the spaces in Theorem 1.5 are co-H-maps with respect to some non-standard co-H-structures.

2 Homology decomposition

In this section, we prove Theorem 1.2. Let S_{n} be the Moore space of type $\left(H_{n+1}(X, B), n\right)$, $n \geq 1$. For the first step, since $H_{2}(\widetilde{X}, \widetilde{B}) \cong \mathbb{Z} \pi \otimes H_{2}(X, B)$ by [11], we have

$$
\begin{equation*}
\pi_{2}(F) \cong \pi_{2}(X, B) \cong \pi_{2}(\widetilde{X}, \widetilde{B}) \cong H_{2}(\widetilde{X}, \widetilde{B}) \cong \mathbb{Z} \pi \otimes H_{2}(X, B) \supset H_{2}(X, B) \tag{2.1}
\end{equation*}
$$

Hence there exists a map $f_{2}: \Sigma S_{1} \rightarrow F \subset X$ representing a complete collection of generators of the $\mathbb{Z} \pi$-module $\pi_{2}(F)$ corresponding to (2.1). We deform the first projection $j_{2}^{\prime}: X_{2}^{\prime}=$ $B \vee \Sigma S_{1} \rightarrow B$ to a fibration up to homotopy, say $j_{2}: X_{2} \rightarrow B$, with fibre F_{2}, which satisfies (1.1) by (2.1). We define $g_{2}: X_{2} \rightarrow X$ by $\left.g_{2}\right|_{B}=i$ and $\left.g_{2}\right|_{\Sigma S_{1}}=f_{2}$. We can easily check that g_{2} induces an isomorphism of fundamental groups, an isomorphism $\widetilde{g}_{2 *}: \tilde{H}_{q}\left(\widetilde{X}_{2}\right) \rightarrow \tilde{H}_{q}(\widetilde{X})$ for $q \leq 2$ and $\tilde{H}_{q}\left(\widetilde{X}_{2}\right)=0$ for $q>2$. We will consider g_{2} as an inclusion.

We proceed to the next step: By (1.1), we have

$$
\begin{equation*}
\pi_{3}\left(F, F_{2}\right) \cong \pi_{3}\left(X, X_{2}\right) \cong H_{3}\left(\widetilde{X}, \widetilde{X_{2}}\right) \cong H_{3}(\widetilde{X}, \widetilde{B}) \cong \mathbb{Z} \pi \otimes H_{3}(X, B) \supset H_{3}(X, B) \tag{2.2}
\end{equation*}
$$

Hence there exists a map $f_{3}:\left(C\left(S_{2}\right), S_{2}\right) \rightarrow\left(F, F_{2}\right) \subset\left(X, X_{2}\right)$ representing a complete collection of generators of the $\mathbb{Z} \pi$-module $\pi_{3}\left(F, F_{2}\right)$ corresponding to (2.2). We put $h_{2}=\left.f_{3}\right|_{S_{2}}$ and deform the projection $j_{3}^{\prime}: X_{3}^{\prime}=X_{2} \cup_{h_{2}} C\left(S_{2}\right) \rightarrow B \vee \Sigma S_{2} \xrightarrow{\mathrm{pr}_{B}} B$ to a fibration up to homotopy, say $j_{3}: X_{3} \rightarrow B$ with fibre F_{3}, which satisfies (1.1) by (2.2). We define $g_{3}: X_{3} \rightarrow X$ by $\left.g_{3}\right|_{X_{2}}=g_{2}$ and $\left.g_{3}\right|_{C\left(S_{2}\right)}=f_{3}$. One can easily check that g_{3} induces an isomorphism of fundamental groups, an isomorphism $\widetilde{g}_{3 *}: \tilde{H}_{q}\left(\widetilde{X}_{3}\right) \rightarrow \tilde{H}_{q}(\widetilde{X})$ for $q \leq 3$ and $\tilde{H}_{q}\left(\widetilde{X}_{3}, \widetilde{B}\right)=0$ for $q>3$. We will consider g_{3} as an inclusion.

One can continue this process and get the fibrewise homology decomposition satisfying (1.1), for a finite complex. By using the telescope construction on the X_{i} 's, we can also get the fibrewise homology decomposition satisfying (1.1), for an infinite complex. This completes the proof of Theorem 1.2.

3 Fibrewise localisation

In this section we prove Theorem 1.4. By Theorem 1.2, we have the homology decomposition $\left\{\left(j_{n}, F_{n}, i_{n} ; h_{n}\right)\right\}_{n \geq 1}$. We define the fibrewise \mathbb{P}-localisation $\ell_{\mathbb{P}}^{B}: j_{n} \rightarrow j_{n \mathbb{P}}^{B}$ by performing a step-by-step construction: Firstly, we know that $X_{2} \simeq B \vee \Sigma S_{1}$. So we define $j_{2 \mathbb{P}}^{B}: X_{2 \mathbb{P}}^{B} \rightarrow B$ by deforming the first projection $\operatorname{pr}_{B}: B \vee\left(\Sigma S_{1}\right)_{\mathbb{P}} \rightarrow B$ into a fibrant and $\ell_{\mathbb{P}}^{B}: X_{2} \rightarrow X_{2 \mathbb{P}}^{B}$ by deforming $1_{B} \vee \ell_{\mathbb{P}}: X_{2}=B \vee \Sigma S_{1} \rightarrow B \vee\left(\Sigma S_{1}\right)_{\mathbb{P}}$ into a fibrewise map. Let F_{2}^{\prime} be the fibre of $j_{2 \mathbb{P}}^{B}$ which is homotopy equivalent to the fibre of $\widetilde{j_{2 \mathbb{P}}^{B}}: \widetilde{X_{2 \mathbb{P}}^{B}} \rightarrow \widetilde{B}$. Then by the Serre spectral sequence for $\widetilde{j_{2} B}$, we have that the homology of F_{2}^{\prime} is \mathbb{P}-local. Since F_{2}^{\prime} is simply connected, F_{2}^{\prime} itself is \mathbb{P}-local and can be regarded as the \mathbb{P}-localisation $F_{2 \mathbb{P}}$ of F_{2}.

Secondly, let us recall that $X_{3} \simeq X_{3}^{\prime}=X_{2} \cup_{h_{2}} C\left(S_{2}\right)$ and consider the following diagram:

By the universality of \mathbb{P}-localisation $\ell_{\mathbb{P}}, \ell_{\mathbb{P}} \circ h_{2}^{\prime}$ induces the dotted arrow $h_{2 \mathbb{P}}^{\prime}$ such that $\ell_{\mathbb{P}} h_{2}^{\prime} \sim$ $h_{2 \mathbb{P}^{\circ}}^{\prime} \ell_{\mathbb{P}}$. Thus we can define $h_{2 \mathbb{P}}^{B}$ as the composition map : $S_{2 \mathbb{P}} \xrightarrow{h_{2 \mathbb{P}}^{\prime}} F_{2 \mathbb{P}} \subset X_{2 \mathbb{P}}^{B}$ and $X_{2 \mathbb{P}}^{B} \xrightarrow{B}$ $X_{3 \mathbb{P}}^{\prime B}=X_{2 \mathbb{P}}^{B} \cup_{h_{2} B} C\left(S_{2 \mathbb{P}}\right)$ as its cofibre. Since the image of $h_{2 \mathbb{P}}^{B}$ lies in the fibre of $j_{2 \mathbb{P}}{ }^{\mathbb{P}}$, the composition $j_{2 \mathbb{P}}^{B} \circ h_{2 \mathbb{P}}^{B}$ is trivial, and hence we can extend $j_{2 \mathbb{P}}^{B}$ to the projection $j_{3 \mathbb{P}}^{\prime B}: X_{3 \mathbb{P}}^{\prime B}=$ $X_{2 \mathbb{P}}^{B} \cup_{h_{2} B}^{B} C\left(S_{2 \mathbb{P}}\right) \rightarrow B \vee \Sigma S_{2 \mathbb{P}} \xrightarrow{\operatorname{pr}_{B}} B$ so that $j_{3 \mathbb{P}}^{\prime B} \circ_{2 \mathbb{P}}^{\prime B}=j_{2 \mathbb{P}}^{B}$ and $j_{3 \mathbb{P}}^{\prime B} \ell_{\mathbb{P}}^{\prime B}=j_{3}^{\prime}$. So we define $j_{3} \mathbb{P}_{\mathbb{P}}^{B}: X_{3 \mathbb{P}}^{B} \rightarrow B$ by deforming $j_{3 \mathbb{P}}^{\prime B}: X_{3 \mathbb{P}}^{\prime B} \rightarrow B$ into a fibrant and $l_{2 \mathbb{P}}^{B}: X_{2 \mathbb{P}}^{B} \hookrightarrow X_{3 \mathbb{P}}^{B}$ by deforming $l_{2 \mathbb{P}}^{\prime B}$ into a fibrewise map. Then we remark that all the dotted arrows in the diagram (3.1) can be solidified so as to create a commutative diagram.

By continuing this process, we get the fibrewise \mathbb{P}-localisation $\ell_{\mathbb{P}}^{B}: X \rightarrow X_{\mathbb{P}}^{B}$ for a finite complex X. By using the telescope construction, we can also get the fibrewise \mathbb{P}-localisation $\ell_{\mathbb{P}}^{B}: X \rightarrow X_{\mathbb{P}}^{B}$ for an infinite complex X. This completes the proof of Theorem 1.4.

4 Homology decomposition of a co-H-space over B

In this section, we prove Theorem 1.3. Let $\mu: X \rightarrow X \vee_{B} X$ be any given fibrewise co- H structure for j. We show the existence of the desired fibrewise co- H -structure μ_{n+1} for j_{n+1} by induction on $n \geq 0$. Since $X_{1}=B, \mu$ induces the trivial fibrewise co-H-structure $\mu_{1}=1_{B}$ on $j_{1}=1_{B}$, which is clearly the restriction of μ to $X_{1}=B$.

Let $n \geq 1$. Firstly we prove that j_{n+1} admits a fibrewise co-H-structure $\mu_{n+1}^{\prime \prime}$: When $n=1$, since $X_{2} \simeq B \vee \Sigma S_{1}$, there is a standard fibrewise co- H -structure $\mu_{2}^{\prime \prime}$ on j_{2} as an extension of the trivial co-H-structure μ_{1}, that is $\left(l_{1} \vee_{B} l_{1}\right) \circ \mu_{1} \sim \mu_{2}^{\prime \prime} l_{1}$. Thus we may assume that $n \geq 2$. Then by the induction hypothesis, there is a fibrewise co- H -structure μ_{n} on j_{n} which is a compression of $\left.\mu\right|_{X_{n}}$. Then the map $\gamma=\left(l_{n} \vee_{B} l_{n}\right) \circ \mu_{n} \circ h_{n}: S_{n} \rightarrow X_{n+1} \vee_{B} X_{n+1}$ gives the obstruction to extend $\left(l_{n} \vee_{B} l_{n}\right) \circ \mu_{n}$ on X_{n+1}. We regard $\gamma \in \pi_{n}\left(X_{n+1} \vee_{B} X_{n+1} ; G\right), G=H_{n+1}(X, B)$. By the induction hypothesis, we have $\left(m_{n+1} \vee_{B} m_{n+1}\right) \circ \gamma=\left(m_{n} \vee_{B} m_{n}\right) \circ \mu_{n} \circ h_{n} \sim \mu \circ m_{n} \circ h_{n}=\mu \circ m_{n+1} \circ l_{n} \circ h_{n} \sim 0$.

Hence there is an element $\hat{\gamma} \in \pi_{n+1}\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1} ; G\right)$ such that $\partial(\hat{\gamma})=\gamma$ in the following commutative diagram with exact rows:

here $k: X \vee_{B} X \hookrightarrow X \times_{B} X, k^{\prime}:\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1}\right) \hookrightarrow\left(X \times_{B} X, X_{n+1} \times_{B} X_{n+1}\right), k_{n+1}:$ $X_{n+1} \vee_{B} X_{n+1} \hookrightarrow X_{n+1} \times_{B} X_{n+1}, l^{\prime}: X \vee_{B} X \hookrightarrow\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1}\right)$ and $l: X \times_{B} X \hookrightarrow$ $\left(X \times_{B} X, X_{n+1} \times{ }_{B} X_{n+1}\right)$ are the canonical inclusions.

To proceed, we show that k_{*} is a split epimorphism and k_{*}^{\prime} is an isomorphism: Let us recall the Universal Coefficient Theorem due to Eckmann and Hilton: For any topological pair (U, V) and an abelian group G, there is the following short exact sequence for $q \geq 2$.

$$
0 \rightarrow \operatorname{Ext}\left(G, \pi_{q+2}(U, V)\right) \rightarrow \pi_{q+1}(U, V ; G) \rightarrow \operatorname{Hom}\left(G, \pi_{q+1}(U, V)\right) \rightarrow 0
$$

Applying this to the $n+1$-connected pair ($X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1}$), using the Hurewicz isomorphism theorem and (1.1) for $n \geq 2$, we obtain

$$
\begin{aligned}
\pi_{n+1}\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1} ; G\right) & \cong \operatorname{Ext}\left(G, H_{n+2}\left(\widetilde{X \vee_{B} X}, X_{n+1} \widetilde{\vee_{B} X_{n+1}}\right)\right. \\
& \cong H_{n+2}\left(\widetilde{X \vee_{B} X}, \widetilde{X_{n+1} \vee_{B} X_{n+1}} ; \text { tor } G\right) \\
& \cong \mathbb{Z} \pi \otimes H_{n+2}\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1} ; \text { tor } G\right),
\end{aligned}
$$

Similarly for $n \geq 2$, we obtain

$$
\begin{aligned}
\pi_{n+1}\left(X \times_{B} X, X_{n+1} \times_{B} X_{n+1} ; G\right) & \cong \mathbb{Z} \pi \otimes H_{n+2}\left(X \times_{B} X, X_{n+1} \times_{B} X_{n+1} ; \text { tor } G\right) \\
& \cong \mathbb{Z} \pi \otimes H_{n+2}\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1} ; \text { tor } G\right) .
\end{aligned}
$$

Thus $k_{*}^{\prime}: \pi_{n+1}\left(X \vee_{B} X, X_{n+1} \vee_{B} X_{n+1} ; G\right) \rightarrow \pi_{n+1}\left(X \times_{B} X, X_{n+1} \times_{B} X_{n+1} ; G\right)$ is an isomorphism, $n \geq 2$. The pointed fibrewise space $X \vee_{B} X \rightarrow B$ has the fibre $F \vee F$, and hence $\pi_{n+1}\left(X \vee_{B} X ; G\right)$ is isomorphic with $\pi_{n+1}(F \vee F ; G) \oplus \pi_{n+1}(B), n \geq 2$. The pointed fibrewise space $X \times_{B} X \rightarrow B$ has the fibre $F \times F$, and hence $\pi_{n+1}\left(X \times_{B} X ; G\right)$ is isomorphic with $\pi_{n+1}(F \times F ; G) \oplus \pi_{n+1}(B)$, $n \geq 2$. Since the homomorphism $\pi_{n+1}(F \vee F ; G) \rightarrow \pi_{n+1}(F \times F ; G)$ has a natural splitting $\sigma_{*}^{F}: \pi_{n+1}(F \times F ; G) \rightarrow \pi_{n+1}(F \vee F ; G)$, so does the homomorphism $k_{*}: \pi_{n+1}\left(X \vee_{B} X ; G\right) \rightarrow$ $\pi_{n+1}\left(X \times_{B} X ; G\right)$ admit a natural splitting $\sigma_{*}^{j}: \pi_{n+1}\left(X \times_{B} X ; G\right) \rightarrow \pi_{n+1}\left(X \vee_{B} X ; G\right)$ with respect to $j, n \geq 2$.

On the other hand, since $k_{n} \circ \mu_{n}$ is homotopic to Δ_{n}, the fibrewise diagonal map in $X_{n} \times{ }_{B} X_{n}$, we have $k_{n+1} \circ\left(l_{n} \vee_{B} l_{n}\right) \circ \mu_{n}=\left(l_{n} \times_{B} l_{n}\right) \circ k_{n} \circ \mu_{n} \sim\left(l_{n} \times_{B} l_{n}\right) \circ \Delta_{n}=\Delta_{n+1} \circ l_{n}$, and hence $k_{n+1} \circ \gamma \sim$ $\Delta_{n+1} \circ l_{n} \circ h_{n} \sim 0$. Thus $\partial_{\circ} k_{*}^{\prime}(\hat{\gamma})=k_{n+1 *} \circ \partial(\hat{\gamma})=k_{n+1 *}(\gamma)=0$, and hence there is an element $\gamma^{\prime} \in$ $\pi_{n+1}\left(X \times_{B} X ; G\right)$ such that $l_{*}\left(\gamma^{\prime}\right)=k_{*}(\hat{\gamma})$. Since the left vertical arrow k_{*} is an epimorphism, γ^{\prime} can be pulled back to an element $\gamma_{0} \in \pi_{n+1}\left(X \times_{B} X ; G\right)$. Hence $k_{*}^{\prime} \circ l_{*}^{\prime}\left(\gamma_{0}\right)=l_{*} \circ k_{*}\left(\gamma_{0}\right)=$ $l_{*}\left(\gamma^{\prime}\right)=k_{*}(\hat{\gamma})$. Since k_{*}^{\prime} is an isomorphism, we have that $\hat{\gamma}=l_{*}^{\prime}\left(\gamma_{0}\right)$, and hence we get $\gamma=$
$\partial(\hat{\gamma})=\partial \circ \nabla_{*}^{\prime}\left(\gamma_{0}\right)=0$. Thus there is a map $\mu_{n+1}^{\prime}: X_{n+1} \rightarrow X_{n+1} \vee_{B} X_{n+1}$ which is an extension of $\left(l_{n} \vee_{B} l_{n}\right) \circ \mu_{n}$.

Since X_{n+1} is, up to homotopy, the cofibre of $h_{n}: S_{n} \rightarrow F_{n} \subset X_{n}$, it admits a co-action of ΣS_{n}. Thus the "difference" between $k_{n+1} \mu_{n+1}^{\prime}$ and Δ_{n+1}, is given by a map $\delta: \Sigma S_{n}=$ $X_{n+1} / X_{n} \rightarrow X_{n+1} \times_{B} X_{n+1}$ which can be pulled back to a map $\delta_{0}: \Sigma S_{n} \rightarrow X_{n+1} \vee_{B} X_{n+1}$, since $k_{n+1_{*}}$ is an epimorphism. By "adding" δ_{0} to μ_{n+1}^{\prime}, we get $\mu_{n+1}^{\prime \prime}$, a fibrewise co-H-structure on j_{n+1} as an extension of μ_{n}, that is $\left(l_{n} \vee_{B} l_{n}\right) \circ \mu_{n} \sim \mu_{n+1}^{\prime \prime} \circ l_{n}$.

Secondly, we prove the existence of a fibrewise co-H-structure μ_{n+1} such that $\left(l_{n} \vee_{B} l_{n}\right) \circ \mu_{n} \sim$ $\mu_{n+1} \circ l_{n}$ and $\left(m_{n+1} \vee_{B} m_{n+1}\right) \circ \mu_{n+1} \sim \mu \circ m_{n+1}$: Since $\left(m_{n+1} \vee_{B} m_{n+1}\right) \circ \mu_{n+1}^{\prime \prime}$ and $\mu \circ m_{n+1}$ coincide when restricted to X_{n}, the "difference" between them is given by a map $\varepsilon: \Sigma S_{n} \rightarrow X \vee_{B} X$. We regard $\varepsilon \in \pi_{n+1}\left(X \vee_{B} X ; G\right), G=H_{n+1}(X, B)$. Since $\mu_{n+1}^{\prime \prime}$ and μ are fibrewise co-Hstructures for j_{n+1} and j, we have $k \circ\left(m_{n+1} \vee_{B} m_{n+1}\right) \circ \mu_{n+1}^{\prime \prime}=\left(m_{n+1} \times{ }_{B} m_{n+1}\right) \circ k_{n+1} \circ \mu_{n+1}^{\prime \prime} \sim$ $\left(m_{n+1} \times{ }_{B} m_{n+1}\right) \circ \Delta_{n+1}=\Delta \circ m_{n+1} \sim k \circ \mu \circ m_{n+1}$. Hence $k_{*}(\varepsilon)=0$ and $k_{*}^{\prime} \circ l_{*}^{\prime}(\varepsilon)=l_{*} \circ k_{*}(\varepsilon)=0$. Since k_{*}^{\prime} is an isomorphism, we have $l_{*}^{\prime}(\varepsilon)=0$, and hence ε can be pulled back to an element $\varepsilon_{0}^{\prime} \in \pi_{n+1}\left(X_{n+1} \vee_{B} X_{n+1} ; G\right)$. Let $\varepsilon_{0}=\varepsilon_{0}^{\prime}-\sigma_{*}^{j_{n+1}} \circ k_{n+1_{*}}\left(\varepsilon_{0}^{\prime}\right) \in \pi_{n+1}\left(X_{n+1} \vee_{B} X_{n+1} ; G\right)$, where $\sigma_{*}^{j_{n+1}}$ is the splitting for $k_{n+1_{*}}$. Then $k_{n+1_{*}}\left(\varepsilon_{0}\right)=k_{n+1_{*}}\left(\varepsilon_{0}^{\prime}\right)-k_{n+1_{*}} \sigma_{*}^{j_{n+1}} \circ k_{n+1_{*}}\left(\varepsilon_{0}^{\prime}\right)=0$ and

$$
\begin{aligned}
\left(m_{n+1} \vee_{B} m_{n+1}\right)_{*}\left(\varepsilon_{0}^{\prime}\right) & =\left(m_{n+1} \vee_{B} m_{n+1}\right)_{*}\left(\varepsilon_{0}\right)-\left(m_{n+1} \vee_{B} m_{n+1}\right)_{*} \circ \sigma_{*}^{X_{n+1}} \circ k_{n+1_{*}}\left(\varepsilon_{0}^{\prime}\right) \\
& =\varepsilon-\sigma_{*}^{X} \circ\left(m_{n+1} \times_{B} m_{n+1}\right)_{*} \circ k_{n+1_{*}}\left(\varepsilon_{0}^{\prime}\right)=\varepsilon-\sigma_{*}^{X} \circ k_{n+1_{*}} \circ m_{n+1_{*}}\left(\varepsilon_{0}^{\prime}\right)=\varepsilon .
\end{aligned}
$$

Thus by adding ε_{0} to $\mu_{n+1}^{\prime \prime}$, we get another fibrewise co- H -structure μ_{n+1} over B of X_{n+1}. One can easily check that μ_{n+1} has the desired properties.

Finally, we prove that the k^{\prime}-invariant h_{n} is of finite order: We observe that when X is a fibrewise co-H-space, then the fibre F of $j: X \rightarrow B$ is a simply connected genuine co-H-space. The k^{\prime}-invariant $h_{n}: S_{n} \rightarrow F_{n} \subset X_{n}$ is the composition of the k^{\prime}-invariant h_{n}^{\prime} for the simply connected co-H-space F and the inclusion $F_{n} \hookrightarrow X_{n}$. Since $h_{n}^{\prime}: S_{n} \rightarrow F_{n}$ is of finite order, by Theorem I in Curjel [4], h_{n} is also of finite order. This completes the proof of Theorem 1.3.

5 Construction of a complex R_{n} for $n \geq 4$

The remainder of this paper is devoted to proving Theorem 1.5. In this section, we construct the complex R_{n} : Let $A_{n}=S^{n+1}$ and $B=S^{1}$. We define C_{n} as the following complex:

$$
C_{n}=S^{n+1} \cup_{\Sigma^{n-3} \alpha+\Sigma^{n-3} \beta} e^{n+5}=\Sigma^{n-3} C_{4}, \quad C_{4}=S^{4} \cup_{\nu_{4}} e^{8}=\mathbb{H} P^{2}, \quad \alpha=9 \nu_{4}, \beta=-8 \nu_{4},
$$

where $\nu_{4}: S^{7} \rightarrow S^{4}$ denotes the Hopf map. The complex R_{n} is defined as follows:

$$
R_{n}=\left(B \vee A_{n}\right) \cup_{\mathrm{in}_{A_{n}} \circ \Sigma^{n-3} \alpha+\psi(\tau) \operatorname{in}_{A_{n}} \circ \Sigma^{n-3}} e^{n+5},
$$

where in $A_{A_{n}}$ denotes the inclusion $A_{n} \hookrightarrow B \vee A_{n}$ and $\psi: \pi \rightarrow \pi_{0} \operatorname{Map}_{*}\left(B \vee A_{n}, B \vee A_{n}\right)$ denotes the action of the fundamental group $\pi=\langle\tau\rangle \cong \mathbb{Z}$ of $B \vee A_{n}$ on itself. We remark that the image of ψ is in the group of homotopy classes of self homotopy equivalences Aut $\left(B \vee A_{n}\right)$. Let
$p^{R_{n}}: \widetilde{R_{n}} \rightarrow R_{n}$ be the universal covering of R_{n}. By the definition of R_{n}, the homotopy type of R_{n} is as follows:

$$
\widetilde{R_{n}} \simeq\left(\bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}\right) \cup\left(\bigvee_{j \in \mathbb{Z}} \tau^{j} \cdot e^{n+5}\right) \quad \text { and } \quad \widetilde{B \vee A_{n}}=\bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}
$$

where we denote by $\widetilde{\psi\left(\tau^{i}\right)}: \widetilde{B \vee A_{n}} \rightarrow \widetilde{B \vee A_{n}}$ the map induced from $\psi\left(\tau^{i}\right)$ on the universal coverings. Also $\tau^{i} \cdot(-)$ stands for $\widetilde{\psi\left(\tau^{i}\right)}(-)$. Here, the attaching map of the cell $1 \cdot e^{n+5}$ is given by the suspension map

$$
S^{n+4}\left\{\Sigma^{n-3} \xrightarrow{\left.\alpha, \Sigma^{n-3} \beta\right\}} A_{n} \vee A_{n} \xrightarrow{1_{A_{n}} \vee \widetilde{\psi(\tau)}} A_{n} \vee \tau \cdot A_{n} \subset \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n} .\right.
$$

We define a projection $p: B \vee \widetilde{R_{n}} \rightarrow R_{n}$ by putting

$$
\left.p\right|_{B}: B \stackrel{\mathrm{in}_{B}}{\hookrightarrow} B \vee A_{n} \subset R_{n}, \quad \text { and }\left.\quad p\right|_{\widetilde{R_{n}}}=p^{R_{n}}: \widetilde{R_{n}} \rightarrow R_{n} .
$$

Let $p_{0}=\left.p\right|_{B \vee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}}: B \vee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n} \rightarrow B \vee A_{n}$. Then we have $\left.p_{0}\right|_{\tau^{j} \cdot A_{n}}: \tau^{j} \cdot A_{n} \xrightarrow{\simeq} \psi\left(\tau^{j}\right)\left(A_{n}\right)$ $\subset B \vee A_{n}$, and hence, $\left.\left.p_{0}\right|_{\Psi\left(\tau^{i}\right)\left(\tau^{j} \cdot A_{n}\right)}: \Psi\left(\tau^{i}\right)\left(\tau^{j} \cdot A_{n}\right)=\Psi\left(\tau^{i}\right) \widetilde{\left(\psi\left(\tau^{j}\right)\right.}\left(A_{n}\right)\right) \xrightarrow{\simeq} \psi\left(\tau^{i+j}\right)\left(A_{n}\right) \subset B \vee A_{n}$, where Ψ denotes the action of π on $B \bigvee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}$.

6 Self maps of $A_{n}=S^{n+1}$

This section provides an easy but rather crucial property of R_{n} for $n \geq 4$. Let $f: A_{n} \rightarrow A_{n}$ and $g: A_{n} \rightarrow A_{n}$ be maps of degrees -8 and 9 . We obtain

$$
\begin{equation*}
f+g \sim 1_{A_{n}} . \tag{6.1}
\end{equation*}
$$

We know the following equations modulo 24 , the order of $\Sigma^{n-3} \nu_{4}=\nu_{n+1}$:

$$
(-8)^{2} \equiv-8, \quad 9^{2} \equiv 9, \quad(-8) \times 9=9 \times(-8) \equiv 0 \quad \bmod 24 .
$$

Since $\Sigma^{n-3} \alpha=9 \nu_{n+1}$ and $\Sigma^{n-3} \beta=-8 \nu_{n+1}$, these equations imply the following properties:
Proposition 6.1 The compositions of f and g with $\Sigma^{n-3} \alpha$ and $\Sigma^{n-3} \beta$ give the equations:
(1) $f \circ \Sigma^{n-3} \alpha \sim$, (2) $g \circ \Sigma^{n-3} \alpha \sim \Sigma^{n-3} \alpha$, (3) $g_{\circ} \Sigma^{n-3} \beta \sim *$ and (4) $f \circ \Sigma^{n-3} \beta \sim \Sigma^{n-3} \beta$.

7 Homotopy section of $B \vee \widetilde{R_{n}} \rightarrow R_{n}$

By Theorem 3.3 in [11], the existence of a homotopy section of $p: B \vee \widetilde{R_{n}} \rightarrow R_{n}$ is a necessary and sufficient condition for R_{n} to admit a co-action of B along $j: R_{n} \rightarrow B$. Here the universal covering $\widetilde{R_{n}}$ of R_{n} is desuspendable for dimensional reasons. Hence the existence of a homotopy section of p implies that R_{n} is a co- H -space. In summary:

Lemma 7.1 The following two conditions on R_{n} are equivalent.

1) There is a homotopy section of $p: R_{n} \rightarrow B \vee \widetilde{R_{n}}$.
2) R_{n} admits a co-H-structure.

Now we show the existence of a homotopy section of $p: B \vee \widetilde{R_{n}} \rightarrow R_{n}$. We define a map $s_{0}: B \vee A_{n} \rightarrow B \vee \widetilde{B \vee A_{n}} \simeq B \vee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}$ as follows:

$$
\begin{aligned}
& \left.s_{0}\right|_{B}=\operatorname{in}_{B}: B \rightarrow B \vee \bigvee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}, \\
& \left.s_{0}\right|_{A_{n}}: A_{n} \xrightarrow{\{f, q\}} A_{n} \vee A_{n} \xrightarrow{\widetilde{\psi(\tau) \vee 1} 1_{A_{n}}} \tau \cdot A_{n} \vee A_{n} \xrightarrow{\left(\Psi\left(\tau^{-1}\right) \stackrel{\left.\mathrm{in}_{\tau \cdot A_{n}}\right) \vee 1_{A_{n}}}{ } B \vee \tau \cdot A_{n} \vee A_{n} \subset B \vee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n} .\right.} .
\end{aligned}
$$

By (6.1), we have $p_{0} \circ s_{0} \sim 1_{B} \vee(f+g) \sim 1_{B} \vee 1_{A_{n}}=1_{B \vee A_{n}}$. Since $n \geq 4$, it follows that $\pi_{n+4}\left(A_{n} \vee A_{n}\right) \cong \pi_{n+4}\left(A_{n}\right) \oplus \pi_{n+4}\left(A_{n}\right)$ for dimensional reasons. By Proposition 6.1, we have

$$
\begin{aligned}
& s_{0} \circ \Sigma^{n-3} \alpha \sim \operatorname{in}_{A_{n}} \circ \Sigma^{n-3} \alpha: S^{n+4} \rightarrow B \vee A_{n} \subset B \bigvee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n}, \\
& s_{0} \circ \Sigma^{n-3} \beta \sim \Psi\left(\tau^{-1}\right) \circ \operatorname{in}_{\tau \cdot A_{n}} \circ \widetilde{\psi(\tau)} \circ \Sigma^{n-3} \beta: S^{n+4} \rightarrow A_{n} \rightarrow \tau \cdot A_{n} \rightarrow B \vee \tau \cdot A_{n} \subset B \vee \bigvee_{i \in \mathbb{Z}} \tau^{i} \cdot A_{n} .
\end{aligned}
$$

Hence we obtain that

$$
\begin{aligned}
s_{0} \circ\left(\Sigma^{n-3} \alpha\right. & \left.+\psi(\tau) \circ \Sigma^{n-3} \beta\right)=s_{0} \circ \Sigma^{n-3} \alpha+\Psi(\tau) \circ s_{0} \circ \Sigma^{n-3} \beta \\
& \sim \operatorname{in}_{A_{n}} \circ \Sigma^{n-3} \alpha+\operatorname{in}_{\tau \cdot A_{n}} \circ \psi(\tau) \circ \Sigma^{n-3} \beta=\operatorname{in}_{A_{n} \vee \tau \cdot A_{n} \circ} \circ\left(\Sigma^{n-3} \alpha+\widetilde{\psi(\tau)} \circ \Sigma^{n-3} \beta\right) .
\end{aligned}
$$

Thus the map $s_{0} \circ\left(\Sigma^{n-3} \alpha+\psi(\tau) \circ \Sigma^{n-3} \beta\right)$ is homotopic to the attaching map of the cell $1 \cdot e^{n+5}$. Hence it induces a map $s: R_{n} \rightarrow B \vee \widetilde{R_{n}}$ so that $p \circ s$ is clearly the identity up to homotopy.

By Lemma 7.1, we obtain the following theorem.
Theorem 7.2 R_{n} is a co-H-space.

8 Unsplittability of R_{n}

In this section, we show that R_{n} is not standard. We state the following well-known result:
Proposition 8.1 The set of invertible elements in the group ring $\mathbb{Z} \pi$ is $\pm \pi \subset \mathbb{Z} \pi$.
Proof. Since π is the infinite cyclic group, $\mathbb{Z} \pi$ is isomorphic with $\mathbb{Z}\left[x, \frac{1}{x}\right]$ the ring of Laurent polynomials with coefficients in \mathbb{Z}. We can express each Laurent polynomial in the form $x^{i}\left(a_{\ell} x^{\ell}+\right.$ $\left.a_{\ell-1} x^{\ell-1}+\ldots+a_{1} x^{1}+a_{0}\right)$ with $a_{\ell} a_{0} \neq 0, \ell \geq 0$ and $i \in \mathbb{Z}$. If the product of any two such Laurent polynomials, say $x^{i}\left(a_{\ell} x^{\ell}+\ldots+a_{0}\right)$ and $x^{j}\left(b_{m} x^{m}+\ldots+b_{0}\right)$, is equal to the unity, then we have that $i+j=\ell=m=0$ and $a_{0} b_{0}=1$. Hence every invertible element can be expressed as $\pm x^{i}$ for some $i \in \mathbb{Z}$.

Let us assume that R_{n} has the homotopy type of a one-point-sum of a simply connected space C^{\prime} and a bunch of circles B^{\prime}. Since the fundamental group of R_{n} is clearly $\pi \cong \mathbb{Z}$, $B^{\prime}=S^{1}=B$ and the inclusion of B^{\prime} in R_{n} is given by a generator $\tau^{ \pm 1}$ of π. Since C^{\prime} has the homotopy type of the mapping cone of the inclusion $B^{\prime} \subset R_{n}, C^{\prime} \simeq R_{n} / B=C_{n}$.

Thus our assumption implies that R_{n} has the homotopy type of $B \vee C_{n}$, which will lead us to a contradiction: Let $h: R_{n} \rightarrow B \vee C_{n}$ be a homotopy equivalence, which induces an isomorphism $\widetilde{h}_{*}: \tilde{H}_{*}\left(\widetilde{R_{n}} ; \mathbb{Z}\right) \rightarrow \tilde{H}_{*}\left(\widetilde{B \vee C_{n}} ; \mathbb{Z}\right)$. As is easily seen, we have

$$
\tilde{H}_{*}\left(\widetilde{R_{n}} ; \mathbb{Z}\right) \cong \mathbb{Z} \pi\left\{x_{n+1}, x_{n+5}\right\} \quad \text { and } \quad \tilde{H}_{*}\left(\widetilde{B \vee C_{n}} ; \mathbb{Z}\right) \cong \mathbb{Z} \pi\left\{u_{n+1}, u_{n+5}\right\}
$$

where x_{q} and u_{q} are the homology classes corresponding to the q-cells in R_{n} and $B \vee C_{n}$, respectively. By Proposition 8.1, it follows that $\widetilde{h}_{*}\left(x_{n+1}\right)= \pm \tau^{i} u_{n+1}$ and $\widetilde{h}_{*}\left(x_{n+5}\right)= \pm \tau^{j} u_{n+5}$, for some $i, j \in \mathbb{Z}$. Using a suitable deck transformation on $\widetilde{B \vee C_{n}}$, we may assume that $i=0$.

The (non-trivial) right actions of the Steenrod algebra on the homology groups $\tilde{H}_{*}\left(\widetilde{R_{n}} ; \mathbb{F}_{p}\right)$ and $\tilde{H}_{*}\left(\widetilde{B \vee C_{n}} ; \mathbb{F}_{p}\right)$ for $p=2$ and $p=3$ are given by the following proposition.

Proposition 8.2 (1) Let x_{q}^{\prime} be the modulo 2 reduction of the element x_{q}. Then, in $\tilde{H}_{*}\left(\widetilde{R_{n}} ; \mathbb{F}_{2}\right)$, the only non-trivial relation is: $x_{n+5}^{\prime} \mathcal{S} q^{4}=x_{n+1}^{\prime}$,
(2) Let u_{q}^{\prime} be the modulo 2 reduction of the element u_{q}. Then, in $\tilde{H}_{*}\left(\widetilde{B \vee C_{n}} ; \mathbb{F}_{2}\right)$, the only non-trivial relation is: $u_{n+5}^{\prime} \mathcal{S} q^{4}=u_{n+1}^{\prime}$.
(3) Let $x_{q}^{\prime \prime}$ be the modulo 3 reduction of the element x_{q}. Then, in $\tilde{H}_{*}\left(\widetilde{R_{n}} ; \mathbb{F}_{3}\right)$, the only non-trivial relation is: $x_{n+5}^{\prime \prime} \mathcal{P}^{1}=\tau \cdot x_{n+1}^{\prime \prime}$.
(4) Let $u_{q}^{\prime \prime}$ be the modulo 3 reduction of the element u_{q}. Then, in $\tilde{H}_{*}\left(\widetilde{B \vee C_{n}} ; \mathbb{F}_{3}\right)$, the only non-trivial relation is: $u_{n+5}^{\prime \prime} \mathcal{P}^{1}=u_{n+1}^{\prime \prime}$.

Thus in $\tilde{H}_{n+1}\left(\widetilde{B \vee C_{n}} ; \mathbb{F}_{2}\right)$ and $\tilde{H}_{n+1}\left(\widetilde{B \vee C_{n}} ; \mathbb{F}_{3}\right)$, we have the following equations:

$$
\begin{aligned}
& u_{n+1}^{\prime}=\widetilde{h}_{*}\left(x_{n+1}^{\prime}\right)=\widetilde{h}_{*}\left(x_{n+5}^{\prime} \mathcal{S} q^{4}\right)=\widetilde{h}_{*}\left(x_{n+5}^{\prime}\right) \mathcal{S} q^{4}=\tau^{j} \cdot u_{n+5}^{\prime} \mathcal{S} q^{4}=\tau^{j} \cdot u_{n+1}^{\prime}, \\
& u_{n+1}^{\prime \prime}= \pm \widetilde{h}_{*}\left(x_{n+1}^{\prime \prime}\right)= \pm \widetilde{h}_{*}\left(\tau^{-1} \cdot x_{n+5}^{\prime \prime} \mathcal{P}^{1}\right)= \pm \tau^{-1} \cdot \widetilde{h}_{*}\left(x_{n+5}^{\prime \prime}\right) \mathcal{P}^{1}= \pm \tau^{j-1} \cdot u_{n+5}^{\prime \prime} \mathcal{P}^{1}= \pm \tau^{j-1} \cdot u_{n+1}^{\prime \prime}
\end{aligned}
$$

The upper line tells us that $j=0$, while the lower line tells us that $j=1$. This is a contradiction. Thus we obtain the following theorem.

Theorem 8.3 R_{n} is not standard.
Theorems 7.2 and 8.3 imply Theorem 1.5.
Remark. Although $R_{n} \nsucceq B \vee C_{n}$, we know that these spaces have isomorphic homotopy groups in each dimension, because their almost p-localisations are homotopy equivalent for any prime p. But we don't know whether the universal coverings of these spaces are homotopy equivalent or not, while the universal coverings are not $\pi_{1}(B)$-equivariant homotopy equivalent.

References

[1] M. Arkowitz, Co-H-spaces, Handbook of algebraic topology, 1143-1173, North Holland, Amsterdam, 1995.
[2] M. Bendersky, A functor which localizes the higher homotopy groups of an arbitrary CW-complex, Lecture Notes in Math. 418, Springer Verlag, Berlin (1975), 13-21.
[3] I. Berstein and E. Dror, On the homotopy type of non-simply connected co-H-space, Ill. Jour. Math. 20 (1976), 528-534.
[4] C. R. Curjel, A note on spaces of category ≤ 2, Math. Z. 80 (1963), 293-299.
[5] B. Eckmann and P. Hilton, Décomposition homologique d'un polyèdre simplement connexe, C. R. Acad. Sci. Paris 248 (1959), 2054-2056.
[6] S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518.
[7] R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42, (1941), 333-370.
[8] T. Ganea, Some problems on numerical homotopy invariants, Lecture Notes in Math. 249, Springer Verlag, Berlin (1971), 13-22.
[9] W. Henn, On almost rational co-H-spaces, Proc. Amer. Math. Soc. 87, (1983), 164-168.
[10] P. Hilton, G. Mislin and J. Roitberg, On co-H-spaces, Comment. Math. Helv. 53 (1978), 1-14.
[11] N. Iwase, S. Saito and T. Sumi, Homology of the universal covering space of a co-H-space, to appear in Trans. Amer. Math. Soc.
[12] I. M. James, Fiberwise Topology, Cambridge University Press, Cambridge 1989.
[13] I. M. James, Introduction to Fiberwise Homotopy Theory, Handbook of algebraic topology, 169194, North Holland, Amsterdam, 1995.
[14] K. Komatsu, A boundary link is trivial if the Lusternik-Schnirelmann category of its complement is one, Osaka J. Math. 29 (1992), 329-337.
[15] J. P. May, Fiberwise localization and completion, Trans. Amer. Math. Soc. 258 (1980), 127-146.
[16] N. Oda, Pairings and copairings in the category of topological spaces, Publ. RIMS Kyoto Univ. 28 (1992), 83-97.
[17] D. G. Quillen, Homotopical Algebra, SLNM 43, Springer Verlag, Berlin, 1967.
[18] S. Saito, On higher coassociativity, Hiroshima Math. J. 6 (1976), 589-617.

[^0]: *This research was partially supported by a Grant-in-Aid for Scientific Research (C)08640125 from The Ministry of Science, Sports and Culture.

 1991 Mathematics Subject Classification. Primary 55P45
 Keywords and phrases. co-H-space, homology decomposition, fibrewise localisation, Ganea conjecture

