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Abstract

A non-simply connected co-H-space X is, up to homotopy, the total space of a fibrewise-
simply connected pointed fibrewise co-Hopf fibrant j : X → Bπ1(X), which is a space with
a co-action of Bπ1(X) along j. We construct its homology decomposition, which yields
a simple construction of its fibrewise localisation. Our main result is the construction of
a series of co-H-spaces, each of which cannot be split into a one-point-sum of a simply
connected space and a bunch of circles, thus disproving the Ganea conjecture.

Problem 10 posed by Tudor Ganea [8], known as the Ganea conjecture (e.g, §6 in Arkowitz
[1]), states: Does a co-H-space have the homotopy type of a one-point-sum of a bunch of circles
(one-point-sum of S1’s or a point) and a simply connected space?

If a CW complex X is a co-H-space, the co-H-structure gives a co-action (see Berstein and
Dror [3] or Oda [16]) of the classifying space Bπ1(X) of π1(X) along j : X → Bπ1(X), the
classifying map of the universal covering p(X) : X̃ → X. It is known by Eilenberg-Ganea
[6] or [11], that π1(X) is free and Bπ1(X) has the homotopy type of a bunch of circles, say
B. Let i : B → X be a map representing a collection of generators of the free group π1(X)
and c : X → C = X/B be the collapsing map from X to its cofibre. Clearly, we may choose
the map i so that j◦i ∼ 1X . It is also known by Corollary 3.4 and Theorem 3.3 in [11] that,
for a given µ, a co-H-structure for X, there is a ‘natural’ map s = s(µ) : C = X/B → X

which is a right homotopy inverse of c. More precisely, if f : (X,µ) → (X ′, µ′) is a co-H-map,
then f◦s(µ) = s(µ′)◦f ′, where f ′ : X/B → X ′/B′ is the unique map induced from f . Hence
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one obtains two ‘natural’ homology equivalences X → B∨C and B∨C → X, both of which
induce isomorphisms of fundamental groups. As is well-known, these properties, however, do
not guarantee that the two spaces have the same homotopy type.

Definition. A co-H-space is standard if it splits into a one-point-sum of a simply connected
co-H-space and a bunch of circles.

Berstein and Dror [3] showed that a co-H-space is standard if the associated co-action is
co-associative. Hilton, Mislin and Roitberg [10] showed that a co-H-space is standard if e = i◦j
is ‘loop-like’ in [X,X]. We summarise here the relevant results of [3], [10].

Theorem 0.1 ([3], [10]) For a co-H-space complex X, the condition 1) below is equivalent with
the conditions 2) to 5) below by several authors.

1) (Ganea [8]) A co-H-space is standard.

2) (Berstein-Dror [3]) The co-action of B along j : X → B associated with the co-H-structure
of X can be chosen as co-associative.

3) (Hilton-Mislin-Roitberg [10]) The co-H-structure of X can be chosen to make the co-shear
map a homotopy equivalence.

4) (Hilton-Mislin-Roitberg [10]) The co-H-structure of X can be chosen to be a co-loop, i.e,
there is a natural algebraic-loop structure on the homotopy set functor [X,−].

5) (Hilton-Mislin-Roitberg [10]) The co-H-structure of X can be chosen to make e = i◦j loop-
like from the left (or right).

However, we don’t know any algorithm to get a nice co-H-structure from a given one.

On the other hand, there are some results on the conjecture which are shown without making
any assumption on the co-H-structure itself: In [9], Henn verified the almost rational version of
the conjecture:

Theorem 0.2 ([9]) An almost rational co-H-space is standard. Moreover it can be split into a
one-point-sum of a rational spheres with dimensions ≥ 2 and a bunch of circles.

In [14], Komatsu verified the conjecture for co-H-spaces with reduced homology groups free
abelian and concentrated in one dimension other than 1. In [11], the Ganea conjecture is verified
for co-H-spaces up to dimension 3:

Theorem 0.3 ([14], [11]) A co-H-space X is standard if the reduced homology group H̄q(X) is
trivial unless q = 1, n + 1 or n + 2, with Hn+2(X) torsion free, for some n ≥ 1.

The author would like to express his gratitude to John Hubbuck, Michael Crabb and Kouye-
mon Iriye for conversations, the University of Aberdeen for its hospitality and the members of
the Graduate School of Mathematics Kyushu University for allowing me to be away for a long
term, without which this work could not be done.
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1 Results

From now on, we work in the category of spaces having the homotopy type of a path-connected
CW complex of finite type. The triple (j : X → B, F , i : B → X) stands for a pointed
fibrant (see James [13] and [12], while the notion goes back to Quillen [17]), i.e. j is a fibration
with fibre F and i is a closed cross-section of j. In the category of a pointed fibrants, there are
(categorical) coproducts and products: For pointed fibrants (j1,F1,i1) and (j2,F2,i2), the former,
denoted by X1∨BX2, is the push-out of the folding map ∇B : B → B∨B and the section map
i1∨i2, and the latter, denoted by X1×BX2, is the pull-back of the diagonal map ∆B : B → B×B
and the fibration j1×j2.

We assume that a pointed fibrant (j,F ,i) is fibrewise-simply connected, i.e. F is simply
connected. Then j and i induce maps j̃ : X̃ → B̃ and ĩ : B̃ → X̃ of universal coverings, and we
have another pointed fibrant (j̃, F , ĩ). We consider the following property:

H∗(X̃, B̃) Zπ⊗H∗(X,B)

commutative

H∗(X,B) H∗(X,B),

w

∼=

u
p(X)∗

u
Z⊗Zπ(−) (1.1)

where π = π1(X). By [11] and Fox [7], we have the following result.

Theorem 1.1 A co-H-space is, up to homotopy, a fibrewise co-H-space over Bπ satisfying the
above property (1.1).

Proof. We may assume that a co-H-space X is, up to homotopy, the total space of a fibration
j : X → B = Bπ the classifying map of p(X) : X̃ → X. Then by [11], j satisfies (1.1) and
the natural map p̂(X) : B∨X̃ → X (given by p̂(X)|B = i and p̂(X)|

eX = p(X)) has a homotopy
section s. Let us recall that the universal covering of a co-H-space is also a co-H-space, since
the Lusternik-Schnirelmann category of X̃ cannot exceed that of X by Fox [7]. Hence there is
a co-H-structure µ̃ on X̃. By the definition of limits and colimits in the category of pointed
fibrants, we know that p̂(X1)∨Bp̂(X2) : (B∨X̃1)∨B(B∨X̃2) = B∨X̃1∨X̃2 → X1∨BX2 is given
by p̂(X1)∨B p̂(X2)|B∨fXt

= p̂(Xt), for t = 1, 2. By putting µB = (p̂(X)∨B p̂(X))◦(1B∨µ̃)◦s, we get
a fibrewise co-H-structure on j : X → B. qed.

It is known that a simply connected CW complex has a Cartan-Serre-Whitehead decompo-
sition, or a homology decomposition (see [5]). The property (1.1) yields the following result.

Theorem 1.2 If j satisfies (1.1), then there exists a sequence of fibrewise-simply connected
pointed fibrants (jn : Xn → B, Fn, in : B → Xn) satisfying (1.1) with X1 = B, F1 = {∗} and
j1 = 1B = i1, which satisfies the following conditions for each n ≥ 1:

1) ln : Xn ↪→ Xn+1 and Xn ↪→
⋃

m Xm ≅ X are maps of pointed fibrants.

2) There is a map hn : Sn
h′

n→ Fn ⊂ Xn, where Sn denotes the Moore space of type

(Hn+1(X,B),n) such that Sn
hn→ Xn

ln
↪→ Xn+1 is a cofibre sequence up to homotopy.

3) The inclusion mn : Xn ⊂ X induces an isomorphism of fundamental groups.
4) The inclusion mn : Xn ⊂ X induces an isomorphism of homology groups of the universal

coverings in dimensions ≤ n and Hq(X̃n, B̃) = 0 for q > n.



226 N. Iwase / Topology 40(2001) 223–234

Remark. The properties imply h1 ∼ 0, X2 ≅ B ∨ ΣS1 and Xn+1 ≅ C(hn), the cofibre of hn.

We call this an almost homology decomposition for a fibrewise-simply connected and pointed
fibrant satisfying (1.1). For the k′-invariants of a co-H-space, we can show the following results.

Theorem 1.3 If (j, F , i) admits a fibrewise co-H-structure satisfying (1.1), then there are
induced fibrewise co-H-structures on (jn, Fn, in) such that the inclusions ln : Xn ↪→ Xn+1 and
mn+1 : Xn+1 ↪→ X are fibrewise co-H-maps and the k′-invariants hn are of finite order, n ≥ 1.

Corollary 1.3.1 If X is a co-H-space, then each k′-invariant hn is of finite order, n ≥ 1.

A fibrewise localisation and a fibrewise completion of a pointed fibrant is constructed by
May [15]. If we make the additional assumption (1.1), there is a much simpler construction of
fibrewise localisation using Theorem 1.2:

Theorem 1.4 Let P be a set of primes. If j is a fibrewise-simply connected pointed fibrant
satisfying (1.1), there is a fibrewise P-localisation ℓB

P : X → XB
P which induces an isomorphism

of fundamental groups and a homomorphism between reduced homology groups of the fibres which
is given by tensoring with ZP, the ring of P-local integers.

When B ≅ Bπ1(X), a fibrewise P-localisation was constructed by Bendersky [2]. In that case,
we will refer to a fibrewise localisation as an almost localisation.

Remark. By Theorem 1.4 and Corollary 1.3.1, we obtain another proof of Theorem 0.2.

By using the arguments given in [11], we obtain the following result (see Sections 5-8):

Theorem 1.5 There is a series of co-H-spaces Rn, n ≥ 4, with reduced homology groups free
abelian and concentrated in dimensions 1, n + 1 and n + 5, such that each Rn is not standard.

We say that a co-H-space X is of stable dimension k if its reduced homology H̄q(X) is trivial
unless q = 1 or n + 1 ≤ q ≤ n + k, with H̄n+k(X) torsion free, for some n ≥ 1. We still don’t
know about the Ganea conjecture for a co-H-space of stable dimensions 3 and 4.

In the localised homotopy category, we have been unable to construct any counter examples
to the conjecture. So we may state here the following local version of the Ganea conjecture:

Conjecture 1.6 The almost p-localisation of a co-H-space is standard, for any prime p.

Using the arguments given in Section 8, one can show that the non-trivial k′-invariants of the
spaces in Theorem 1.5 are co-H-maps with respect to some non-standard co-H-structures.

2 Homology decomposition

In this section, we prove Theorem 1.2. Let Sn be the Moore space of type (Hn+1(X,B),n),
n ≥ 1. For the first step, since H2(X̃, B̃) ∼= Zπ ⊗ H2(X,B) by [11], we have

π2(F ) ∼= π2(X,B) ∼= π2(X̃, B̃) ∼= H2(X̃, B̃) ∼= Zπ ⊗ H2(X,B) ⊃ H2(X,B). (2.1)
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Hence there exists a map f2 : ΣS1 → F ⊂ X representing a complete collection of generators
of the Zπ-module π2(F ) corresponding to (2.1). We deform the first projection j′2 : X ′

2 =
B∨ΣS1 → B to a fibration up to homotopy, say j2 : X2 → B, with fibre F2, which satisfies
(1.1) by (2.1). We define g2 : X2 → X by g2|B = i and g2|ΣS1 = f2. We can easily check that
g2 induces an isomorphism of fundamental groups, an isomorphism g̃2∗ : H̃q(X̃2) → H̃q(X̃) for

q ≤ 2 and H̃q(X̃2) = 0 for q > 2. We will consider g2 as an inclusion.

We proceed to the next step: By (1.1), we have

π3(F, F2) ∼= π3(X,X2) ∼= H3(X̃, X̃2) ∼= H3(X̃, B̃) ∼= Zπ ⊗ H3(X,B) ⊃ H3(X,B). (2.2)

Hence there exists a map f3 : (C(S2), S2) → (F, F2) ⊂ (X,X2) representing a complete collection
of generators of the Zπ-module π3(F, F2) corresponding to (2.2). We put h2 = f3|S2 and deform

the projection j′3 : X ′
3 = X2∪h2C(S2) → B∨ΣS2

prB→ B to a fibration up to homotopy, say
j3 : X3 → B with fibre F3, which satisfies (1.1) by (2.2). We define g3 : X3 → X by g3|X2 = g2

and g3|C(S2) = f3. One can easily check that g3 induces an isomorphism of fundamental groups,

an isomorphism g̃3∗ : H̃q(X̃3) → H̃q(X̃) for q ≤ 3 and H̃q(X̃3, B̃) = 0 for q > 3. We will consider
g3 as an inclusion.

One can continue this process and get the fibrewise homology decomposition satisfying (1.1),
for a finite complex. By using the telescope construction on the Xi’s, we can also get the fibrewise
homology decomposition satisfying (1.1), for an infinite complex. This completes the proof of
Theorem 1.2.

3 Fibrewise localisation

In this section we prove Theorem 1.4. By Theorem 1.2, we have the homology decomposition
{(jn, Fn, in; hn)}n≥1. We define the fibrewise P-localisation ℓB

P : jn → jn
B
P by performing a

step-by-step construction: Firstly, we know that X2 ≅ B∨ΣS1. So we define j2
B
P : X2

B
P → B

by deforming the first projection prB : B∨(ΣS1)P → B into a fibrant and ℓB
P : X2 → X2

B
P by

deforming 1B∨ℓP : X2 = B∨ΣS1 → B∨(ΣS1)P into a fibrewise map. Let F ′
2 be the fibre of

j2
B
P which is homotopy equivalent to the fibre of j̃2

B
P : X̃2

B
P → B̃. Then by the Serre spectral

sequence for j̃2
B
P , we have that the homology of F ′

2 is P-local. Since F ′
2 is simply connected, F ′

2

itself is P-local and can be regarded as the P-localisation F2P of F2.
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Secondly, let us recall that X3 ≅ X ′
3 = X2 ∪h2 C(S2) and consider the following diagram:

F2

S2 X2 X ′
3 X3

B B B

B B B

S2P X2
B
P X ′

3
B
P X3

B
P .

F2P
u

ℓP

c[
[[]

w
h2

u

ℓP

A
A
A
A
AACh′

2

y w

l′2

u

ℓB
P

[
[[]j2

u

ℓ′BP

w
≅

[
[[]j

′
3

u

ℓB
P

[
[[]j3

w

h2
B
P

������h′
2P

y w

l′2
B
P

�
��
j2B

P
w≅

�
��
j′3

B
P

�
��
j3B

P

"�
��

(3.1)

By the universality of P-localisation ℓP, ℓP◦h
′
2 induces the dotted arrow h′

2P such that ℓP◦h
′
2 ∼

h′
2P◦ℓP. Thus we can define h2

B
P as the composition map : S2P

h′
2P→ F2P ⊂ X2

B
P and X2

B
P

l′2
B
P

↪→
X ′

3
B
P = X2

B
P ∪h2

B
P

C(S2P) as its cofibre. Since the image of h2
B
P lies in the fibre of j2

B
P , the

composition j2
B
P ◦h2

B
P is trivial, and hence we can extend j2

B
P to the projection j′3

B
P : X ′

3
B
P =

X2
B
P ∪h2

B
P

C(S2P) → B∨ΣS2P
prB→ B so that j′3

B
P ◦l′2

B
P = j2

B
P and j′3

B
P ◦ℓ′BP = j′3. So we define

j3
B
P : X3

B
P → B by deforming j′3

B
P : X ′

3
B
P → B into a fibrant and l2

B
P : X2

B
P ↪→ X3

B
P by deforming

l′2
B
P into a fibrewise map. Then we remark that all the dotted arrows in the diagram (3.1) can

be solidified so as to create a commutative diagram.

By continuing this process, we get the fibrewise P-localisation ℓB
P : X → XB

P for a finite
complex X. By using the telescope construction, we can also get the fibrewise P-localisation
ℓB

P : X → XB
P for an infinite complex X. This completes the proof of Theorem 1.4.

4 Homology decomposition of a co-H-space over B

In this section, we prove Theorem 1.3. Let µ : X → X∨BX be any given fibrewise co-H-
structure for j. We show the existence of the desired fibrewise co-H-structure µn+1 for jn+1 by
induction on n ≥ 0. Since X1 = B, µ induces the trivial fibrewise co-H-structure µ1 = 1B on
j1 = 1B, which is clearly the restriction of µ to X1 = B.

Let n ≥ 1. Firstly we prove that jn+1 admits a fibrewise co-H-structure µ′′
n+1: When n = 1,

since X2 ≅ B∨ΣS1, there is a standard fibrewise co-H-structure µ′′
2 on j2 as an extension of the

trivial co-H-structure µ1, that is (l1∨Bl1)◦µ1 ∼ µ′′
2◦l1. Thus we may assume that n ≥ 2. Then by

the induction hypothesis, there is a fibrewise co-H-structure µn on jn which is a compression of
µ|Xn . Then the map γ = (ln∨Bln)◦µn◦hn : Sn → Xn+1∨BXn+1 gives the obstruction to extend
(ln∨Bln)◦µn on Xn+1. We regard γ ∈ πn(Xn+1∨BXn+1; G), G = Hn+1(X,B). By the induction
hypothesis, we have (mn+1∨Bmn+1)◦γ = (mn∨Bmn)◦µn◦hn ∼ µ◦mn◦hn = µ◦mn+1◦ln◦hn ∼ 0.
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Hence there is an element γ̂ ∈ πn+1(X∨BX,Xn+1∨BXn+1; G) such that ∂(γ̂) = γ in the following
commutative diagram with exact rows:

πn+1(X∨BX; G) πn+1(X∨BX,Xn+1∨BXn+1; G) πn(Xn+1∨BXn+1; G)

πn+1(X×BX; G) πn+1(X×BX,Xn+1×BXn+1; G) πn(Xn+1×BXn+1; G);

w

l′∗

u
k∗

w
∂

u
k′
∗

u
kn+1∗

w
l∗

w
∂

(4.1)

here k : X∨BX ↪→ X×BX, k′ : (X∨BX,Xn+1∨BXn+1) ↪→ (X×BX,Xn+1×BXn+1), kn+1 :
Xn+1∨BXn+1 ↪→ Xn+1×BXn+1, l′ : X∨BX ↪→ (X∨BX,Xn+1∨BXn+1) and l : X×BX ↪→
(X×BX,Xn+1×BXn+1) are the canonical inclusions.

To proceed, we show that k∗ is a split epimorphism and k′
∗ is an isomorphism: Let us recall

the Universal Coefficient Theorem due to Eckmann and Hilton: For any topological pair (U ,V )
and an abelian group G, there is the following short exact sequence for q ≥ 2.

0 → Ext (G, πq+2(U, V )) → πq+1(U, V ; G) → Hom (G, πq+1(U, V )) → 0.

Applying this to the n + 1-connected pair (X∨BX,Xn+1∨BXn+1), using the Hurewicz isomor-
phism theorem and (1.1) for n ≥ 2, we obtain

πn+1(X∨BX,Xn+1∨BXn+1; G) ∼= Ext (G,Hn+2(X̃∨BX, ˜Xn+1∨BXn+1)

∼= Hn+2(X̃∨BX, ˜Xn+1∨BXn+1; tor G)
∼= Zπ⊗Hn+2(X∨BX,Xn+1∨BXn+1; tor G),

Similarly for n ≥ 2, we obtain

πn+1(X×BX,Xn+1×BXn+1; G) ∼= Zπ⊗Hn+2(X×BX,Xn+1×BXn+1; tor G)
∼= Zπ⊗Hn+2(X∨BX,Xn+1∨BXn+1; tor G).

Thus k′
∗ : πn+1(X∨BX,Xn+1∨BXn+1; G) → πn+1(X×BX,Xn+1×BXn+1; G) is an isomorphism,

n ≥ 2. The pointed fibrewise space X∨BX → B has the fibre F∨F , and hence πn+1(X∨BX; G)
is isomorphic with πn+1(F∨F ; G)⊕πn+1(B), n ≥ 2. The pointed fibrewise space X×BX → B

has the fibre F×F , and hence πn+1(X×BX; G) is isomorphic with πn+1(F×F ; G)⊕πn+1(B),
n ≥ 2. Since the homomorphism πn+1(F∨F ; G) → πn+1(F×F ; G) has a natural splitting
σF
∗ : πn+1(F×F ; G) → πn+1(F∨F ; G), so does the homomorphism k∗ : πn+1(X∨BX; G) →

πn+1(X×BX; G) admit a natural splitting σj
∗ : πn+1(X×BX; G) → πn+1(X∨BX; G) with respect

to j, n ≥ 2.

On the other hand, since kn◦µn is homotopic to ∆n, the fibrewise diagonal map in Xn×BXn,
we have kn+1◦(ln∨Bln)◦µn = (ln×Bln)◦kn◦µn ∼ (ln×Bln)◦∆n = ∆n+1◦ln, and hence kn+1◦γ ∼
∆n+1◦ln◦hn ∼ 0. Thus ∂◦k′

∗(γ̂) = kn+1∗◦∂(γ̂) = kn+1∗(γ) = 0, and hence there is an element γ′ ∈
πn+1(X×BX; G) such that l∗(γ

′) = k∗(γ̂). Since the left vertical arrow k∗ is an epimorphism,
γ′ can be pulled back to an element γ0 ∈ πn+1(X×BX; G). Hence k′

∗◦l
′
∗(γ0) = l∗◦k∗(γ0) =

l∗(γ
′) = k∗(γ̂). Since k′

∗ is an isomorphism, we have that γ̂ = l′∗(γ0), and hence we get γ =
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∂(γ̂) = ∂◦l′∗(γ0) = 0. Thus there is a map µ′
n+1 : Xn+1 → Xn+1∨BXn+1 which is an extension of

(ln∨Bln)◦µn.

Since Xn+1 is, up to homotopy, the cofibre of hn : Sn → Fn ⊂ Xn, it admits a co-action
of ΣSn. Thus the “difference” between kn+1◦µ

′
n+1 and ∆n+1, is given by a map δ : ΣSn =

Xn+1/Xn → Xn+1×BXn+1 which can be pulled back to a map δ0 : ΣSn → Xn+1∨BXn+1, since
kn+1∗ is an epimorphism. By “adding” δ0 to µ′

n+1, we get µ′′
n+1, a fibrewise co-H-structure on

jn+1 as an extension of µn, that is (ln∨Bln)◦µn ∼ µ′′
n+1◦ln.

Secondly, we prove the existence of a fibrewise co-H-structure µn+1 such that (ln∨Bln)◦µn ∼
µn+1◦ln and (mn+1∨Bmn+1)◦µn+1 ∼ µ◦mn+1: Since (mn+1∨Bmn+1)◦µ

′′
n+1 and µ◦mn+1 coincide

when restricted to Xn, the “difference” between them is given by a map ε : ΣSn → X∨BX.
We regard ε ∈ πn+1(X∨BX; G), G = Hn+1(X,B). Since µ′′

n+1 and µ are fibrewise co-H-
structures for jn+1 and j, we have k◦(mn+1∨Bmn+1)◦µ

′′
n+1 = (mn+1×Bmn+1)◦kn+1◦µ

′′
n+1 ∼

(mn+1×Bmn+1)◦∆n+1 = ∆◦mn+1 ∼ k◦µ◦mn+1. Hence k∗(ε) = 0 and k′
∗◦l

′
∗(ε) = l∗◦k∗(ε) = 0.

Since k′
∗ is an isomorphism, we have l′∗(ε) = 0, and hence ε can be pulled back to an element

ε′0 ∈ πn+1(Xn+1∨BXn+1; G). Let ε0 = ε′0−σ
jn+1
∗ ◦kn+1∗(ε

′
0) ∈ πn+1(Xn+1∨BXn+1; G), where σ

jn+1
∗

is the splitting for kn+1∗. Then kn+1∗(ε0) = kn+1∗(ε
′
0) − kn+1∗◦σ

jn+1
∗ ◦kn+1∗(ε

′
0) = 0 and

(mn+1∨Bmn+1)∗(ε
′
0) = (mn+1∨Bmn+1)∗(ε0) − (mn+1∨Bmn+1)∗◦σ

Xn+1
∗ ◦kn+1∗(ε

′
0)

= ε − σX
∗ ◦(mn+1×Bmn+1)∗◦kn+1∗(ε

′
0) = ε − σX

∗ ◦kn+1∗◦mn+1∗(ε
′
0) = ε.

Thus by adding ε0 to µ′′
n+1, we get another fibrewise co-H-structure µn+1 over B of Xn+1. One

can easily check that µn+1 has the desired properties.

Finally, we prove that the k′-invariant hn is of finite order: We observe that when X is a
fibrewise co-H-space, then the fibre F of j : X → B is a simply connected genuine co-H-space.
The k′-invariant hn : Sn → Fn ⊂ Xn is the composition of the k′-invariant h′

n for the simply
connected co-H-space F and the inclusion Fn ↪→ Xn. Since h′

n : Sn → Fn is of finite order, by
Theorem I in Curjel [4], hn is also of finite order. This completes the proof of Theorem 1.3.

5 Construction of a complex Rn for n ≥ 4

The remainder of this paper is devoted to proving Theorem 1.5. In this section, we construct
the complex Rn: Let An = Sn+1 and B = S1. We define Cn as the following complex:

Cn = Sn+1 ∪Σn−3α+Σn−3β en+5 = Σn−3C4, C4 = S4 ∪ν4 e8 = HP 2, α = 9ν4, β = −8ν4,

where ν4 : S7 → S4 denotes the Hopf map. The complex Rn is defined as follows:

Rn = (B∨An) ∪inAn◦Σn−3α+ψ(τ)◦inAn◦Σn−3β en+5,

where inAn denotes the inclusion An ↪→ B∨An and ψ : π → π0Map∗(B∨An, B∨An) denotes
the action of the fundamental group π = 〈τ〉 ∼= Z of B∨An on itself. We remark that the
image of ψ is in the group of homotopy classes of self homotopy equivalences Aut (B∨An). Let
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pRn : R̃n → Rn be the universal covering of Rn. By the definition of Rn, the homotopy type of
R̃n is as follows:

R̃n ≅ (
∨
i∈Z

τ i·An) ∪ (
∨
j∈Z

τ j·en+5) and B̃∨An =
∨
i∈Z

τ i·An,

where we denote by ψ̃(τ i) : B̃∨An → B̃∨An the map induced from ψ(τ i) on the universal

coverings. Also τ i·(−) stands for ψ̃(τ i)(−). Here, the attaching map of the cell 1·en+5 is given
by the suspension map

Sn+4 {Σn−3α,Σn−3β}→ An∨An
1An∨ψ̃(τ)→ An∨τ ·An ⊂

∨
i∈Z

τ i·An.

We define a projection p : B∨R̃n → Rn by putting

p|B : B
inB
↪→ B∨An ⊂ Rn, and p|

fRn
= pRn : R̃n → Rn.

Let p0 = p|B∨
W

i∈Z τ i·An
: B∨

∨
i∈Z τ i·An → B∨An. Then we have p0|τj ·An

: τ j·An
≅→ ψ(τ j)(An)

⊂ B∨An, and hence, p0|Ψ(τ i)(τj ·An) : Ψ(τ i)(τ j·An) = Ψ(τ i)(ψ̃(τ j)(An))
≅→ ψ(τ i+j)(An) ⊂ B∨An,

where Ψ denotes the action of π on B∨
∨

i∈Z τ i·An.

6 Self maps of An = Sn+1

This section provides an easy but rather crucial property of Rn for n ≥ 4. Let f : An → An

and g : An → An be maps of degrees −8 and 9. We obtain

f + g ∼ 1An . (6.1)

We know the following equations modulo 24, the order of Σn−3ν4 = νn+1:

(−8)2 ≡ −8, 92 ≡ 9, (−8)×9 = 9×(−8) ≡ 0 mod 24.

Since Σn−3α = 9νn+1 and Σn−3β = −8νn+1, these equations imply the following properties:

Proposition 6.1 The compositions of f and g with Σn−3α and Σn−3β give the equations:
(1) f◦Σn−3α ∼ ∗, (2) g◦Σn−3α ∼ Σn−3α, (3) g◦Σn−3β ∼ ∗ and (4) f◦Σn−3β ∼ Σn−3β.

7 Homotopy section of B∨R̃n → Rn

By Theorem 3.3 in [11], the existence of a homotopy section of p : B∨R̃n → Rn is a necessary
and sufficient condition for Rn to admit a co-action of B along j : Rn → B. Here the universal
covering R̃n of Rn is desuspendable for dimensional reasons. Hence the existence of a homotopy
section of p implies that Rn is a co-H-space. In summary:
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Lemma 7.1 The following two conditions on Rn are equivalent.

1) There is a homotopy section of p : Rn → B∨R̃n.

2) Rn admits a co-H-structure.

Now we show the existence of a homotopy section of p : B∨R̃n → Rn. We define a map

s0 : B∨An → B∨B̃∨An ≅ B∨
∨

i∈Z τ i·An as follows:

s0|B = inB : B → B∨
∨
i∈Z

τ i·An,

s0|An : An
{f,g}→ An∨An

ψ̃(τ)∨1An−→ τ ·An∨An
(Ψ(τ−1)◦inτ·An)∨1An−→ B∨τ ·An∨An ⊂ B∨

∨
i∈Z

τ i·An.

By (6.1), we have p0◦s0 ∼ 1B∨(f + g) ∼ 1B∨1An = 1B∨An . Since n ≥ 4, it follows that
πn+4(An∨An) ∼= πn+4(An)⊕πn+4(An) for dimensional reasons. By Proposition 6.1, we have

s0◦Σ
n−3α ∼ inAn

◦Σn−3α : Sn+4 → B∨An ⊂ B∨
∨
i∈Z

τ i·An,

s0◦Σ
n−3β ∼ Ψ(τ−1)◦inτ ·An

◦ψ̃(τ)◦Σn−3β : Sn+4 → An → τ ·An → B∨τ ·An ⊂ B∨
∨
i∈Z

τ i·An.

Hence we obtain that

s0◦(Σ
n−3α + ψ(τ)◦Σn−3β) = s0◦Σ

n−3α + Ψ(τ)◦s0◦Σ
n−3β

∼ inAn
◦Σn−3α + inτ ·An

◦ψ̃(τ)◦Σn−3β = inAn∨τ ·An
◦(Σn−3α + ψ̃(τ)◦Σn−3β).

Thus the map s0◦(Σ
n−3α + ψ(τ)◦Σn−3β) is homotopic to the attaching map of the cell 1·en+5.

Hence it induces a map s : Rn → B∨R̃n so that p◦s is clearly the identity up to homotopy.

By Lemma 7.1, we obtain the following theorem.

Theorem 7.2 Rn is a co-H-space.

8 Unsplittability of Rn

In this section, we show that Rn is not standard. We state the following well-known result:

Proposition 8.1 The set of invertible elements in the group ring Zπ is ±π ⊂ Zπ.

Proof. Since π is the infinite cyclic group, Zπ is isomorphic with Z[x, 1
x
] the ring of Laurent

polynomials with coefficients in Z. We can express each Laurent polynomial in the form xi(aℓx
ℓ+

aℓ−1x
ℓ−1 + ... + a1x

1 + a0) with aℓa0 ̸= 0, ℓ ≥ 0 and i ∈ Z. If the product of any two such
Laurent polynomials, say xi(aℓx

ℓ + ... + a0) and xj(bmxm + ... + b0), is equal to the unity, then
we have that i + j = ℓ = m = 0 and a0b0 = 1. Hence every invertible element can be expressed
as ±xi for some i ∈ Z. qed.
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Let us assume that Rn has the homotopy type of a one-point-sum of a simply connected
space C ′ and a bunch of circles B′. Since the fundamental group of Rn is clearly π ∼= Z,
B′ = S1 = B and the inclusion of B′ in Rn is given by a generator τ±1 of π. Since C ′ has the
homotopy type of the mapping cone of the inclusion B′ ⊂ Rn, C ′ ≅ Rn/B = Cn.

Thus our assumption implies that Rn has the homotopy type of B∨Cn, which will lead us to
a contradiction: Let h : Rn → B∨Cn be a homotopy equivalence, which induces an isomorphism

h̃∗ : H̃∗(R̃n; Z) → H̃∗(B̃∨Cn; Z). As is easily seen, we have

H̃∗(R̃n; Z) ∼= Zπ{xn+1, xn+5} and H̃∗(B̃∨Cn; Z) ∼= Zπ{un+1, un+5}

where xq and uq are the homology classes corresponding to the q-cells in Rn and B∨Cn, respec-

tively. By Proposition 8.1, it follows that h̃∗(xn+1) = ±τ iun+1 and h̃∗(xn+5) = ±τ jun+5, for

some i, j ∈ Z. Using a suitable deck transformation on B̃∨Cn, we may assume that i = 0.

The (non-trivial) right actions of the Steenrod algebra on the homology groups H̃∗(R̃n; Fp)

and H̃∗(B̃∨Cn; Fp) for p = 2 and p = 3 are given by the following proposition.

Proposition 8.2 (1) Let x′
q be the modulo 2 reduction of the element xq. Then, in H̃∗(R̃n; F2),

the only non-trivial relation is: x′
n+5Sq4 = x′

n+1,

(2) Let u′
q be the modulo 2 reduction of the element uq. Then, in H̃∗(B̃∨Cn; F2),the only

non-trivial relation is: u′
n+5Sq4 = u′

n+1.

(3) Let x′′
q be the modulo 3 reduction of the element xq. Then, in H̃∗(R̃n; F3), the only

non-trivial relation is: x′′
n+5P1 = τ ·x′′

n+1.

(4) Let u′′
q be the modulo 3 reduction of the element uq. Then, in H̃∗(B̃∨Cn; F3), the only

non-trivial relation is: u′′
n+5P1 = u′′

n+1.

Thus in H̃n+1(B̃∨Cn; F2) and H̃n+1(B̃∨Cn; F3), we have the following equations:

u′
n+1 = h̃∗(x

′
n+1) = h̃∗(x

′
n+5Sq4) = h̃∗(x

′
n+5)Sq4 = τ j·u′

n+5Sq4 = τ j·u′
n+1,

u′′
n+1 = ±h̃∗(x

′′
n+1) = ±h̃∗(τ

−1·x′′
n+5P1) = ±τ−1·h̃∗(x

′′
n+5)P1 = ±τ j−1·u′′

n+5P1 = ±τ j−1·u′′
n+1.

The upper line tells us that j = 0, while the lower line tells us that j = 1. This is a contradiction.
Thus we obtain the following theorem.

Theorem 8.3 Rn is not standard.

Theorems 7.2 and 8.3 imply Theorem 1.5.

Remark. Although Rn ̸≅ B∨Cn, we know that these spaces have isomorphic homotopy groups
in each dimension, because their almost p-localisations are homotopy equivalent for any prime
p. But we don’t know whether the universal coverings of these spaces are homotopy equivalent
or not, while the universal coverings are not π1(B)-equivariant homotopy equivalent.



234 N. Iwase / Topology 40(2001) 223–234

References

[1] M. Arkowitz, Co-H-spaces, Handbook of algebraic topology, 1143-1173, North Holland, Amster-
dam, 1995.

[2] M. Bendersky, A functor which localizes the higher homotopy groups of an arbitrary CW-complex,
Lecture Notes in Math. 418, Springer Verlag, Berlin (1975), 13–21.

[3] I. Berstein and E. Dror, On the homotopy type of non-simply connected co-H-space, Ill. Jour.
Math. 20 (1976), 528–534.

[4] C. R. Curjel, A note on spaces of category ≤ 2, Math. Z. 80 (1963), 293–299.
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