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AIM

The purpose of this talk is to explain the following equality:

‘Cone Decomposition’ + ‘Higher Hopf invariant’

‘Categorical Sequence’




L-S category

Definition (Lusternik-Schnirelmann)

A{Ao, ..., Am; closed inM}
cat(M) = Min {mzo }

here eachA; is
M= ALY act
Uizo A contractiblein M.
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Definition (Lusternik-Schnirelmann)
A{Ag, ..., Am; closed inM} }

where eachA; is
M = UM, A, A

cat(M) = Min {mzo
contractiblein M.

Remark :

We don't have any means to know
how good is the given covering.

Figure 1

IR (JUMNRAE BOH2ERFSE BE) BRI R [EIER 25 3/18



L-S category

Definition (Lusternik-Schnirelmann)
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here eachA is
M=|m™ A W
Uiz A contractiblein M.

cat(M) = Min {mzo

Remark :
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L-S category

Definition (Lusternik-Schnirelmann)
A{Ag, ..., Am; closed inM} }

~ where eachA; is

cat(M) = Min {mzo M = UM A

> contractiblein M.

Remark :

We don't have any means to know
how good is the given covering.

.' That is why,

this definition gives only an
upper bound for cat(M).

Figure 1

IR (JUMNRAE BOH2ERFSE BE) AU RAH



strong category

Definition (Ganea)

_ A{Ao, ..., Am; closed inM}
Cat(M) = Min { m>0 M =" A where each A is
~ Yi=0"" contractiblein itself.
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strong category

Definition (Ganea)

_ A{Ao, ..., Am; closed inM}
Cat(M) = Min { m>0 M =" A where each A is
~ Yi=0"" contractiblein itself.

Remark :

By definition, we have

cat(M) < Cat(M).

Moreover, Ganea showed
Cat(M) < cat(M) + 1, and hence

0 < Cat(M) — cat(M) < 1.

Figure 1
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Hopf invariants

For small n, sometimes the n-sphere S" becomes a Lie group
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Hopf invariants

For small n, sometimes the n-sphere S" becomes a Lie group

Q s°=0(1)
Q S!=U(1)=S0(2)
© S8 =Sp(1)= SU(2)= Spin(3)

On the other hand, S?, S*, S°, S8 are not. However, S has a
multiplication with strict unit 1, because S’ =S(€) c ¢, Cisa
norm-preserving division algebra.

Definition

An H-space is a space with a multiplication with (homotopy) unit.
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Hopf invariant and Hopf structure

There is an element of Hopf invariant 1 in won,1(S™1), if S" is an H-space.
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Hopf invariant and Hopf structure

There is an element of Hopf invariant 1 in won,1(S™1), if S" is an H-space.

Theorem (Toda)

There is no element of Hopf invariant one in 31(S*6).

Theorem (Adams)

An element of Hopf invariant 1 exists in won.1(S™?1) iffn=0,1,3 or 7.

In other words,

“Hopf invariant detects Hopf structure.”
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Berstein-Hilton’s criterion

Let us consider the following 2-cell complexes:

© RP?, CP? HP?, €P? (projective planes)
Q Q,=S%u, €’ c Sp(2)James’ quasi projective plane.
© Stu¢€ c L3(p,q) the 2-skeleton of a lens space L3(p, ).

We may write them as X = S" Uy e,

Theorem (Berstein-Hilton)
catX) =2 & Hy(f) # 0inng(S"xS",S'vS")
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Higher Hopf invariants

Definition (Berstein-Hilton)
For a map f from SY to a space X with cat(X) = m,

H$(f) € g (TT™! X, T™1 X),
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Higher Hopf invariants

Definition (Berstein-Hilton)
For a map f from SY to a space X with cat(X) = m,

H$(f) € g (TT™! X, T™1 X),

where sis a compression of the m-old diagonal A™1 : X — [[™* X into
the fat wedge T™1 X,

Theorem (Ganea)
mq(IT™ X, T™LX) = 7(E™ A™! Q(X)).
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Higher Hopf invariants

Definition (Berstein-Hilton)
For a map f from SY to a space X with cat(X) = m,

H$(f) € g (TT™! X, T™1 X),

where sis a compression of the m-old diagonal A™1 : X — [[™* X into
the fat wedge T™1 X,

Theorem (Ganea)
mq(IT™ X, T™LX) = 7(E™ A™! Q(X)).

Problem
What does this mean?
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Projective spaces

As Hopf invariants detect Hopf structures,

higher Hopf inavariants should detect An-structures,

while we couldn’t see the relationship in the original formula.
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Projective spaces

As Hopf invariants detect Hopf structures,

higher Hopf inavariants should detect An-structures.

More precisely, a higher Hopf invariants should satisfy

If an Am-structure of an An-space S can be extended to an Am.1-Structure,
then there must be an element [ f] € [S, P™(S)] with Hy(f) = 1.
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A..-structure on a space

Theorem (Stasheff)

For any space X, the space of all loops at the base point of X admits a
natural A-structure,
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A..-structure on a space

Theorem (Stasheff)

For any space X, the space of all loops at the base point of X admits a
natural A-structure,

associated with projective spaces P"Q(X) and natural maps

el P"Q(X) — X, m> 0.

Theorem (Ganea)
catiX) < m < the Ganea space G(X) dominates X.
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A..-structure on a space

Theorem (Stasheff)

For any space X, the space of all loops at the base point of X admits a
natural A -structure,

associated with projective spaces P"Q(X) and natural maps

el P"Q(X) — X, m> 0.

Theorem (Ganea,l,Sakai)
catX) <m & do : X —» P"Q(X) such that X ~ 1x.

Using this criterion, we can now determine more L-S categories...

For any map f : XV — X with cat(X) = m, the difference d‘,{](x)( f) between
o(X)of and ZQ(f)oc (V) : ZV — PMQ(X) vanishes on P*Q(X) ~ X.
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Projective spaces and a higher Hopf invariant

Thus the difference d%(x)(f) has a unique lift

HI®(f) : 2V — E™LQ(X) = the fibre of €% : P"Q(X) — X.
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Thus the difference d%(x)(f) has a unique lift
HZX(f) : =V - E™LQ(X) = the fibre of € : PMQ(X) — X.

One advantage of this definition is that we can use the properties of
projective spaces to determine a higher Hopf invariant.
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Thus the difference d%(x)(f) has a unique lift
HZX(f) : =V - E™LQ(X) = the fibre of € : PMQ(X) — X.
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Thus the difference d%(x)(f) has a unique lift
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Projective spaces and a higher Hopf invariant

Thus the difference d%(x)(f) has a unique lift
HZX(f) : =V - E™LQ(X) = the fibre of €% : PMQ(X) — X.

One advantage of this definition is that we can use the properties of
projective spaces to determine a higher Hopf invariant.

Let E™IQ(X) = Q(X) * - - - * Q(X) the m+1-fold join of Q(X). Then

HS(f) € mg(TT™ X, T™1 X) = mg(E™10(X))
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Thus the difference d%(x)(f) has a unique lift
HZX(f) : 2V - E™LQ(X) = the fibre of € : PMQ(X) — X.
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Projective spaces and a higher Hopf invariant

Thus the difference d%(x)(f) has a unique lift
HZX(f) : 2V - E™LQ(X) = the fibre of € : PMQ(X) — X.

One advantage of this definition is that we can use the properties of
projective spaces to determine a higher Hopf invariant.

Let E™1Q(X) = Q(X) * - - - * Q(X) the m+1-fold join of Q(X). Then

Hin(f) € ker{(€X). : mm(P™Q(X)) — 7q(X)}

It gives the missing piece in the Ganea’s formula to obtain

If an An-structure of an Am-space S can be extended to an An.1-Structure,
then there must be an element [ f] € [S, P™(S)] with Hy(f) = 1.
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A categorical sequence and a cone decomposition 1

Let us go back to Fox's paper on L-S category of a space X.
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Let us go back to Fox's paper on L-S category of a space X. Fox
introduced a notion of categorical sequence ‘catsegX)’ to give an upper
bound to the original L-S category cat(X).
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A categorical sequence and a cone decomposition 1

Let us go back to Fox's paper on L-S category of a space X. Fox
introduced a notion of categorical sequence ‘catsegX)’ to give an upper
bound to the original L-S category cat(X).

Definition (Fox)
A sequence {F;; 0 <i < m} of subspaces of X is called a categorical
sequence (of length m) for X
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A categorical sequence and a cone decomposition 1

Definition (Fox)
A sequence {F;; 0 <i < m} of subspaces of X is called a categorical

sequence (of length m) for X if they satisfy
x~FgcCc-.-cFjc-.--cFyn=Xand,
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A categorical sequence and a cone decomposition 1

Definition (Fox)

A sequence {F;; 0 <i < m} of subspaces of X is called a categorical
sequence (of length m) for X if they satisfy
x~FgCc---cFjc---cFy=Xand, foranyi >0, Fi \ Fi_1 is
contractible in X.

(GoToGanea)
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A categorical sequence and a cone decomposition 1

Let us go back to Fox's paper on L-S category of a space X. Fox
introduced a notion of categorical sequence ‘catsegX)’ to give an upper
bound to the original L-S category cat(X).

Definition (Fox)

A sequence {F;; 0 <i < m} of subspaces of X is called a categorical
sequence (of length m) for X if they satisfy
x~FgCc---cFjc---cFy=Xand, foranyi >0, Fi \ Fi_1 is
contractible in X.

(GoToGanea)

According to Fox, the smallest length catsegX) of all categorical sequence
of X'is
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A categorical sequence and a cone decomposition 1

Let us go back to Fox's paper on L-S category of a space X. Fox
introduced a notion of categorical sequence ‘catsegX)’ to give an upper
bound to the original L-S category cat(X).

Definition (Fox)

A sequence {F;; 0 <i < m} of subspaces of X is called a categorical
sequence (of length m) for X if they satisfy
x~FgCc---cFjc---cFy=Xand, foranyi >0, Fi \ Fi_1 is
contractible in X.

(GoToGanea)

According to Fox, the smallest length catsegX) of all categorical sequence
of X is equal to cat(X).
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A categorical sequence and a cone decomposition 2

Quite similarly, Ganea introduced a notion of cone decompostion.
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Quite similarly, Ganea introduced a notion of cone decompostion.

Definition (Ganea)

A sequence {F;; 0 < i < m} of subspaces of X is called a cone
decomposition (of length m) for X
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A sequence {F;; 0 < i < m} of subspaces of X is called a cone
decomposition (of length m) for X if they satisfy
x~FgcC---cFjc-.-cFyn=Xand,
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A categorical sequence and a cone decomposition 2

Definition (Ganea)

A sequence {F;; 0 < i < m} of subspaces of X is called a cone
decomposition (of length m) for X if they satisfy
x~FgcC---cFjc---cFyn=Xand, foranyi > 0, Fi has the homotopy
type of Fi_1 Uy, C(K;) for some h; : K; — Fi_1.

(GoToFox)
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Definition (Ganea)

A sequence {F;; 0 < i < m} of subspaces of X is called a cone
decomposition (of length m) for X if they satisfy
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type of Fi_1 Uy, C(K;) for some h; : K; — Fi_1.
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A categorical sequence and a cone decomposition 2

Quite similarly, Ganea introduced a notion of cone decompostion.

Definition (Ganea)

A sequence {F;; 0 < i < m} of subspaces of X is called a cone
decomposition (of length m) for X if they satisfy
x~FgcC---cFjc---cFyn=Xand, foranyi > 0, Fi has the homotopy
type of Fi_1 Uy, C(K;) for some h; : K; — Fi_1.

(GoToFox)

According to Ganea,the smallest length Cone{) of all cone decomposition
of X is equal to Ganea's strong category Cat(X).
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A categorical sequence and a higher Hopf invariant

By combining a cone decomposition with a higher Hopf invariant, Kikuchi
and | obtain a categorical sequence, and eventually get a better upper
bound of L-S category.

Proposition (Kikuchi, I)
catseq(SO(10)x 21

On the other hand, we know

H*(SO(10)F2) = Fa[x1, X3, Xs, X7, Xa] / (X5°, X3, X2, %3, %),
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A categorical sequence and a higher Hopf invariant

By combining a cone decomposition with a higher Hopf invariant, Kikuchi
and | obtain a categorical sequence, and eventually get a better upper
bound of L-S category.

Proposition (Kikuchi, I)

catseq(SO(10)x 21

On the other hand, we know
H*(SO(10)F2) = Fa[x1, X3, X5, X7, Xa] / (X1, 3¢, X2, X2, X3),
Thus we see that cup(SO(10)= 15+3+1+1+1
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On the other hand, we know
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A categorical sequence and a higher Hopf invariant

By combining a cone decomposition with a higher Hopf invariant, Kikuchi
and | obtain a categorical sequence, and eventually get a better upper
bound of L-S category.

Proposition (Kikuchi, I)
catseq(SO(10)x 21

On the other hand, we know
H*(SO(10)F2) = Faxa, X3, X, X7, Xa] / (X;°, X4, &, X, X3),
Thus we see that cup(SO(10)= 15+ 3+ 1+ 1+ 1=21and hence

21 < cup(SO(10)k cat(SO(10)x catseq(SO(10)x 21
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A categorical sequence and a higher Hopf invariant

By combining a cone decomposition with a higher Hopf invariant, Kikuchi
and | obtain a categorical sequence, and eventually get a better upper
bound of L-S category.

Proposition (Kikuchi, I)
catseq(SO(10)x 21

On the other hand, we know
H*(SO(10)F2) = Faxa, X3, X, X7, Xa] / (X;°, X4, &, X, X3),
Thus we see that cup(SO(10)= 15+ 3+ 1+ 1+ 1=21and hence
21 < cup(SO(10)k cat(SO(10)x catseq(SO(10)x 21

This implies the following
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A categorical sequence and a higher Hopf invariant

By combining a cone decomposition with a higher Hopf invariant, Kikuchi
and | obtain a categorical sequence, and eventually get a better upper
bound of L-S category.

Proposition (Kikuchi, I)
catseq(SO(10)x 21

On the other hand, we know
H*(SO(10)F2) = Faxa, X3, X, X7, Xa] / (X;°, X4, &, X, X3),
Thus we see that cup(SO(10)= 15+ 3+ 1+ 1+ 1=21and hence
21 < cup(SO(10)k cat(SO(10)x catseq(SO(10)x 21

This implies the following (GoToEnd)

cat(SO(10))= 21
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Outline of the proof of catseq(SO(10) 21

There are principal fibrations

SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,
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Outline of the proof of catseq(SO(10) 21

There are principal fibrations

SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,

with the same characteristic map a : S — SU(4) c SO(9)
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There are principal fibrations
SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,

with the same characteristic map a : S — SU(4) c SO(9)

Using an explicit description of the cell-decomposition of classical groups
given by I. Yokota,
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There are principal fibrations
SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,

with the same characteristic map a : S — SU(4) c SO(9)

Using an explicit description of the cell-decomposition of classical groups
given by I. Yokota, we see that « is compressible into ZCP2 in SU(4)
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There are principal fibrations
SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,

with the same characteristic map a : S — SU(4) c SO(9)

Using an explicit description of the cell-decomposition of classical groups
given by I. Yokota, we see that « is compressible into ZCP? in SU(4) as the
attaching map of the top cell of ZCP* c SU(5)
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Outline of the proof of catseq(SO(10) 21

There are principal fibrations
SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,

with the same characteristic map a : S — SU(4) c SO(9)

Using an explicit description of the cell-decomposition of classical groups
given by I. Yokota, we see that « is compressible into ZCP? in SU(4) as the
attaching map of the top cell of ZCP* ¢ SU(5)whose Hopf invariant is O.
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Outline of the proof of catseq(SO(10) 21

There are principal fibrations
SO(9)— SO(10)— S°,
SU(4)— SU(5)— S°,

with the same characteristic map a : S — SU(4) c SO(9)

Using an explicit description of the cell-decomposition of classical groups
given by I. Yokota, we see that « is compressible into ZCP? in SU(4) as the
attaching map of the top cell of ZCP* ¢ SU(5)whose Hopf invariant is O.

On the other hand, we have a cone decomposition {F;j; 0 <i < 20} of
length 20 of Spin(7)(I-Mimura-Nishimoto):

{x} =Fpc Fyc---cFi9C Fy = Spin(7)
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Outline of the proof of catseq(SO(10) 21

We construct a sequence {E;; 0 <i < 21} of subspaces of SO(10)of
length 21,
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Outline of the proof of catseq(SO(10) 21

We construct a sequence {E;; 0 <i < 21} of subspaces of SO(10)of
length 21, using the cone decomposition {F;; 0 < i < 20} of Spin(7)
together with the multiplication of SO(9)again by using Yokota's CW
decomposition of classical groups.
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We construct a sequence {E;; 0 <i < 21} of subspaces of SO(10)of
length 21, using the cone decomposition {F;; 0 < i < 20} of Spin(7)
together with the multiplication of SO(9)again by using Yokota's CW
decomposition of classical groups.

Ei=FuU Fi_1XC(SS).
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We construct a sequence {E;; 0 <i < 21} of subspaces of SO(10)of
length 21, using the cone decomposition {F;; 0 < i < 20} of Spin(7)
together with the multiplication of SO(9)again by using Yokota's CW
decomposition of classical groups.

Ei=FuU Fi_1XC(SS).

We also define a sequence of spaces
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Outline of the proof of catseq(SO(10) 21

We construct a sequence {E;; 0 <i < 21} of subspaces of SO(10)of
length 21, using the cone decomposition {F;; 0 < i < 20} of Spin(7)
together with the multiplication of SO(9)again by using Yokota's CW
decomposition of classical groups.

Ei=FuU Fi_1XC(SS).
We also define a sequence of spaces

Ei C PI(QF;) U P~L{(QF;_1)xC(=QS?)
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Outline of the proof of catseq(SO(10) 21

We construct a sequence {E;; 0 <i < 21} of subspaces of SO(10)of
length 21, using the cone decomposition {F;; 0 < i < 20} of Spin(7)
together with the multiplication of SO(9)again by using Yokota's CW
decomposition of classical groups.

Ei=FuU Fi_1XC(SS).
We also define a sequence of spaces
Ei C PI(QF;) U P~L{(QF;_1)xC(=QS?)

each of which is of cone length < i.
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Outline of the proof of catseq(SO(10) 21

Using Hi(a) = 0, we obtain that the sequence {E;; 0 <i < 21} of
subspaces of SO(10)is categorical and hence we have

O IR (JUMNRAE BOH2ERFE Br) FRBAIRIAH AT



Outline of the proof of catseq(SO(10) 21

Using Hi(a) = 0, we obtain that the sequence {E;; 0 <i < 21} of
subspaces of SO(10)is categorical and hence we have

catseq(SO(10)x 21
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Outline of the proof of catseq(SO(10) 21

Using Hi(a) = 0, we obtain that the sequence {E;; 0 <i < 21} of
subspaces of SO(10)is categorical and hence we have

catseq(SO(10)x 21

While we do not know whether the above sequence {E;; 0 <i < 21} itself
is a cone decomposition of SO(10)or not,
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Outline of the proof of catseq(SO(10) 21

Using Hi(a) = 0, we obtain that the sequence {E;; 0 <i < 21} of
subspaces of SO(10)is categorical and hence we have

catseq(SO(10)x 21

While we do not know whether the above sequence {E;; 0 <i < 21} itself
is a cone decomposition of SO(10)or not, we suspect that
Cat(SO(10))= cat(SO(10))x= 21, too.

Problem
Do the following three invariants for SO() coincide with each other? i.e.,

cup(SOf)) =? cat(SOf)) =? Cat(SOf))

O IR (JUMNRAE BOH2ERFE Br) FREIBZAHA



End

Thank you.




