注意: 距離空間 (または位相空間) X に対し , X 上のボレル集合体とは X の開集合族が生成する σ 加法族のことである .

問題 2-1 $\mathcal{B}(\mathbf{R})$ を \mathbf{R} のボレル集合体とする.

- (1). $\mathcal{E}_1=\{(a,b]\colon -\infty < a < b < \infty\}$ とおくとき, $\sigma[\mathcal{E}_1]=\mathcal{B}(\mathbf{R})$ を示せ.またこの問題の設定における「有限 左半開区間全体」を「有限右半開区間全体」「有限開区間全体」「有限閉区間全体」のいずれに取り替えても 同じ結論が成り立つことも示せ.
- (2). $\mathcal{E}_2 = \{(-\infty, b] : b \in \mathbf{R}\}$ とおくとき , $\sigma[\mathcal{E}_2] = \mathcal{B}(\mathbf{R})$ を示せ .

問題 2-2 $\mathcal{A}_0=\{\cup_{i=1}^n(a_i,b_i]\colon n\in\mathbf{N},\; -\infty\leq a_i\leq b_i\leq\infty\}\subset 2^\mathbf{R}$ とおくとき , \mathcal{A}_0 は有限加法族であることを示せ.ただし,簡単のために $(a,a]=\emptyset,\; (a,\infty]=(a,\infty)$ と約束する.また \mathcal{A}_0 は σ 加法族でないことも示せ.

問題 2-3 X を集合とし , $\mathcal{A},\mathcal{B}\subset 2^X$ を σ 加法族とする .

- (1). $A \cup B$ が有限加法族ならば, $A \cup B$ は σ 加法族であることを示せ.
- (2). $A \cup B$ が有限加法族にならない例を一つ挙げよ.

問題 2-4 $f: \mathbf{R}^n \to \mathbf{R}^m$ を連続写像とする. このとき \mathbf{R}^m の任意のボレル集合 C の f による引き戻し $f^{-1}(C)$ は \mathbf{R}^n のボレル集合になることを示せ .

Hint: まず $\{B \subset \mathbf{R}^m \colon f^{-1}(B) \text{ はボレル集合 } \}$ が σ 加法族になることを示すとよい .

問題 2-5 X を集合とする.

- (1) $A = \{E \subset X : E \text{ または } E^c \text{ は高々可算集合 } \text{ とおくと }, A \text{ は} \sigma \text{ 加法族になることを示せ }.$
- (2) X を非可算集合とし,(1) の記号を使う.このとき, $E\in\mathcal{A}$ に対して,E または E^c のどちらが高々可算かに応じて,それぞれ $\mu(E)=0$ または $\mu(E)=1$ とおく.このとき μ は可測空間 (X,\mathcal{A}) 上の測度になることを示せ.

問題 2-6 $X=\mathbf{R}^2$, $\mathcal{F}=\{A\times\mathbf{R}\colon A\subset\mathbf{R}\}$, $\mathcal{G}=\{\mathbf{R}\times B\colon B\subset\mathbf{R}\}$ とおく.このとき, \mathcal{F},\mathcal{G} はともに σ 加法族になることを示せ.また $\mathcal{F}\cup\mathcal{G}$ は σ 加法族か?

問題 2-7 (X,\mathcal{A},μ) を測度空間とする. $E_n\in\mathcal{A}\;(n\in\mathbf{N})\;$ が $\sum_{n=1}^\infty\mu(E_n)<\infty$ をみたすならば, $\mu(\overline{\lim}\,E_n)=0$ であることを示せ. (ボレル・カンテリの定理という確率論で重要な定理)

問題 2-8 (X,\mathcal{B},μ) は測度空間で, $\mu(X)<\infty$ とする. $\nu(X)<\infty$ となる有限加法的測度 $\nu\colon\mathcal{B}\to[0,\infty)$ が次の性質を持つとき, ν は実は可算加法的,すなわち測度であることを示せ.

 $\forall \epsilon > 0, \quad \exists \delta > 0 \quad \text{s.t.} \quad \mu(E) < \delta \ (E \in \mathcal{B}) \Longrightarrow \nu(E) < \epsilon$

問題 2-9 (X,\mathcal{A},μ) は測度空間で, (Y,\mathcal{B}) は可測空間とする.また写像 $f\colon X\to Y$ は,任意の $E\in\mathcal{B}$ に対して $f^{-1}(E)\in\mathcal{A}$ となるとする.このとき, $\nu(E)=\mu(f^{-1}(E))$ とおくと, ν は (Y,\mathcal{B}) 上の測度になることを示せ. (これを μ の f による像測度という)

問題 $\mathbf{2-10}$ (X,\mathcal{F},μ) を測度空間とする.

$$\overline{\mathcal{F}}^{\mu} = \{ B \subset X \colon \exists A_1, \exists A_2 \in \mathcal{F} \text{ s.t. } A_1 \subset B \subset A_2 \text{ and } \mu(A_2 \setminus A_1) = 0 \}$$

とおくと , $\overline{\mathcal{F}}^\mu$ は \mathcal{F} を含む σ 加法族になり , μ は自然にこの σ 加法族上の測度に延長することを示せ . (測度の完備化)

問題 2-11 次の (1), (2) はそれぞれ有限加法族 \mathcal{A}_0 が σ 加法族となるための同値条件であることを示せ.

- (1). A_0 の元からなる任意の単調増大列 $E_1 \subset E_2 \subset \cdots$ に対して $\bigcup_{n=1}^{\infty} E_n \in A_0$.
- (2). A_0 の元からなる任意の互いに素な集合列 E_n $(n=1,2,\ldots)$ に対して $\bigcup_{n=1}^{\infty} E_n \in A_0$.

問題 2-12 (X,\mathcal{F},μ) は測度空間で, $\mu(X)<\infty$ とする. $\mathcal{A}\subset\mathcal{F}$ とし, \mathcal{A} に属する任意の可算個の集合の合併は \mathcal{A} に属すとする $(\mathcal{A}$ が σ 加法族だとは仮定してない).このとき

- (1). $\mu(B) = \sup\{\mu(A) \colon A \in \mathcal{A}\}$ となる $B \in \mathcal{A}$ が存在する .
- (2). (1) における B は任意の $A \in A$ に対して $\mu(A \cap B^c) = 0$ をみたす.

問題 2-13 (X,\mathcal{B},μ) は測度空間で, $\mu(X)=1$ とする. $E_1,E_2,\ldots\in\mathcal{B}$ とするとき,以下を示せ.

$$\mu(E_k) \ge 1 - \frac{1}{2^{k+1}} \quad (k = 1, 2, \ldots) \quad \Longrightarrow \quad \mu\left(\bigcap_{k=1}^{\infty} E_k\right) \ge \frac{1}{2}.$$