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Abstract

Functional integral representations of the semigroups generated by Pauli-Fierz type Hamil-

tonians in quantum field theory are reviewed. Firstly we introduce functional integral repre-
sentations for Schrodinger type operators. Secondly those for Pauli-Fierz type Hamiltonians
are shown. Finally inequalities derived from functional integral representations are shown.
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1 Introduction

Congratulations on Prof.Toru Ozawa’s sixtieth birthday. It is my great pleasure to be able to
publish a paper on this occasion. I was a bit surprised to hear that he was “already” 60 years old,
as he always seems to be young and full of mathematical power. On the other hand, Prof. Ozawa
has been well known since he was quite young and has trained many excellent students, so I was
also surprised to hear that he was “only” 60 years old. I first met Prof. Ozawa around 1994
or 1995 at Hokkaido University, when he was already well known for his scattering theory for
nonlinear Schrodinger operators, and it is astonishing to think that he was only 32 or 33 years
old at the time.

I also thank Prof. Ozawa for always giving me words of encouragement whenever we were
together in conferences, and for inviting me to be a lecturer at SGU workshop to be held
at Waseda University in 2020. I was also excited to be invited to Prof. Ozawa’s sixtieth
birthday conference in 2021, but both were cancelled due to COVID 19, which I regret. In 2022,
after COVID19 subsided somewhat, I was grateful to be again invited to be a lecturer at SGU
workshop of Waseda University.

As an impressive memory of Prof. Ozawa, he gave me a question on the regularity of an
integral kernel appearing in Theorem 3.3 in this paper at the Ph.D. dissertation defense of
mine in 1996 in Sapporo. In one fourth of a century since then, the research of mine has been
fortunately progressed considerably and a massive book [73] has been published in 2020.

I wish that Prof. Ozawa will continue to take good care of himself and work hard on his
research for ever.

Our motivation of the investigation of functional integral representations of the semigroups
generated by self-adjoint Hamiltonians was to solve problems in the statistical mechanics. Our
interest has been then shifted to the construction of functional integral representations them-
selves, not only for Schrédinger operators, but also for relativistic Schrédinger operators and
Schrodinger operators with spin 1/2, etc. In this period we found papers [28]-[30] in physics
discussed functional integral representations for Schrédinger type operators, which were very
useful.

Furthermore, we were able to obtain functional integral representations for models coupled
to quantum fields. Fortunately, around 2014, we could prove that functional integral represen-
tations were useful tools for non-perturbative analysis of Hamiltonians in quantum field theory,
and our research were accelerated since then.

The following is a concrete explanation. The analysis of point spectra embedded in contin-
uous spectrum in quantum field theory had been investigated, and the research had turned to
analyzing the properties of their eigenvalues and eigenvectors. In particular a special attention
was payed to ground states. We refer to see [66] and references therein for the development of
the investigation of eigenvectors and ground states of models in quantum field theory. However,
since the corresponding eigenvalues are embedded eigenvalues, there was no established method
to analyze their eigenvectors.

From functional integral representations, we can define a measure on a path space, which



is called the Gibbs measure [73, p.195, p.378, p.256, p.491]. The Gibbs measure pgipbs can be
used to express the expectation value of a certain observable with respect to a ground state in
a non-perturbative way:

(Vg, OVy) = /FO(Q)dMGibbs(Q)7

where O denotes an observable and ¥, a ground state of a model. The basic models of quantum
field theory we are concerned are the Nelson model [111, 110, 112], the spin-boson model,
and the Pauli-Fierz model in non-relativistic QED [116]. The Pauli-Fierz model is the main
object in this paper. The Nelson model is an interaction model of charged particles linearly
coupled with a scalar bose field and has been greatly analyzed. The analysis of the renormalized
Nelson model has been also completed in a non-perturbative manner by using functional integral
representations in [16, 49, 74]. The spin-boson model describes a linear interaction between spin
(or two excited states) and a scalar bose field. The spectral properties of the spin-boson model
has been studied in [58] in terms of a functional integration. On the other hand, for the Pauli-
Fierz model, although a functional integral representation exists, we feel that its application
is still insufficient. We hope that some young researchers will read this paper and become
interested in this research.

In this article, we will introduce functional integral representations for the Pauli-Fierz type
models [64, 72, 65]. See Table 1 for the list of models we consider in this paper.

Pauli-Fierz type operator Hilbert space
1

H 5 (-iV = A? +V + Hy L2(R3) ® L*(Q)
1

H(p) | 50— Pr— A©) + H Q)

Hg (V= A2 +m)Y2 —m+ H+V | L2(R?) @ L2(Q)

1/2

Hg(p) | ((p—Ps— A0))* +m?) "~ —m+ He | L*(Q)

1 1
Hg 5(—1V—A)2+V+Hf—§a~B L2(R3 x Zy) @ L2(Q)

1 1
Hs(p) | 5(p=Pr—A(0))* + Hy = 5o - B0) | Zo® L*(Q)
Table 1: Pauli-Fierz type operators

A formal integration on the set of continuous paths due to Richard Feynman played an
important role in the modern quantum physics. It has already existed due to Wiener’s work
on Brownian motion initiated in 1923 when the quantum mechanics was not yet found!, and
it was Kac in 1949 who first showed a suitable framework, however, not for the path integral
directly, see [82, 83]. In contrast to Feynman integrals, a Feynman-Kac formula offers an integral



representation of semigroup e~ instead of unitary group e ¥ on a path space endowed with

a probability measure. Here we show below the reason why this improves the situation. Let

A(q,4;0,t) = /Ot <;q'2(s) = V(q(s))) ds,

where 2¢* — V(q) is a Lagrangian derived from the Legendre transform of Hamiltonian

1
h=—-A g
2 + V.
The formal expression below

(e ) (z,y) = C ‘ 1A (2:4;0,t) H dq(s) (1.1)
Cay 0<s<t

gives an integral kernel of the operator e for all ¢. Here dg(s) is Lebesgue measure for each s,
and €, the set of continuous paths ¢(-) : [0,¢] — R3 such that ¢(0) = z and ¢(¢) = y. The right-

1A(q,4;0,t)

hand side of (1.1) is Feynman’s integral, and e is a phase factor introduced by Feynman.

See Feynman'’s paper [38, 39]. Also we refer to see e.g., [2, 46, 41, 50, 80] for Feynman’s integrals.
Analytic continuation s — —is, ds — —ids and the replacement ¢(s)? — —¢(s)? in (1.1) lead to
the kernel

(e ) (x,y)=C / e Jo VIa)ds =5 fo d%ds TT dg(s). (1.2)

Cay 0<s<t

It is possible to define a mathematically meaningful measure dW[%’Z] (¢) whose formal expression

exp (- /0 t ;cj(s)zds) IT das):

0<s<t

is given by

The paths of a random process (Bt):>o called Brownian motion just have the required properties
and the Feynman-Kac formula

(e ) (z,y) = / e Jo VBN QUi (1)t >0, Y,y € R? (1.3)
€ k)

with ¢ = C([0,00), R3) rigorously holds. In particular, there is a measure supported on the

space C([0,00),R?) of continuous functions [0,00) — R?, and it can be identified as Wiener

measure W[%"Z} conditional on paths leaving from z at time 0 and ending in y at time ¢. Kac has

actually proved [81] that the heat equation with an initial data ¢(x):

of 1
—S = —CAf VY,
ot 2 (1.4)
f(2,0) = ¢(x),
is solved by the function
f(z,t) = / e~ Jo VB:()ds 5 B, (1)) AW (w). (1.5)
¢



Here W?* is Wiener measure starting from x at t = 0. Equation (1.4) is actually the same as
the imaginary time Schrédinger equation: See e.g., [18, 110]. The Feynman-Kac formula for the
Schrodinger operator h derived from the heat equation can be written as (1.5):

e f(a) = fa.t) = (L5).

We then construct functional integral representations for Schrodinger type operators [70, 71].
This paper includes a short review of [73, Chapter 3] and we add some new results. We

can construct functional integral representations of other operators, derived from quantum field

theory [60, 64, 72, 54, 65, 49]. Both functional integral representations are related each other.

A Schrodinger operator with a vector potential a = a(z) = (a1(x), az2(x), az(x)) is given by
1
5(0'(—1V—a))2+V, (1.6)

where o = (01, 092,03) is the 2 x 2 Pauli matrices given by

/(01 (0 i /1 0
T={10) 27\i o) =\ o =1/

On the other hand the Pauli-Fierz Hamiltonian with spin 1/2 is given by

%(a-(—iV—A))2+V+Hf, (1.7)

where the quantized radiation field A = A(z) = (A41(x), Aa(z), A3(z)) and the free Hamiltonian
H¢ are defined by

_ L ej Me—ikwa* . @(_k)e ika:a .

j==1

and
= 3 [ Ik (k. alk.
j=+1
Here a*(k, j) and a(k, j) are the creation and annihilation operators, respectively. They formally
satisfy [a(k,j),a*(K',j")] = 6(k—Fk')d;;. Physically ¢ denotes the Fourier transform of the charge
distribution ¢. If ¢(x) = §(z), then
(¢ = constant.

Since (1.6) and (1.7) are of similar forms, it would be easy to predict that the functional integral
representations would also be similar. On the other hand, we can know the effect of quantum
field by comparing a functional integral representation for (1.6) with that of (1.7).

This paper is organized as follows. In Section 2 we prepare stochastic tools and introduce
functional integral representations for Schrodinger type operators. See the list of operators in
Table 2. Section 3 is devoted to investigating the Pauli-Fierz Hamiltonian and its translation
invariant version. Section 4 is devoted to investigating the relativistic Pauli-Fierz Hamiltonian
and its translation invariant version. In Section 5 the Pauli-Fierz Hamiltonian with spin 1/2 is
studied. This section is rather complicated and several statements are shown in Appendices B
and C. In Section 6 we derive energy comparisofn inequalities for the Pauli-Fierz type Hamilto-
nians. Section 7 is the concluding remarks.



2 Schrodinger operators by path measures

In this section we introduce functional integral representations of Schrodinger type operators.

Schrédinger operator

1

h —5A+V

1. . 5
h(a) 5(—1V — a) +V
hr(a) (—iV —a)2 +m)V2 —m 4+ Vv

1, . ) 1
hs(a,b) 5(—1V—a) +V_§U'b
hSR(CL,b) ((—iV—a)2_g.b+m2)1/2_m+V

Table 2: Schrodinger operators, a:vector field, b:magnetic field, V:potential, o:spin

2.1 Stochastic preparations

In order to construct functional integral representations of the semigroups generated by Schrodinger

type operators we will need several independent stochastic processes (By)i>0, (Nt)i>0 and (13)¢>0-

See Table 3. Here we explain properties of these stochastic processes. We denote the expectation

with respect to path measure W¥ starting at x by

[ Fawe =B 1)

space

(Brownian motion) We give the definition of Brownian motion. (B;);>0 = (B}, BZ, B})i>0

is 3D-Brownian motion on a probability space (£, B, W?¥) iff

(1) W¥(By =) =1, i.e., By(w) = z for almost surely w € Z7;

(2) the increments (B, — By, ,)i<i<n are independent Gaussian random variables for every

collection 0 =ty < t1... < t, with the mean and covariance are given by

respectively;

Ey[Bl'] =0,
Ew[BEBY] = 6u(s A t),

(3) the map t — By(w) is continuous almost surely w € 2.



By the definition of Brownian motion, B; — By and B;_, have the same distribution on R3, and
B, — Bs; and B, — B, for v < u < s <t are independent. The distribution of B; — B, for t > s
is given by

I, (z) = (2n(t — 5)) 3/ 2 [2l*/2(=s)

Thus it follows that
n
B Bryve o Bl = [ o) [T Gy = gy (2
j=1

with yg = x and ty = 0. Brownian motion is also Markov and then

ESy[f (Bits) | 5] = Eiylf (Bers) | 0(Bs)] = Ep [f(By)]

for any z € R3, where Ef\j[] is EY,[.. ] evaluated y = Bs, Fs = 0(B, | 0 < u < s) is the
minimal sigma-filed generated by {B, | 0 < u < s}, and o(B;) by Bs.

Remark 2.1 One concrete realisation of Brownian motion is as follows. There exists the so-
called Wiener measure W* on C([0,00);R?) such that By(w) = w(t) for w € C(]0,00); R?)
becomes Brownian motion under W*. In this paper we do mot choose any special Brownian
motion unless otherwise stated.

By (2.1) Brownian motion satisfies that
t
EZ[f(By)] = e2®f(z) ae. ze€R?
and hence the generator of Brownian motion is
1
—A.
2
Let M(0,t) be the set of measurable functions f : [0,00) x 2~ — R3 such that
(1) f(t,) is C3-valued F-measurable for each t,

(2) ESLfy £ (s, w)|?ds] < co.

Then for f € M(0,t) one can define the stochastic integral X; presented as

X = /Otf(s,fw) - dBs.

X, satisfies that E®[X;] = 0 and Ito-isometry E?[|X¢|?] = fg E®[|f(s,-)[*]ds. The stochastic
integral plays an important role through this article.

Now we define the so-called Lévy process. We refer to see e.g., [4, 120] and [99, Section 3.1].
A stochastic process (X¢)¢>0 on a probability space (%, B, W) is a Lévy process iff

(1) W(Xo=0) =1;

(2) the increments (X;, — X+, ,)i<i<n are independent random variables for every collection
0=t <tr...<tp;



(3) X; — X, and X;_ have the same distribution for every 0 < s < ¢;
(4) The map t — X;(w) is stochastically continuous, i.e.,
ImW(|Xs — Xi| >¢)=0
s—t
forallt > 0 and € > 0.

Brownian motion is a Lévy process. Let (X¢)i>0 be a Lévy process on (%, B, ). It is known
that there exists a Lévy process (Y:)i>0 such that Yi(w) = Xi(w) for w € & \ N;, where
w(Ny) =0, and t — Y;(w) is right-continuous and has left-limits for almost surely w. See e.g.,
[99, Corollary 3.5]. (Y%)i>0 is called the cadlag version of (X;)¢>0. In what follows we assume
that Lévy processes are right-continuous and have left-limits for almost surely w. Note also that
a Lévy process is a Markov process.

We introduce two Lévy processes below.

(Poisson process) A nonnegative integer-valued Lévy process (N:);>0 on a probability
space (%, By, 1) is called a Poisson process iff E,[e?Nt] = et =1 for u € R.

The distribution of Ny — N, on R is given by p(u) = e(t=5)(€"=1) 4 € R. It holds that

n

t
w(Ny =n) = ﬁe_t, n € NU{0}.

Since Y2 o u(Ny = n) = 1, we have
En[f (N:)] = Z Ef(”)e_t'
n=0

The poisson process (IVi):>0 is also Markov and its generator is L given by

Lf(z) = flx+1) = f(x).

We define integrals with respect to (N¢)i>0 in terms of the sum of evaluations at jumping times,
i.e., for g we write

b
/g(s,Ns)st: Z g(r,Ny).

a<r<b
Nyt #Np_

Here N,y = lim,), Ny and N,_ = limg, Ns. Then

E g(r, Ny_), Npy = Np_,
a<r<b
Npp #Np_

b+
/ 9(37N8—)st:
a Z g(r, Np—) + g(b, Ny),  Npy # Np—.

a<r<b
Ny #Np

The expectation of f;Jr g(s, Ns—)dNj satisfies that

E [/:+ g(s, NS_)dNS] —E [/f g(s, NS_)ds} .

9



Let
Zo ={—1,+1}. (2.2)
By the Poisson process we also define a Za-valued stochastic process (0;)¢>0 on (£, By, 1) by
0y = (—1)Ne. (2.3)

This is called the spin process in this paper. Stochastic process (6;);>0 is useful to study
functional integral representations for Schrodinger operators with spin 1/2.

(Subordinator) A 1D-Lévy process (1;);>0 is called the subordinator iff whenever s < ¢
implies that Ty < T; almost surely.

Let (T})¢>0 be a subordinator on a probability space (2., By, v). (T¢)¢>0 is nonnegative and
non-decreasing. Thus it seems to be "random time”. Let us consider a subordinator (7}):>0
such that its Laplace transform is given by

EO [e—uTt] _ e—t((2u+m2)1/2—m) u >0, (2.4)

)

where m > 0 plays a role of the mass of quanta in physics. The existence of the subordinator
(2.4) is established. See e.g., [99, Example 3.90]. Comparing E3),[f(B;)] = e%Af(x) and (2.4),
we can see that

ECES,[f(Br,)] = e t(-ATm)Y2=m) g2y ge. z € R3,

Hence the generator of the compound process (Br,)¢>0 is the free relativistic Schrodinger oper-
ator:
—(—A+m*)Y2 +m,

The distribution of 73 on R is given by

t 1 [/t?
p(r,t) = o exp (—2 <7‘ + m2r> + mt) ]l[o,oo)(r).

Furthermore the subordinate spin process (6r,)¢>0 is used for constructing functional integral
representations for relativistic Schrédinger operators with spin 1/2.

We use the shorthand: Ef)ESE) = E**0, EfEY = E** and Ej,, = E* etc. The role of
these three stochastic processes is as follows. Clearly, Schrodinger operator —%A 4+ V can be
described by (Bt)¢>0 under V. The spin process (6;):>0 results from Schrédinger operators with
spin 1/2. Finally, the subordinator (73):>0 appears in relativistic Schrodinger operators. A
particular combination of these three independent stochastic processes then yields functional
integral representations of (f,e ¥ g), where K = h, h(a), hr(a), hs(a,b), hsr(a,b). See Table 2.
For each K we shall show that

(f.e K g) = / EY [F(€0)g(&)¢%]dp(y),

where (&¢)+>0 is a stochastic process, W a path measure and e?t an integral kernel. The generator
—G of & satisfies that

(F.e %) = [ Bl IfEaeldnw)

10



process space measure

Brownian Motion (Bt)i=o | & w
Poisson process (Nt)i=o | Zu I
Spin process (04)+>0 2 L
Subordinator (T3)e=0 Z, v

Subordinate Brownian motion | (Bp)i>0 | £ X 2, | W xv

Subordinate spin process O1)i>0 | Zux Zy | pxv

Table 3: Stochastic processes

As is mentioned above, we then have examples of generators below:
t ErF
(Fet89) = [ E(f(Balg(Bu)lde,
—t((— m2)/2_m €T r
(et iomgy [ B2 B0)g(Br,

Here we assumed that the space dimension is three, it can be however straightforwardly extended
to any dimension.

2.2 Schrédinger operators h(a)

We begin with showing function integral representations of e~ (%) with Schrodinger operators
h(a) without proofs as an introduction. We refer to see e.g., [110, 127, 128, 1] of functional
integral representations of Schrodinger operators and its applications. Let V : R — R be a
measurable function and a Schrodinger operator is defined by

1
h=—3A+V

acting in L?(R3). The following proposition is basic for functional integral representations.

Proposition 2.1 Let V € L>®(R?). Then for f,g € L*(R?),

(f,e"g) =/ E*(f(Bo)g(Bi)e o V(BI%]dz. (2.5)
R3
In particular,

(e g)(x) = E[e™ fo V(B g(B,)]. (2.6)

11



Several proofs of this proposition are known. It involves (1) application of It6 formula [79]:

de fo VB f(By)
:de—f(fV(Bs)ds.f( By) +e - Jo V(Bs)ds -df(By) +de” Jo V(Bs)ds -df(By)

— ¢~ Jo V(B <_V(Bt)f(Bt) + 2Af(Bt)> dt+e b V(B)dsg £(By) - dBy,
and (2) application of the Trotter product formula [133, 22, 86, 87, 88|:
et = lim (e_%(_%me_%vyl
Here dX; denotes dX; = X; — Xy. Thus
de o VP f(By) = e Ji VP £ (By) — f(Bo).

This formula can be extended for general potentials V. Furthermore introducing a vector po-
tential a = (ay,az,a3) : R® — R3, we define Schrédinger operators with a vector potential a
by

h(a) = 1( iV —a)? 4V

Proposition 2.2 Suppose that a € (CE(R3))? and V € L>®(R3). Then for f,g € L*(R3),

(f, e~th(@) / o(B)eZ . (2.7)

7 = —i/ota(Bs) odB, — /OtV(Bs)ds (2.8)

¢ t 1 [t
/ a(Bs) odBs = / a(Bs) -dBs + — / V - a(Bs)ds.
0 0 2Jo

(™M f) (@) = E*[e” f(By)]. (2.9)

Here

with

In particular,

We give a comment on this formula. Since h(a) is self-adjoint, it follows that

(f,e MW g) = (g,e~th(@) f).

Integral kernel Z; however has the purely imaginary part —i fot a(Bs) o dBs. For a moment, we
may feel odd. We are often asked a question on it by probabilists. We can see that

(02 1) = [ Belo(Bo) (B o = | Blo(Bo) f(B)e?|da
= [ Elola) F(Bu+ )P,

12



where (Bg)o<s<t = (Bt—s — Bt)o<s<t is also Brownian motion, and
= t . . t .
Zy(z) = +i/ a(Bs + x) odBs — / V(Bs + x)ds.
0 0
Chang variables as x — y — B, = y + B;. Hence we can compute as

t t
- / Viy— By + By)ds = — / V(y+ Bu)du,
0 0

while that of the stochastic integral is

t t t
—H/ a(z + Bs) odBs = —I—i/ a(ly — B+ Bs) odBs = —i/ a(y + Bs) o dBs.
0 0 0

Note that signature + is changed to signature —, because of the fact

t 2" t
. 1
/ a(By)odBy = lim Y = <a(BLt) +a(B<H)t)> (Bmm - Bjt) - —/ a(By) o dB,.
0 n—o00 — 2 om DI 57 om 0

We conclude that

(g, eth(@) f) = /R3 E¥[g(y + Bo) f(y)e?]dy = (f,e M@ g).

The self-adjointness of h(a) and the existence of the purely imaginary part —i fot a(Bs) o dBs
become compatible.

2.3 Schrodinger operators with Kato-class potentials

We consider Schrédinger operators with singular potentials. Kato-class is a class of singular
potentials but we can define Schrodinger operators with Kato-class potentials as self-adjoint
operators by functional integral representations.

Definition 2.1 (1) V :R? — R is called a Kato-class potential whenever

i sup, | o=Vl =0 (2.10)

r—0 zERA

holds, where By(x) is the closed ball of radius r centered at x, and g(x) is the function
given by

|z, d=1,
g(x) = ¢ —log|x|, d=2, (2.11)

We denote the set of Kato-class potentials by IKC(R?).

(2) V is a local Kato-class potential whenever Vi€ K(R?) for any compact set K C R, We
denote the set of local Kato-class potentials by Ko (R?).
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(3) V is Kato-decomposable whenever V=V, — V_ with Vi € Kjoc(R?) and V_ € K(RY).

We give non-trivial examples of Kato-class potentials for d = 3. Notice that

1 1 1/p 1/q
——|V(y)ldy| < / ——dy / V(y)|dy ;
fo TV (Brm o=yl Rl

with 1/p+1/q¢ = 1. When p < 3, the first factor goes to zero as r — 0. Thus V' is Kato-class if
SUP,cR3 fBT(x) |V (y)]|9dy < oo for some r > 0 and some ¢ > 3/2. Thus

1
V(x):mT_e, €>O

is Kato-class.

We are in the position to prove exponential integrability of integrals over some potentials.
When V_ € K(R?), it can be seen that the exponent eJo V(Bs)ds g integrable with respect to
Wiener measure so that E* [efot V(Bs)ds] is finite for all x.

Lemma 2.3 ([73, Lemma 4.105],[19]) Let V € K(R?) and V(z) > 0 a.e. x € RL Then
there exist B,y > 0 such that

sup I[Eg”[eft;S VI(Bs)ds) < neft, (2.12)
z€Rd

Furthermore, if V€ LP(RY) with p > d/2 and 1 < p < oo, then B < c(p)l/EF(5)1/5|]VH,1/€, where
(2m) =4/ p

€= 1—% and ¢(p) = { (2m)~ 2 g/ i i’ with %—i—% = 1. In particular LP(RY) C K(R?)
forp>d/2 and 1 < p < 0.
Let V be Kato-class. Define the map K; on L?(R3) by
(Kif) () = B*[e™ b V5 f(B))]
Lemma 2.4 {K; :t > 0} is a symmetric Cy-semigroup on L?(R3).

Proof: The boundedness of K; follows from Lemma 2.3. Define B, = B;_s — By, 0 < s < t, for
a fixed t > 0. We see that Bs is also a Brownian motion. Thus

(1. Kig) =B | [ T BV Oy 5, 4 jas|.
R
Changing the variable z to y = B, + x, we obtain
-
(1K) =B | [ = Boe KV Brieg(y)ay

- /R3 EO[F(y + By)e~ Jo V(Bi=sH)ds g ()| dy = (K, f, g), (2.13)
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)ds

i.e., K; is symmetric. Write now Z; = e~ Jo V(B)ds - The semigroup property follows directly

from the Markov property of Brownian motion:
(KKif) () = B [ZEP(Z,f (By))]
= B [E*[Zye fo VB g (B )| ]
=E" [Zs4tf(Bstt)] = Kspi f(2).

The strong continuity of ¢t — K is implied by
[Kef = fl| <BO[lleJo VEFBIS (4 By — f[]] = 0

as t — 0, by the Lebesgue dominated convergence theorem.
QED

By the Stone’s theorem for semigroups there exists a unique self-adjoint operator K such
that

Ky =e 'K
for any t > 0. For example we can define a self-adjoint operator K = —%A — ﬁ for 0 <a <2,
since ﬁ € K(R?) for 0 < a < 2.

—%A is defined as a self-adjoint operator in the Hilbert space L?*(R?) and esd by the spectral
measure associated with —A. Hence e22 f is well-defined for any f € L?(R?), while it can be
represented as e%Af(x) = E®[f(B,)] for each € R3. We note that the right-hand side E*[f(B;)]
can be defined not only for f € L*(R3) but also f € LP(R?) for 1 < p < co. More precisely
e22f for f € LP(R3) is defined by E®[f(B;)]. We can show that 22 maps LP(R3) to L(R3) for
every 1 < p < ¢q < 0. For —%A + V with Kato-decomposable V' we can show the statements
below:

(1) Let V =V, — V_. Suppose that V; € L}, (R3?) and V_ € K(R?). Then for each z € R3,
E*[e” Jo V(Bu)du f(By)] is well-defined. We can however say more strong statements for
kato-decomposable V. Let V be Kato-decomposable and f € LP(R3) for 1 < p < oo.
Then for every t > 0, z +— K;f(x) is continuous [1].

(2) Let V be Kato-decomposable. Then for every 1 < p < q < oo, K; maps LP(R3) to L(R3)
as bounded operators, i.e., || K¢ fl|Loms) < C| ] Lr(wr3)-

2.4 Schrédinger operators with spin 1/2 hg(a,b)

In this section we discuss functional integral representations for Schrodinger operators with

spin 1/2. We refer to see [31, 29, 42, 30, 70, 71] for functional integral representations of

Schrodinger operators with spin 1/2. Since the Trotter product formula holds even when there

is spin, it is easy to see that a functional integral representation can be obtained like Schrodinger

operators, but an infinite product of matrices appears in the integral kernel. It may be possible

to have an exact form of the infinite product of matrices, but we will introduce another way.
Let 0 = (01,092,03) be the 2 x 2 Pauli matrices given by

0 1 0 —i 10
(i) = (00) =0 )
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ojs are traceless symmetric matrices. Consider the R3 x Zy-valued joint Brownian and jump
process
X x Xy > (w,m) = X(w,m) = (By(w), 0;(m)) € R® x Zy

with initial value Xo. The generator of (X;)¢>0 is

1
CR)Z:EZ&__UFa
where o is the fermionic harmonic oscillator defined by
1 _ .
op = 5(03 +i02)(03 —i02) = —01 + Taxa.

Let b = (b1, be, b3) be a magnetic potential, and
1 1
hs(a,b) = 5(—iV—a)2—§a.b+V (2.14)

be a Schrédinger operator with spin 1/2 defined in C? ® L?(R3). In physics a Schrodinger
operator with spin 1/2 is defined by

1
(0 (=iV = a))? + V.
We can see that

%(U (=iV —a))?4+V = }(—iV —a)? - %U -rota +V

2
and b = rota. In this section however we assume that a and b are independent vectors in (2.14).

We identify C2 @ L2(R?) = LA(R® x Zs) by C2 @ LA(R%) > (}}) = f(,") € LA(R? x Zy),

where f;(z) = f(x,j). See Table 5 in Section 5. The proposition below is established.
Proposition 2.5 ([31, 70]) Let a € (CE(R%))3, b € (L®(R?))? and V € L>®(R3). Suppose

that
d | bl ™ e—ly—zI? /(28)d
/s/}RB og — \/1 +2 3/2 Y < 00
for all (z,t) € R? x R*. Then
(f7 —thg( ab tZ/ Exa XO Xt) Zt]d (215)
a€Zs
Here
t t
Zy = i/ a(Bs) o dBs / V(Bs)ds
0 0
t 1 t+ 1
+/ 2¢9Nsb3(BS)ds+/ log <2(b1(BS)—i9Ns_b2(Bs))> dNg. (2.16)
0 0

Note that inserting V = 0, a = (0,0,0) and b = (2,0, 0) yields that hg(a,b) = —3A — o1 and
t+
Zy = / log 1dN, = 0.
0

Hence it follows that
1
¢S [ B TRg(X0e e = (felen 33 00g) = (£ (R0,

a€Zs
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2.5 Relativistic Schrodinger operators hg(a)

We consider relativistic Schrodinger operators. We refer to see [28, 20, 70] for functional integral
representations for relativistic Schrodinger operators. In the relativistic case, the subordinator
explained above appears in addition. Let

hr(a) = ((=iV — a)? + m*)? —m + V.

When V = 0, we can see that
Eg[ethh(a)] _ efthR(a)

by the definition of the subordinator (7});>0. Hence by

(f.e7Mg) = /]R EF[F(Bojg(B)e o PPy,
we have

(f, e thrl@g) = /R E=O[F(Bo)g(Bz, e~ o ‘a(B)dBx] g (2.17)

We have the proposition below.

Proposition 2.6 ([28, 70]) Suppose that V € L*(R3), a € (L2 (R?))® and V - a € L} (R3).

loc loc
Then
(e lg) = [ B[ TBlg(Br)e e, (218)
where
T t
Zy = —i/ a(Bs) o dBs —/ V(Br,)ds. (2.19)
0 0

Proof: The proof is an application of the Trotter product formula and (2.17).
QED

2.6 Relativistic Schrodinger operators with spin 1/2 hgr(a,b)

We consider functional integral representations for relativistic Schrodinger operators with spin 1/2.
Combining the relativistic case and the spin case well, we can get functional integral represen-
tations for relativistic Schrodinger operators with spin 1/2. We refer to see [32, 70, 71] for
functional integral representations for relativistic Schrodinger operators with spin 1/2. We de-
fine the subordinate process (¢¢)¢>0 in terms of the R3 x Zg-valued stochastic process (Xt)e>0 =

(Bt 01))i>0:
X x Xy x Xy 3 (w,mywz) = q(w, m, w2) = (B, (u) (W), 07, () (M) € R3 x Zs.

In a similar manner to (X;);>0, we can identify the generator of (g;);>0. The generator of (¢:)¢>0
is

G =—(—A+20p +m»)Y2 +m. (2.20)
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This is obtained through the equalities

Z /RS .0 [mg(%)} de =E° Z /}R3 Ef/vaxu [mg(%)} dz

a€Z2 QaEZ2

— EO[(f,e Tt 38 r) g)] = (f,e7'Cy).

Hence it follows that (2.20) is the generator of (g:)¢>o.
Let
hsr(a,b) = (—iV —a)? —o - b+ m2)1/2 AV

be a relativistic Schrodinger operator with vector potential a, magnetic potential b and spin 1/2
defined on C? ® L2(R3). Let p(r,t) be the distribution of T, on R.

Proposition 2.7 ([32, 70]) Let V € L®(R?), a € (L?

2 (R®)? and V-a € LL _(R?). Suppose
that b € (L™®°(R3))? and

loc

T "as [ loe (LvmmrTRme)| S
[ oty [as [ frow (G300 )| i <
for all (x,t) € R® x RT. Then
(e anteg) = 3= [ B0l Flangla)eJds, (2.21)
R3

a=0,1

where

Ty t T: 1
Zi==i [ aBodB~ [ V(Br)ds+ [ Joxba(Bds
0 0 0
T+ 1
—|—/ log <2(b1(Bs) — iQNSbQ(Bs))) dN;. (222)
0

Note that V =0, a = (0,0,0) and b = (2,0,0). Then hggr(a,b) = (—A — 201 + m?)*/? —m and
7y = fOTtJr log 1dN,; = 0. Hence it follows that

> /Rg E=0eT f(go)g(ar)e?|de = EVeTt(f, e~ TH(m 2247 g))
a=0,1

= (f, e—t((—A—201+m2)1/2—m)g)'

We exhibit all the results mentioned above in Table 4.

2.7 Brief summaries of applications

There are many applications of functional integral representations to spectral analysis of Schrodinger
operators. We refer to see e.g., [127]. Here are some of them.

(Singular potentials) By functional integral representations we can define a Schrodinger op-
erator with a singular potential V. E.g., Kato-class potentials (see Definition 2.1). We define
Kif(z) = E*[e” I V(Bs)ds £(B,)] for a Kato-class potential V. One can show that K, defines a
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(S)g}gggé?ger space path space Eptrocess ganerator 1‘”/1‘1/easure IZI'nel
h(a) R3 P B, %A W (2.8)
hr(a) R3 X x %, Br, —(—A+m)Y2 +m W xv (2.19)
hs(a,b) R3XZy | & x %y X; = (B, ) %A —oF W X p (2.16)
hsr(a,b) R¥xZy | & X Zux %y | @t =(Br,01) | —(—A+20p +m)Y24m | Wxpxv | (222)

Table 4: Schrodinger operators

symmetric Cp-semigroup on L?(R?). Thus there exists a unique self-adjoint operator K such
that K; = e~ by the Stone’s theorem.

Functional integral representations of e 7 are also useful to study properties of Schrédinger
operators with singular potentials. It includes Klauder phenomena which yields

. 1 1

for some singular V. See [33, 34, 124].
(Ergodic properties) [36, 37, 117] From the formula

e thg) = ‘.. ]de
(re ) = [ Bl e,

one can immediately see that (f,e *g) > 0 for any f,g > 0. This derives that e~" is positivity
improving or ergodic.

(Spatial decay) [1, 19, 20, 71] If h admits an eigenfunction ¢ at eigenvalue FE, then e "¢ =
e Fl¢ and hence the identity

¢=e"""Eg (2.23)

follows for any ¢t > 0. Thus this eigenfunction can be represented in terms of an average over
the paths of a stochastic process. This makes possible to obtain information on the spectral
properties of h by probabilistic means. Let h = —%A + V. Then we have

o(x) = PR [~ o VB (By)]. (2.24)
From this we can see e.g., the spatial decay of ¢(x) from both upper and lower. While we define
Xi(z) = ePe Jo V(Bsta)ds (B, 4 x).
It can be shown that (X (z)¢)i>0 is a martingale and then
EO[Xinr(2)] = E°[Xo(@)] = o(x)

for any stopping time 7. Choosing a suitable stopping time 7, we can also estimate the spatial
decay of ¢(z) from both upper and lower. We refer to see e.g., [20].
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(Hypercontractivity) [27, 25, 26] It is not hard to establish that ¢®/2 : LP(R%) — L9(R3)
for every 1 < p < g < oo. We can extend this to e . From (2.24) and the Riesz-Thorin
interpolation [73, Lemma 4.108] we can also show that e~ is hypercontractive. ILe., et :
LP(R3) — LI(R3) for every 1 < p < q < <.

(Smoothing effect) [1] For suitable V' we can see that
T Ex[ef fJ V(Bs)ds¢(Bt)]

is continuous. E.g., V =V, — V_ with Kato-class V} and local Kato-class V_. From this the
spatial continuity of z — ¢(x) can be obtained by (2.23).
(Lieb-Thirring inequality) [97, 98, 93, 94, 24, 95] The number of non-positive eigenvalues

N =+#{e|ecoy(h),e<0}

—th

of h can be also estimated by using the functional integral representation of e™*"*, which is known

as Lieb-Thirring inequality:
N < ag/ WV (2)]*2da.
R3
This inequality can be extended to general Schrédinger type operators. In general for
Y =U(-A)+V
with a Bernstein function ¥ [121], it can be seen under some conditions that

N < ag,w/ (VL (2)])3 %A
R3

Here ¥~ is the inverse function of ¥. The examples of Bernstein functions include ¥(z) = 2
for 0 < a < 1and ¥(z) =1—e P for > 0. Let U(z) = /z. Then N < agy [ps [V-(z)[*dx
follows. See [24].

(Non-relativistic limit) [67] Let ¢ be the velocity of the light. Let T;(c) be the subordinator

such that
EO [efuTt(c)] — 67t(\/202u+m2c47m02)
v .

Thus one can show that y

lim ED[f(Ti(c))] = f(—)

c—00 m

for any bounded continuous function f. The right-hand side f (%) is deterministic. Let

he =V —A +m2ct —mc® + V.

Thus by (2.18) one can see that

lim (f,e"eg) = lim | E*°[f(Bo)g(Bre)e Jo V' Er@)®dz

c—00 c—=00 Jp3

- /Rs E”[f(Bo)g(Bt)e” o VB 4z = (f, et ATV)g),

m

Applications mentioned above are available not only for h but also other Schrédinger oper-
ators h(a), hgr(a), hs(a,b) and hggr(a,b).
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3 Pauli-Fierz model

3.1 Newton-Maxwell equation

Consider a single classical particles in the configuration space R3, interacting with an electro-
magnetic field. The particle has an assigned mass m = 1 and a charge distribution ¢, and their
dynamics is completely characterized by their momentum p € R? and position ¢ € R3. On
the other hand, it is convenient for our purposes to describe the electromagnetic field in the
Coulomb gauge by a complex vector field:

a=(ay)r=12:R*—C.

Thus the Hamiltonian of the Newton—Maxwell system takes the form

Hp.0.0) = 50— A@.)’ + V@) + 3 [ axmlkiarkdk

2 A=1,2
This leads to the Newton—-Maxwell equations:
OH
Vip = _37’
q
OH
Vig= 5"
g OH
IVtOé)\(k) = 8@7(]{;)

Hence we obtain

(NM)

The model considered in this paper is the so-called Pauli-Fierz model [116], which is the quan-
tized version of H(p,q,a). In the classical limit, i — 0, of the Pauli-Fierz model leads to the
Newton—-Maxwell equations. We refer to see [3, 131].

3.2 Pauli-Fierz Hamiltonian

The Hamiltonian of non-relativistic QED is defined as a self-adjoint operator on a Hilbert space.
The Pauli-Fierz Hamiltonian describes the minimal interaction between electrons and a quan-
tized radiation field, where electrons are treated as quantum mechanical matters and the num-
ber of electrons is fixed at one. Hence the Pauli-Fierz Hamiltonian can be interpreted as a
Schrédinger operator of one electron coupled with a quantized radiation field. We refer to see
[125, 44, 7] for tools of quantum field theory. Let

H=L*R)eF
be the Hilbert space describing the joint electron-photon state vectors. Here

F = F(L*(R? x Zy))
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is the boson Fock space over L?(R3 x Zy). Here the boson Fock space F(K) over K is defined by

[e.e]

F(K) = PleiK],

n=0

where ® denotes the n-fold symmetric tensor product. See Appendix A for the fundamental
facts on boson Fock spaces. The elements of the set Zy account for the fact that a photon is a
transversal wave perpendicular to the direction of its propagation, thus it has two components.
See Figure 1. The Fock vacuum in F is defined by

Q=10030---.

We identify H as the set of F-valued L?-functions on R3:

53}
H = Fdx. (3.1)
R3
This will be used without further notice in what follows. Let a(f) and a*(f) be the annihilation
operator and the creation operator on F smeared by f € L?(R3 x Zs), respectively. Then

[a(f)sa*(9)] = Y (fi:95):
j=%1
[a(f), alg)] = 0 = [a*(f), a* (9)].
We use the identification L?(R3 x Zy) = L?(R3) @ L?*(R?) and set
([ =d(f®0), d(f,-1) =d (00 ),
where a? stands for either operator. The finite particle subspace of F is given by

Fin = {0 = {12 w0 = 0 for all m > N with some N}.

Next we define the quantized radiation field with a cutoff function ¢. Put

ol (z) = iﬁ’ii (ke € L(RD),

~—

5 (z) = 95(;(’2) () € L2(RY),

for z € R3, j = £1 and pu = 1,2, 3, where w is the dispersion relation defined by
w(k) = |k|.

Here ¢ is the Fourier transform of the charge distribution . The vectors e™!(k) and e~!(k)
are called polarization vectors, that is, e*!(k), e~ (k) and k/|k| form a right-hand system at
k € R3;

e'(k) el (k) =6, €(k) k=0, e(k)xe 1 (k)=k/K|

The quantized radiation field with cutoff function ¢ is defined by
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k propagation of light

0 e (k)
€+1(k)

Figure 1: Polarization vector

Aul) = fZ J)+a(@(@).0), n=123

j==%1

In the case of ¢/\/w € L*(R?) and p(k) = $(—k), A, (z) is symmetric, and moreover essentially
self-adjoint on F, for each x € R3. We denote the closure of A, (z)[,, by the same symbol.
A, is a self-adjoint operator on

D(A,) = {F € H‘F(x) € D(A,(z)) ae. ¢ and / | A (2) F(z)|2dz < oo}

and acts as (4, F)(z) = A,(z)F(z) for F € D(A,,). Since k- €/(k) = 0, it implies the Coulomb
gauge condition
Ve A=0.

This in turn yields zizl[vﬂ, A,] = 0. The formally it is written as

Z /R ) ( e’ikxa*(k, §)+ sb\(/%)e“k‘”a(k, j)) dk.

]:i:l

Let us explain the term 2%dk in A u(z). Let

VIF
Hp={keR*|k-k=m%k >0}

be called mass hyperboloids. Here k = (kg, —k1, —ka, —k3). The Lorentz group .Z is the set of
linear transformations on R* that preserve k - l i.e.,

ANe Liffk-1=Ak-Al Vk,1eR.

The restricted Lorentz group .,Zﬂl is the subgroup of .2 such that A = (Au)o<u<3 € .,2”1 iff
detA = 1 and Agg > 0. The mass hyperboloids is invariant under the restricted Lorentz group
fi Let V,, : Hy, — R3 for m > 0 and Vo : Hyg — R3\ {0} for m = 0 be the homeomorphisms
defined by Vm(k‘o, kl, kig, k‘g) = (kil, k‘g, k?g) Define

1
p(E) = / dkidkodks, E C H,,.
Vi (B) K3 + k3 + k2 + m?2
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Then p is a measure on H,,. The measure p is invariant with respect to all A € .Zl, ie.,
p(AE) = p(FE). From this the measure

1
——=dk

V1Kl

on R3 is called the relativistically covariant measure for m = 0. If ¢ # 1, then

V1Kl

breaks relativistic covariance.

Next we introduce the free field Hamiltonian on F. Let us consider the massless and free rel-
ativistic Schrodinger operator v/—A on L?(R3). Then the N-body massless and free relativistic
Schrédinger operator is given by

N
PIRVETY (3.2)

J=1

on L2(R3N) = @N[2(R3). The free field Hamiltonian Hy on F is the direct sum of (3.2), and
then given in terms of the second quantization of w(k):

Hi = dI'(w).

It leaves the n-particle subspace F(" = @7 L2(R3 x Zj) invariant, i.e., for f € F™),

N
Hef (koo kn,guseodn) = | D w(ky) | flkr, o kst )
j=1

See Appendix A.2 for second quantizations.
The Pauli-Fierz model describes the minimal interaction between an electron and the quan-
tized radiation field. The electron is described by the Schrédinger operator

1
Hy=—3A+V

in L?(R3). The Hamiltonian for the electron decoupled with the quantized radiation field is
given by
1

with domain

D(Hp) =D (—;A ® 11) N D(1® Hy).

The interaction is obtained by the minimal coupling —iV, ® 1+ —iV, ® 1— A,. Then the
Pauli-Fierz Hamiltonian is defined by

1
Hzg(_jv®]l—A)2+V®ll+]l®Hf- (3.3)
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We give a remark on the definition of H. When defining the sum of operators, each opera-
tor should be defined on the same Hilbert space. For the Pauli-Fierz Hamiltonian, however,
~iV® 1L,V ®1and 1® Hy are defined on Hilbert space L?(R?) @ F, but A on [gs Fda. It
confuses readers who see it for the first time. However we respect and follow the traditional
definition of the Pauli-Fierz Hamiltonian under the identification of L?(R3)® F and fﬂg?), Fdz in
(3.1).

It is also known that Hamiltonians defined through different polarizations are unitary equiv-
alent each others. Thus we may fix polarization vectors as they are the most convenient.

In what follows we neglect tensor notation ® unless confusions may arise. Then H is simply
written as

1
H= 5(—iV—A)%rVJer.

We say V' € Riato iff D(A) C D(V) and there exist 0 < a < 1 and 0 < b such that

Vil <a

1
Sy R

for f € D(A). Moreover we say that ¢ € U iff ¢ € .7/ (R3) satisfies that ¢ is a local L!-function,
B(—k) = B(k) and

Vg € LARY), ¢/ € LX(RY), ¢fw e LA(RY).

We give comments on the class U. $(—k) = ¢(k) and ¢/y/w € L*(R?) ensure that A is well-
defined and symmetric. $/w € L?(R?) implies that A is relatively bounded with respect to
HY?, and \/wp € L2(R3) yields V,A4, is well-defined.

In this paper unless otherwise stated we suppose the following assumptions.

Assumption 3.1 p € U and V € Rxato-

Under this assumption on V, by the Kato-Rellich theorem [84] one can see that Hy, is self-adjoint
on D(A).

Proposition 3.1 ([61, 63, 105, 52, 35]) Suppose that Assumption 3.1 holds. Then H is self-
adjoint on D(Hp) and essentially self-adjoint on any core of Hy.

Note that condition for the self-adjointness is weakend in [105].

3.3 Pauli-Fierz Hamiltonian in Schrodinger representation

We introduce a Q-space associated with the quantized radiation field and reformulate the Pauli-
Fierz Hamiltonian on L?(R?) ® L?(Q) instead of H. This is called Schrédinger representation.
Furthermore, we introduce Euclidean quantum fields associated with the Pauli-Fierz Hamilto-
nian to derive a functional integral representation of e~*. We refer to see [122, 123] for a
Q-space representation of a Fock space and [114, 125] for Euclidean fields.

The following setting is taken from [61]. For a real-valued f € L?(R3) we set

> /R el (k) (F(k)a* (k. 5) + F(—k)a(k, 5))dk.

j=+1

Au(f) = ¢1§
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With this notation we write A,(z) = A,(¢(- — x)), where ¢ = (¢/y/w). The relations
Lozc.
(2, Au(N A (9)) = 5 (/. 5,9) (3.5)
are immediate. Here 5jy(k) is the transversal delta function defined by

ki

1L _ _
5ul/(k) _6MV_W7 pv=1,2,3,
and we used the identity:
» k. ky,
S ehlk)el (k) + "1 = 5,
=12 | |
Let 6+ = ((ﬁ;)lgu’ygg be the 3 x 3 matrix:
M Rk Rk
FETTRE T TRP
koky k koks
St(k)=| =222 _ 2 2R3
W= " T TP
Ckskr kske . ki
|[? |[? |[?

In order to construct the functional integral representation of (F,e *?(G) we prepare prob-
ability spaces (Qu,Y%,px), # = 0,1, and Gaussian random variables A#( f) indexed by
f € @° L (R*#) with mean zero:

By [Ax(F)] =0,

and the covariance:
By [A% (1) A (9)] = ag(f, 9)-
Here the bilinear forms qy on (@° L& (R3t#)) x (@° L2 (R**#)) are defined by

qO(f7g) = (f) 5J_g)’ (36)

1 . .
Note that F' = F(ko, k), G = G(ko, k) but 6+ = §-(k) for (ko, k) € R x R3. The definitions of
(3.6) and (3.7) are motivated by (3.4) and (3.5). It is established that there exist a probability

space (Qu, X4, uy) and a family of Gaussian random variables (fl#( £, f € @®° Lp(R¥#)) such
that the mean is zero and the covariance is given by qx. Define the puth component of A# by

3
A#yu(f) = A# (@ 6,uuf) s f S LQ(R:H_#).
v=1

We shall set A = Ay, q = qo, Q = Qo, par = o, and A = Ay, qg = a1, Qe = Qu, pp = p1,
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It is known that

n 3
LH{:[[Au(fi)n1 | f; e LR #),j=1,..,n,neN (3.8)
j=1

is dense in L?(Qy) Here :...: denotes the Wick product. Thus

n

/Q :H A#( j):Z' A#(gi):d,u# :0, n;ém

3

We set (3.8) as L2 (Q4). We define the second quantization I'yp(T). Here and in what

L2 (R3+#> T L2 (RSJr#/)

L*(Qq) L(Qu)

Ty (T)
Figure 2: Fanctor I'y

follows for the operator S : L2(R3*#) — L?(R**#') we use the same notation S as for the
operator @° S : @° L2(R*T#) — @3 L2(R3+¢f’), (f1, f2, f3) — (Sf1,Sf2,Sf3) for notational
convenience, and we write simply Ay (T f) for A#((@?’ T)f) etc. Let Iy (T)1 = 1 and

n n
Ty (T): [ [ Age(fi): =] [ A (Tfi):.
i=1 i=1
If T is a contraction operator, then so is I'yy/ (7). Thus I'yy is a functor between sets of
contraction operators {T' : L*(R3t#) — L2(R3+#)}. We write oo = I' : L?(Q) — L*(Q),
I'i=TIg: LQ(QE) — L2(QE) and Fgl = FInt : LQ(Q) — LQ(QE)

LA(RY) ——— [2(RY)

i_1/2 O i—1

H_y)5(R?)

d 4
T=0t®- Hﬁl(R )

Figure 3: Isometries j; between L?(R?) and L?(R?*)

We introduce a family of isometries connecting the Minkowski quantum field and the Eu-
clidean quantum field. Let H,(R") be the homogeneous Sobolev space:

H(RY) = {f € &' (&%) | f(k)|K"/> € L*(B?)}.
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Thus
Tt Hoyp(R%) — H_4(RY)

is defined by 7.f = 6 ® f. Then |7 f[|p | (gay = Hf||H_1/2(R3)' Let i_y/9 : L*(R%) — H_l/z(R3)
and i_; : L*(R*) — H_;(R*) be given by

1/l (k) = Ve (R)f(k),
i1 f(ko, k) = /w(k)® + [kol2 f (Ko, k).

In [61] we define the family of isometries j; : L2(R3) — L2(R*) by
jt = (i_l)il O Tt O i71/27 t e ]R

See Figure 3. We see that

J:Jt — ef\sft@’
where & = w(—iV). See Figure 4.
L2(R3) Jt L2(R4) L2(Q) Jt LQ(QE)
e—ls—tlo - o ls—t| Hg -
L*(R?) L*(Q)
Figure 4: Decomposition of e~/s~® Figure 5: Decomposition of e~ |5~

Define the family of isometries J; : L?(Q) — L?(Qg) by the second quantization of j;, i.e.,

Ji = Tt (je)-

Let K be a self-adjoint operator in L2(R3). Then {T'(e!*X) : ¢t € R} turns to be the strongly
continuous one-parameter unitary group. Then the Stone’s theorem tells us that there exists a
unique self-adjoint operator dI'(K) such that

D) = (0K 4 R

Let
d(w) = Hy.

Since et = T'(e7@), et can be decomposed as
JiJg = e ls—HHr

See Figure 5. Isometry J; plays an important role in functional integral representations, which
connects Minkowskian quantum fields with Euclidean quantum fields. Let h = h(—iV) be
the self-adjoint operator with a real-valued symbol h. Then JtI‘(e_iﬁ) = FE(e_ii‘@’]l)Jt and
J,dI'(h) = dT'g(h @ 1)J; hold. See Figure 6.

28



L*(Q) L*(Qg)
I(e~ih) O g (e~ h®1)
L*(Q) L*(Qg)

Jt

Figure 6: Intertwining properties

3.4 Wiener-Ito6-Segal isomorphism between F and L*(Q)

The Wiener-Ito-Segal isomorphism U is an isomorphism between L?(Q) and F. Let us define
U:F— L*Q) by

UuQ =1,
U:H A(fi):Q2 = :H A(fy):.
i=1 i=1

Thus U becomes a unitary operator from F to L*(Q). We denote 1® U : H — L*(R3) ® L*(Q)
by U for simplicity. Note that the inverse Fourier transform of g(k,z) = e **¢(k)/\/w(k)
equals j(y,z) = @(y — x), where @ = (p//w) € L2(R?). Notice that the test function of Au(f)
is f but not f.

A(f)

F F
U O U
LA(Q) 5 1*(Q)

Figure 7: Wiener-It6-Segal isomorphism U

As seen above, the isometry J; connects L?(Q) with L?(Qg). We can also see the intertwining
properties:

JeA(S) = AGef)Ie.
See Figure 8. This property is very important to construct functional integral representations

for Pauli-Fierz type Hamiltonians.
Now we define the Pauli-Fierz Hamiltonian in the Schrodinger representation. The relations

UA#(x)U_l = Au(@( - 37))7
UHU ' = H;,

follow directly. As a result

1 " .
UHU ' = 5(—iv —A?+V +H,
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A(f)

L*(Q) L*(Q)
Js O Ji
L*(Qg) L*(Qg)

AGef)
Figure 8: A(f) and A(f)

with A = (Al,AQ,Ag). In what follows we use notation H for UHU ! and H¢ for H;. The
Pauli-Fierz Hamiltonian in Schrédinger representation is defined by

1 .
H:i(—iV—A)2+V+Hf

in L2(R?) ® L?(Q). Unless confusions arise we also denote L?(R?) ® L?(Q) by H, and we set
M = L*(R%) @ L*(Qg).
3.5 Hilbert space-valued stochastic integrals

We define a Hilbert space-valued stochastic integral. It will be first explained in some generality
and then applied to the Pauli-Fierz Hamiltonian. Let K be a Hilbert space and define

C"(R3;K) = {r: R? — K |f is n times strongly continuously differentiable }
and

C}?(]RB;IC) = {f € C’"(Rg;IC)} sup  [|[VZf(2)|k < oo},

|z|<n,z€R3

where |2| = 21 + 22 + 23 for 2z = (21, 22, 23) and V* = V7 V2 V7 denotes strong derivative. We
set L2(Z) = L2(Z,dW?®). The proof of the following lemma is straightforward and similar to
the case of real-valued processes. Let f € Ckl)(R x R3; ). The sequence defined by

Zf( tB]1><B’;Lt—B’j2nlt>
is a Cauchy sequence in L*(2") ® K. For f € C}(R x R3;K) the limit
t
f(s,Bs)dBY = s— lim Jh(f)
0 n—oo

defines a KC-valued stochastic integral. By the above definition

([ 165 moant. [t 80a8) | =6.8] [ Bat0Bxa
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holds. Jh(f) is defined by the sum of f evaluated at the left endpoints. Then f (jQ;nlt,B i-1,)
2n
and BZ% . B?_lt are independent, while we define S (f) below by evaluating at both of the

on

left and right endpoints. Let f € C’g(R?’; K) and

.
Sk = (1B + 1(Bi)) (Bfat P 5‘%) ‘

n
i=1 ’

Similarly to the case of real-valued processes we can see that

n—o0

t 1 t
s tim S50 = [ faast+ 5 [ Varmas
0 0
holds in L?(2") ® K. Thus extra term %fg V,.f(Bs)ds appears.

We will construct the functional integral through the Euclidean quantum field, and will use
an L%(R*)-valued stochastic integral of the form

/O Js3(- — B.)dBL. (3.9)

However, since

Wisf =3 f1? _9 (f (1 — e~ ls—tlw) A> 1
|

|s — t|2 st s —t|

diverges as t — s for f € D(w), R x R® 3 (s,2) — js@(- — z) € L*R?*) is not strongly
differentiable in s € R. Then j,@(- — z) & CL(Rs x R3; L2(R?*)). Therefore we need to give a
proper definition of (3.9).

Lemma 3.2 If \,w\ € L?(R*), then for each = 1,2,3,

2’"/
Sﬁ()‘):Zj(jgnl)tA(*B(j*l)t) <B!j7tl Bﬁy’—l)t) , n=123,...,
=1 "

2m 2 P

is a Cauchy sequence in L*(Z) @ L*(R*).

Proof: Fix an . Write S, = Sh()\) and 0. = juA(- — Bs). Then

271
Snt+1— Sp = Z <77(2m1)t - 77(27”2)75) (Blgmt - Blém—l)t) :

m—1 on+1 on+1 on+1 on+1
Hence
2m 2 "
E” —SulP] =D BT m-1yt — 1) (zm— —.
[||Sn+1 n” ] m=1 U 77(22n+})t 77(22n+?)z ] 2n+1
We have
2 R 2 ¢ N
' Nem-1t — 7 @2m-2)t < HW/\H2 Bl(t2m71)t - Bl(L2m—2)t + 27H)‘HHW)‘H
on+1 on+1 on+1 on+1
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We conclude that

- N /2 .
(B[S SHz])m<<2|1A|||rm||+||mu2> 3

2 , 20j+1)/2°
j=n+1

thus {5}, is a Cauchy sequence.
QED
Let A, wh € L2(R*). Then

t
/ JsA(-— By)dB! = s— lim S¥, p=1,2,3,
0 n—oo

defines an L?(R*)-valued stochastic integral, where the strong limit is in the strong topology of
L*(Z) ® L*(R*). By the definition it is seen that

g ([ Baasy. [iupt—Basz )] = thup)

3.6 Functional integral representations for the Pauli-Fierz Hamiltonian

Using the Trotter product formula and the factorization formula e~ lIs=#Hs = J*J_ we derive a

functional integral representation of e *7. A combination of the functional integral representa-

—tHy

tion of e and the equality e~"f = J;J; gives

(F,e Q)3 = (JoF, e 3,G) ey, = / E=[e=Js VB3 (30 F(Bo), 3G (Br)) p2(qe -
R3

The next theorem is due to [60]. See also [40, 130], and [104] for great extensions.

Theorem 3.3 We suppose that V € L>®°(R3). Then

(Fe 1) = /

E [ef Js V(B (30 F(By), e*iA(KﬂJtG(Bt))MQE)} de.  (3.10)
R

Here K, denotes the @° L2(R3)-valued stochastic integral given by

3 t
K, = @/ jsp(- — Bs)dBY.
p=1"9

Proof: Firstly we assume that V = 0, and we write Ay(z) = A(@?jsp(- — z)) in this proof.
Define the family of symmetric contraction operators Ps : H — H by

PF@) = [ (=)™ Py, s >0,

with PyF = F, where Ils(z) = W exp(—|z|?/2s) is the heat kernel and

~

H(z,y) = 5(Ax) + A(y)) - (z — y).

N | =
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By a direct computation

277,
F,(P d Fl2)e 2 B G gn) Il . - dz;
( i” /]R‘s x/RJ = (2 H o (@j-1 = 2j) 31;[1 i

with ¢ =z, Hj = H(xj—1, ;). This can be expressed by using Brownian motion as

(PP 6) = [ E(F(Bo) MG

on

where L, = @ Z o(- +@(- = Bym-1))(Bf'm — Bfm 1 ). It is seen that
pn=1m=0

L, — L; = EB/ 5 )dBH

as n — oo strongly in @° (L*(2) @ L*(R?)). Here we used the Coulomb gauge condition. This
implies that for F,G € HE,

lim (F, (P, )*"G) = /R ) E*[(F(By), e AL G(By))]dx. (3.11)

n—oo

From (3.11) it follows that |lim,, . (F, (P )?"G)| < ||F||||G||. Hence for each t > 0 there exists
2n
a symmetric bounded operator S; such that

lim (F, (P%)Q"G) = (F, S;G).

n—oo

Since (P )?" is uniformly bounded as ||(P t )2"|| < 1, the above weak convergence improves to

on

s—lim (P, )" =S, t>0. (3.12)
Furthermore, by (3.11)
(F,8,G) = / E*[(F(Bo), e AL G(B,))]dz. (3.13)
R3

Putting these together we can show that {S; : t > 0} is a symmetric Cyp-semigroup, thus there
exists a unique self-adjoint operator K such that S; = e *%, ¢ > 0. Let

H(A) = 3(-iV ~ A)
We have
Jim (F,t7Y(1— P)G) = (F, H(A)G) (3.14)

for F,G € C§°(R?) ® L2 (Q) in Lemma 3.4 below. This leads to

t e ™ —1)F,G) = lim (¢~ ((P.

n—o0 2n

¥ —1)F,G) = — / 1(H(A)F, e HN s, (3.15)
0
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In the second equality above we used (3.14). (3.15) can be immediately extended to vectors
F € D(Hp) and G € D(K). Take t | 0 on both sides of (3.15). Then it holds that (F, KG) =
(H(A)F,G) for F € D(Hy) and G € D(K), which implies that K > H(A)[py,) as H(A) is
self-adjoint. Define

H =K + Hj,

where + denotes the quadratic form sum [85]. The Trotter product formula for quadratic form
sums [88, 87] and the factorization e~ nil = J%eJ (e+1)e yield that

n—1
(F,e @) = nh_{go (JOF, <H Ri) JtG) ;

i=0
R . _LK * . o e 7tK
where R; = Jre” »" J%,. Using the definition of e we get

2n 2m
— * . i QE JT*
Joe B J*G(x) = s— lim Jyel =1 Hi 7 G (x9n) HHQ%(:xj_l —zj) Hd:cj
j=1 j=1

n—oo (Rg)gn

with z = zg. Write §; = 0;(n,t,n;) =t/(n2") for j =0,1,...,n—1 and define P; ; : Hgp — Hg
by P; with H(z,y) replaced by the Euclidean version Hj: (z,y) given by

(As(‘r) + As(y)) ’ (.’L‘ - y)

1
Hs(x7y) = 5

with Ag(x) = A(js@(- — ) as

We have
n—1 n—1 .
(JOF, <]:[O R¢> JtG> = n(l)linoonnllfg)oo (JOF, (Q(Péi’i)Q @) JtG) .

Here we used the Markov property [115, 113, 125] of the projection Eg = JoJ¥. As a result we
have

n—1
(JOFQ(IIJQ)J4?> — lim ... lim E*[(JoF(Bo), e AU 1,G(B,))]dz

0 no—roo Np—1—>00 R3
1=

with K = K(ng,ni,...,np—1,n) given by

3 n—1 2"
— C (B — S0 p _ pu
p=1 =0 m=1
Note that
3 nzl o pt(j+1)/n
K@Y [, iust—Boany
pn=1 j5=0 JF "
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as ng, N1, ..., Np—1 — oo in @*(L2(2) ® L2(R3)). Finally as n — 0o we have

(FetHG) = / E*[(JoF(Bo), e~ 0 1,G(B,) ) da. (3.16)
R3

By the construction of H,

A~

1,
HD> 5(—1V — A)* + Hg [ D(Ho)» (3.17)

but Proposition 3.1 yields that

R 1 R
H:§@V—AF+M

—tH

follows, and H is self-adjoint on D(Hy). A functional integral representation of e including

non-zero V' can be obtained by the Trotter product formula
(F, e_tHG) = lim (F, (e_%Ke_%ve_%Hf)”G).
n—oo

This completes the proof.
QED
It remains to show (3.14).

Lemma 3.4 [t follows (3.14), i.e.,
Jim (F, t71 (1 - P)G) = (F, H(A)G)
— 00

for F,G € C3°*(R*) ® L% (Q).

Proof: It is directly seen that

i(F,PSG): / dx / IL(z — ) F(:c),lAyeiH(x’y)G(y) dy.
dS R3 R3 2

We have

where

Here AF(y) = Vyufl(y) and AP#(y) = me/l(y) We have
lim/ dx/ Iy (x — y)L} (2, y)dy = 0.
t—0 Jr3 R3
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It can be also seen that the map y — I, (x,y) is continuous for each z € R? and it follows that
limy ., L, (z,y) = —(F(2), (=iVy, — A,(2))?G(z)). Hence we have

t—0

lim /RB dzx /RB (2 — y)L, (z,y)dy = — /RS(F(:E), (=iVyg, — A,)*G(z))dx.

Together with them we have

.1 . d .
Thus the lemma follows.
QED
In Theorem 3.3 we assumed boundedness of external potentials. We can offer an extension
of the functional integral representation to a wider potential class.

Theorem 3.5 ([60]) Take

1 . : .
H:E(—'V—A)2+Hf+v+ ~ V.

loc

holds for H.

for Vi € LL (R®) and V_ which is —3A form bounded with relative bound < 1. Then (3.10)

Proof: The proof is a minor modification of [127, Theorem 6.2]. The following proof is taken
from [60]. Let

V. V. V. V.
V+n($) _ +(.’L’), +(:C) <n, V_m($) _ (I‘), (55) <m,
n, Vi(z) = n, m, V_(z) = m
Set Vim = Vi — Vo and h = 3(—=iV — A)? + H;. Then
(F, e tH+Vam) ) = / o [e* Jo Vaum (Bs)ds (F(BO), JSe’iA(Kﬁ)JtG(Bt)ﬂ da. (3.18)
R3

Define the closed quadratic forms
Anm(F, F) = (W2F, M2 F) + (V2R VIR — (V2R V2R,
anoo(F,F) = (W2 WEF) + (VIPF V) = (VPFVIPR),
oo (F, F) = (2P, 12 F) + (VPR VP R) - (VPR VIPF),

whose form domains are Q(Qn,m) = Q(h), Q(Qn,oo) = Q(h) and Q(QO0,00) = Q(h) N Q(V4).
Note that

Adn,m { dn,c0, MM T oo

and

dn,c0 ) Joo,00, T T oo.
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By [85, VIII. Theorem 3.11], qp o is & closed quadratic form, and we can conclude that for all
t>0,

exp (=t (h+ Vi — Vo)) = exp (=t (b + Viy = V) (3.19)
as m — oo. By [85, VIIL. Theorem 3.13] and [126], qeo 0 is also a closed quadratic form, and
exp(—t(h+Vin —V_)) — exp(—t(h+ Vi = V_)) (3.20)

as n — oo strongly. By taking first n — oo and then m — oo it can be proven that both sides
of (3.18) converge. IL.e., the left-hand side of (3.18) converges by (3.19) and (3.20). We have the

inequality
/ R [67 IS Vaum (Bs)ds
R3

</ E® [e*f(fvnvoo(Bs)ds(]F(Bo)\,e*tHf\G(Bt)\)] dz < oo,
R3

(F(Bo), Jge*iMKt)JtG(Bt)) H do

Here the finiteness of the second term can be derived. Since
e o Vom0 (B (By), Tge D3, G(By))| < e o Vooe B0 (By)| e~ |G(By)).

the dominated convergence theorem yields that

lim [ E° [e_ Jg Vi (Bs)ds (F(BO), Jge—iMKt)JtG(Bt)ﬂ da

m—r0o0 R3

_ / CEF [ o Ve B (), T K, G(By))] da.
R

Furthermore since

/ B [ o Voo (Bt | (P(By), 3y 400,68y ) || aa
]R?’
< / E” [e 3 Voo (505 | P(By) |~ |G(B,)])] de < o0
R3
and
t . t
e Jo Vit oo (Bs)ds (F(Bo), JgeﬂA(Kz)JtG(Bt)) ’ <e Jo Vn,oo(Bs)dS(‘F(Bo)|7 e*tHf|G(Bt)|)

for n < n’, the dominated convergence theorem again yields that

Jim [ B | o VeeB)s (p(By), J5e 50 3,G(By) ) | de
_ /R B [ V(). T 0,6 (By)
Together with them the right-hand side of (3.18) converges to
/R CETe VPR (By), Jge MUV ,G(B)))da

for any F,G € D(Hy) as first m — oo and then n — co. Then the proof is complete.
QED
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3.7 Pauli-Fierz Hamiltonian with Kato-class potential

We consider the Pauli-Fierz Hamiltonian with Kato-class potential V. This section is due to
[54]. We introduce the assumption below.

Assumption 3.2 p € U and V is Kato-decomposable.

Firstly we are interested in defining H with a Kato-class potential as a self-adjoint operator.
This will be done through the functional integral representation established in the previous
section. We have

(e tH@)(z) = E=[e~ Jo V(Bo)ds Jx —ib(KD) 1,G(B,)]. (3.21)

Conversely, we shall show that a sufficient condition to define the right-hand side of (3.21) is
that V is of Kato-class. The idea used for Schrodinger operators with Kato-class potentials [23]
can be extended to the Pauli-Fierz Hamiltonian.

Let V' be a Kato-decomposable potential and define the family of operators

(KiF) (z) = E=[e~ Jo V(Brdr gx —iA(K) 3, (B, )]
Lemma 3.6 Suppose Assumption 3.2. Then K; is bounded on H.

Proof: Let F' € H. By Schwarz inequality we have

t
KFI < [ BV B F(B, + o).
R

Since V is of Kato-class, we have sup,cgs E[e ™2 I V(Brt2)dr] — ' < 00, and thus
IKeF I3, < CIIFIZ
QED
We shall show that {K; : ¢ > 0} is a symmetric Cp-semigroup. To do that we introduce a
time shift operator u; on L?(R*) by

ug f(xg,x) = flzg —t,z), z = (z0,2) € R xR,

It is straightforward that vy = u_; and uju; = 1. We denote the second quantization of w; by
Uy = T'g(u;) which acts on L?(Qg) and is unitary. It follows that ujs = js4¢ for every t,s € R.
It derives the formula U;Js = Js4¢ (Figure 9).

Lemma 3.7 Suppose Assumption 3.2. Then KKy = Kgqy holds true for s,t > 0. Moreover
t — Ky is strongly continuous and Kqg = 1.

Proof: By the definition of K; we have
KK F = E® |:€7 I V(Br)erSefiA(Ks)JSEBS [67 f(f V(BT)dTJgefiA(Kt)JtF(Bt)]:| ] (322)
By the formulae J,J§ = E;U*, (Figure 11) and J; = U_3J;4s, we see that (3.22) is equal to

E® [e* Jo V(Br)dr px —ih(Ko) g g Bs (e~ fo V<Br>d’”Ujse*iA<Kt>U_SJHSF(Bt)ﬂ . (3.23)
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Js+t

L*(Qg)

Figure 9: Shift by Uy

Since Uy is unitary, we have
UjseflA(Kt)U_s _ G*IA(’M_SKt)

as an operator. The test function of the exponent u*  K; is given by

3 t
it K = @D /0 B (- — B)ABE.
pn=1

Moreover by the Markov property of E;, t € R, we can neglect E; in (3.23), and by the Markov
property of (Bi)i>0 we have

(KK ) () = B[ 0 V(B ge bl e [V (Bdr =MD g (B )| 2

s+t

— E® [e— 5 V(B7-)er66—iA(Ks+t)JS_HF(BS_H)] = K, F,

where we recall that (.%)¢>0 denotes the natural filtration of (B)i>0. The second statement

can be proven immediately.

QED
X I3
L3(Qp) ——— L(Q) L*(Qp) ———L*(Q)
E, O Js Uz, O Is
L2(Qg) L*(Qe) —5— L*(Qu)
Figure 10: Projection E Figure 11: E and U

Theorem 3.8 Suppose Assumption 3.2. Then {K;:t > 0} is a symmetric Cy-semigroup.

Proof: It was shown that {K; : t > 0} is a Cy-semigroup. Hence it is enough to show that Kj; is
symmetric for each ¢ > 0. Recall that R = I'(r) is the second quantization of the reflection r,
where r : L2(R%) — L?(R*) such that rf(xo,z) = f(—w0,z) for (zo,z) € R x R3. We have

(F,K,G) = (U;RF,U;RK,G) = / E* [e_ Jo V(Bs)ds (JtF(BO), e—iAWKt)JOG(Bt))] da.

R3
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Notice that urK; = fgjt_sip(- — B,)dBY. Note that By = By_s— By, 0 < s < t is also Brownian
motion. Exchanging integrals [ 7 dW? and fR3 dz and changing the variable = to y + By, we can
see

(F,KG) = E° / e~ Jo V(Bisty)ds (JtF(Bt+y),e“‘*(Kt’JoG(y))} dy.
L/ R3

Then

(F.K,G) = / B [ o v (J5e 7403 Py + B, Gy) ) | dy = (K:F, G)
R? —
and K; is symmetric. Then the proof is complete.
QED
By Theorem 3.8 and the Stone’s theorem for semigroups there exists a self-adjoint operator
K such that
K,=e ' t>0.

3.8 Positivity improving

It is known that second quantizations and positivity improving are deeply related. We refer to
see [129, 125, 43, 48, 124, 36, 100, 101, 108, 109] for positivity improving, and this section is due
to [62]. Let T be a contraction operator on L*(R3). Then it is known that T'(T) is positivity
preserving in L2(Q). Le.,

(e, T(T)¥) >0, >0, ¥>0.

Furthermore let f : R3 — R be a non-negative function such that the Lebesgue measure of
{k € R®| f(k) = 0} is zero. Then I'(e~/(=1V)) is positivity improving on L?*(Q). Le.,

(@, (e 7EVNw) >0, &>0, ¥ >0.

~t) is positivity improving on L?(Q). See Figure 12. We are

In particular J§J; = e 1 = T'(e
interested in asking if J5XJ; is positivity improving or not for some X.

Let G4 = exp(—i5Ny), where N denotes the Number operator on L?(Q) and Ng that on
L?(Qg). & (resp. Gg) is a unitary operator on L?(Q) (resp. L?(Qg)). Then we can show that
GEle*iA(f)GE is a shift operator on L?(Qg). In particular, it is positivity preserving on L?(Qg).
Since J; and Jj are positivity preserving, we see that J5& le—1AN &g, is positivity preserving
on L?(Q). We can show a stronger statement below. See Figure 13.

Proposition 3.9 ([62]) J;6; e A4Sy, is positivity improving in L*(Qg).

Corollary 3.10 ([62]) & e & is positivity improving.
Proof: Let F,G € H be non-negative but not identically zero. We have

(F,67 e HE0) 2/ Ex[e_fot VB)ds (P (By), J56gte A EIGRT,G(By))]da
R3

= / E0fe Jo VB0 F(g), Ji 5 e AN SL3,G(B, + 1)) da,
R3
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L*(Q) —— L*(Qg) L¥(Q) L*(Qg)
e~tHr =PI O ¢ PI O G- lemit(NG
L*(Q) L*(Q) =—5;— L*(Q)
Figure 12: Positivity improving I Figure 13: Positivity improving 11

where Ky(z) = [§ isp(- — Bs — )dB,.
fla,w) = e~ ho VB (p(g) Jr@-Le AE@SLT,G(B, + 2))

is a function with respect to (z,w) € R? x 2. We can see that there exists a measurable
set M x B C R* x 2 such that [,, zdWdz > 0 and f(z,w) > 0 for (z,w) € M x B from
Proposition 3.9. Hence (F,& e ™ &G) = [, E°[f]dz > [, 5 fAWdz > 0 and the corollary
is proven.

QED
Corollary 3.11 ([62]) If H has a ground state Wy. Then &~ W, is strictly positive.

Proof: This follows from Corollary 3.10 and the Perron Frobenius theorem.
QED

3.9 Baker-Campbell-Hausdorff formula and Fock representation

In Sections 3.6 and 3.7 we obtain the functional integral representation of the semigroup gener-
ated by H in the Schrodinger representation. In this section we show a functional integral rep-
resentation of e " in the Fock representation by applying Baker-Campbell-Hausdorff formula.
Let aﬁE be the annihilation operator and the creation operator acting in F(L?(R%) @ L?(R%)).
Let

@5 = (@1j, P25, P35),  J = %1,

where ¢,,; denotes the inverse Fourier transform of eﬂ%. Let
js = F_ljsFa (3.24)

where F denotes the Fourier transform on L?(R3). We note that following identification:

(b (M) + ar(38) )

A(KL) = \}i

where

C$
j==1 \/(;
© é +ikBs ,j
M, = /Je sel . dB
D)

We have the theorem below.



Theorem 3.12 (3.10) can be represented as

(F, eftHG) — / E* |:67 fg V(Bs)dse*ﬁt (F(Bo), ea*(Lt)eftera(it)G(Bt))LQ(Q)} dz. (325)

R3
Here
i ! ¢(k) kB, j
[ / o lt=sl(®) e~ *Bsci (k) - dB,, 3.26
: ﬂsz ; 0 (k) - dBs (3.26)
L= @ [ et P8 gy (3.27)
ﬂj::ﬁ:l 0 vw(k)
and

2
1
= Sae(Ke, K2). (3.28)

ﬁt:iz

t
/ JS@]( - Bs) : st
j=+111/0

L2(R4)
Proof: By Baker-Campbell-Hausdorff formula we can see that
Jae—iA(Kt)Jt — Jz;e_ﬁte_iaE(Mt)e_iaE(Mt)Jt — e—ﬁte_ia*(jSMt)e_ter_ia(j:Mt).

It can be seen that —ij; My = L; and —ijSMt = L. Together with them we obtain the desired
results.
QED

The exponent K is formally written as

formal 1 ! /t / [P(R)? s rieo(k) —ik(Ba—By) Fuky
g, Tommat - aB* | aBY s—rlw(k)g—ik(Bs=Br) (§ dk.
' 4 Z /0 *Jo " Jrs w(k) ‘ ‘ g |k’2

1<p,r<3

This expression is formal. The double stochastic integral fg fg ...dB{dBY is delicate. We
discuss this in [15]. In fact it is derived in [15, Proposition 3.1] that

1 |¢(k)|2 /t _ikB k. k, /S o .
=— dk kBsqpr (5, — “2£2 (s—r)w(k) ,ikBr 4BV
Bt 4 Z<3/Rs wk) Jo € s\ O e ) )€ e -

3.10 Tramnslation invariant Pauli-Fierz Hamiltonian

We consider the translation invariant Pauli-Fierz Hamiltonian, which is obtained by setting
the external potential V' identically zero, resulting in the fact that H commutes with the total
momentum operator. This section is due to [64].

We begin with defining a fiber Hamiltonian. As said, a standing assumption throughout this
section is Assumption 3.2 but V' = 0. Put

Py, = dl(k,), p=1,2,3,

which describes the field momentum. The total momentum operator PT on A is defined by the
sum of the momentum operator for the particle and that of field:

Py =iV, +Pg,, p=123.
It follows that

[H,P,]=0, p=1,2,3. (3.29)
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Remark 3.1 We give a comment on (3.29). Both H and P' are unbounded, and then (3.29)
holds on D(HPT) N D(HPT). Precisely we can show that [e™H ¢ =0 fort > 0 and s € R
on the whole Hilbert space by a functional integral representation.

This leads to a decomposition of H with respect to the spectrum of the total momentum operator
J(PE) = R. The Pauli-Fierz Hamiltonian with total momentum p € R? is defined by

1
H(p)zi(p_Pf_A(O))2+Hfa pER?)v

with domain D(H(p)) = D(H;) N D(P?), where A,(0) = A,(z = 0). We give a relationship
between H and H(p). Define the unitary operator

T L*(Ry) ® F — L*(Ry)) @ F

R ®
T =(F® Il)/ exp(izPy)dz, (3.30)
R3
with F' denoting the Fourier transformation from L?(R,) to L*(R,). For ¥ € #,
1/ e TPl (1) d .
(27T)3/2 R3

Theorem 3.13 For each p € R®, H(p) is a non-negative self-adjoint operator, and

(Z70)(p) =

5] 7]
/ Fdp = H, H(p)dp = H.
R3 R3

Here the unitary equivalence is implemented by 7 .

The self-adjointness of H(p) ensures that {e~*H(®)

:t > 0} is a symmetric Cy-semigroup. As
in the previous section, we transform H(p) from the Fock representation to the Schrédinger

representation in order to construct a functional integral representation. Then H(p) becomes

H(p) = (0~ Pr — A0) + Hy

on L%(Q), where A(0) = A(z = 0). We use the same notations H(p), H¢ and P¢ in both

the Fock representation and the Schrodinger representation. Recall that Py = dI'(—iV) and

H(

H; = dT'(w(—iV)). The functional integral representation of e */() can be also constructed as

an application of that of e .
Theorem 3.14 ([64]) Let U, ® € L?*(Q). Then
(T, e 0 p) = EO[(Jo, e AE) 3, e HO=POBD) 15 () ], (3.31)

In particular

o—tH(P) @ — RO [JSe_iA(Kt)Jte+i(p_Pf)Bt ?]. (3.32)
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Proof: Write Fy, = II;, ® ¥ and G, =11, ® ®, where Il is the 3D-heat kernel:

I, (z) = exp(~|al?/2s).

o
(2ms)3/2

Due to the fact that H = ﬂ(fﬂg H(p)dp) 7 1, we have the key identity:

(P e G = [ (TR0 (TG o)

for any ¢ € R3. Note that lim (.7 Fy)(p) = U strongly in L%(Q) for each p € R3. Hence

s—0 (27‘(‘)3/2
. —tH —i¢PT _ 1 —tH (p) ,—i¢p
;L)r%(FS,e e G,) 2n)i72 /RS(\I/,e e “P(TG,)(p))dp. (3.33)

By using the fact P G, (z) = II,(z — €)e”€Pt®, we obtain by the functional integral represen-
tation in Theorem 3.3 that

(F,, e He 8P G ) = / BT (@)T (B, = §)(Jo¥, e 5,6 1EP §) ] dur.
R

Then it follows from II4(x) — d(x) as s — 0 that

lim (Fy, e e " G,) = EOIL. (B, — £)(Jo¥, e AU J,e 1Pt p)]. (3.34)

s—0

Combining (3.33) and (3.34) leads to

1

— / e CP (W, e W07 G, (p))dp = BT (B, — €)(JoW, e 4K J,e7€Pe )] (3.35)
(27)3/2 Jgs
Taking the inverse Fourier transform on both sides of (3.35) with respect to p gives

(T, e 076G, (p)) = (273)3/21}30 [ /R I (By — €)(JoW, eI g e T i d)dg | (3.36)

for almost every p € R3. Since both sides of (3.36) are continuous in p, the equality stays valid
for all p € R3. After taking 7 — 0 on both sides we arrive at (3.31).
QED
By Baker-Campbell-Hausdorff formula we can also have a functional integral representation
in the Fock representation. Then the proof is similar to that of Theorem 3.12

Corollary 3.15 Let ¥, ® € L*(Q). Then
(U, e HP) §) = B0~ (W, e (L) g~ tHr ga(Le) o +ilp—P1) Br )] (3.37)
In particular

e~tH®) @ = EO[e— ¢ (L) g —tH: (L) o +i(p—Pr) By P]. (3.38)
Here Ly, Ly and 8 are given by (3.26), (3.27) and (3.28), respectively.
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3.11 Pauli-Fierz Hamiltonian with the dipole approximation

The Pauli-Fierz Hamiltonian with the dipole approximation is defined by H with A = fﬂg A(zx)dz
replaced by 1® A(0). This implies that collisions between an electron and photons are ignored.
Hence it is of the form

1
Haip = 5

;CIVOI-104(0)+Vel+1s .

By introducing the dipole approximation the model can be solvable. More precisely it can be
diagonalized when V = 0.

3.11.1 Bogoliubov transformation
In this section we suppose that
(1) ¢/w’? € LAR?), G(k) = $(—k), and (k) = (|k]).

(2) ¢ € CF°(R?).

Note that we can weaken these conditions, but for simplicity we assume (1) and (2). A weaker
conditions are given in [76, Assumption 3.4].
Let K be a Hilbert-Schmidt operator on L?(R?) @ L?(R?) such that

Kf=> Aa(tn, [)én.
n=0

Here {t,,} and {¢,} are orthogonal vectors in L?(R3) & L?(R3), and >.°° , A2 < co. Note that

n=1"'n

{1n} and {¢,} are not necessarily orthonormal systems in L?(R3) @ L?(R3). Then we define
M —
Af = lim_ ; Ana (¥n)a” (6n),
M —
Ag = N}gnw; Ana(tn)a(én)-

It is established in [6] that A} and Ak are densely defined closed operators in F. Moreover let
{en} be a orthonormal system in L?(R3)® L?(R3), and S a bounded operator on L?(R3)® L?(R3).

We define
M

Ng = lim a”*(en)a(S*ey).
M—o0
n=1
This is also a densely defined closed operator. In particular choosing S = 1, we see that Ny is

the number operator. These are studied in [6, 118, 119]. Let

Wi = (Wyijhi<ij<o
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be the operators defined by

=g B (T )

W=y 3 (opTe - vaTL ) Td,

1<p,v<3

Hete T is defined by T'f(k) = f(—k) and T}, by

T,LLI/f /LZ/f + ( )fod l/gpf
with "
Gf(k) =lim 1K) dk’
el0 Jr3 (w(k)? —w(k')? +ie)\/w(k)w(k)
and
- 2 T
Dy(s)=1- am <lim/ de — 7ri|<,5(\/§)]2\/§> .
3 €l0 |s—z|>e S —x
Let
Sp = eXp(_in)u
where D1 R
1 o . TR
et 5 (o) o0
V2 Mt = w3/2 w3/2
with )
21¢
Meff = 1 + § ;
Let 1 1
U= C’exp(—iA*W7W+_1) : exp(—Nﬂ_W) : eXp(_iA—WfW)’
where

C = det(1 — (W_W;Hy*(W_wih)Vs,
Note that |[UL|| = 1. Define

@ s T
U= | S,Ue2Vdp.
]R3

Thus we can see that U is the unitary operator on H. See [5] and [76, Section 3.4].

Proposition 3.16 ([5, 77]) It follows that

1
U Haipld = —5—A®l+1@ H+g. (3.39)

Meft
Here
2

2|t ¢
3 /°° SHWW

g:
27 J_ o 142 H

2

V t2 +w?
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tHdip

A functional integral representation of e~ is a minor modification of the full Hamiltonian.

The stochastic integral fg js@(- — Bs)dBY appearing in the functional integral representation of

e~ ig replaced by f(fjscﬁdB’;.

Proposition 3.17 It follows that
(F, 6—tHdipG) _ Ex[e— fg V(BS)dS(F(B()), Jée_iA(Kidip)JtG(Bt)] (3_40)
dip . 3 t. ~ 7
where Ky = @),y [y ispdBs.

Let V = 0. Then together with Propositions 3.16 and 3.17 we have the identity:

(F e tHan Gy = 719 / E* (U F(By), e U G(By ., )]da. (3.41)
R3

3.11.2 Translation invariant Pauli-Fierz Hamiltonian with the dipole approxima-
tion

Let V =0. Then
[Hdipap,u] =0 n= 17273'

We have -
Hgip, = / Hgaip(p)dp,
R3

where

1
Hap(p) = 5(p = A(0) + Hi.
Thus we have the proposition below.
Proposition 3.18 It follows that
(O, e HanP) @) = EO[(W, Jée_iA(Ksip)Jt6+i(P_Pf)Bt(I))]. (3.42)

Proof: The proof is a minor modification of that of Theorem 3.14.
QED
Let p=0and ¥ = & = 1. Thus we have

(1, etHan(®) 1) = EO[e=3am (K7 K™)), (3.43)
Here we can see that
1 ip -dip, formal 1 ¢ ! p(k)? kuky
7qE(thlp,thlp) fo:mal 1 Z / ng/ dB;// |90( )| e—\s—r|w(k) 6;u/ _ dk.
2 4 0 0 rs w(k) |k[>
1<p,v<3
This expression is formal. In a similar manner to [15, Proposition 3.1] it is derived that

1 dip ,-dipy 1 |o(k)|? /t kuky /S (s
—qp(KYP, gdPy_— § dk dB* (6, — ¥ (s—rw(k)qpv.
QqE( e B 41<W<3/R3 wk) Jo T\ (k12 ) Jo ‘ "
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Corollary 3.19 It follows that

EO =3 K] = o=tadet(1 — (W_W L) (W W) Y2 (e 3850 1, e~ 28K 1),
where K; = —jf(W;lm)*jt and Ko = —jS(WIIW)*jO-

Proof: We have

~ 1
U(p) *Haip(p)U(p) = o HPQ +Hi+g

for every p € R3. Here
U(p) = S,Ue2Y.

Then
(1, e Haw®) ) = ¢ ~9EO[(U(0)~ 1, e U (0) 71 )] = e MR [(JoU (0) 11, J,U(0) 1 1)].

Note that

_LAx IR
U(0)~1 = det(1 — (W_ W)y (W_witye = -0y,

1 A%

R _Lax
Since jue e 2AK%‘Hl for # = 0,t. Then the corollary follows.
QED

4 Relativistic Pauli-Fierz model

4.1 Relativistic Pauli-Fierz Hamiltonian

In quantum mechanics a relativistic Schrodinger operator with a vector potential a is defined by
Hg(a) = ((=iV — a)? + m?*)/2 —m + V, and a functional integral representation of e~ *fr(%) ig
shown in Section 2.2. A key element in the construction of the functional integral representation
of e~ tHr(%) is to use the subordinator (T3)¢>0- In this section the analogue version of the Pauli-
Fierz model is defined and its functional integral representation is given. This section is due
to [65, 55]. We also refer to see [107, 89, 90, 91, 92, 56, 57]. We say that V € Rpkato iff
D(v/=A) € D(V) and there exist 0 < a < 1 and 0 < b such that |V f|| < a||vV/=Af]|| + b||f]| for
f € D(v=A) with 0 < a <1 and 0 < b. Instead of Assumption 3.1 throughout this section we
suppose the assumption below unless otherwise stated.

Assumption 4.1 ¢ € U, w3/?p € L2(R?), and V € Rrxato-

In Assumptions 4.1 we add the extra condition w3/2% € L?(R3) to Assumption 3.1, and instead
of V' € Rkato, we suppose that V € Rrkato. Let Z = D(A)NC*(N) and

H(A) = L (1Y~ )[4,

To define the relativistic Pauli-Fierz Hamiltonian (2H (A) + m?)/2 — m + Hy + V, we have to
define (2H(A)+m?)'/? as a self-adjoint operator. It is however not trivial to choose a self-adjoint

~

extension of H(A). We have the lemma below.
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Proposition 4.1 ([61]) Suppose that w?/%¢ € L*(R3),$/v/w € L2(R3) and $(—k) = p(k).

Then H(A) is essentially self-adjoint.

We keep denoting the unique self-adjoint extension of H(A) by the same symbol H(A) for
simplicity, and we define (2H (A) + m?)'/2 by the spectral resolution of H(A). The relativistic
Pauli-Fierz Hamiltonian is defined by

Hg = (2H(A)+m*)Y? —m 4+ Hy + V.

Here m > 0 is a parameter, but it describes the mass of an electron in physics.

4.2 Functional integral representations for the relativistic Pauli-Fierz Hamil-
tonian

We will construct a functional integral representation of e *#® through the Trotter product
formula. We set

Tk = (2H(A) + m?)/2 —m. (4.1)

By the Trotter product formula for quadratic form sums we see that

2n

n—o0

Suppose V € C§°(R3). Then

(7 (e sty o)
. o2t
:/ E$,O[(JOF(BTO)’e—lA(KtR(n))JtG(BTt))e >2i=0 QnV(BTt].):| dz,
R3

where

; T,
with ¢; = 4%, and fT:J jt;1 (- — Bs)dBE denotes an L?(R*)-valued stochastic integral
-1

S
/T i, 3(— BJ)dBY

evaluated at T =Ty, , and S =Tj,. (K{*(n))i>0 can be regarded as a sequence of P> L2(RY)-
valued random processes on the product probability space (2~ x Z,,B x B,,W* @ v). Let
N, € B, be a null set, i.e., v(N,) = 0, such that for arbitrary w € £, \ N,, the path ¢ — T;(w)
is nondecreasing and right-continuous, and has the left-limit. We have the lemma below.

—1

Lemma 4.2 ([65]) For eachw € 2,\N, and eacht > 0, K}(n) strongly converges in L*(2")®
(@° L2(RY)) as n — oo, i.e,. there exists

3
Kt e LX(2) @ (D L*RY)

such that lim E” [HKtR(n) — KtRHQ] =0.
n—oo
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By Lemma 4.2 and a limiting argument it follows that
(F, e UTHHD G = / E=0 [(JOF(BTO), e_iA(KtR)JtG(BTt)ﬂ de.
R3

The immediate consequence is bounds of e tTi+Hi) et F ,G € ‘H. Then it follows that
m2)/2_m
|(F, e Tt HOG)| < (|F|, e AT Emmt ) gy
(= ALm2)1/2 _m,
|(F, e BT HOG)| < (||F | 12(q, e 1A+ NGz 2rs)-

From these bounds we can conclude a relative boundedness with respect to V.

Lemma 4.3 (1) and (2) follow.

(1) If V is relatively form bounded with respect to (—A +m?)'/2 —m with a relative bound
a, then |V| is also relatively form bounded with respect to (T + Hg) with a relative bound
smaller than a.

(2) If V is relatively bounded with respect to (—A 4+ m?)'/2 — m with a relative bound a, then
V is also relatively bounded with respect to Ty + Hy with a relative bound a.

Suppose Assumption 4.1. Then (T} + H¢) + V is self-adjoint on D (T} + Hy) by (1) of Lemma
4.3.

Theorem 4.4 Suppose Assumption 4.1. Then
(F,e trR@) = /R ) E*0 [e* Jo V(Br)ds (30 F(By), e AED 3,G(By,)) | da. (4.2)

Proof: When V is bounded and continuous, the theorem can be proven by the Trotter formula.

Furthermore, it can be extended to a general V' in the same way as that of Theorem 3.5.
QED
We have the corollary. Let &4 = exp(—i5Ny).

Corollary 4.5 ([65]) (1) & te ™rRG is positivity improving. (2) If Hr has a ground state
V. Then 6_1\Ilg is strictly positive.

Proof: Let F,G € H be non-negative but not identically zero. We have

(F,& e tra@) = / B0 [e‘fff V(B (F(By), J565 e M Sk,G(Br,)) | da.
R

Since J5Gy Le—iA(KY &R, is positivity improving, the corollary can be proven in a similar man-
ner to Corollary 3.10.
QED
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4.3 Invariant domain and self-adjointness

In this section by using the functional integral representation derived in Theorem 4.4 we show
the self-adjointness of Hr. The fundamental lemma is as follows.

Lemma 4.6 Let K be a non-negative self-adjoint operator. Suppose that there exists a dense
domain D such that D C D(K) and e *D C D for all t > 0. Then K[p is essentially
self-adjoint.

Proof: It suffices to show that for some A > 0, Ran((A + K)[p) is dense. Suppose the contrary.
Then there exists nonzero f such that (f, (A + K)y) = 0 for all » € D. We have

d

ST ) = (f,—Ke ) = A(f,e ).

Thus (f, e K4) = eM(f, ). If (f,1)) # 0, then lim; o0 |(f, e )| = 00, contradicting the fact
that e *¥ is a contraction. Hence (f,v) = 0 for all 1y € D(K), but (f,%) can not equal zero for
all v € D(K), since D(K) is dense. Hence we conclude that Ran((A + K)[p) is dense.
QED
To prove the essential self-adjointness of Hg we find an invariant domain D so that

D C D(Hgr), e 'MrDc D.

Let & = w(—iV) ® 1 under L*(R*) = L?(R3) ® L?(R). Let o > 0. We can estimate the
forth moment E®° [Hwa/QKtRH‘éBS L2(R4)] Suppose that ¢/y/w,w@ /2 ¢ L2(R?). Then the
Burkholder-Davis-Gundy (BDG) type inequality [61, 65] holds:

B0 [||o 2 KR < Ol D2p]14, oy,

s o)
where C' is a constant.

Lemma 4.7 Let V =0. Then (1) and (2) hold true.
(1) For F € D(—iV,,) and G € D(—-iV,) N D(Hfl/2) it follows that

(1Y F, e G) < C (V@] + ISIICH: + VG + |- 19,61 ) |E].

In particular e "R D(\/=A) N D(Hfl/Q) C D(V—A) fort > 0.
(2) For F,G € D(Hy) it follows that

(HiF, e MR@G) < ( 1H: G| + (Ve + @D (Hr + 1)*G|| + ||¢/\@||2HG||> 1E]]-
In particular e "R D(H;) C D(Hy) for t > 0.

Proof: We show the outline of a proof. Notice that

(eis(—ivu)F’ e—tHRG) _ /

B[ (JoF(Br,), o tne 08 =P, e 90 G (By,) )| dar
R3

(4.3)
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Here we used
eis(fiv,u‘i’PfM)e*tHR _ eftHReiS(*iVy,+Pfu).

We see that
oisPe, o —IA(KE) j—isPr, _ e—iA(els(ﬂVM@l)KtR)'

Take the derivative at s = 0 on both sides of (4.3). We have

(V. F, e Hr@G) = /

E20 [(JOF(BTO), —iAH(VMKP)e_iA(KtR)JtG(BTt))] dz
RS

+/ B[ (J0F(Br,), e 4013, (-, G)(Br,) ) | de. (4.4)
R3
It is trivial to see that

< [EMIV.GIl-

/R3 R0 [(JOF(BTO), efiA(K?)Jt(—VMG)(BTt))} dx

We can estimate the first term on the right-hand side of (4.4) by BDG inequality as

/R:s E*° [(JoF(BTo)7Au(V#KtR)e_iA”(K{{)JtG(BTt)>] dz

< O(lw* 2@l + I DIl (H + 1)/ F(|]IG].

Then (1) follows. We have

(H¢F, e r@) = /

8 E0 KJOF(BTO), e‘iA(KtR)SJtG(BTt)ﬂ de,

where § = 2K Hee AEY) = Hy — i[Hp, A(KR)] + g with g = q(KR, KR). It is trivial to see
that

< | H: G-

/R3 F=0 [(JOF(BTO), e—iA(KtR)HthG(BTt)ﬂ da

In the same way as the estimate of the first term of the right-hand side of (4.4) we can see that

/R i F2:0 [(JOF(BTOL e AED) [y, A(KR)3,G( B:rt))} da

< C(IVesll+lIgDIFIIH + 1)'/2G|

with some constant C' > 0. Here we used BDG inequality. Finally we see that g < C||KF||? and
by BDG inequality again,

< Clle/VwlPIFIIG]-

/R3 E=:0 [(JOF(BTO), e—iA(Kf‘)thG(BTt))] da

Then (2) follows.
QED

Theorem 4.8 ([65]) Suppose Assumption 4.1 and m > 0. Then HRg is essentially self-adjoint
on D(v/—A) N D(Hy).
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Proof: Suppose V = 0. Let Do = C°(R?) @ L2 (Q). Let F € Do We see that

I(Tic + He) FI|I” < Ci||[V=AF | + Co|| Hi F || + Cs|| F||? (4.5)
with some constants C7,Cy and C3. Since Dy, is a core of /—A + Hp,
D(vV—A) N D(Hg) C D(Ty + Hy) (4.6)

follows from a limiting argument. By Lemmas 4.7, we also see that
et (Tt Hp) (D(x/—A) N D(Hf)) c (D(\/—A) N D(Hf)> . (4.7)

(4.6) and (4.7) imply that Ty + H; is essentially self-adjoint on D(y/—A)N D(H;) by Lemma 4.6.
Next we suppose that V satisfies Assumption 4.1. Then V is also relatively bounded with respect
to Ty + Hy with a relative bound strictly smaller than one. Then the theorem follows by the
Kato-Rellich theorem.
QED
Furthermore we can establish the self-adjointness of Hg. The key inequality to show the
self-adjointness of Hg on D(v/—A) N D(Hg) is the following inequality.

Lemma 4.9 ([55]) Suppose Assumption 4.1 and that m > 0 and V = 0. Then there ezists a
constant C such that

IV=AF|* + || HF||* < C|[(Tic+ He + 1)F|* (4.8)
for all F € D(v/—A)N D(Hy).
Theorem 4.10 ([55]) Suppose Assumption 4.1. Then Hy is self-adjoint on D(/—A)ND(Hy).

Proof: Suppose that V = 0. We write H(™ for Hy to emphasize m-dependence. Let m > 0.
Then H(™ is essentially self-adjoint on D(v/—A) N D(Hg). While by (4.8), H™) [ D(v=m)nD(Hy)
is closed. Then H™ is self-adjoint on D(v/—A) N D(Hy). Note that

HO = g0 4 (g© — gim)

and H® — H(™) is bounded. Then HO is also self-adjoint on D(v/—A) N D(Hy) for V = 0.
Finally let V' be potential satisfying Assumption 4.1. Then V is also relatively bounded with
respect to H(™ with a relative bound strictly smaller than one. Then the theorem follows from
the Kato-Rellich theorem.

QED
A spinless hydrogen like atom is defined by introducing the Coulomb potential
g
V(iz)=—-=, ¢g>0,
||

which is relatively form bounded with respect to (—A + m?)/? with a relative bound strictly
smaller than one if g < 2/7 by [53]. Furthermore if g < 1/2, V is relatively bounded with respect
to (—A + m?)'/2 with a relative bound strictly smaller than one. Let Ay be the quantized

radiation field with .

o(k) = Wﬂ|k|g/\(k)~

By Theorem 4.10 when g < 1/2, Hp is self-adjoint on D(v/—A) N D(Hy).
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4.4 Non-relativistic limit

Schrodinger operators do not contain the velocity of the light in the definition. On the other
hand Dirac operators

H(c) = ca - (—iV - ia) + Bmc* +V

can be regarded as relativistic versions of Schrodinger operators. Here ¢ denotes the velocity of
the light, and « and § are 4 x 4 Dirac matrices given by

. 0 g; . _ ﬂ2><2 0
a_<O-Z 0>77’_1)2)37 /6_< 0 _]12><2>

with 2 x 2 Pauli matrices 01,09 and o3. This was introduced by P. A. M. Dirac to construct a
relativistically covariant quantum theory. Hence non-relativistic limits of Dirac operators have
been studied so far. We refer to see [132, Section 6] for non-relativistic limits of Dirac operators
and [102, 103] for those of non-linear Dirac and Klein-Gordon equations. Formally it can be
shown that

lim (H(c) —me® — 2)~ = <(21n(

c— 00

—iV—-a)?2+V -2t 0
0 0)"

On the other hand we are concerned with semi-relativistic Schrodinger operators in this section.

212 2.4 2 _ 1 2.0 |p[4
vV 2[p|2 + m2ct — me —%|p\ + (m?’c?)’

Since we have

intuitively we have

exp (— t(v/e2(=A) +m2ct — m02)> — exp (%A)

as ¢ — 0o. This intuition becomes substantial by means of the so-called non-relativistic limit of
semi-relativistic Schrédinger operators. Define

H,=\/—=A +m2c* —mc® + V.

By using a functional integral representation we can show that H. — Hy, as ¢ — 0o in a specific
sense, and the limit operator is the Schrodinger operator

1
Ho=—"—"A+V.
2m
For every ¢ > 0 consider the subordinator (T})¢>o with parameter ¢ such that

E[e—qu] _ e—t(\/202u+m2c4—m02)’ u > 0.

Proposition 4.11 Let f be a bounded continuous function on R. Then

lim Ep[f(T9)] = f(--).

c—00 m
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Proof: Let f € . (R). We have

c 1 £ KTy
BIATE)) = = [ FOOBLET )
21 JR
We see that
o ) t 1 2t2
E[elth] _ /0 027r et g—3/2 exp (_2 <CS + (2ki + m202)3>) ds
and then

E [eika] _ e—(\/2kzi+m202—mc)ct
M = .

Furthermore, we have
C(\/m — mc) = C((4kj2 + m4c4)1/4 — mC)SiG/Q + m02(619/2 . 1)’

where tanf = 2k/m?c? with |0] < 7/2. The first term converges to zero as ¢ — oco. For the
second term it can be seen that mc?(el?/? — 1) = mc?(cos(6/2) — 1 4 isin(6/2)). Since

mc®(cos(0/2) — 1) ~ mc*(0/2)%/2 ~ mc?(k/m*c*)?/2 ~ 0

and
imc?sin(6/2) ~ imc*0/2 ~ ik/m

as ¢ — 0o, we get

1thc] — 61%

lim Eple
CcC—00
as ¢ — 00, and the proposition follows. When f is chosen to be a bounded continuous function,
it can be uniformly approximated by functions in .(R) and the proof is completed by a simple
limiting argument.

QED
We derive the non-relativistic limit of e~ te.

Corollary 4.12 Let V be a bounded continuous function. Then

s — lim e tHe = g7tHoo
CcC—r 00

Proof: We suppose that V is non-negative without loss of generality. It is enough to show the
weak limit

Tim (f, e Heg) = (f, e Hg). (4.9)

~tHe|| < 1 uniformly with respect to ¢ > 0. It is also

Since H. > 0 for every ¢ > 0, |e
sufficient to show (4.9) for arbitrary f,g € .(R) by a simple limiting argument. Note that by

Proposition 4.11 it can be seen that

_ t
(1, BTy = [ B [fag(rp)e O] o

- R3 B {f(x)g(B%)ef h V(B%)ds} dz = (f, e_t(_ﬁAJFV)g)
as ¢ — 00.
QED

KR(c) is defined by K} with T} replaced by TF.
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Lemma 4.13 It follows that lim._,.o K} (c) = K; strongly in L2(2" x Z,) ® (@° L2(RY)).
Proof: Let

NS / 2 BB,

p=1 j=1

n_@z/,y ity 1@ — BJ)ABY.

p=1 j=1

We have seen that I¢ — KR(c) and I, — K, as n — oo strongly in L2(2" x 2;) ® (@® L%(R?)).
We have

1K () — Kell < 1K (e) = Toll + 1T = Ll + [T — K

2
2—1/2> :
1

and

k
B (| — 151 < 3T,EH¢/\/E|2< )
j=n+

From this we have
e 2
E2O(|18 — K (c)[)?) §3E°[TE]H¢/WH2< 2. 27 ) |

j=n+1

Since E°[Tf] = L which is independent of ¢ > 0, we obtain that

00 2
Bl - KON < Do Y 29)

j=n+1

and we conclude that
E*O(|I5, — K (e)]?] = 0 (4.10)

as n — oo uniformly in ¢. Let € > 0 be arbitrary. There exists ng such that for all n > ng
E=O[| KR (c) — I¢ %] < €2 and E*O[||1,, — K¢||?] < €2 uniformly in c. Now we estimate [|I¢ — L,,|.
We have

3 2" t

= @ </ thfl@(. - Bs)ng - ﬂjl jtj,l @( — Bs)dBéL> .
1 i1 o

p=1j=
We note that s — [”j;,_,@(- — Bs)dBE and s — fsbjtjflcﬁ(‘ — B,)dBY are almost surely contin-
uous. Hene

t

T —J
(S, T) = E* (/S jt; 18- — Bs)dBY, ﬁjl it (0 — BS)dstf)
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is continuous. This implies that for every j,

th
E%O (/TC Jt] 190 dB / ti— 190 )dB'u)

ti1

t

J
mo m - lj—tj-1), .
e A N L R e L S

as ¢ — 0co. We have

o~

J

A 23
WW%—%W=3ZWWH/¥JBW - BBy~ [ 8- BdBY
j=1 ™

s

2

)

and

7

_Ewo [H/ t_ lgp s)ng
J

Tf m ~
— QEI’O (/TC ! jtj—ﬁé(' - Bs)nga ﬁj—l jt]-_l@(' o BS)dB‘l:)
t m

7j—1

1 ~ 2 (01
= — o/ Vel (BT

2
jt; (- = Bs)dBY

2 2

t
| AR AT

o~

=T 1+t —tj-1)

t

T P+ N
— 2F*0 (/TC ! jtj—l@(' - Bs)ngﬂ ﬁj_l jtj—lgp(' - BS)ng)

ti1
Note that E°[TF —T¢ ]

y “_J=tj—tj—1 and (4.11). We can see that EZO[1S —1,]?] — 0 as ¢ — .
We have

lim (E=O [ KR (0) — K42 < 2 + lim (E=O[JI5 — L)% = 2.

Thus the lemma is proven.

QED
Now we show a non-relativistic limit of the relativistic Pauli-Fierz Hamiltonian
Theorem 4.14 ([67]) Suppose that V is bounded and continuous. Then for every t > 0 it
follows that

s — lim e tHR — o—tH
cC— 00

Proof: Suppose that F,G € C§°(R?) ® L?(Q). We have

(F, eitHRG) _ / Ex.0 |:67 fot V(BTSC)dS(J()F(.’L'), e*iA(KtR(C))JtG(BTtC))] dzx.
R3
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It follows that

c—00

lim (F, e—tHR,G) _ / E® [e_ i V(B%)ds(JoF(ZC), e—iA(Kt)JtG(Bi))} de = (F, e_tHG).
R3 m

Since Hg > inf eps V(z) = g > —o0, e R < 7. Let F,G € H. There exists F,, G, €
Cs(R?) @ L*(Q) such that F, — F and G, — G strongly as n — oo. By the uniform
bound e R < 79 we can show lim. o (F,e RG) = (F,e " G). Finally since the weak
convergence of e *HR implies the strong convergence, the theorem follows.

QED

4.5 Translation invariant relativistic Pauli-Fierz Hamiltonian

For the relativistic Pauli-Fierz Hamiltonian with V' = 0, as well as H, it can be seen that
[Hg, PE] = 0. This allows that there exists a self-adjoint operator Hgr(p) in F such that

@
Hgr = Hg(p)dp.
]R3

The self-adjoint operator Hg(p), p € R3, is called the relativistic Pauli-Fierz Hamiltonian with
a total momentum p. We can show the similar results to those of H(p) by using the functional
integral representation of e *#®. The theorem below can be proven in a similar manner to that
of Theorem 3.14.

Theorem 4.15 ([65]) Suppose Assumption 4.1 with V = 0. Let ¥, ® € L*(Q). Then
(U, e tHr(P) ) = FO0 [(JO\IJ; efiA(Kf‘)Jte+i(prf)BTt(I)>} ‘
We can see the explicit form of the fiber Hamiltonian Hg(p). Let
K(p) = (p— Pt — A(0))* + m”.

Then we have X
(@76—tK(p)¢) _ o~ tm*R0,0 |:eith (\Ilje—iA(Lt)e—inBt(I)ﬂ .

Let D = D(P?) N D(Hg). Set K(p) = K(p)[p. We define Lg(p) by
Lr(p) = K(p)'/* + Hy, peR’.
Theorem 4.16 ([65]) Suppose Assumption 4.1 with V= 0. Then
S5}
Ho [ Lap)dp
R3

In particular Hg(p) = Lr(p).
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5 Pauli-Fierz model with spin 1/2

5.1 Pauli-Fierz Hamiltonian with spin 1/2

In this section we are concerned with the Pauli-Fierz Hamiltonian with spin 1/2. This section is
due to [72], and in this section we assume Assumption 3.1 unless otherwise stated. The Hilbert
space consisting of state vectors of the Pauli-Fierz Hamiltonian with spin 1/2 is

He = L*(R?;,C?) ® L*(Q).
The Pauli-Fierz Hamiltonian with spin 1/2 is formally given by
% (0 (v - A))2 SV 4+ H = %(—iV A4V %U-B. (5.1)
Here o = (o1, 02, o3) are the 2 x 2 Pauli matrices, and the quantized magnetic field B is defined
by the curl of A as usual:
B(z) = (By(x), Ba(z), B3(z)) = curl, A(x).

Both sides of (5.1) are formally identical. It is straightforward to see that
3
Buw) = D2 A Ve (- 2)) (52)
Aa,v=1

where £*#7 denotes the antisymmetric tensor defined by

1 «afv is an even permutation of 123,
e = —1 @By is an odd permutation of 123,
0 otherwise.

Then

. 1 ) D g . o —
B, =— a*(—lkxej) ——e ‘x,j)—i—a* i(kxel),—e ™ 5| 2.
© ﬂj;;{ ( u\/a )M\@

In this paper the right-hand side of (5.1) is adopted as the definition of the Pauli-Fierz Hamil-
tonian with spin 1/2:

1 A 1 .
Hs = S(=iV - A? +V + Hy — 50 B, (5.3)

Hg is self-adjoint on D(—A) N D(H¢) and bounded from below. Moreover, it is essentially
self-adjoint on any core of Hy = Hy, + H;.

5.2 Scalar representations

As in the classical case in order to construct a functional integral representation of (F,e *Hs@)
with a scalar integrand we introduce a two-valued spin variable 6 € Zs and redefine the Pauli-
Fierz Hamiltonian with spin 1/2. We identify Hg with L2(R? x Zs) ® L*(Q) by

F(-,+1)

Hs > F = <F(-,—1)

) >~ F(-,0) € L*(R® x Zy) ® L*(Q).
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Since . . .
1 . A 1 Bs B1 — 1By
H = —(— v — A 2 V H - = ~ Fal A
S 2( ) TV 2(B1+iBQ —B3 )7

Hg can be regarded as an operator Hyz, acting on L?(R3 x Zs) ® L*(Q):

1 X . N
(Hz,F)(0) = <2(—iV - A)2 +V + He + Hd(6)> F(0) + Hoq(—0)F(—0).
See Table 5 below.
o | =0 | @-09) |a-qn)

Zo-action

1(6) = F(=0) | 1(6) > —i0F(=0) | 1(6) > 05(0)

Table 5: Correspondence between spin 1/2 and Zg-actions

Here Hy and H,q denote the diagonal part and the off-diagonal part, respectively, which are
explicitly given by

- 1, - ~ 1/ .
Ha(2,0) = —30Bs(2),  Hoa(w,~0) = —5 (Bile) = i0Ba(a)) , 0 € Zo.
Write
K = L*(R? x Zy) ® L*(Q).

We define the Pauli-Fierz Hamiltonian with spin 1/2 on K by Hyz,, and consider a functional

integral representation of (F, e~ 22 Q) for (F,e ts@).

5.3 Functional integral representations for the Pauli-Fierz Hamiltonian with
spin 1/2

The idea of constructing a functional integral representation of e 722 is to use the identification:
&
K = / L2(R? X Zo)du(s). (5.4)
Q

In other words, we regard K as the set of L?(R? x Zy)-valued L2-functions on Q. We make the
decomposition

(&)
Ha, = /Q K(¢)du(é) + Hr,

where K (¢) is a self-adjoint operator on L?(R3 x Zs) for each ¢ € Q. For each ¢ € Q, we define
the Hamiltonian K (¢) on L?(R? x Zy) by

1

(K(@)F)(2.0) = (317 ~ A@)? +V + Hul6.)) Fle.0) + Hoa(-0.6)F(2.~0). (55
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We construct the functional integral representation of e *22 through functional integral repre-
sentations of both e *5(®) and e~tHt and the Trotter product formula. In order to do that we
will use the identity

(F, e*tf(ga K(¢)dMG)]C - /

(Fl6), e @c(9)) dpu(9),
Q

L2 (RSXZQ)

while we have already done that of (F/(¢), e *$(?)G(¢)), ¢ € Q, in the classical case (f, e~"s(®b) g)
introduced in Section 2.1. To prevent the off-diagonal part H,4 vanishes we introduce a regu-
larization Hz, . of Hz, by

Hz, F(6) = (;—iv — AP 4V 4 H+ ffdw))F(e) U (Hoa(—6))F(~0),

where U (X) = X + e (| X|) and ¢ € C°(R) is given by

Lzl <e/2,
Pe(z) =¢e(lz]) = (<1, e/2< 2] <¢,
0, |z| > e.

Also, let K.(¢) be the counterpart of K (¢) with H,q(¢) replaced by \Ifs(ﬁod(gﬁ)), ie.,

1

(KOF)(w0) = (317 = AP +V + Hal0.6)) F(0.0) + Ve(Hoa(-0,0)P(z.-0).

Recall that 6; = (—1)* and (X¢)i>0 = (Bt 01)i>0 is the (R® x Zg)-valued random process on
X x Zy. If ¢ € C°(R3), then for every ¢ € Q, K.(¢) is self-adjoint on D(—A) @ Zy and for
g€ L2(R3 x Zy),

(e g) (2,0) = e'Br e o VBN A (X)), (2,0) € RS % Zo,

where

Zt(¢a€) - _i/o A(@( - Bs)v¢)st

t t+ .
_/ Hd(BS,QNS,@ds—l—/ log (—Wg(Hod(Bs,—0N57,¢))> dNs.
0 0

Next we define an operator K.(A) on K through K.(¢) and the constant fiber direct integral
representation (5.4) of K. Take ¢ € C5°(R?) and define the self-adjoint operator K.(A) on K by

. 2
Ke(A) = [ Ke(panto)
Then we can define the self-adjoint operator K. by
K. = K.(A) + H;.

In what follows we construct a functional integral representation of e~ and show that e * =

e 5. Let us define a dense subspace by Koo = C5°(R? x Z)&L2 (Q).
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Lemma 5.1 Under Assumption 3.1 it follows that

s —lime Hrae = ¢~ tHzy (5.6)
el0

Suppose that @ € Cgo(]Rg). Then Hz, . = K. and in particular it follows that

(F,e tH2q) = lﬁﬁ)l(F’ e ). (5.7)

Proof: It is seen that K. = Hyz, . on K, implying that K. = Hz, . as a self-adjoint operator

since K is a core of Hz, .. Moreover, Hz, . — Hz, on K as € — 0 and K, is a common core
of the sequence {Hz, }c>0. Thus (5.6) and (5.7) follow.

QED

By Lemma 5.1 to give the functional integral representation of (F,e~tH%2 @) for any ¢ given

in Assumption 3.1 it suffices to construct a functional integral representation of the right-hand

side of (5.7) and to take an approximation argument on ¢. To obtain the functional integral

representation of e ¢ we apply the Trotter product formula as usual, i.e.,
t A t n-l t A
—tK. _ . LK (A) ~LtHeyn _ s *( LK (A) )
= 1 n n = 1 7 n i .
et = o Jim (T BT = ol B3 (1] demn I 0
1=

The Euclidean version of B),(g) with test function g € L*(R*) is defined by

3
Bu(g)= > A\(0rne""Va,g). (5.8)
Aa,v=1

—

Here V,,9 = V., 9(- — x)[2=0, hence V. g = —ikag(k). Define the Euclidean versions of
Hy(z,0) and Hoq(x, —0) by

Ha(z,0, ) = —%(91533 (o3 — 2)) . (5.9)

Hoa(z, ~6,5) = — 5 (Buio(- — ) — 1023 (- — ), (510)

respectively.

5.4 Technical estimates

This section is a brief version of [73, Sections 3.8.7 and 3.8.8]. To avoid complicated computations
we introduce self-adjoint operators L and Lg for R > 0 which satisfy that

(|1Fl, e =G| 1 ([F,e *|Gl)  as R oo
and diamagnetic type inequality:
|(Fe”22G)| < (|F|,e"|a)).

See Table 6. Applying this inequality we can avoid technical difficulties to construct the func-
tional integral representation of (F, e "% @). We introduce two cutoff functions for each R > 0.
Let xz € C*°(R) be defined by
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(1) xz(x) =a for x> —R+1,
(2) —R< xg(@)<-R+1for —-R<z<—-R+1,
(3) xz(x) = —R for z < —R.
We also define x7 € C*(R) by
(1) xL(z) = R for z > R,
(2) R—1<x}(z)<Rfor R—1<z <R,
(3) xg(z) =z forz < R—1.

Furthermore note that \Xﬁ(x) - X;(y)] < c¢|lz — y| with some ¢ for any z,y € R. We define
Ve(|Hoa(—0)|)r and Ha()r by

V(| Hoa(—0))r = xF; (V-1 Hoa(—0)))) (5.11)
Ha(O)r = x5 (Ha(0)) - (5.12)
Hence —R < Hq(A)g and & < W_(|Hoq(—0)|)r < R. Let ¢ € C$°(R3). We set for each ¢ € Q,
(Mr(¢)F)(8) = (Hp + Ha(9,0)r) F () — Ve(| Hoa(¢, —0) )R F(~6)
for each R > 0, and
(M(¢)F)(0) = (Hy + Ha(¢,0))F(0) — V(| Hoa(d, —0)) F(—0).
Then Mg(¢) and M(¢) are self-adjoint on L?(R? x Zy) and we define

D (&)
My = / Mr(@)du(d), M = / M(6)du(9).
Q Q
We also define

Lp=Mgp+H, L=M-+H;.

In the Fock representation Lr and L are given by

. 2 .2
(1By)n . (;\/31 N BZ>

R

LR:Hp+ﬁf— ) e e L s
\IIE (2 B1+B2> _(§B3)R
R
N A2 a2
X 3Ds Ve (%VBI+B2)
L =H,+ H; — —— )
\IJE <% B]_ +Bz> —%B?,

In the Fock representation we have |Hoq(—0)| = %\/B? + B; which leads that |Hoq(—6)] is
independent of #. The family of self-adjoint operators Lr, R > 0, have also a common core K
and limp_soo LRF = LF for F € K. Hence e ‘2 — 7L strongly as R — oo. A functional
integral representation of e 7*“% can be done by the Trotter product formula.
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Operator | Exponent

e tMr L(t,e,R) = f Hd(BS,HNS Rds—l—fo log ¥, (]Hod( —0n,)|) rA N5

Jse—tMRJ: L(t, S, &, R) = — f(f Hd(BryeNm S)RdT —+ f(;H_ log \Ijs(|Hod(Bra _QNM S)|)RdNr

e tbr Ygp = — f(f Hq(Bs, On,, s)rds + fﬁ log W, (|Hoq(Bs, —On,, 5)|) rRANs

e—tL Y = — [V Ha(Bs, 0, s)ds + [ log Ue([Hoa(Bs, —0n,, s)|)dNy

e tHme | Zy(e) = —iA(K;) — [} Ha(Bs, On,, 5)ds + [i " log W.(~Hoa(Bs, —0n,, s))dNy

etz | 7, = —iA(K;) — [y Ha(Bs, O, s)ds + [y log We(—Hoa (B, —,, s))dN,

Table 6: List of operators and exponents

5.4.1 Estimate of J,e 'MrJ*

Let
t+
L(t S, €, R / Hd BT,QNT, )Rdr+/ log\Ilg(|H0d(Br,—HNT,S)])RdNT.

Here Hy(z,0,s) and Hyq(z, —0, s) are given by (5.9) and (5.10), respectively, and truncated
functions Hy(B;,0n,,s)r and VU (|Hyq(z, —0,s)|)g are defined in a similar way to (5.11) and
(5.12), respectively. Let Kg = L*(R3) ® L*(Qg).

Lemma 5.2 Assume that V € L®(R3) and ¢ € C§°(R3). Let F,G € Kg. Then
/ Z ETo |: fo V(B )dr( (QO) E, eL(tsaR)E G(Qt)):| dz
R3
aEZso
is finite and

(F,Jee ™MrJ*G) = / > B { -1 V(BT)dT(F(qD),ESeL(t’S’E’R)ESG(qt))} dz.  (5.13)

a€lso

Proof: Let us set Voo = sup,cps E*[e —2fyV Bs)ds] < 0. Notice that the right-hand side of (5.13)
is finite, since eZ“(®5<1) is a bounded function. For each (z,,w,m) € R x Zy x 2 x 2, we
have
|(F(q0), Bee" 5 FE,G ()] < | Fq0) | Gae) [ "B5=).
Here ||eX(t:558) || is the operator norm of bounded operator e“(:55%) on [2(Qg). Then it follows
that
Ris(E13) < ¢ [ 50 B[ BV PG |Gl [H 0 s G0

o€l
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We will also prove in Lemma 5.3 below that there exists a random variable A; on (%}, By, i)
such that

(1) [le" =R < Ay,
(2) A; is independent of (z,,w) € R? x Zy x X,
(3) E,[A7] < oo
By (1), (2) and (3) above and (5.14),
[RHS (5.13)] < |Gl FIVA/2(E,[42)/2 < oo. (5.15)

Next we prove the equality (5.13). Note that Mp is defined by a direct fiber integral represen-
tation we have

(JiF, e Mrra) = e / > B | b VENE, [T (6,00)e™ @) (516) (9,01) || e

aEZ2

Here we used Fubini’s lemma and

t i+ N
Li(p,e) = —/0 Hd(¢,Bs,9NS)RdS+/O log W, (|Hoa(¢, Bs, —On,)|) rAN.

Let

t+
(t g, R / Hd BS,QNS)RdS—I—/ log U, (|Hod( 9Ns)|)Rst-
0
We rewrite as

(JEF, e MrJ*@) —e/ ZEW[ VB (F(qp), Joe b TG (qr)) | da

a€Zs

We can see that JseL(t’E’R)J; = E el s RE by a limiting argument, leading to (5.13). Then
the proof can be completed.
QED
Now we have to prove (1), (2) and (3) used in the proof of Lemma 5.2.

Lemma 5.3 For each t > 0, operator e“X&558) s bounded, and there exists a random variable

Ay on (2, By, 1) satisfying (1)-(3) in the proof of Lemma 5.2.

. t+
Proof: Since R < oo, we have |eL(tseR)| < etRefo  log RN For cach m e 2, the number

of jumps of map s — Ng(m) for 0 < s < t is denoted by N(m). Hence f(er log RAN; =
log RN(™) and then |el(tseR)| < RN Set A, = Ay(m) = RN, Then E,[A?] =

tN RQN

NN et = !B H2R-1) < oo Then A, satisfies (1), (2) and (3).

QED
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5.4.2 Estimate of e Lr

In the next lemma we construct a functional integral representation of e *“% for R > 0. Let
t t+
—/ Hd(BS,QNS,S)RdS —|—/ log ¥, (|H0d( GNS , )DRst'
0 0

Lemma 5.4 Suppose that V € L®(R3) and p € C°(R?). Then for everyt > 0 and all F,G € K
it follows that J5e¥RJ, is a bounded operator on L?(Q) for every (x, o, w,m) € R3xZyx 2" x 2,
and

(F,etrG) = / SBR[ b VI (P(gq), 56 3G @) de. (5.16)

aEl2

Proof: In a similar manner to the proof of Lemma 5.3 for each m € Z,, the number of jumps
of map s — Ny(m) for 0 < s <t is denoted by N(m). Fix m € Z,,. Hence by virtue of cutoff
parameter R > 0 it can be seen that ||J5e¥2J,®| < eBRN™)||®||, which implies that J5e¥®J; is
bounded for every (z, o, w,m) € R? x Zy x 2~ x Z,,.

By the Trotter product formula, the Markov property of JsJi = E; and Lemma 5.2 we can
see that

n

(F,e"LrG) = lim ( H( TMpr = an) G)—nlggoFJOH(Jﬁe wMr g )JtG)

n~>oo
=0 0
711520 Z / Exa VB (QO)aJéeyR(n)JtG(Qt))] dz, (5.17)
a€Zsy
where
n it .
" — 1)t
_Z/ Hy <3870N5, (Z ) > ds
i1 'L—nl)t n R
Sy (i— 1)t
+Z/(l)t log W, (!Hod (Bs,—HNS, - > |> dN,.
=1 n R
Then

2/ Eza fo Bs)ds( (0),J6€YR(n)JtG(qt))} dx

€z
x,x S t(p2 _
<3 [ B [ BVE PG [ RRYO] do < [ FIIGIVAZE D < o,
[ AV
(5.18)

Since the right-hand side above is independent of n, it is enough to prove (5.16) for F, G € K,
hence we suppose that F,G € K in what follows in this proof. We can see that

n it .
n — 1)t
> [, Ha (Bs,eNg,“ ) ) dsF
£ [ Yoon g
Z=1 n
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and similarly

t
/ Hy (BS,GNS,S)RdsFH StC|||k|¢/\/(;HH(N+]1)1/2F||
0

with some constant C. By |x;(z) — xz(y)| < |z —y| with some constant ¢, we can also see that

(i— 1)t t
||<Zﬂ . (BS,GNS, - Rds—/OHd(BS,HNS,s)Rds F

(1—1)t \/{f
S Czl (ﬂl 1)t |Hd <B879N57 n *Hd(BS,eNS,S”F dS 7”
1=
It can be seen that
i — 1)t 2 " A
H Ha <BS’9NS’( - ) ~Ha(Bo,0,,5)| F|| < ¢ T KIGIPIN +1)/2F|?

with some constant ¢/. Then

n it .

o — 1)t t
§j/_ Hy (BS,GNS,(Z )> ds—/Hdws,eNs,s)Rds F
i1 " /R 0

Vit
< cc’lllkrlcpH%II(N +1)V2F| =0

as n — oco. Thus it can be straightforwardly seen that

S | — 1)t !
exp (-5 " Ha(Bsbw., C=DY o) F s exp (= [ H(Ba,0n.,5)rds) F. (5.19)
pt (i—1)t s n R 0 s

Next we consider

et (i — 1)t
P z; (i—1)t 10g \Ijs(’HOd Bs’ _0N577 n )’ R st .
1= n

Points of discontinuity of map r — N,.(m) are denoted by s1 = s1(m),...,sy = sy(m) € (0, 00).
=1t 4 is at most

one. Then by taking n large enough and denoting (n(s;),n(s;) + %] for the interval containing

For a sufficiently large n the number of discontinuous points in interval (

S;, we get

L[t (i — 1)t AR
b (3 [, tom e (o (B mow ) 1) v J=TT i+ vt

where ¢; = Hyq(Bs,, —ONSi_,n(si)). By the Lipschitz continuity of XE and 1. we have

(W ([Hoa( B, =0, - n(s:)) )k — Ue([Hoa( B, =0, 5:)) ) F|
< C|| (|Hoa(B 57—9st7”(8¢))\ — |Hoa (Bs, —HNHSz‘)l) P
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Note that

| (IHoa(Bs, =0, n(s:))] — [Hoa(Bs, =0, _,5:)|) F|?
< Cllkl)PIn(s:) — sil (N + 1)Y/2F |2

with some C > 0. Clearly, n(s;) — s; as n — co. Then
lim Hod(Bs,-a _GNS._ n(sl)) Hod(B _QNS,_,SZ')
n— o0 H 4

on Ko and we have

li Y %+1 U, ( |H.4 ( Bs, —0 -1t dN.
nl_}l’I;OeXp Z (i_l)t og YWe ’ od sy “UN,_, n | " s

t+
= H\If ([Hoa(Bs;, —On,,_,si)|)r = exp (/ log ¥, (|Hoa(Bs, —9N3,8|)Rst> . (5.20)
0

=1

Then by (5.19) and (5.20) we can see that for each (z,a,w,m) € R? x Zy x 2" x Z,,

(F(a0), 56 3,6 (@)) = (Fao). Tie "3 Gar)

as n — oo. Together with (5.18) the Lebesgue dominated convergence theorem yields that

/R3 > E (F(qo), JSGYR(”)JtG(qt)ﬂ dz

a€Zs

%/‘ZE o VB (P (qo), 5 0,G )| da

a€Zs

for F,G € Ks. Then the proof is complete.
QED

5.4.3 Estimate of e *L

In this section we estimate the integral kernel of e ** by using the Baker-Campbell-Hausdorff
formula and Theorem B.6 in Appendix B. Let us define

t t+
= /Hd(BS,QNS,S)dS+/ log U, (|Hod( GNS , )|)dN8 (5.21)
0 0

We have already seen that Je¥®J; is bounded for each R < oo, but it is not trivial to see that
JBeYJt is bounded.

Proposition 5.5 ([73, Lemma 3.93],[72, Lemma 4.9]) For each (z,a,w,m) € R? x Zy x
X x 2, operator Jie¥ J; is bounded in L*(Q).

Proof: Let Y = Y7 + Y5, where
t
/ Hd(BT,QNr,S)RdTa
0

t+
n:A log (V. ([Eloa (B, 0, . 5)|))dN;.
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Using Baker-Campbell-Hausdorff formula we expand J§e¥ J;. Thus formally we have to estimate
CT
Jhe¥ ) = Joef+f H ( )) e, (5.22)

where in the Fock representation Bf and C'f are defined by

= —ap @/ S;( (On,)]s < )e_ikB’“dr ,

j==%1

@/ S;(On, JS( >eikB’”dr ,
j==*1

C;

& e
_1_7
V2

T
+e ¢6(7]§

¢\ _ikB.,
@ T; QN .]s () e .
j==x1 \/>
2 P\ kB,
@EW${)6%
Pt vw

Here
L)
S;(0) = —50ms,
1 .
T;(0) = —5(77{ — i)

. , t .
with n = —ik x €’/ (k). Note that ||w€(‘3% + % )| < 1for any j. Now fix (w,m) € 2" x Z,. In

a similar way to the case of R < oo there exist N = N(m) € Nand points 0 < s1 < ... < sy < t,
sj = sj(m), j = 1,..., N, depending on m such that s — Ng(m) is not continuous. Then by
taking n large enough and denoting (n(s;),n(s;) + t/n] for the interval containing s;, we get

N

& = [T (11l + v (o),

i=1
where ¢; = Hoq(Bs,, —0n,,_,n(si)). We have

N N
[Tl + evellal)) < 1+ [ (0 + e=(60)) (i + e=(¢1))
=1 i=1
and (¢; + e (6:))(d; + ev=(d:)) < (1 +€)¢igi + 2. Then
N

e < 1+ [J((1+e) i + €2).
=1

Hence it follows that

N
|(F, J5e 3:G)| < (IFI Jge™ < +H((1+5)¢i¢i+52)> Jt|G|) ~ (5.23)

=1
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Since Baker-Campbell-Hausdorff formula yields that

+
eVl = eﬁe%e%,
where 3 = [B, Bf]/4. We have
k k 1
Bl B C C;
Jren J, = JiePevievs 4 4+ == J.
0 H¢Z t 0 H <\/§ \/§ t

Set j; = ¢ for simplicity. Hence

t Bl B
We apply Wick’s theorem to compute the commutator between [[;_, <$’§ + \%) and evzev2.

01,. 7121)

e k/2) | pair
(f f) Z?P 2 (HCZ” ) A

Here C; j = [C}, C]T], and Zflalr ;.. denotes the summation over all p-pairs chosen from {1, ..., k},
and
k—2p
k —(k—2p)/2 T
T I I
=0 {TLl, ,TLl}C{il,...,igp}c iG{nl,A..,nl} iG{TL1, ,nl}cﬂ{zl, ,ng}
Hence

k + [k/Q] pair / p k—2p
e 26% H (C + C) Z o Z (H C’iml,izl> Z Z Xe%e%Z,
=1 11..,02p\=1

(5.25)
=0 {n1,...,n1}C{i1,...,izp}°

where X = licin, 01 (CF +9i) and Z = [Licpn, niyenin,..in }e Ci With y; = [B C1]. Let us
define operators in F by

B (1) = —a* @/ el (0y,) -

e—ikBr(w)dT

j==%1 \/(;
EB/ “lslle (k) g (g ) kB gy |
j==*1 f
@ Ity P kB,
€ .7( st-) € )
j=+1 v

—|s=lw(k) 1IcBS
@ e T;(On, ) i
j==1 \/>
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By intertwining properties J§ B = BT(0)J5, JoB(0) = BJ, JOC’T CT( 0)J§ and JoC;(0) = CiJo,
and factorization formula J3J; = e " we see by (5.25) that

W (k) = Joefef H (\C/i f})

k/2] pair P k—2p o) e
= Z 2p Z (H Cz‘gl_l,m) Z Z X(o)eﬁeﬂtmeﬁz(t)7

wi2p \I=1 =0 {n1,...,TLl}C{il,...,igp}C
where X (0) and Z(t) are defined by X and Z with C; replaced by C;(0) and C}(t), respectively.
1 . R 1 A
Let a = —=([[[kl¢/Vell + [[[kl¢/wll) and 8 = —=|[[k|¢/v/ll. Then [[C;(1),CIQ)]| < B2 for

v v
any i, j. Let
2 At G+ DWW G+ m)!
f(l7m) — Z \/( - ‘)”\/( )
- J:J
3,3'=0
and - i
llm) = 3 PG+ DNV G+ m)!
e PO/ 20 +m)/24150
7,3'=0
Here v = |||k|¢/vw| + |||k|¢/w]. The following estimates (5.26) and (5.27) are proven in
Theorem B.6.
Case (t > 1):
2
IW ()W < wk)||e= 305", (5.26)
where ( 2)p
[k/2] B2V (o +y)lam
1
p=0 l+m+2p=
and y = t3°.
Case (t < 1): For any 0 < r < t, we have
W ()] < wir,k) b0 ), (5.27)
where
lk/2) (i) (o +y)lam

(rk)y=k> > il &(1,m).

p=0 I+m+2p=k
Hence W (k) is bounded. Since

=1

N
Jge (1 + 1+ e)gidhi + 52)) Ji

N k
=T T+ > N1 4 &)k Tpe H i, i, | It

k=0 {il,...,ik}c{l,...,N}
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in a similar manner to (5.26) and (5.27) we see the bound:

k
_ ~ 2
Tt | T 60,6, | 30| < w(r, 2k) He*%(tﬂ)Hf
with O <r <tfort<1landr=1fort>1, wehave

N
Jhen <1 + H((l +€)pigi + 52)> Ji
=1

N

N!

~ 112
: G”(T’ D2 o el %)) [estemm

£
I

Then the proof is complete.
QED

Lemma 5.6 Let V € L®(R3) and $ € C*(R3). Then for every t > 0 and all F,G € K it
follows that

(F,etLG) = e / S Erafe i VIBIS(F(gp), T5e 1,Glg:))d. (5.28)

aEZ2

Proof: Let F,G € K such that F' > 0 and G > 0. By Lemma 5.4 we have

(Fe7nG) = / > BTl VI (E(g), 5 1,G ) lda. (5.29)

a€Z2

Here 0 < g(R) = (F(qo),J§e¥?J;G(q:)) and g(R) is a monotonously increasing function in R.
Hence (F,e *'R@) is also increasing in R and (F,e ''RG) 1 (F,e '*G) as R 1 oo. For each
¢ € Q, it follows that

JoF(qo) - €YRJtG(Qt) — JoF(qo) - BYJtG(Qt)

as R — 0o. Then the monotone convergence theorem yields that the function on the right-hand
side above JoF(qo) - €¥ J,G(q¢) is finite for a.e. (¢, 2, a,w,m) € Qr x R3 x Zy x 2~ x %, and

(F,e @) = Aim (F, e bR

o[ Zw[ i eI VE (), 356 03,6 )|

a€Zs

=t [ 3 e [ BV, 1P () - 3G(an)]] do

a€Zs

For general F,G € JZ, the lemma is proven by decomposing F' and G as a linear sum of positive
functions: F' = RFy —RF_ +i(SFy —SFL) and G = RG4 —RG_ +i(SG4+ — G- ). Finally we
show that Jie¥ J,G(q;) € L*(Q) for each (z,a,w,m) € R® x Zy x 2~ x %, in Proposition 5.5.
Then E,,,[JoF(q0) - € J:G(q:)] = (F(qo), J5e¥ J:G(qt)) follows and the lemma is proven.

QED
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5.4.4 Estimate of e /22

Let Z; = Yi(1) + Y2(2) + Yi(3), where

(@ [ o).
Y}/(Q) = —/ Hd(BS,ONS,S)dS,
0

t+
Yi(3) = / log(—Hog(Bs, —Ox. ,5))dN.
0

We shall see that Z; turns to be the exponent of an integral kernel of e *22. We furthermore

define Z;(e) by Z; with Y;(3) replaced by Y:(3,¢), i.e., Zi(e) = Yi(1) + Y2(2) + Yi(3,¢), where
t+
Yi(3,¢e) = / log(—V.(Hoq(Bs, —0n,_,s)))dNs.
0

Lemma 5.7 For each (z,c,w,m) € R3 x Zy x 2~ x Zus JSeZﬁ(E)Jt s a bounded operator.
Proof: Let ®, ¥ € L?(Q). By Y defined in (5.21) we see that
(@, e 3,0) < (1B, Tge¥ 3, ) < [|@]][1W][]|T5e” T

follows from Proposition 5.5. Then the lemma is proven.
QED

Theorem 5.8 Suppose Assumption 3.1. Then for every t > 0 and all F,G € K it follows that
(F e G = lim, o (F, e 222G and

(Fe M) = ¢ / S Bl VB (F(gg), T5e%€)3,G(qr))da (5.30)

a€Zso

Proof: Since e Hzze — ¢=tH™ gtrongly as e — 0, (F,e 22 Q) = lim,o(F, e #1222 Q) follows.
Now we turn to proving (5.30). Suppose that ¢ € C§°(R3) and V € L>®(R?). Write

T
Xsir(e.s) = =i [ Alisg( = BB,

T T+
—/ Hd(BT,GNT,S)dT—i-/ log( (Hod( GNT_ )))dNT
S S

Define S; ; : K7 — Kg~ by
(55,G)(, 0a) = B2 e Jo VBN Xoa(eo) G gy)].
It can be seen that Sf; has the property:

t+t!

St sSt’ /G(ZE 0 ) t+t E* a[ o V(BT)dTGXO’t(87S)+Xt’t+tl(873,)G(qt+tl)], (531)
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Note that for s1 < ... < s,

€X0’t1 (8,81)+Xt1,t1+t2 (5,82)+...+Xt1+.“+tn,1 1+ Fin (g,8n) c éﬂ[Sh (532)

sn)*

Since (F,e 'H22.2G) = (F,e t¥-@), by the Trotter product formula, (5.31), (5.32) and the
Markov property of Eg, s € R, we obtain that

(F,e tH2:G) = €' lim / Z Exa[ ~JoV BT)dr( (q0), J5e?t (E)JtG(qt)ﬂ dz, (5.33)
R3

n— 00
a€Zs

where Z7'(g) = Y'(1) + YM(2) + Y*(3,¢) with

= (@D [

p=1j=1"7%-1

tj
th 130 )dB'u )

n

J
}/;fn(Z) = - Z/ Hd(BSaeNs)tj—l)dsy

n

ti
Y/ (3,¢) = Z/ log(—We(Hoa(Bs, —0n,_,tj-1)))dNs
1 Jtj
and t; = jt/n. Put

(F,T,G) / Z E*© [ - Br)dr( (q0), J5e%i©) 1,G(q ))] de,

a€Zs

(F, TG) —e/ ZE“‘ - BT)dT<F(q0),J8€Zt(€)JtG(Qt)>}dx'

ac€lo

Notice that by the definition of (F, T,,G) we see that [(F,T,G)| < | F||||G||. Suppose that F,,, —
F and G,, — G as m — oco. Then by a telescoping we can see that |(F,T,G)— (Fm,T Gm)| <
|F — Eu|[IG| + |G — Gumll|Fmll. By using facts that |J,F| < J¢|F|, |e**MWF| = |F| and
|eYt2)+YiBe) F| = Y| F|, we can see that |(F, TG)| < a||F||||G||, where a = e tmepeC(L). Hence
we have

[(En, TGm) — (F,TG)| < al|[Fop = FIl| G| + ol FI|G = G-

Suppose that ||F — F,|| < € and ||G — Gy,|| < €. Together with them we have

(F.T.G) — (F,TG)| < (|G + all Gl + | Fuall + @l FI) + (o TuGin) — (P, TG
(5.34)

It can be concluded from (5.34) that it is enough to show the lemma for arbitrary F, G included
in some dense domain. We shall show the lemma for F,G € K,,. We claim that

(1) For each (z,c,w,m) € R x Zy x X x Z,, there exists Cy(m) such that
(F, 357 ©3,G) 2| < Culm),

where C;(m) is independent of (x, o, w) € R3 x Zy x 27, ¢ > 0 and n, and it is satisfied
that E,[C?] < cc.
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(2) For each (z,a,m) € R3 x Zy x Z,,,

lim E$y[(F (o), Joe”" ©IeGar)] = ESy[(F (a0), J5e™ 9 3:G(ar))].

n—oo

The proof of (1) and (2) will be given in Lemma C.1 and Lemma C.2 in Appendix C below,
respectively. We set

RHS (5.33) / > B (5.35)

Q€Zs
where &, = e~ Jo V(Bs)ds (F(q0), JSGZ?(E)JtG(qt)). Thus we have
By [16al] < Efple o VIS, (m)[| F(g0) G ar) ]
and
/ S Er e o VIEXSCy (m)|| F(q0) G ar) [1d < V2 (E,[CE) Y| FI[| G| < oo.
a€Zs

Since Ef),[€,] = EY[€o0] asn — oo for each (z, o, m) € R3 xZy x Z,,, by the Lebesgue dominated
convergence theorem,

i [ 3 B = 5 EE

aEZs a€Zls

follows. For V € Rkato by a limiting argument we can show the theorem. Finally for ¢ in
Assumption 3.1, we can see (5.30) by an approximation, which is also shown in Lemma 5.9

below.
QED

Lemma 5.9 (5.30) is valid for ¢ in Assumption 3.1.

Proof: It is enough to show (5.30) for F,G € K by an approximation argument. Take a
sequence @, € C§°(R3) such that |k|@,/vw — |k|¢/v/w as n — oo. Then (5.30) is valid for
each @,

(F, ez o0 / S7 Ele o VB (F(qq), T3e7 O 3,6 q:))de

a€Zs

Here Z}'(¢) is defined by Z;(e) with ¢ replaced by ¢,,, and Hz, .(n) by Hz, . with ¢ replaced
by ¢,. It can be seen that Hyz,.(n) — Hz,. as n — oo on a common core Ko. Then
e Hzyc() _y o=tHzy0 strongly as n — co. Let Y;*(1), Y*(2) and Y*(3) be Y;(1), Y;(2) and
Y:(3) with ¢ replaced by ¢,,, respectively. In a similar approximation argument to the proof of
Lemma C.2 we can show that

(1) Ellle W — e W)F] — 0 as [[(¢, — @)/ vl = 0,

(2) (e — ") F|| - 0 as [[[k](¢, — &)/l =0,
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(3) [I(e" () — MENF| = 0 as |||Kl(@, — @)/ Vel =0

for F € L2 (Q). Hence
(F, e—tHZz,EG) = lim /3 Z [ fO (Bs) dS( (qo),JE;eZtn(E)JtG(qlt))]dl'
R
= / Y Bl b VB (F(qo), 357D 1Gge))da
R

for F,G € Ks. Then the proof is complete.
QED

5.5 Functional integral representations of ¢~/

As was mentioned above we need the regularization \Ilg(ﬁod) of fIOd to prevent zeros of f]od.

IOg Hod(B&*eNS,vs))

The zeros of Hod produces the zeros of efO dNs i order to avoid lim,_,o in

the functional integral representation, instead of introducing regularization ¥, we introduce a
subset W of R3 x 2" x 2y x Qg by

W = {/0 1og< VIb1(s, 2, Bs)|? + |ba(s, z, B)| >dNS>—oo}, (5.36)

where by (s, z, Bs) = Bo(js@(- — Bs — x)).

Theorem 5.10 Suppose Assumption 3.1. Then for everyt > 0 and all F,G € K it follows that

(Fe @) = ¢ / > ETe = Jo VB (30 F (o), e Ty J,G (1)) d. (5.37)

a€lso

Here W is given by (5.36) and the exponent Z; is defined by

t+
_ / Hy(Bs, 0., s)ds + / log(—Ho(Bs, —Ox,_,5))dN
0 0

and

t+
/ log(—Hoa(Bs, —0n,_,8))ANs = > log(~Hoa(Br, ~0n,_, 7))
0 T

NN

possibly takes infinity.

Proof: By the Lebesgue dominated convergence theorem we have

lim / > Erefer VI (3o F(g), €40 1,Gqr))]da
R3

e—0
a€Zs
/ Z E®Y V(Bs)ds hm(JoF(QO) (E)JtG(qtmdx'
a€Zsz
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We can also show that lim._,o(JoF(qo), ]IchZf(E)JtG(qt)) =0 and
lim (JoF (qo0), 7" 1:G(qr)) = lim (JoF (q0), Tw @3, G (@) = (JoF (q0). Dwe” J,G(gr))-
Then the theorem follows.
QED
5.6 Translation invariant Pauli-Fierz Hamiltonian with spin 1/2

We study the translation invariant Pauli-Fierz Hamiltonian with spin 1/2, that is, Hg with
V identically zero. We suppose Assumption 3.1 with V' = 0 in this section. The Pauli-Fierz
Hamiltonian with spin 1/2 and a fixed total momentum p is defined by

1 ) 1 .
Hs(p)=§(p—Pf—A(0))2+Hf—50-3(0), p R,

with domain D(Hs(p)) = D(H¢) N D(P?). Hg(p) is self-adjoint and essentially self-adjoint on
any core of Hy + P?.
As in the case of H(p) and Hy(p) we have the unitary equivalence below:

2 (3. 2 2 ~ © 9 2
PRS0 1HQ) = [ e Q)

b
Hs = / Hs(p)dp,
]R3

which are implemented by 7 defined in (3.30). We now construct a functional integral rep-
resentation for the translation invariant Pauli-Fierz Hamiltonian with spin 1/2. As before, we
transform Hg(p) on C? ® L?(Q) to Hz,(p) on £?(Z3) ® L*(Q) which is defined by

(12 (0)0)6) = 50~ Pe = A(0)? + Ha(0.60) + ) WO) + Foa(0,6)¥(~0),
where
H4(0,60) = —%eég,m),
Hoa(0,—8) = —%(31(0) — 0B5(0)).

The strategy of constructing a functional integral representation of e~*22(?) is similar to that
of the spinless case.

Theorem 5.11 Let ®, ¥ € (?(Zy) ® L*(Q). Let Wo C 2" x Z,, x Qg be defined by

t+ 1
Wo = {(w,m, $) € X x Z, x Qg | / log<2\/|b1(5,BS)|2 n |b2(s,BS)|2) dN3>—oo} .
0
Then

(@, e ) F) = " EX((Jo®(Xo), 7 Iy, T P PP 0 (X)),

a€Zs
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where the exponent Z; is given by

¢ t+
_/ Hd(Bs,QNs,s)ds+/ log(—Hoqg(Bs, —0n,_, s))dNs.
0 0

Proof: In addition to the proof of Theorem 3.14 the theorem can be shown by mimicking the
proof of Theorem 5.10.
QED

5.7 Symmetry and non-degeneracy of ground states

For the Pauli-Fierz Hamiltonian H and the relativistic Pauli-Fierz Hamiltonian Hg, we can
show that the associated semigroups are positivity improving. Thus the ground state for H and
Hg is unique if it exists. We are concerned with e~*/s in this section.

Before concerning with Hg we study a toy model H () defined by

1
H(5):§(—1V—A)2+V+Hf—eal, e eR.

When € =0,
1(_: 2
H<O)_< 0 F(—iV—A?+V+H)"
Then all the eigenvalues of H(0) are degenerate. Let us consider € # 0. Since H(e) = H(—¢),

we may assume € > 0.

Proposition 5.12 Let ¢ > 0. Then & te HEG s positivity improving. In particular the
ground state of H(e) is unique, if the ground state exists.

Proof: Let F,G € Hg. It follows that

(FeEa)=¢ Y / Eem b VB3P (Xo), €7 3,G (X)) da
R

aEZ2
Here Z; = —i [ A(js@(- — Bs))dBs + [, logedN;. Let F,G > 0. Then
(F,6 e HEaEq)
=€) /R B [sNte— Jo VB (50 P(Xg), Ggle o AG2(-BB g 1, (X)) | dz > 0

a€EZs

and 6 le (&G is positivity improving.
QED
We study Hg from now on. Suppose that B = 0. Then similar to H(0) mentioned above,
all the eigenvalues of Hg are degenerate. However B # 0, unlike H(e) the ground state of Hg is
also degenerate. We shall show this in the following. The idea is to show that

Hs= P Hs(w)

w€Z1/2
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and Hs(w) = Hg(—w) by symmetries hidden in Hg. This section is taken from [78]. Also refer
to see [131] and [73, Sections 3.8.4 and 3.8.9].
The polarization vectors e*! are coherent polarization vectors in direction n € S whenever

there exists z € Z such that for any ¢ € [0,27) and any k with k/|k| # n,

(ejl(Rk)) _ (cos(z¢) —sin(qu)) ((Re“(k))u

e;l(Rk) sin(z¢)  cos(z¢) (Re—l(k))u)’ w=123,

where R = R(n, ) is the matrix denoting the rotation around n € S? with angle ¢ € [0, 27).
Let J: L2(R3) @ L2(R3) — L2(R3) @ L2(R?) be given by

~ 0 —]le(RS)
‘J -1 <]1L2(R3) 0 ’

S¢ = dT'(23).

We define

Let £, = k x (—iVg) be the triplet of angular momentum. We define L¢ by
Le = (L, Lo, Les) = dT(£). (5.38)

St is called the helicity and L¢ the angular momentum of the field. For (n,z) € S? x Z define
Je = Ji(n,z) by Jy =n- L+ S¢ and J, = Jp(n) by Jp =n- £, 2n o. Write

J=Jp01+1® Ji.
Clearly, J = J(n, z) is defined for each (n,z) € S? x Z.

Proposition 5.13 If the polarization vectors are coherent in direction n, and ¢ and V are
rotation-invariant, then e'? Hge™'*Y = Hg for every ¢ € R.

Proof: Write aﬁ(( ) for a*(f @ g). Notice that for a rotation-invariant f,

+ +
i0Js o+ <feik:c (6;1)) e—i0TE — g <fei¢(z3+n£k)eikx <6;i)> _
eu €u

Since the polarization vectors are coherent, we have

iJ ik ey iJ. kR1x (€5
1QJs ¥ —1RT 71 f — Rl/ —1 xT v , 539
o (et ()= o (e () e

where R = R(n,¢) = (Ruw)i<pp<3- By (5.39), we see that

e\t Hye 19t = Hy,
A (2)e P = (RA), (R )

(S) efﬁbn' “”azueﬂdm' "= (Rx) s
eld)nlez(_ivw)ueﬂ(bn‘ez = (R(=iVa))pu,
ei¢n~(1/2)00_“6—1(1971(1/2)0' _ (R_IO')N.
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Then
. . 1
¢ Hse ' = o (Ro - (R(=iV) = RA(2)))” + H + V(Ra) = Hs.

QED
Denote the set of half integers by Z; 5 = {w/2|w € Z}. For each (n, z) € S* x Z, notice that

Z 0
270 Thus for each (n,z) € S% x Z,

0, z=0.

o(n-(le + %50)) = Zyj9, o(n- Lg) = Z and o(S) = {

it follows that
o(J) = Zys. (5.40)

Theorem 5.14 Suppose that the polarization vectors are coherent in direction n, and @ and V
are rotation-invariant. Then Hg and Hs can be decomposed as

Ho= P Hsw), Hs= P Hs(w). (5.41)

’LUGZI/Q 'LUEZl/Q

Here Hg(w) is the subspace spanned by eigenvectors of J associated with eigenvalue w € Ly )2
and Hs(w) = Hs[ 34 (w)-

Proof: This follows from Proposition 5.13 and (5.40).
QED
The Pauli-Fierz Hamiltonians with different polarization vectors, however, are unitary equiv-
alent. Denote the Pauli-Fierz Hamiltonian with polarization vectors e*! by Hg(e*!). Let n*!
be arbitrary polarization vectors. Then

Hs(*") = @ Hs(e*' w).
wEZl/g

By using symmetries of the Pauli-Fierz Hamiltonian with spin 1/2 we can show the degeneracy

of ground states of Hy. Assume that V is rotation-invariant and the polarization vectors e*!
are given by
—ko, k1,0 - —ksky, —koks, k? + k3
ety = TR g et ry = (e Thak Bt k) (5.42)

VTR k| /K2 + k2

These are coherent in direction (0,0,1) and their helicity is zero. Let A : R3 — R? be the flip

k1 k1
defined by A [ ko | = [ —k2 |, and @, : L*(R?) @ L?(R3) — L?(R3) ® L%(R?) by
k3 ks

=31

()G = 0)-(G)

A computation gives



where u? = u or 4. We have for rotation-invariant f and g,

+1

_1 6:1](. (Zﬁ1£)7 n= 1> 3>

U ] = ”e;rlf
e'u g _(eglg)7 ,M:2

Then the second quantization I'(u) of u induces the unitary operator on F and for rotation-
invariant ¢ we obtain

_ A, (Az) p=1,3
1 _ 1% ) PR)
I'(u)" " Ap(x)l(u) = { AL (Az), p=2, (5.43)
['(u) "' HT'(u) = H;. (5.44)
Next we consider the transformation on o = (01, 092, 03) given by
—Op, M= 17 37
Oy 020,09 = { U;uﬂ =2 (5.45)

Under the identification L?(R3) @ L?(R3) = C? @ L?(R3), we define 7 = 02 ® @ This satisfies

7 Yop ® f)T = { ;5%?"5 Zf’l’ P (5.46)
T o, @V )T =-0,0V,, pn=1273. (5.47)
We finally define the unitary operator J : Hg — Hg by
J=7T(u).
Combining (5.43)-(5.47), for rotation-invariant ¢ and V
37 0u(=iV = Au)F = —0u(=iV, — Ay),
37'Hy = Hy,
JVI=v
are obtained. From these relations we can show the theorem below.
Theorem 5.15 If ¢ and V are rotation-invariant, and the polarization vectors e* are given

by (5.42), then Hg(z) and Hs(—z) are unitary equivalent.

Proof: Since e*! is coherent in direction (0,0,1) and its helicity is zero, J is of the form J =

(lp3 — 303) @ 1+ 1® Lgs. It follows that J~'J3 = —J. This implies that J maps Hg(w) onto
Hs(—w). Furthermore, 3~ 'HsJ = Hs. Thus 3~ 'Hs(w)J = Hs(—w) follows.
QED
An application of Theorem 5.15 is to estimate the multiplicity of eigenvalues of Hg.

Corollary 5.16 Suppose that V and ¢ are rotation-invariant. Then the multiplicity of any
eigenvalue is a non-negetaive even number. Moreover & le ™ tsG& is not positivity improving.

Proof: We may suppose that the polarization vectors of Hg are given by (5.42). Thus Hg =
@wezm Hg(w). Theorem 5.15 implies Hg(w) = Hg(—w), and the multiplicity of any eigenvalue
is even. The existence of the ground state is established in e.g., [10, 12, 11, 13, 45, 96, 9, 8, 51, 21].
G~ le MG can not be positivity improving, since the ground state is degenerate.

QED
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6 Energy comparison inequalities

We show several inequalities derived from functional integral representations for the Pauli-Fierz
type Hamiltonians. These inequalities are useful to study the properties of the Pauli-Fierz type
Hamiltonians. See Table 7 below.

Energy comparison inequality

H E(0) < E(e?)

H(p) | E(e*,0) < E(e?,p)

Hg ERr(0) < Er(e?)

Hg(p) | Er(e?,0) < Er(e?,p)

~2 ~ 2 ~ A ~ ~
H E(0,A/B. + B3,0,B,) < E(¢?, B1, B, B
5| (app=Bian .z ot 55,0,8,) < B(e", By, B2, Bs)

~2 ~2 ~ ~ ~ A
H E(0,p,\/B., + Bj3,0,B.) < E(¢?,p, B1, B2, B
SO | B arzy 00V ot 5,0, B) < B, B, B, By)

Table 7: Energy comparison inequality

6.1 Pauli-Fierz Hamiltonian H and H(p)

An application of the functional integral representation of (F, e tH G) is a diamagnetic inequality.

Corollary 6.1 Under the conditions of Theorem 3.3 it follows that
(F, e @)| < (|F|, e~ 0| q)). (6.1)

Proof: By the functional integral representation in Theorem 3.3 we have
t
(F.emG)| < / Efe™ o VB (o F(Bo)], 34/ G(By) ) = (|F|, e~ 0| @),
R3
Here we used that |JsF| < J4|F|, since Js is positivity preserving.
QED

(6.1) is called the diamagnetic inequality. The diamagnetic inequality shows that coupling a
particle to a quantized radiation field by minimal interaction increases the ground state energy
of the non-interacting system. The exact statement is as follows. We introduce a coupling
constant e € R to the Pauli-Fierz Hamiltonian H as

1 .
H=5(-iV - eA)? +V + H;.

By a symmetry we can see that

1 A 1 )
5 (-iV - eA)? +V + Hy = S (-iV+ eA)? +V + H.

Then inf o(H) depends on e2. Let E(e?) = inf o(H).
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Corollary 6.2 We have E(0) < E(e?).

Proof: Corollary 6.1 implies that

w (F, e—tHF) . (’F|v e—t(Hp—i-Hf)‘F’) < (F, e—t(Hp+Hf)F)
rh0 IFIP = ko HE Trdo IFIP
Hence [le”tH| < [le”®UotH|| = ||e=tp||. Tt implies that info(H,) < info(H). Thus the
corollary follows.
QED
Another significant property of e is positivity improving. Unitary operator et(—iVa) ig a

—A)

shift operator on L?(R?), hence it is positivity preserving. While e~ t is positivity improving.

o (f,e —t(= ) > 0 for any non identically zero functions f > 0 and g > 0. By the integral
kernel e ‘A(Kt), in general (F,e *#G) € C for F >0 and G > 0. Let ¥, be the ground state of
H. By Corollary 3.10 we see that e ("N, is strictly positive. Hence (f® 1,e 7/2ANG,) £ 0
for any non identically zero f > 0. It is easy to see that limy_,e(f @ 1, e *H—Ele 2))f ® 1) =
|(f ®1,¥4)|2 > 0 and hence

1 1
—1m1fmgf®nﬂ%Hf®n):-mnfkg{e%ﬂgwf®nﬂ%“*E@Df®ﬂg
t—oo t t—oo t
1
= F(e?) — lim ~log(f ® 1, e "B ¢ @ 1) = E(e?).
t—oo t
This allows to derive an expression of the ground state energy F(e?).
Corollary 6.3 Suppose either Assumption 3.1 or Assumption 3.2. Then the function
e? — E(e?)
18 monotonously increasing, continuous and concave.

Proof: Notice that )
(1, e*ieA(Kt)]l) — o~ (€/2)a(Ke,Ky)

For f > 0, we have
1
2 _ i —tH
E(e?) = g%tmgf®me fo)

1

— lim log/ E*[f(Bo)f(B)e = Jo V(Bo)ds _(62/2)q(Kth)]d
t—oo ¢ R3

As e (¢?/2)an(Ke.K) g log-convex in €2, E(-) is concave. Thus E(e?) is continuous on (0,00).

Since F(e?) is continuous at e = 0, E(e?) can be expressed as

with a suitable non-negative function p(t). This implies that F(e?) is monotonously increasing
2
in e®.

QED
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Remark 6.1 The formula
1
—tli>m Elog(f @1 e fol) = E(?)

holds for arbitrary strictly positive function f regardless of the existence of ground states. See
[78, Lemma 1.56].

We derive a similar inequality for e #7(®) to that for e 7,

Corollary 6.4 It follows that
(e P @) < (W], ).
Proof: By the functional integral representation of (¥, e *#(®)®) we have

(U, e )| < B[(Jo|W|, Jse PP D] = (W], e HPFH|B)).

—iBPs

Here we used that e is positivity preserving and hence |e 7 BPrd| < ¢71B:Pr|p),

QED

From this diamagnetic inequality, we can only deduce the trivial energy comparison in-
equality 0 = inf o(P? + Hy) < info(H(p)). However, combining the unitary transformation
e i(m/2N with the functional integral representation, we obtain an interesting result. Denote

E(e?,p) = inf o (H(p)).
Corollary 6.5 It follows that

(1) Let p=0. Then el(T/2N o=tH(0) =1 (m/2N s positivity improving.

(2) The ground state of H(0) is unique whenever it exists.

(3) E(e2,0) < E(e?,p) holds.

(4) Map p — E(€2,p) is continuous and E(e?,0) = inf o(Hy—g), where Hy—q is H with V = 0.
Proof: In the case of p = 0 we remark that e??* = 1. Then we have

(\117 ei(Tr/Z)NeftH(O)efi(7r/2)N(D) — EO[(JO\I/, efiﬂ(Kt)JtefinBt (D)]

Since Jz‘)e_i”(Kt)Jt is positivity improving and e 15t is positivity preserving, (1) follows. (2) is
implied by (1) and the Perron-Frobenius theorem [47]. We have

(W, /2N o~ tH @) ~i(r/2N g < EO[(J| W], *i“(Kt)Jte’inB‘I‘PI)]
(‘\I/‘ i 7r/2)N (O)e*i(ﬂ'/Z)N‘Q)D_

This yields (3). Finally we show (4). From |(¥, (e () — ¢=tH(9)®)| < ¢|p — ¢| the continuity
follows. Let E = inf o(Hy—g) and we set E(e?,p) = E(p). We have

(W, HY) = AS(W(p)aH(p)W(p))dp > EQ0)[wl.
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Then E(0) < E follows. Let ®5 = fﬂg ®(q)1{p—q|<sydq, where we assume that ®(q) satisfies

(®(q), H(q)®(q))

B = = agpe

<E, |p—q|<o.

We have
Blesl?> [ (@), H@)®(0)q = (@, 105).

This contradicts that E is the bottom of the spectrum of Hy—. Hence E(0) < E < E(p) for
all p € R3. From the continuity of E(p), it follows that F(0) = E.

QED
6.2 Relativistic Pauli-Fierz Hamiltonian Hr and Hg(p)

For Hy by using the functional integral representation we can obtain similar results to those of
H. Let Eg(e?) = inf o(Hg) and Eg(e?,p) = inf o(Hg(p)).

Corollary 6.6 Suppose Assumption 4.1.
(1) It follows that

|(F, e_tHRG)| < <|F|7e—t((—A+m2)1/2_m+V+Hf)|G’> .

(2) The function e — Er(e?) is monotonously increasing, continuous and concave.
(3) It follows that
(¥, e @)| < (|w], e (VEHFmEmm |,

(4) Statements (1)-(4) below are satisfied.

(1) Let p=0. Then (72N =tHr(0)=i(x/N s yositivity improving.

(2) The ground state of Hg(0) is unique whenever it exists.

(3) Energy comparison inequality Er(0) < ERr(p) holds.

(4) Map p — Egr(p) is continuous and Er(0) = info(HRry—g), where Hry—y is Hr with
V=0.

6.3 Pauli-Fierz Hamiltonian with spin 1/2 Hz, and Hz,(p)

Let us consider Hz,. By using the functional integral representation we can estimate the ground
state energy of Hyz,. Write
E(e?, By, By, B3) = inf o(Hy,).

For the spinless Pauli-Fierz Hamiltonian H we have inf o(H) = E(€?,0,0,0) and the diamagnetic
inequality £(0,0,0,0) < E(e?,0,0,0) was already seen. We extend this inequality to Hz,. Define

(Hz,(0)F)(0) = (Hy, + Hy + Ha(0))F () — |Hoa(—0)|F (—0),

where

Foa(~0)] = 3\ Bi(w) + By ()
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is independent of 6 € Zy. Hyz,(0) corresponds to

. [~2 .2
Hp+Hf—§ 9 9 .
B1+B2 _B3

acting in L?(R?;C?) ® L?(Q). The functional integral representation of e~z ©) is given by

(F, e tH0q) = 1511%1 ey /RgEx Al Jo VB (3, P(X,), X O1,G(X,))]de,
o€l

where

Xi()——/tH(B On.,s)d /Hl
i (€)= a(Bs, 0n,,s)ds + 0g (Ve (|Hoa(Bs, 5)|))dNs. (6.2)
0 0

Corollary 6.7 It follows that

(Fe22G)| < (|F|, e~ O|q)) (6.3)
and
£2 2 PP
E(0,\/B,, + Bj3,0,B,) < E(¢*, By, By, B3). 6.4
(aﬁw):(lg%i)((??)l),(?)u) (7 at B>V ’Y)— (6, 1, P2, 3) ( )
Proof: Since |W.(Hoq)| < W.(|Hoa|), |€%©)| < X" and |J,G| < J,|G|, by the functional

integral representation of e "2 we have (6.3). From this,

is obtained. We will show that

E(€2, Bl, BQ, Bg) == E(EQ, BQ, Bg, Bl) == E(GQ, 33, Bl, BQ) (65)
T )

by SU(2)-symmetry. Let R € O(3) be such that R [ 2 | = | @3 |. Then there exists (n, ¢) €
I3 e

S% x R such that R = R(n,$). Here R(n,¢) describes the rotation around n € R3 by angle
¢ € ]0,2m). Hence we see that

ei¢n~(1/2)00He—i¢n~(1/2)o‘ — (R_l(f)“.
Now we write Hz, by Hyz,(e, B1, Bo, B3). Thus we obtain that
U7y (e, By, By, By)e D7 = Hy (e, By, B3, B1)

which implies the first equality in (6.5). The second one is proven in the same way.
QED
Write
E(p, A, By, By, Bs) = inf o(Hz, (p)),
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and define Hy,(p,0) by

(12, . 0)0)(0) = (50 = P + Fa(0.0)) ¥(0) ~ [ Hoal0.~0) ¥(0),

where |Hoq(0, —0)| \/Bl 2 4+ B5(0)2. This corresponds to
1 133(0) 131 —F lgg )
§(P—Pf) +Hf—* \/
V/f31 24 l?g ) —-Z?g(O)

in C? ® L*(Q). Note that |H,q(0, —6)]| is independent of 6.
Corollary 6.8 It follows that

(@, e ) w)| < (|®], e H2P0)w)) (6.6)
and
) ) . N A A oA
E(0,0,\/B B;,0,B,) < E(p, A, B1,Bs, B3). 6.7
(aﬁ’y)=(1§%ié3l),(312) ( s Uy a + BrY "/) iy (pa s D1y, D2, 3) ( )

Proof: We have
(@, e HEPW)] < eflim > BO(Jo|@(6a)], ¥ T T2 (0,)])] = RHS (6.6),

0€Zs

where X;-(¢) is given by (6.2). (6.7) is immediate from (6.6) and a similar argument to (6.4).
QED

7 Concluding remarks

(1) The positivity improvingness of the semigroups generated by translation invariant Hamil-
tonians is introduced in this paper only for the case p = 0. We can also show the positivity
improvingness for p # 0 by functional integral representation. We refer to see [69]. This is also
prove in [109] in the different manners.

(2) To find an invariant domain by using functional integral representations can be extended to
more general cases. We refer to see [68].

(3) The Nelson model without cutoff function can be defined through a renormalization. The
Nelson model with a cutoff function is defined by

H=H,® 1+ 1® H; + ¢(3(- — x)),

where ¢(f) for f € L2(R3) denotes a scalar field satisfying E[e*?())] = = I/I*/2 for » € C,
El¢(f)¢(g9)] = 2(f,9) and E[#(f)] = 0. The renormalization was succeeded in by Edward
Nelson [111, 110], and gave a proof in terms of a path measure by [49, 106]. The spectral
properties of the renormalized Nelson Hamiltonian H, is studied in [59, 74, 75]. In particular
in [74] a Gibbs measure [14, 17] associated with the ground state ¥, of Hy, is constructed, and
(Vg, OVy) for O = ePN S )* are expressed in terms of the Gibbs measure.

For the Gibbs measure associated with the ground state of the Pauli-Fierz Hamiltonian is
constructed in [65], but there is no useful applications.
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A Abstract boson Fock space

A.1 Annihilation operators and creation operators

In this Appendix we introduce general tools concerning with abstract boson Fock spaces and
second quantization. Instead of physical space-time dimension we work in general d dimension.

Let $ be a separable Hilbert space over C. Consider the operation ®{ of n-fold symmetric
tensor product defined through the symmetrization operator

1
Sn(f1®"'®fn):ﬁwa(1)®"'®f7r(n)a n =1,

CTeG,
where f1,..., fn € H and &,, denotes the permutation group of order n. Define
F(n) _ Sn(®nﬁ)a n =1,
C, n =0.

The space
F=F(®) = {@ﬂ”) S @D
n=0 n=0

is called the boson Fock space over $). The boson Fock space F can be identified with the space
of £a-sequences (¥(),~q such that ¥ € F and 3°°° \|‘11(”)H§E(n) < oo. Fis a Hilbert space
endowed with the scalar product

o0
)%= 1™ )%, < OO}

n=0

o

(T, ®)F = > (T, ).

n=0

The vector = (1,0,0,...) is called Fock vacuum. The subspace F™) can be interpreted
as consisting of the states of the quantum field having exactly n boson particles, while the
permutation symmetry corresponds to the fact that the particles are indistinguishable.

There are two fundamental operators, the creation operator denoted by a*(f), f € $, and
the annihilation operator by a(f) defined by

. ) _ { VSa(f@T"Y), n>1,
@inne={ ¥ n=l

with domain

D () = {(¥ )z € F| S nlSalf @ WD), < o0},

n=1

and

Note that af(f) is linear in f by the definitions.
As the terminology suggests, the action of a*(f) increases the number of bosons by one,
while a(f) decreases it by one. The relation

(@,a(f)¥) = (a(/)®, V)
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holds. Furthermore, since both operators are closable by the dense definition of their adjoints,
we use and denote their closed extensions by the same symbols. Let D C $ be a dense subset.
It is known that

LH{a"(f1) --a"(fn)%Q f;€D,j=1,...,n,n>1}

is dense in F($)). The space
Fiin = {(¥™),50 € F| U™ =0 for all m > M with some M}

is called the finite particle subspace. The field operators a(f) and a*(f) leave Fg, invariant and
satisfy the canonical commutation relations

[a(f);a*(9)] = (£, )L, la(f),a(g)] = 0= [a"(f),a"(9)]

on Fg,. We introduce several technical estimates. Let

o(f) = \7( “(f) +a(f))-

Then ®(f) is essentially self-adjoint on Fg,. The conjugate momentum operator is also defined
by

I(f) = —=(a*(f) — a(f)).

&l

They satisfy that

[@(f),I(g9)] = iR(f,9), [II(f),1(g)] =1i3(f,9), [®(f),P(9)] =iS(f,9)-

Products H;nzl ®(f;) can be represented by the sum of Wick ordered operators. We see this in
the lemma below. We simply write

e = @) @ (fj) (fj) -+ ®(fm):,
where CIT(f\) describes neglecting ®(f). We also set

=:®(f1) - O(fim):-

Lemma A.1 Let f; € , j =1,...,n. Then H;n:l ®(f;) can be represented in terms of Wick
ordered operators as follows.

(m = 2n)
2n pair k
2
a4 Y5 3 (0] ()
J=1 J1seosdor \i=1
where ?lalrhk describes the summation over all k-pairs chosen from {1,...,2n}.
(m=2n+1)
2n+1 pair
2+l 2n+1
H (I)(fj) i +Z ok Z (H f]%l’fj%)) Cj:bj,,jgk’ (A.2)
J=1 J1seeosdor \i=1
where ?lalrhk also describes the summation over all k-pairs chosen from {1,...,2n+ 1}.
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Proof: From the definition of Wick products the lemma directly follows.

QED
Lemma A.2 Let f € . Then
[n/2] A2 Ve (La* (N (La( F))™
(UL (e (1)) (salF)
(f)"=nl) m 0 — (A.3)
k=0 l+m+2k=n
Here [m] is the integer part of m, i.e., [2n/2] =n and [(2n + 1)/2] = n.
Proof: We see that by Lemma A.1
[n/2] | o\ k
a(ms =Y (a0 kah
k
k=0
Together with them (A.3) follows. Then the lemma is proven.
QED

A.2 Second quantization

Given a bounded operator T' on §), the second quantization of 7" is the operator I'(T") on F
defined by

o0

I(T) = P(@"T).

n=0

Here it is understood that ®%7 = 1. In most cases I'(T") is an unbounded operator.

5 9
v v
F($) — = F(5)

Figure 14: Fanctor I

However, for a contraction operator T, the second quantization I'(T') is also a contraction
on F, or equivalently, I' is a functor

Fr:4%—9 - ¢F—>F),

of the set (X — Y') of contraction operators from X to Y. The functor I has the semi-
group property, while €($) — $) is a x-algebra with respect to operator multiplication and
conjugation *. The map I' pulls this structure over to F so that

D(S)I(T) = [(ST), T(S)* =0(S*), I(1)=1, (A.4)
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F) Fn+1) Fn) F=1)
I(T) O (T) I(T) O I(T)
Fn) Fn+l) Fn)y___  F(n-1)
a*(T'f) a(jT*;f)

Figure 15: a*(f) and I'(T) Figure 16: a(f) and I'(T)

for S, T € €(H — 9N).
We can see relationship between a®(f) and I'(T). Intertwining properties

(T)a™(f) = o (T F)I(T), (A.5)
a(f)I(T) = T(T)a(5T"jf) (A.6)
can be checked directly and from this we can derive commutation relations
[O(T), a*(f)] = o" (T = W) f)I(T), (A.7)
[O(T), a(f)] = T(T)a(j(X = T7)j f), (A.8)

where jf = f denotes the complex conjugate of f. Suppose in particular that T satisfies that
T*T =1 and TT* = E. Then (A.5) and (A.6) yield that

L(T)a™(/)T(T7) = o™ (T )L (E), (A.9)
L(T)a(/)T(T™) = T(E)a(§Tj ). (A.10)
¢ N s B
I(T) Q 0(T*) @ ()
Fob D(E)a(5T5f) F a*(THT(E) Fonh)

Figure 17: Creation and annihilation operators, and second quantization

A.3 Differential second quantization

For a self-adjoint operator h on §) the structure relations (A.4) imply in particular that {T'(el*?)
t € R} is a strongly continuous one-parameter unitary group on F. Then by the Stone’s theorem
there exists a unique self-adjoint operator dI'(h) on F such that

F(eith) — eitdF(h)’ t e R.
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The operator dI'(h) is called the differential second quantizationof h or simply second quantiza-
tion of h. Thus we have

GHAD(R) () =i#AD() — g (gith f) (A.11)
eitdF(h)a(f)e—itdF(h) _ a(jeithjf)_ (A.12)
Since dI'(h) = —i4T'(e™)[;— on some domain, we have

dr(h)0@[é<zn:ﬂ®~-®i®m®ll)]7 (A.13)

n=1 \j=1 M

where j on top of h indicates its position in the product. Thus the action of dI'(h) is given by

n

dU(h)a*(f1) - a*(fa)Q2 =D _a*(f1)---a*(hf) -+ a*(f) Q.

j=1

Then it holds that

[dI(h), o™ ()] = a*(hf), [dL(h),a(f)] = —a(hf).

It can be also seen by (A.13) that

odl'(h)={ M +--+ A €o(h),j=1,...,n,n>1} U{0},
op(dl’(h)) ={ M+ -+ M|Aj €0p(h),j=1,...,n,n>1} U{0}.

If 0 ¢ op(h) and h > 0, the multiplicity of 0 in o, (dI'(h)) is one. A crucial operator in quantum
field theory is the number operator defined by the second quantization of the identity operator

on £:
N =dI'(D).

Let h be a positive self-adjoint operator and f € D(h). The following bound is a fundamental.
Let f € D(h™Y?) and ¥ € D(dT'(h)'/?). Then ¥ € D(af(f)) and

la() @I < (1R~ fllAL (R) /2], (A.14)
la* (/)L < (1~ Y2 1AL () 2]+ [1F 2] (A.15)

In particular, D(dT'(h)Y/?) C D(a*(f)), whenever f € D(h~1/?).

B The case of H = L*(R?)

This section is taken from [73, Section 1.2].
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B.1 Useful bounds

We set H = L*(R®) and Hy = dl'(w). Then F™ > & is a function ®(k;...,k,) which is
symmetric with respect to any permutation of ki,...,k,. Thus the annihilation operator and
the creation operator are defined by

()W) s k) =Vt T [ fR)QOD (hky . K )dE,
* n 1 - n— 7.
(@*(H)O) W (ky, ... ky) = \/ﬁj;f(kj)CI)( Dby ook k).

Furthermore

Hy@ ™ (ky, ko) = | D w(ky) | U0 (k).
j=1

We show some useful inequalities on af and H.

Lemma B.1 Let ¢ € D(Hm/z). Suppose that || f;/v/w| < oo for j =1,...,m. Then ¢ €
DT, af;)) and

m

[Tt <H||fj/lele/2wll

J=1

Proof: Let n > m. Since ¢(") is symmetric, by the definition of H; we have
(w(n),(Hfml/;)(”)):n(n—l)...(n—m—i-l)/ o™ (K, ... ke ]2Hw )dky - - dky,.
Rdn

While by the definition of a(f) we can see that

2

([T atse)t

,’:]3

7j=1

Sn(n 1) (n—m+1 Hrfj/m/Ran”)(kl,..., \2Hw Yk - .

Thus we have )

m
(L atrw)"=™| < H 1£5/7/@ll (™, (Hf ) ™)
j=1
for m < n. For m > n, the above inequality also holds true since the left hand side is zero.
Summing over n on both sides, we conclude the desired results.
QED
Let us consider to evaluate the product of creation operators | [TiL, a*(f;)®][|. Since we
know a bound of the product of annihilation operators || [[}2; a(f;)®]|, we can also evaluate
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| TT7Z, a*(f;)@|l, but which is rather technically complicated than that of || [jZ; a(f;)®|. To
see this we use the fact

2

[Ta (el = oot [[a ()@
j=1 j=1 j=1

and compute the commutation relation [H;nzl a(f;), T2, a*( f])} . We then conclude that

2 2

[Tatne|| =|Tane| + (@ |[]a) [Ta* )] @
j=1

j=1 j=1 j=1
Evaluating the second term of the right-hand side above, we can have a bound of HHTZI a*(f;)® H

Lemma B.2 Let f;,g; € D(1/y/w) fori,j=1,...,n and ® € D(Hn/2). Then

n

- * e * n - 1 m/2
[[a @)@, [ ()@ || <ni2 (H Hfl”w”%”w) >l e,
j=1 j=1 =1 ’

m=0

where || fllo = Il + 1f/v/wll.

By Lemma B.2 we have useful bounds for products of annihilation operators and creation
operators. We summarize them as follows. Suppose that f; € D(1/\/w) for j = 1,...,n. Then
for ¢ € D(Hn/2) we have

—-

a(fpe| < | TTIH/ Vel | 1z 2], (B.1)
j=1

1

J

n n 1/2
oo < v (T ) (32 Siweear) . o
j=1

m=0

B.2 Exponent of annihilation operators and creation operators

Although exponential operator ¢® () is unbounded, it can be seen in the proposition below that
e (Ne=3Hs is bounded for any t > 0.

Proposition B.3 Lett > 0. (1) Let f € D(1/\/w). Then both ed (Ne=3Hr gnd e=2Hiealf) qre
bounded. (2) Let f € L*(R3). Then both e (Ne=2N and e~ 2Neal!) are bounded.

Proof: Suppose that ¢t < 1. For any s < t we have for & € F,

S Lty e

n

1/2
n —n 1 —i
< Z 2 /24 /2||f||w (Zk;!H(SHf)k/Qe szq>||2) .
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We can see that sequence {d." o La*( f)"e_%Hf ®}o° , is a Cauchy sequence in F. Hence

e Hig ¢ D(e® (1)) and as m — oo on both sides above and we have
e DesMal < A(f, )2 e,

where

> 1 n —-n n
= > =PI (B3)
n=0 :

Choosing s such that s < t, we can see that He_%(t_s)Hf(PH < ||®|| and e (De=2Ht for ¢ < 1 s
bounded. Suppose 1 < t. Choosing s =1 in the above discussion, we have

le” D30 < A(f,1)[le”20"D 0| < A(f,1)]2].

Thus €@ (De= 38t for ¢ > 1 is bounded. Finally since (6 sHiea (f)) D e“*(f)e_%Hf, the second

statement follows. Then (1) follows. (2) is similarly proven by replacing w with the identity 1.
QED

B.3 Technical estimates I

Let X = e @) for g € L?(R3). We already see that e (De~ 3H:¢2(9) i hounded for any
t > 0. We extend this to more general cases. By (A.3) we know the explicit form of Wick
ordering of ®(f)", and see that

|2)k: (%a*(f) +y) (Gsa(fH)™

4
k! I X m!

[n/2] (1t

()T =0l D

k=0 l+m-+2k=n

Sl

. (B.4)

Here y = (g, f)/v2. Operator X®(f)" is not bounded, but we are interested in estimating
operator Z(t,n) which is defined by inserting e ="/t into X®(f)" as

[n/2] IFI2 Nk (L l 1 m
MY (e (D +y) .o o (gz9(f)
Ztn)=nl> > . V2 ; ¢a" (9) g~ tHr a(9) fmi! , (B.5)
k=0 l+m+2k=n

Lemma B.4 Let f € D(1/\/w). Then Z(t,n) is bounded fort > 0, and the bound of || Z(t,n)¥||
s given as follows.
(t>1)

1 2
120t m)W ] < ze(m) e300 |y

where

) e+t 1

eyt s U (.
klitm! ’

k=0 l+m+2k=n

with y = (g, f)/V2 and
£(lm) = i (V2glle)™" VG + DWVG +m)t

gt




(t<1) For any 0 < s <'t,

12 m) ] < z(s,m) [fe= 302",
where
[n/2] (1f 1o + yDHLF Il
() =nl} > ( ) K m)! &(lm)
k=0 l+m+2k=n
and

&(1,m) = i (\@Ilgllw)j””\/(j + l)!\/(j’ 4 m)!.

i+1)/2 g (5'+m) /2 5141
=0 5(] )/ 5(] m)/ 7"
Proof: In this proof we set s=1for¢t > 1 and 0 < s <t for t < 1. Since

N * n
>

n=0

1
=sH
ez f(I)H ,

N
(V2] f[l)™s~ /2
< ;) v |

and
[(a™(f) +y)"a"(g)" V[ < Z( )\yl la*(f)™ *a*(g)"¥|
< s~ £1] + )™ (V2] g )™ (0 + m)l ez o,

we have for any non-negative integers m > 0

(foHwHy! (vV2llglw)" v/ (n + m)!

m g a” (f) e3sH
i@+ urena] <32 O .
We have
k
[n/2] <Hf\|2> _
4 a*(f) 1 _a*(g) —LH, —LH; a(g a(f)
1zemu <y 3 L) e @ |l ata) (X yn g
k=0 I+m+2k= nkl'm' V2 V2
(B.6)
Inserting inequalities:
a*(f) Lar(e) it || -~ (V2lgllw) U1 f e + D)/ (G + D)
H(\@Hy') c e Sz% G721 4,
=
st D)o o $ VP W VT
2 - 5(J+m)/2
7=0
with A = Hefé(tfs)Hf into (B.6), we prove the lemma.
QED
Next we estimate operator Z(t) defined by
oo tn
Z(t) =Y —Z(t,n). (B.7)
n=0
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Lemma B.5 Let f,g € D(1/y/w). Then Z(t) fort > 0 is bounded with

IL£112
4
(&

2
t—s
——QHf

e

C(h)?
(1= L2l + £l +9) (1= (2l +1111))

1Z2@®)] < (B.8)

Here s=1 fort>1and 0 < s <t fort <1, and C(h) is a constant depending on h > 0 such
that 1 — %(ﬁllgllw + I fllw +y) >0 fory = (g, f)/\@

Proof: In this proof we set s =1fort > 1and 0 < s <t for t < 1. By Lemma B.4 and the fact
that Z(t) = 3.°° , L Z(t,n) we have

n=0 nl

2
120 < 2 e300

where

Y (e o+ ) 2

x=) 2 ( K\im! &s(l,m).

n=0Il4+m+2k=n

Then we replace tf and t|y| by f and |y|, respectively in what follows. We have

2t = e“f||2/4§s(y)£s(0)a (B.Q)
where

2 & bl /(G + 1)

&(y) = 1 (B.10)

o

=0 1=0

with a = v/2||g||w/+v/s and b = (|| f|lw + y)/+/5. Let 0 < h be such that h < 1/(a + b). Then

@I hIH (G 1) (1/R)I(1/h)! _ C

53(*”):];0 115! G+l ~ 1—h(a+b

)<oo.

Here C' = C(h) = sup(; nyenxn % It can be also shown that £(0) is finite. Hence we
k) ] !

have (B.8). Then z; is finite, and the lemma is proven.
QED
B.4 Technical estimates 11

Operator Z(t,n) is defined through commutation relations: [X,®(f)"], where X = ¢ (9)¢®(),
We also need to see operator W (t,n) defined through commutation relations:

n

X J[e)] - (B.11)

=1
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To compute the commutation relation (B.11) explicitly we apply Wick’s theorem to product

[T5= @(f;):
n [n/2] pair k
H (I)( Z oF Z <H Fisi1s szi)) C?h---dzk‘

Jj=1 JiseensJok \i=1
Since
n m _
JLe): =272 > [ e« I e,
j=1 k=0 {j1,....ju yC{1,....n} j€{j1,-rji} P€{J1,-2Jk }©
we can compute c’]?l’__.’m as
n—2k -
g =2 > [T« () [T o).
1=0 {i1,....i}C{j1,-ndor }° GE€{i1,,01 } 1€{it,. 01 YN {J1, - J2k }©
Hence
n [n/Q] pair k n—2k
H Z 2k Z (H fJ2i—1?fj2i)> Z Z AXB
J=1 Jtyedak \i=1 1=0 {i1,...0}C{ir, - jon e
where

)

.

| N N | A (B.12)

JE{i1, i} 1€{i1,e 01} {F1, T2k 1

S

with y; = (g, f;)/V/2. Since X [I7L; ©(f;) is not bounded, we then define W (t,n) by inserting
e i into X [[2, ©(f5) as

n/2] pair n—2k k
SDIEDIDIDS (num_l,fm)) A Ot @ . (513
= ]17 7]2kl 0{11, ,’Ll}C{]l, ,jgk}P =1

Furthermore we set
oo tn
= =Wi(tn). (B.14)
= n!

W (t,n) and W (t) are extensions of Z(¢,n) and Z(t) discussed in (B.5) and (B.7), respectively.
Formula proved in Theorem B.6 below is used to estimate integral kernels of semigroup et~

in Section 5.4.3. The integral kernel of e~

N T
C C Cj
Joe” Jt—Joef f”( + e (|—L + -

} C;
ok 7 = f)>Jt. (B.15)

See (5.22). (B.15) is of the form of W (t) given by (B.14). Theorem B.6 tells that the integral
kernel of 7L is bounded.
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Theorem B.6 Let fj € D(1/\/w), j € N. Suppose that there exists o > 0 such that || fjllo < «
for any j. Then W(t,n) and W(t) are bounded for t > 0 with

t—

a
4

e

’e C(h)?
1- 2-(V2lgllo +a +y) 1—L(\fllgllw+a)
( ) (

W ()] <
Here s =1 fort>1and 0 <s <t fort <1,y =algll/v2, and C(h) is a constant depending
on h >0 such that 1 — %(ﬂ”g”w +a+y)>0.

Proof: In this proof we set s =1for ¢t >1and 0 <s <t fort < 1. Let A and B be (B.12). We
can estimate HAea*(g)e_tera@)BH as

HAea*(g)e—tera(?)BH < HAea*(g)e—%Hf

He—%era(g)B

9

with

HAea*(g)e_ng@H SZ((Hy ) (V2lgllw)’ U+ 5)! H L) Hy

3(]4‘1)/2]!

?

et g < 32 2oy 0 = KTy

g(j+n—2k— l)/2j'

J=0

Let y = allgl|/v2. Then |y;| < y. In a similar manner to the proof of Lemma B.4 we have
bounds below:
t=1)

[W ()W < wym) [0

",

where
2

O‘T)k (a+y)a

wi(n) = n! Z Z ( ] &(l,m).

(t <1) For any 0 < s < ¢,

IW ()@ < wn(s, m) e

"

where
[n/2] (%)k (a+1y)a

(s,n) =n! Z Z ] &s(l,m).

k=0 l+m+2k=n

Here (I, m) and &5(I, m) defined in Lemma B.4. Hence W (¢,n) is bounded. We shall show the
boundedness of W (¢). The proof is also similar to that of Lemma B.5. We have

2
IW @] < w e s CDH | jw,
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where

00 (%)k (ta + ty)! (ta)™
w=3, ) Klim) &s(lm).

n=0l4+m+2k=n

Then we replace ta and ty by « and y, respectively in what follows. We have

N
w=3 3 <Z!) IO (1,m) = . (), 0),

n=0Il+m+2k=n

where

_ 3oy V2l o) G D!
sG+D/2151 )
7=0 1=0

The right-hand side above is finite which is shown in Lemma B.5. Then the proof is complete.
QED

C Proofs of (1) and (2) in the proof of Theorem 5.8

Lemma C.1 Statement (1) of the proof of Theorem 5.8 is true.

Proof: For each (z, o, w,m) € R3xZyx 2 x 2, it can be directly seen that F, G € D(e%E) )N
D(e?1'(®)Jy) for any n € N. We see the inequality: ||Y;(2)®| < vvm + 1||®| for ® € L2,(Q),
where v = v/2t[||k|¢//w]||. Since L2 (Q) is the set of analytic vectors for e¥7'(2) for F € L2 (Q)
we have V'@ F = P Y ( YF. We assume that F € L?,(Q) and G € L2,(Q), hence
NF =m'F and NG = mG for the number operator N. Then

R s L
=0

On the other hand by the definition of Y;*(3,¢) we have

Y7 (32) Hex /”+ log(—W. (Hoq(Bs, 0, , “— DN (C.1)
p (i—1)t od Ns_> n s |- .

For every m € 2, there exists N = N(m) € N such that map ¢ — Ny(m) is not continuous at

points s1 = s1(m), ..., sy = sy(m). For sufficiently large n the number of discontinuous points

n ((i_l)t @] is at most one. Then by taking n large enough and putting (n(s;),n(s;) +t/n] for

n ’'n
the interval containing s;, we get

N

6 = T](~¢i — et (60)),

i=1
where ¢; = Hoa(Bs;, —0n,,_,n(si)). Fix m € 2, above. We have

N

[1(=6i —eve(e0) = ZeN Py IT - T4

i=1 {j1,-:dp}CINT i€{j1,....5p} =1
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where 1; = 1.(¢;,) and [N] = {1,..., N}, and

(F, J5eY' (D" 2) Y (32) 3, 3
N

p
SN S [y E T T e [[ 6506

p=0 {d1,dp}CIN] iZ{jnipt =1

Notice again that [|¢;,®| < 2yv/m + 1||®|| for ® € L*(Q) and i = 1,...,p. Since . < 1, each
terms on the right-hand side above can be estimated as

p
IR ARG N | (TN | R e

ig{jlv“'vjp} i=1

© ; —1--. 1 )
<3 eV am A Om ey ity oy

j=0 7!
Thus
|(F, JSeYt"(l)elftn(Q)em(g,s)J o)l
N - 00 -
- pgo pfg\f p—]\;!)! ]z;; itrte _311) m 1)m(2’Y)j+p—m+1||FH||G||
< A(N)[IFIIIGI,
where

At(N) = i(l + €)N \/(] tN+m _ 1) - (m + 1)m(2,),)j+N—m+l_

|
=0 o

The number N depends on m € Z,, then A;(NN(m)) turns to be a random process on (%, By, 11).
We set Ci(m) = Ay(N(m)). For each (z,a,w,m) € R3 x Zy x X x X, |(F,J5e? € 1,G)] is

finite with the bound |(F, Je% ©)J;G)| < C¢(m) and
=tV A (N)?
21 _ t t
Eu[C7] = Z — N1 €
N=0
. 2
_tz (2,}/)J+N—m+1 \/(j—f—N—i—m—l)-n(m—i—l)m < oo.

141
= \iZ 0 Nlj!

Thus (1) follows.
QED

Lemma C.2 Statement (2) of the proof of Theorem 5.8 is true.

Proof: We show the convergence of J5e? ()], as n — oco. Let F € L% (Q). We show the
convergences of 7' () ¥ (2) and Y7 (3) separately. Thus

le g0 F — e PO F| < @Z/ (e, — 3 @( — BdBY|| (N + 1)V2F).

p=1j5=1
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Then it follows that

By (le ¥ Mo F — Y 30| <3Z / G, — §0)3(- — B)[2ds| (N + 1)/

n t] A

_ ¥ —|s—tj_1|w % 1/2 2

_3§j/ (,1—6 i-1 >ds N+ 1)/2F
j=17ti-1 \@( )\@ H( ) H

t .
< 3;II\/690H2H(N +1)V2F|2.
Hence we have
lim EZy[le™ ¥ W I F — e Y WP = 0. (C.2)

On the other hand in the Fock representation Y;(2) and Y;"(2) are represented as

Z {aE ([ orsss) —a [ s7900s.5)}.
Z Z {aE (/ 1 (ti_l)ds,j> —ag </: bj(ti_l)ds,]) }

]ilzl

Here b;-—L(s) = Sj(HNS)eiikBSjs% and bf(ti_l) = Sj(HNs)eiikBSjti_l%. Then the distance be-

tween test functions of Y;(2) and Y”(2) can be estimated as

t n t: ~ 2
_ v - o 2 ¥
b (s)ds — / b (ti—1) <t / Si(On,)e FBs (= —§i_, —=)
|A J ZZI ti—1 J Z \/('; 1\/7
.. L2
Since HS (On,)e lkBS(JS% _jti—l%)H < 2|s —ti_1||||k|||?, we see that
2
t 3 n t; B 2 9 .
| [ [ brteds| < 2l
0 i=1 7t
It is concluded that
t nooet;
li_>m / b (s)ds — Z/ b (ti—1)ds|| = 0. (C.3)
n—o0 || /g = i
Furthermore by (C.3) it can be straightforwardly seen that
AR 5 MR (C.4)

by the expansion Y@ F = > %0 Yn(Q)] F.

In the same argument as in the proof of Lemma C.1 for every m € 2, there exists N =
N(m) € N such that map ¢ — N¢(m) is not continuous at points s; = s1(m),...,sy = sy(m).
We suppose that s; is in (n(s;), n(s;) + t/n| for sufficiently large n. We get

N

"0 = [[(=0i — eve(en),

=1
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where ¢; = Hoa(Bs;, —0n,,_,n(si)). In Fock representation we can also have

Hoa(Bs;, —On,,_,si) = 12 Z {GE( COR .7) GE( 7 (s1), J)}

Hoa(Bays ~0x, - n(si)) = —= 3 {ais (65 (n(50)).5) — ae (¢ (50, 5) }.

where Cj[(t) = Tj(—QNSi_)(jt%)eiikBsi. We then estimate the distance between their test
functions as

|5 s =5 (s0)

|k|90 —|n(si)—s;|w |k;|¢
< 2 1-— RAERAag EEL N I
(V- )

Vw
Clearly, n(s;) — s; as n — co. Then

Jim Hoq(Bs,, =0, 5 n(si)) = Hoa(Bs;, =N, si),

Jim e (Hoa(Bs,, —On,,»1(51))) = Ye(Hoa(Bs;» =, 5i))

on Ky and we have

N
nhﬁl{.lo 6Y (3.) = H(_\Ije(Hod(BSm —9]\[52,7, Sl))) <CS)
=1

Then by (C.2), (C.4) and (C.5) we can see that for each (z,a,m) € R3 x Zy x %,

Ejy | (Fla0), 55e7 O 3G(a0) | = Efy | (Flao). J5e” 3.6 ar) )|

as n — oo and |[E,[(F(qo), JeZ ©)1:G(qr))]| < Ce(m)EZ,[|F(q0)[||G(q:)||] and the dominated
function C¢(m)||F(qo)||||G(qe)| is integrable. The Lebesgue dominated convergence theorem
yields that

/ ZEM[* VB (P(g9), J5e% D31G(ar)) | do

a€Zs

—>/ Z Eaza — [V(B,)dr (F(QO),JE‘)eZ?(E)JtG(qt)ﬂ de

a€Zs

for F,G € Ko as n — oo. Hence the proof of (2) is complete.
QED
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