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Abstract

Functional integral representations of the semigroups generated by Pauli-Fierz type Hamil-
tonians in quantum field theory are reviewed. Firstly we introduce functional integral repre-
sentations for Schrödinger type operators. Secondly those for Pauli-Fierz type Hamiltonians
are shown. Finally inequalities derived from functional integral representations are shown.
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1 Introduction

Congratulations on Prof.Toru Ozawa’s sixtieth birthday. It is my great pleasure to be able to

publish a paper on this occasion. I was a bit surprised to hear that he was “already” 60 years old,

as he always seems to be young and full of mathematical power. On the other hand, Prof. Ozawa

has been well known since he was quite young and has trained many excellent students, so I was

also surprised to hear that he was “only” 60 years old.　 I first met Prof. Ozawa around 1994

or 1995 at Hokkaido University, when he was already well known for his scattering theory for

nonlinear Schrödinger operators, and it is astonishing to think that he was only 32 or 33 years

old at the time.

I also thank Prof. Ozawa for always giving me words of encouragement whenever we were

together in conferences, and for inviting me to be a lecturer at SGU workshop to be held

at Waseda University in 2020. I was also excited to be invited to Prof. Ozawa’s sixtieth

birthday conference in 2021, but both were cancelled due to COVID 19, which I regret. In 2022,

after COVID19 subsided somewhat, I was grateful to be again invited to be a lecturer at SGU

workshop of Waseda University.

As an impressive memory of Prof. Ozawa, he gave me a question on the regularity of an

integral kernel appearing in Theorem 3.3 in this paper at the Ph.D. dissertation defense of

mine in 1996 in Sapporo. In one fourth of a century since then, the research of mine has been

fortunately progressed considerably and a massive book [73] has been published in 2020.

I wish that Prof. Ozawa will continue to take good care of himself and work hard on his

research for ever.

Our motivation of the investigation of functional integral representations of the semigroups

generated by self-adjoint Hamiltonians was to solve problems in the statistical mechanics. Our

interest has been then shifted to the construction of functional integral representations them-

selves, not only for Schrödinger operators, but also for relativistic Schrödinger operators and

Schrödinger operators with spin 1/2, etc. In this period we found papers [28]-[30] in physics

discussed functional integral representations for Schrödinger type operators, which were very

useful.

Furthermore, we were able to obtain functional integral representations for models coupled

to quantum fields. Fortunately, around 2014, we could prove that functional integral represen-

tations were useful tools for non-perturbative analysis of Hamiltonians in quantum field theory,

and our research were accelerated since then.

The following is a concrete explanation. The analysis of point spectra embedded in contin-

uous spectrum in quantum field theory had been investigated, and the research had turned to

analyzing the properties of their eigenvalues and eigenvectors. In particular a special attention

was payed to ground states. We refer to see [66] and references therein for the development of

the investigation of eigenvectors and ground states of models in quantum field theory. However,

since the corresponding eigenvalues are embedded eigenvalues, there was no established method

to analyze their eigenvectors.

From functional integral representations, we can define a measure on a path space, which

3



is called the Gibbs measure [73, p.195, p.378, p.256, p.491]. The Gibbs measure µGibbs can be

used to express the expectation value of a certain observable with respect to a ground state in

a non-perturbative way:

(Ψg,OΨg) =

∫
FO(q)dµGibbs(q),

where O denotes an observable and Ψg a ground state of a model. The basic models of quantum

field theory we are concerned are the Nelson model [111, 110, 112], the spin-boson model,

and the Pauli-Fierz model in non-relativistic QED [116]. The Pauli-Fierz model is the main

object in this paper. The Nelson model is an interaction model of charged particles linearly

coupled with a scalar bose field and has been greatly analyzed. The analysis of the renormalized

Nelson model has been also completed in a non-perturbative manner by using functional integral

representations in [16, 49, 74]. The spin-boson model describes a linear interaction between spin

(or two excited states) and a scalar bose field. The spectral properties of the spin-boson model

has been studied in [58] in terms of a functional integration. On the other hand, for the Pauli-

Fierz model, although a functional integral representation exists, we feel that its application

is still insufficient. We hope that some young researchers will read this paper and become

interested in this research.

In this article, we will introduce functional integral representations for the Pauli-Fierz type

models [64, 72, 65]. See Table 1 for the list of models we consider in this paper.

Pauli-Fierz type operator Hilbert space

H
1

2
(−i∇−A)2 + V +Hf L2(R3)⊗ L2(Q)

H(p)
1

2
(p− Pf −A(0))2 +Hf L2(Q)

HR ((−i∇−A)2 +m2)1/2 −m+Hf + V L2(R3)⊗ L2(Q)

HR(p)
(
(p− Pf −A(0))2 +m2

)1/2 −m+Hf L2(Q)

HS
1

2
(−i∇−A)2 + V +Hf −

1

2
σ ·B L2(R3 × Z2)⊗ L2(Q)

HS(p)
1

2
(p− Pf −A(0))2 +Hf −

1

2
σ ·B(0) Z2 ⊗ L2(Q)

Table 1: Pauli-Fierz type operators

A formal integration on the set of continuous paths due to Richard Feynman played an

important role in the modern quantum physics. It has already existed due to Wiener’s work

on Brownian motion initiated in 1923 when the quantum mechanics was not yet found!, and

it was Kac in 1949 who first showed a suitable framework, however, not for the path integral

directly, see [82, 83]. In contrast to Feynman integrals, a Feynman-Kac formula offers an integral
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representation of semigroup e−tH instead of unitary group e−itH on a path space endowed with

a probability measure. Here we show below the reason why this improves the situation. Let

A(q, q̇; 0, t) =

∫ t

0

(
1

2
q̇2(s)− V (q(s))

)
ds,

where 1
2 q̇

2 − V (q) is a Lagrangian derived from the Legendre transform of Hamiltonian

h = −1

2
∆ + V.

The formal expression below

(e−itH)(x, y) = C

∫
Cxy

eiA(q,q̇;0,t)
∏

0≤s≤t

dq(s) (1.1)

gives an integral kernel of the operator e−itH for all t. Here dq(s) is Lebesgue measure for each s,

and Cxy the set of continuous paths q(·) : [0, t] → R3 such that q(0) = x and q(t) = y. The right-

hand side of (1.1) is Feynman’s integral, and eiA(q,q̇;0,t) is a phase factor introduced by Feynman.

See Feynman’s paper [38, 39]. Also we refer to see e.g., [2, 46, 41, 50, 80] for Feynman’s integrals.

Analytic continuation s→ −is, ds→ −ids and the replacement q̇(s)2 → −q̇(s)2 in (1.1) lead to

the kernel

(e−tH)(x, y) = C

∫
Cxy

e−
∫ t
0 V (q(s))dse−

1
2

∫ t
0 q̇(s)2ds

∏
0≤s≤t

dq(s). (1.2)

It is possible to define a mathematically meaningful measure dWx,y
[0,t](q) whose formal expression

is given by

exp

(
−
∫ t

0

1

2
q̇(s)2ds

) ∏
0≤s≤t

dq(s).

The paths of a random process (Bt)t≥0 called Brownian motion just have the required properties

and the Feynman-Kac formula

(e−tH)(x, y) =

∫
C
e−

∫ t
0 V (Bs(w))dsdWx,y

[0,t](w), ∀t ≥ 0, ∀x, y ∈ R3 (1.3)

with C = C([0,∞),R3) rigorously holds. In particular, there is a measure supported on the

space C([0,∞),R3) of continuous functions [0,∞) → R3, and it can be identified as Wiener

measure Wx,y
[0,t] conditional on paths leaving from x at time 0 and ending in y at time t. Kac has

actually proved [81] that the heat equation with an initial data ϕ(x):
−∂f
∂t

= −1

2
∆f + V f,

f(x, 0) = ϕ(x),

(1.4)

is solved by the function

f(x, t) =

∫
C
e−

∫ t
0 V (Bs(w))dsϕ(Bt(w))dWx(w). (1.5)
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Here Wx is Wiener measure starting from x at t = 0. Equation (1.4) is actually the same as

the imaginary time Schrödinger equation: See e.g., [18, 110]. The Feynman-Kac formula for the

Schrödinger operator h derived from the heat equation can be written as (1.5):

e−thf(x) = f(x, t) = (1.5).

We then construct functional integral representations for Schrödinger type operators [70, 71].

This paper includes a short review of [73, Chapter 3] and we add some new results. We

can construct functional integral representations of other operators, derived from quantum field

theory [60, 64, 72, 54, 65, 49]. Both functional integral representations are related each other.

A Schrödinger operator with a vector potential a = a(x) = (a1(x), a2(x), a3(x)) is given by

1

2
(σ · (−i∇− a))2 + V, (1.6)

where σ = (σ1, σ2, σ3) is the 2× 2 Pauli matrices given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

On the other hand the Pauli-Fierz Hamiltonian with spin 1/2 is given by

1

2
(σ · (−i∇−A))2 + V +Hf , (1.7)

where the quantized radiation field A = A(x) = (A1(x), A2(x), A3(x)) and the free Hamiltonian

Hf are defined by

Aµ(x) =
1√
2

∑
j=±1

∫
R3

ejµ(k)

(
φ̂(k)√
|k|
e−ikxa∗(k, j) +

φ̂(−k)√
|k|

e+ikxa(k, j)

)
dk

and

Hf =
∑
j=±1

∫
|k|a∗(k, j)a(k, j)dk.

Here a∗(k, j) and a(k, j) are the creation and annihilation operators, respectively. They formally

satisfy [a(k, j), a∗(k′, j′)] = δ(k−k′)δjj′ . Physically φ̂ denotes the Fourier transform of the charge

distribution φ. If φ(x) = δ(x), then

φ̂ = constant.

Since (1.6) and (1.7) are of similar forms, it would be easy to predict that the functional integral

representations would also be similar. On the other hand, we can know the effect of quantum

field by comparing a functional integral representation for (1.6) with that of (1.7).

This paper is organized as follows. In Section 2 we prepare stochastic tools and introduce

functional integral representations for Schrödinger type operators. See the list of operators in

Table 2. Section 3 is devoted to investigating the Pauli-Fierz Hamiltonian and its translation

invariant version. Section 4 is devoted to investigating the relativistic Pauli-Fierz Hamiltonian

and its translation invariant version. In Section 5 the Pauli-Fierz Hamiltonian with spin 1/2 is

studied. This section is rather complicated and several statements are shown in Appendices B

and C. In Section 6 we derive energy comparisofn inequalities for the Pauli-Fierz type Hamilto-

nians. Section 7 is the concluding remarks.
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2 Schrödinger operators by path measures

In this section we introduce functional integral representations of Schrödinger type operators.

Schrödinger operator

h −1

2
∆ + V

h(a)
1

2
(−i∇− a)2 + V

hR(a) ((−i∇− a)2 +m2)1/2 −m+ V

hS(a, b)
1

2
(−i∇− a)2 + V − 1

2
σ · b

hSR(a, b) ((−i∇− a)2 − σ · b+m2)1/2 −m+ V

Table 2: Schrödinger operators, a:vector field, b:magnetic field, V :potential, σ:spin

2.1 Stochastic preparations

In order to construct functional integral representations of the semigroups generated by Schrödinger

type operators we will need several independent stochastic processes (Bt)t≥0, (Nt)t≥0 and (Tt)t≥0.

See Table 3. Here we explain properties of these stochastic processes. We denote the expectation

with respect to path measure W x starting at x by∫
path
space

fdW x = Ex
W [f ].

(Brownian motion) We give the definition of Brownian motion. (Bt)t≥0 = (B1
t , B

2
t , B

3
t )t≥0

is 3D-Brownian motion on a probability space (X ,B,Wx) iff

(1) Wx(B0 = x) = 1, i.e., B0(w) = x for almost surely w ∈ X ;

(2) the increments (Bti − Bti−1)1≤i≤n are independent Gaussian random variables for every

collection 0 = t0 < t1 . . . < tn with the mean and covariance are given by

E0
W [Bµ

t ] = 0,

E0
W [Bµ

sB
ν
t ] = δµν(s ∧ t),

respectively;

(3) the map t 7→ Bt(w) is continuous almost surely w ∈ X .
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By the definition of Brownian motion, Bt −Bs and Bt−s have the same distribution on R3, and

Bt −Bs and Bu −Bv for v ≤ u ≤ s ≤ t are independent. The distribution of Bt −Bs for t > s

is given by

Πt−s(x) = (2π(t− s))−3/2e−|x|2/2(t−s).

Thus it follows that

Ex
W [f(Bt1 , . . . , Btn)] =

∫
R3N

f(y1, . . . , yn)

n∏
j=1

Πtj−tj−1(yj − yj−1)dy1 . . . .dyn (2.1)

with y0 = x and t0 = 0. Brownian motion is also Markov and then

Ex
W [f(Bt+s) | Fs] = Ex

W [f(Bt+s) | σ(Bs)] = EBs
W [f(Bt)]

for any x ∈ R3, where EBs
W [. . .] is Ey

W [. . .] evaluated y = Bs, Fs = σ(Bu | 0 ≤ u ≤ s) is the

minimal sigma-filed generated by {Bu | 0 ≤ u ≤ s}, and σ(Bs) by Bs.

Remark 2.1 One concrete realisation of Brownian motion is as follows. There exists the so-

called Wiener measure Wx on C([0,∞);R3) such that Bt(w) = w(t) for w ∈ C([0,∞);R3)

becomes Brownian motion under Wx. In this paper we do not choose any special Brownian

motion unless otherwise stated.

By (2.1) Brownian motion satisfies that

Ex
W [f(Bt)] = e

t
2
∆f(x) a.e. x ∈ R3

and hence the generator of Brownian motion is

1

2
∆.

Let M(0, t) be the set of measurable functions f : [0,∞)× X → R3 such that

(1) f(t, ·) is C3-valued Ft-measurable for each t,

(2) E0
W [
∫ t
0 |f(s, w)|

2ds] <∞.

Then for f ∈M(0, t) one can define the stochastic integral Xt presented as

Xt =

∫ t

0
f(s, w) · dBs.

Xt satisfies that Ex[Xt] = 0 and Itô-isometry Ex[|Xt|2] =
∫ t
0 E

x[|f(s, ·)|2]ds. The stochastic

integral plays an important role through this article.

Now we define the so-called Lévy process. We refer to see e.g., [4, 120] and [99, Section 3.1].

A stochastic process (Xt)t≥0 on a probability space (Y ,B,W) is a Lévy process iff

(1) W(X0 = 0) = 1;

(2) the increments (Xti − Xti−1)1≤i≤n are independent random variables for every collection

0 = t0 < t1 . . . < tn;
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(3) Xt −Xs and Xt−s have the same distribution for every 0 ≤ s ≤ t;

(4) The map t 7→ Xt(w) is stochastically continuous, i.e.,

lim
s→t

W(|Xs −Xt| > ε) = 0

for all t ≥ 0 and ε > 0.

Brownian motion is a Lévy process. Let (Xt)t≥0 be a Lévy process on (Y ,B, µ). It is known

that there exists a Lévy process (Yt)t≥0 such that Yt(w) = Xt(w) for w ∈ Y \ Nt, where

µ(Nt) = 0, and t 7→ Yt(w) is right-continuous and has left-limits for almost surely w. See e.g.,

[99, Corollary 3.5]. (Yt)t≥0 is called the càdlàg version of (Xt)t≥0. In what follows we assume

that Lévy processes are right-continuous and have left-limits for almost surely w. Note also that

a Lévy process is a Markov process.

We introduce two Lévy processes below.

(Poisson process) A nonnegative integer-valued Lévy process (Nt)t≥0 on a probability

space (Xµ,Bµ, µ) is called a Poisson process iff Eµ[e
iuNt ] = et(e

iu−1) for u ∈ R.
The distribution of Nt −Ns on R is given by ρ(u) = e(t−s)(eiu−1), u ∈ R. It holds that

µ(Nt = n) =
tn

n!
e−t, n ∈ N ∪ {0}.

Since
∑∞

n=0 µ(Nt = n) = 1, we have

E0
µ[f(Nt)] =

∞∑
n=0

tn

n!
f(n)e−t.

The poisson process (Nt)t≥0 is also Markov and its generator is L given by

Lf(x) = f(x+ 1)− f(x).

We define integrals with respect to (Nt)t≥0 in terms of the sum of evaluations at jumping times,

i.e., for g we write ∫ b

a
g(s,Ns)dNs =

∑
a≤r≤b

Nr+ ̸=Nr−

g(r,Nr).

Here Nr+ = lims↓rNs and Nr− = lims↑rNs. Then

∫ b+

a
g(s,Ns−)dNs =



∑
a≤r<b

Nr+ ̸=Nr−

g(r,Nr−), Nb+ = Nb−,

∑
a≤r<b

Nr+ ̸=Nr−

g(r,Nr−) + g(b,Nb), Nb+ ̸= Nb−.

The expectation of
∫ b+
a g(s,Ns−)dNs satisfies that

E
[∫ b+

a
g(s,Ns−)dNs

]
= E

[∫ b+

a
g(s,Ns−)ds

]
.
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Let

Z2 = {−1,+1}. (2.2)

By the Poisson process we also define a Z2-valued stochastic process (θt)t≥0 on (Xµ,Bµ, µ) by

θt = (−1)Nt . (2.3)

This is called the spin process in this paper. Stochastic process (θt)t≥0 is useful to study

functional integral representations for Schrödinger operators with spin 1/2.

(Subordinator) A 1D-Lévy process (Tt)t≥0 is called the subordinator iff whenever s ≤ t

implies that Ts ≤ Tt almost surely.

Let (Tt)t≥0 be a subordinator on a probability space (Xν ,Bν , ν). (Tt)t≥0 is nonnegative and

non-decreasing. Thus it seems to be ”random time”. Let us consider a subordinator (Tt)t≥0

such that its Laplace transform is given by

E0
ν [e

−uTt ] = e−t((2u+m2)1/2−m), u ≥ 0, (2.4)

where m ≥ 0 plays a role of the mass of quanta in physics. The existence of the subordinator

(2.4) is established. See e.g., [99, Example 3.90]. Comparing Ex
W [f(Bt)] = e

t
2
∆f(x) and (2.4),

we can see that

E0
νEx

W [f(BTt)] = e−t((−∆+m2)1/2−m)f(x) a.e. x ∈ R3.

Hence the generator of the compound process (BTt)t≥0 is the free relativistic Schrödinger oper-

ator:

−(−∆+m2)1/2 +m.

The distribution of Tt on R is given by

ρ(r, t) =
t√
2πr3

exp

(
−1

2

(
t2

r
+m2r

)
+mt

)
1l[0,∞)(r).

Furthermore the subordinate spin process (θTt)t≥0 is used for constructing functional integral

representations for relativistic Schrödinger operators with spin 1/2.

We use the shorthand: Ex
WEα

µE0
ν = Ex,α,0, Ex

WEα
µ = Ex,α and Ex

W = Ex etc. The role of

these three stochastic processes is as follows. Clearly, Schrödinger operator −1
2∆ + V can be

described by (Bt)t≥0 under V . The spin process (θt)t≥0 results from Schrödinger operators with

spin 1/2. Finally, the subordinator (Tt)t≥0 appears in relativistic Schrödinger operators. A

particular combination of these three independent stochastic processes then yields functional

integral representations of (f, e−tKg), where K = h, h(a), hR(a), hS(a, b), hSR(a, b). See Table 2.

For each K we shall show that

(f, e−tKg) =

∫
space

Ey
W [f̄(ξ0)g(ξt)e

Zt ]dρ(y),

where (ξt)t≥0 is a stochastic process,W a path measure and eZt an integral kernel. The generator

−G of ξt satisfies that

(f, e−tGg) =

∫
space

Ey
W [f̄(ξ0)g(ξt)]dρ(y).
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process space measure

Brownian Motion (Bt)t≥0 X W

Poisson process (Nt)t≥0 Xµ µ

Spin process (θt)t≥0 Xµ µ

Subordinator (Tt)t≥0 Xν ν

Subordinate Brownian motion (BTt)t≥0 X × Xν W × ν

Subordinate spin process (θTt)t≥0 Xµ × Xν µ× ν

Table 3: Stochastic processes

As is mentioned above, we then have examples of generators below:

(f, e
t
2
∆g) =

∫
R3

Ex[f̄(B0)g(Bt)]dx,

(f, e−t((−∆+m2)1/2−m)g) =

∫
R3

Ex,0[f̄(B0)g(BTt)]dx.

Here we assumed that the space dimension is three, it can be however straightforwardly extended

to any dimension.

2.2 Schrödinger operators h(a)

We begin with showing function integral representations of e−th(a) with Schrödinger operators

h(a) without proofs as an introduction. We refer to see e.g., [110, 127, 128, 1] of functional

integral representations of Schrödinger operators and its applications. Let V : R3 → R be a

measurable function and a Schrödinger operator is defined by

h = −1

2
∆ + V

acting in L2(R3). The following proposition is basic for functional integral representations.

Proposition 2.1 Let V ∈ L∞(R3). Then for f, g ∈ L2(R3),

(f, e−thg) =

∫
R3

Ex[f(B0)g(Bt)e
−

∫ t
0 V (Bs)ds]dx. (2.5)

In particular,

(e−thg)(x) = Ex[e−
∫ t
0 V (Bs)dsg(Bt)]. (2.6)

11



Several proofs of this proposition are known. It involves (1) application of Itô formula [79]:

de−
∫ t
0 V (Bs)dsf(Bt)

= de−
∫ t
0 V (Bs)ds · f(Bt) + e−

∫ t
0 V (Bs)ds · df(Bt) + de−

∫ t
0 V (Bs)ds · df(Bt)

= e−
∫ t
0 V (Bs)ds

(
−V (Bt)f(Bt) +

1

2
∆f(Bt)

)
dt+ e−

∫ t
0 V (Bs)ds∇f(Bt) · dBt,

and (2) application of the Trotter product formula [133, 22, 86, 87, 88]:

e−th = lim
n→∞

(
e−

t
n
(− 1

2
∆)e−

t
n
V
)n
.

Here dXt denotes dXt = Xt −X0. Thus

de−
∫ t
0 V (Bs)dsf(Bt) = e−

∫ t
0 V (Bs)dsf(Bt)− f(B0).

This formula can be extended for general potentials V . Furthermore introducing a vector po-

tential a = (a1, a2, a3) : R3 → R3, we define Schrödinger operators with a vector potential a

by

h(a) =
1

2
(−i∇− a)2 + V.

Proposition 2.2 Suppose that a ∈ (C2
b(R3))3 and V ∈ L∞(R3). Then for f, g ∈ L2(R3),

(f, e−th(a)g) =

∫
R3

Ex[f(B0)g(Bt)e
Zt ]dx. (2.7)

Here

Zt = −i

∫ t

0
a(Bs) ◦ dBs −

∫ t

0
V (Bs)ds (2.8)

with ∫ t

0
a(Bs) ◦ dBs =

∫ t

0
a(Bs) · dBs +

1

2

∫ t

0
∇ · a(Bs)ds.

In particular,

(e−th(a)f)(x) = Ex[eZtf(Bt)]. (2.9)

We give a comment on this formula. Since h(a) is self-adjoint, it follows that

(f, e−th(a)g) = (g, e−th(a)f).

Integral kernel Zt however has the purely imaginary part −i
∫ t
0 a(Bs) ◦ dBs. For a moment, we

may feel odd. We are often asked a question on it by probabilists. We can see that

(g, e−th(a)f) =

∫
R3

Ex[g(B0)f̄(Bt)e
Z̄t ]dx =

∫
R3

Ex[g(Ḃ0)f̄(Ḃt)e
˙̄Zt ]dx

=

∫
R3

E0[g(x)f̄(Ḃt + x)e
˙̄Zt(x)]dx,

12



where (Ḃs)0≤s≤t = (Bt−s −Bt)0≤s≤t is also Brownian motion, and

˙̄Zt(x) = +i

∫ t

0
a(Ḃs + x) ◦ dḂs −

∫ t

0
V (Ḃs + x)ds.

Chang variables as x→ y − Ḃt = y +Bt. Hence we can compute as

−
∫ t

0
V (y − Ḃt + Ḃs)ds = −

∫ t

0
V (y +Bu)du,

while that of the stochastic integral is

+i

∫ t

0
a(x+ Ḃs) ◦ dḂs = +i

∫ t

0
a(y − Ḃt + Ḃs) ◦ dḂs = −i

∫ t

0
a(y +Bs) ◦ dBs.

Note that signature + is changed to signature −, because of the fact∫ t

0
a(Bs) ◦ dḂs = lim

n→∞

2n∑
j=1

1

2

(
a(B jt

2n
) + a(B (j−1)t

2n
)
)(

B (j−1)t
2n

−B jt
2n

)
= −

∫ t

0
a(Bs) ◦ dBs.

We conclude that

(g, e−th(a)f) =

∫
R3

Ey[g(y +Bt)f̄(y)e
Zt ]dy = (f, e−th(a)g).

The self-adjointness of h(a) and the existence of the purely imaginary part −i
∫ t
0 a(Bs) ◦ dBs

become compatible.

2.3 Schrödinger operators with Kato-class potentials

We consider Schrödinger operators with singular potentials. Kato-class is a class of singular

potentials but we can define Schrödinger operators with Kato-class potentials as self-adjoint

operators by functional integral representations.

Definition 2.1 (1) V : Rd → R is called a Kato-class potential whenever

lim
r→0

sup
x∈Rd

∫
Br(x)

|g(x− y)V (y)|dy = 0 (2.10)

holds, where Br(x) is the closed ball of radius r centered at x, and g(x) is the function

given by

g(x) =


|x|, d = 1,

− log |x|, d = 2,

|x|2−d, d ≥ 3.

(2.11)

We denote the set of Kato-class potentials by K(Rd).

(2) V is a local Kato-class potential whenever V ⌈K∈ K(Rd) for any compact set K ⊂ Rd. We

denote the set of local Kato-class potentials by Kloc(Rd).
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(3) V is Kato-decomposable whenever V = V+ − V− with V+ ∈ Kloc(Rd) and V− ∈ K(Rd).

We give non-trivial examples of Kato-class potentials for d = 3. Notice that∣∣∣∣∣
∫
Br(x)

1

|x− y|
|V (y)|dy

∣∣∣∣∣ ≤
(∫

Br(x)

1

|x− y|p
dy

)1/p(∫
Br(x)

|V (y)|qdy

)1/q

,

with 1/p+ 1/q = 1. When p < 3, the first factor goes to zero as r → 0. Thus V is Kato-class if

supx∈R3

∫
Br(x)

|V (y)|qdy <∞ for some r > 0 and some q > 3/2. Thus

V (x) =
1

|x|2−ε
, ε > 0

is Kato-class.

We are in the position to prove exponential integrability of integrals over some potentials.

When V− ∈ K(R3), it can be seen that the exponent e
∫ t
0 V (Bs)ds is integrable with respect to

Wiener measure so that Ex[e
∫ t
0 V (Bs)ds] is finite for all x.

Lemma 2.3 ([73, Lemma 4.105],[19]) Let V ∈ K(Rd) and V (x) ≥ 0 a.e. x ∈ Rd. Then

there exist β, γ > 0 such that

sup
x∈Rd

Ex[e
∫ t
0 V (Bs)ds] < γeβt. (2.12)

Furthermore, if V ∈ Lp(Rd) with p > d/2 and 1 ≤ p <∞, then β ≤ c(p)1/εΓ(ε)1/ε∥V ∥1/εp , where

ε = 1− d
2p and c(p) =

{
(2π)−d/2 p = 1,

(2π)−d/2pqd/(2q) p > 1
with 1

p+
1
q = 1. In particular Lp(Rd) ⊂ K(Rd)

for p > d/2 and 1 ≤ p <∞.

Let V be Kato-class. Define the map Kt on L
2(R3) by

(Ktf)(x) = Ex[e−
∫ t
0 V (Bs)dsf(Bt)].

Lemma 2.4 {Kt : t ≥ 0} is a symmetric C0-semigroup on L2(R3).

Proof: The boundedness of Kt follows from Lemma 2.3. Define B̃s = Bt−s − Bt, 0 ≤ s ≤ t, for

a fixed t > 0. We see that B̃s is also a Brownian motion. Thus

(f,Ktg) = E0

[∫
R3

f(x)e−
∫ t
0 V (B̃s+x)dsg(B̃t + x)dx

]
.

Changing the variable x to y = B̃t + x, we obtain

(f,Ktg) = E0

[∫
R3

f(y − B̃t)e
−

∫ t
0 V (B̃s−B̃t+y)dsg(y)dy

]
=

∫
R3

E0[f(y +Bt)e
−

∫ t
0 V (Bt−s+y)dsg(y)]dy = (Ktf, g), (2.13)
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i.e., Kt is symmetric. Write now Zt = e−
∫ t
0 V (Bs)ds. The semigroup property follows directly

from the Markov property of Brownian motion:

(KsKtf)(x) = Ex[ZsEBs(Ztf(Bt))]

= Ex[Ex[Zse
−

∫ t
0 V (Bs+u)duf(Bs+t)|Fs]]

= Ex [Zs+tf(Bs+t)] = Ks+tf(x).

The strong continuity of t 7→ Kt is implied by

∥Ktf − f∥ ≤ E0[∥e−
∫ t
0 V (·+Bs)dsf(·+Bt)− f∥] → 0

as t→ 0, by the Lebesgue dominated convergence theorem.

QED

By the Stone’s theorem for semigroups there exists a unique self-adjoint operator K such

that

Kt = e−tK

for any t ≥ 0. For example we can define a self-adjoint operator K = −1
2∆− 1

|x|α for 0 ≤ α < 2,

since 1
|x|α ∈ K(R3) for 0 ≤ α < 2.

−1
2∆ is defined as a self-adjoint operator in the Hilbert space L2(R3) and e

t
2
∆ by the spectral

measure associated with −∆. Hence e
t
2
∆f is well-defined for any f ∈ L2(R3), while it can be

represented as e
t
2
∆f(x) = Ex[f(Bt)] for each x ∈ R3. We note that the right-hand side Ex[f(Bt)]

can be defined not only for f ∈ L2(R3) but also f ∈ Lp(R3) for 1 ≤ p ≤ ∞. More precisely

e
t
2
∆f for f ∈ Lp(R3) is defined by Ex[f(Bt)]. We can show that e

t
2
∆ maps Lp(R3) to Lq(R3) for

every 1 ≤ p ≤ q ≤ ∞. For −1
2∆ + V with Kato-decomposable V we can show the statements

below:

(1) Let V = V+ − V−. Suppose that V+ ∈ L1
loc(R3) and V− ∈ K(R3). Then for each x ∈ R3,

Ex[e−
∫ t
0 V (Bu)duf(Bt)] is well-defined. We can however say more strong statements for

kato-decomposable V . Let V be Kato-decomposable and f ∈ Lp(R3) for 1 ≤ p ≤ ∞.

Then for every t > 0, x 7→ Ktf(x) is continuous [1].

(2) Let V be Kato-decomposable. Then for every 1 ≤ p ≤ q ≤ ∞, Kt maps Lp(R3) to Lq(R3)

as bounded operators, i.e., ∥Ktf∥Lq(R3) ≤ C∥f∥Lp(R3).

2.4 Schrödinger operators with spin 1/2 hS(a, b)

In this section we discuss functional integral representations for Schrödinger operators with

spin 1/2. We refer to see [31, 29, 42, 30, 70, 71] for functional integral representations of

Schrödinger operators with spin 1/2. Since the Trotter product formula holds even when there

is spin, it is easy to see that a functional integral representation can be obtained like Schrödinger

operators, but an infinite product of matrices appears in the integral kernel. It may be possible

to have an exact form of the infinite product of matrices, but we will introduce another way.

Let σ = (σ1, σ2, σ3) be the 2× 2 Pauli matrices given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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σjs are traceless symmetric matrices. Consider the R3 × Z2-valued joint Brownian and jump

process

X × Xµ ∋ (w,m) 7→ Xt(w,m) = (Bt(w), θt(m)) ∈ R3 × Z2

with initial value X0. The generator of (Xt)t≥0 is

G0 =
1

2
∆− σF,

where σF is the fermionic harmonic oscillator defined by

σF =
1

2
(σ3 + iσ2)(σ3 − iσ2) = −σ1 + 1l2×2.

Let b = (b1, b2, b3) be a magnetic potential, and

hS(a, b) =
1

2
(−i∇− a)2 − 1

2
σ · b+ V (2.14)

be a Schrödinger operator with spin 1/2 defined in C2 ⊗ L2(R3). In physics a Schrödinger

operator with spin 1/2 is defined by

1

2
(σ · (−i∇− a))2 + V.

We can see that
1

2
(σ · (−i∇− a))2 + V =

1

2
(−i∇− a)2 − 1

2
σ · rota+ V

and b = rota. In this section however we assume that a and b are independent vectors in (2.14).

We identify C2 ⊗ L2(R3) = L2(R3 × Z2) by C2 ⊗ L2(R3) ∋
(
f1
f2

)
7→ f(x, ·) ∈ L2(R3 × Z2),

where fj(x) = f(x, j). See Table 5 in Section 5. The proposition below is established.

Proposition 2.5 ([31, 70]) Let a ∈ (C2
b(R3))3, b ∈ (L∞(R3))3 and V ∈ L∞(R3). Suppose

that ∫ t

0
ds

∫
R3

∣∣∣∣log 1

2

√
b1(y)2 + b2(y)2

∣∣∣∣ e−|y−x|2/(2s)

(2πs)3/2
dy <∞

for all (x, t) ∈ R3 × R+. Then

(f, e−thS(a,b)g) = et
∑
α∈Z2

∫
R3

Ex,α[f(X0)g(Xt)e
Zt ]dx. (2.15)

Here

Zt = −i

∫ t

0
a(Bs) ◦ dBs −

∫ t

0
V (Bs)ds

+

∫ t

0

1

2
θNsb3(Bs)ds+

∫ t+

0
log

(
1

2
(b1(Bs)− iθNs−b2(Bs))

)
dNs. (2.16)

Note that inserting V = 0, a = (0, 0, 0) and b = (2, 0, 0) yields that hS(a, b) = −1
2∆− σ1 and

Zt =

∫ t+

0
log 1dNs = 0.

Hence it follows that

et
∑
α∈Z2

∫
R3

Ex,α[f(X0)g(Xt)e
Zt ]dx = (f, ete−t(− 1

2
∆+σF )g) = (f, e−t(− 1

2
∆−σ1)g).
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2.5 Relativistic Schrödinger operators hR(a)

We consider relativistic Schrödinger operators. We refer to see [28, 20, 70] for functional integral

representations for relativistic Schrödinger operators. In the relativistic case, the subordinator

explained above appears in addition. Let

hR(a) = ((−i∇− a)2 +m2)1/2 −m+ V.

When V = 0, we can see that

E0
ν [e

−Tth(a)] = e−thR(a)

by the definition of the subordinator (Tt)t≥0. Hence by

(f, e−th(a)g) =

∫
R3

Ex[f(B0)g(Bt)e
−i

∫ t
0 a(Bs)◦dBs ]dx,

we have

(f, e−thR(a)g) =

∫
R3

Ex,0[f(B0)g(BTt)e
−i

∫ Tt
0 a(Bs)◦dBs ]dx. (2.17)

We have the proposition below.

Proposition 2.6 ([28, 70]) Suppose that V ∈ L∞(R3), a ∈ (L2
loc(R3))3 and ∇ · a ∈ L1

loc(R3).

Then

(f, e−thR(a)g) =

∫
R3

Ex,0[f(B0)g(BTt)e
Zt ]dx, (2.18)

where

Zt = −i

∫ Tt

0
a(Bs) ◦ dBs −

∫ t

0
V (BTs)ds. (2.19)

Proof: The proof is an application of the Trotter product formula and (2.17).

QED

2.6 Relativistic Schrödinger operators with spin 1/2 hSR(a, b)

We consider functional integral representations for relativistic Schrödinger operators with spin 1/2.

Combining the relativistic case and the spin case well, we can get functional integral represen-

tations for relativistic Schrödinger operators with spin 1/2. We refer to see [32, 70, 71] for

functional integral representations for relativistic Schrödinger operators with spin 1/2. We de-

fine the subordinate process (qt)t≥0 in terms of the R3 ×Z2-valued stochastic process (Xt)t≥0 =

((Bt, θt))t≥0:

X × Xν × Xν ∋ (w,m,w2) 7→ qt(w,m,w2) = (BTt(w2)(w), θTt(w2)(m)) ∈ R3 × Z2.

In a similar manner to (Xt)t≥0, we can identify the generator of (qt)t≥0. The generator of (qt)t≥0

is

G = −(−∆+ 2σF +m2)1/2 +m. (2.20)
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This is obtained through the equalities

∑
α∈Z2

∫
R3

Ex,α,0
[
f(q0)g(qt)

]
dx = E0

ν

∑
α∈Z2

∫
R3

Ex,α
W×µ

[
f(q0)g(qt)

]
dx


= E0

ν [(f, e
−Tt(− 1

2
∆+σF )g)] = (f, e−tGg).

Hence it follows that (2.20) is the generator of (qt)t≥0.

Let

hSR(a, b) = ((−i∇− a)2 − σ · b+m2)1/2 −m+ V

be a relativistic Schrödinger operator with vector potential a, magnetic potential b and spin 1/2

defined on C2 ⊗ L2(R3). Let ρ(r, t) be the distribution of Tt on R.

Proposition 2.7 ([32, 70]) Let V ∈ L∞(R3), a ∈ (L2
loc(R3))3 and ∇ · a ∈ L1

loc(R3). Suppose

that b ∈ (L∞(R3))3 and∫ ∞

0
drρ(r, t)

∫ r

0
ds

∫
R3

∣∣∣∣log(1

2

√
b1(y)2 + b2(y)2

)∣∣∣∣ e−|y−x|2/2s

(2πs)3/2
dy <∞

for all (x, t) ∈ R3 × R+. Then

(f, e−thSR(a,b)g) =
∑
α=0,1

∫
R3

Ex,α,0[eTtf(q0)g(qt)e
Zt ]dx, (2.21)

where

Zt = −i

∫ Tt

0
a(Bs) ◦ dBs −

∫ t

0
V (BTs)ds+

∫ Tt

0

1

2
θNsb3(Bs)ds

+

∫ Tt+

0
log

(
1

2
(b1(Bs)− iθNs−b2(Bs))

)
dNs. (2.22)

Note that V = 0, a = (0, 0, 0) and b = (2, 0, 0). Then hSR(a, b) = (−∆− 2σ1 +m2)1/2 −m and

Zt =
∫ Tt+
0 log 1dNs = 0. Hence it follows that∑

α=0,1

∫
R3

Ex,α,0[eTtf(q0)g(qt)e
Zt ]dx = E0[eTt(f, e−Tt(− 1

2
∆+σF )g)]

= (f, e−t((−∆−2σ1+m2)1/2−m)g).

We exhibit all the results mentioned above in Table 4.

2.7 Brief summaries of applications

There are many applications of functional integral representations to spectral analysis of Schrödinger

operators. We refer to see e.g., [127]. Here are some of them.

(Singular potentials) By functional integral representations we can define a Schrödinger op-

erator with a singular potential V . E.g., Kato-class potentials (see Definition 2.1). We define

Ktf(x) = Ex[e−
∫ t
0 V (Bs)dsf(Bt)] for a Kato-class potential V . One can show that Kt defines a
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Schrödinger
operator space path space

process
ξt

generator
G

measure
W

kernel
Zt

h(a) R3 X Bt
1

2
∆ W (2.8)

hR(a) R3 X × Xν BTt −(−∆+m2)1/2 +m W × ν (2.19)

hS(a, b) R3 × Z2 X × Xµ Xt = (Bt, θt)
1

2
∆− σF W × µ (2.16)

hSR(a, b) R3 × Z2 X × Xµ × Xν qt = (BTt , θTt) −(−∆+ 2σF +m2)1/2 +m W × µ× ν (2.22)

Table 4: Schrödinger operators

symmetric C0-semigroup on L2(R3). Thus there exists a unique self-adjoint operator K such

that Kt = e−tK by the Stone’s theorem.

Functional integral representations of e−th are also useful to study properties of Schrödinger

operators with singular potentials. It includes Klauder phenomena which yields

lim
ε→0

−1

2
∆ + εV ̸= −1

2
∆

for some singular V . See [33, 34, 124].

(Ergodic properties) [36, 37, 117] From the formula

(f, e−thg) =

∫
R3

Ex[. . .]dx,

one can immediately see that (f, e−thg) > 0 for any f, g ≥ 0. This derives that e−th is positivity

improving or ergodic.

(Spatial decay) [1, 19, 20, 71] If h admits an eigenfunction ϕ at eigenvalue E, then e−thϕ =

e−Etϕ and hence the identity

ϕ = e−t(h−E)ϕ (2.23)

follows for any t ≥ 0. Thus this eigenfunction can be represented in terms of an average over

the paths of a stochastic process. This makes possible to obtain information on the spectral

properties of h by probabilistic means. Let h = −1
2∆+ V . Then we have

ϕ(x) = etEEx[e−
∫ t
0 V (Bs)dsϕ(Bt)]. (2.24)

From this we can see e.g., the spatial decay of ϕ(x) from both upper and lower. While we define

Xt(x) = etEe−
∫ t
0 V (Bs+x)dsϕ(Bt + x).

It can be shown that (X(x)t)t≥0 is a martingale and then

E0[Xt∧τ (x)] = E0[X0(x)] = ϕ(x)

for any stopping time τ . Choosing a suitable stopping time τ , we can also estimate the spatial

decay of ϕ(x) from both upper and lower. We refer to see e.g., [20].
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(Hypercontractivity) [27, 25, 26] It is not hard to establish that e∆/2 : Lp(R3) → Lq(R3)

for every 1 ≤ p ≤ q ≤ ∞. We can extend this to e−th. From (2.24) and the Riesz-Thorin

interpolation [73, Lemma 4.108] we can also show that e−th is hypercontractive. I.e., e−th :

Lp(R3) → Lq(R3) for every 1 ≤ p ≤ q ≤ ∞.

(Smoothing effect) [1] For suitable V we can see that

x 7→ Ex[e−
∫ t
0 V (Bs)dsϕ(Bt)]

is continuous. E.g., V = V+ − V− with Kato-class V+ and local Kato-class V−. From this the

spatial continuity of x 7→ ϕ(x) can be obtained by (2.23).

(Lieb-Thirring inequality) [97, 98, 93, 94, 24, 95] The number of non-positive eigenvalues

N = #{e | e ∈ σp(h), e ≤ 0}

of h can be also estimated by using the functional integral representation of e−th, which is known

as Lieb-Thirring inequality:

N ≤ a3

∫
R3

|V−(x)|3/2dx.

This inequality can be extended to general Schrödinger type operators. In general for

hΨ = Ψ(−∆) + V

with a Bernstein function Ψ [121], it can be seen under some conditions that

N ≤ a3,Ψ

∫
R3

Ψ−1(|V−(x)|)3/2dx.

Here Ψ−1 is the inverse function of Ψ. The examples of Bernstein functions include Ψ(x) = xα

for 0 < α < 1 and Ψ(x) = 1 − e−βx for β > 0. Let Ψ(x) =
√
x. Then N ≤ a3,Ψ

∫
R3 |V−(x)|3dx

follows. See [24].

(Non-relativistic limit) [67] Let c be the velocity of the light. Let Tt(c) be the subordinator

such that

E0
ν [e

−uTt(c)] = e−t(
√
2c2u+m2c4−mc2).

Thus one can show that

lim
c→∞

E0
ν [f(Tt(c))] = f(

t

m
)

for any bounded continuous function f . The right-hand side f( t
m) is deterministic. Let

hc =
√

−∆+m2c4 −mc2 + V.

Thus by (2.18) one can see that

lim
c→∞

(f, e−thcg) = lim
c→∞

∫
R3

Ex,0[f(B0)g(BTt(c))e
−

∫ t
0 V (BTs(c))ds]dx

=

∫
R3

Ex[f(B0)g(B t
m
)e

−
∫ t
0 V (B s

m
)ds

]dx = (f, e−t(− 1
2m

∆+V )g).

Applications mentioned above are available not only for h but also other Schrödinger oper-

ators h(a), hR(a), hS(a, b) and hSR(a, b).
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3 Pauli-Fierz model

3.1 Newton-Maxwell equation

Consider a single classical particles in the configuration space R3, interacting with an electro-

magnetic field. The particle has an assigned mass m = 1 and a charge distribution φ̂, and their

dynamics is completely characterized by their momentum p ∈ R3 and position q ∈ R3. On

the other hand, it is convenient for our purposes to describe the electromagnetic field in the

Coulomb gauge by a complex vector field:

α = (αλ)λ=1,2 : R3 −→ C.

Thus the Hamiltonian of the Newton–Maxwell system takes the form

H(p, q, α) =
1

2

(
p−A(q, α)

)2
+ V (q) +

∑
λ=1,2

∫
R3

ᾱλ(k)|k|αλ(k)dk.

This leads to the Newton–Maxwell equations:
∇tp = −∂H

∂q
,

∇tq =
∂H

∂p
,

i∇tαλ(k) =
∂H

∂ᾱ(k)
.

Hence we obtain

(NM)


∇tp = (p−A(q, α)) · ∇qA(q, α)−∇qV (q),
∇tq = p−A(q, α),

i∇tαλ(k) = |k|αλ(k)−
φ̂(k)√
2|k|

(p−A(q, α)) · eλ(k)e−ikq.

The model considered in this paper is the so-called Pauli-Fierz model [116], which is the quan-

tized version of H(p, q, α). In the classical limit, ℏ → 0, of the Pauli-Fierz model leads to the

Newton–Maxwell equations. We refer to see [3, 131].

3.2 Pauli-Fierz Hamiltonian

The Hamiltonian of non-relativistic QED is defined as a self-adjoint operator on a Hilbert space.

The Pauli-Fierz Hamiltonian describes the minimal interaction between electrons and a quan-

tized radiation field, where electrons are treated as quantum mechanical matters and the num-

ber of electrons is fixed at one. Hence the Pauli-Fierz Hamiltonian can be interpreted as a

Schrödinger operator of one electron coupled with a quantized radiation field. We refer to see

[125, 44, 7] for tools of quantum field theory. Let

H = L2(R3)⊗F

be the Hilbert space describing the joint electron-photon state vectors. Here

F = F(L2(R3 × Z2))
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is the boson Fock space over L2(R3×Z2). Here the boson Fock space F(K) over K is defined by

F(K) =
∞⊕
n=0

[⊗n
sK],

where ⊗n
s denotes the n-fold symmetric tensor product. See Appendix A for the fundamental

facts on boson Fock spaces. The elements of the set Z2 account for the fact that a photon is a

transversal wave perpendicular to the direction of its propagation, thus it has two components.

See Figure 1. The Fock vacuum in F is defined by

Ω = 1l⊕ 0⊕ 0 · · · .

We identify H as the set of F-valued L2-functions on R3:

H ∼=
∫ ⊕

R3

Fdx. (3.1)

This will be used without further notice in what follows. Let a(f) and a∗(f) be the annihilation

operator and the creation operator on F smeared by f ∈ L2(R3 × Z2), respectively. Then

[a(f), a∗(g)] =
∑
j=±1

(f̄j , gj),

[a(f), a(g)] = 0 = [a∗(f), a∗(g)].

We use the identification L2(R3 × Z2) ∼= L2(R3)⊕ L2(R3) and set

a♯(f,+1) = a♯(f ⊕ 0), a♯(f,−1) = a♯(0⊕ f),

where a♯ stands for either operator. The finite particle subspace of F is given by

Ffin = {Ψ = {Ψ(n)}∞n=0|Ψ(m) = 0 for all m > N with some N}.

Next we define the quantized radiation field with a cutoff function φ̂. Put

℘j
µ(x) =

φ̂(k)√
ω(k)

ejµ(k)e
−ikx ∈ L2(R3

k),

℘̃j
µ(x) =

φ̂(−k)√
ω(k)

ejµ(k)e
ikx ∈ L2(R3

k),

for x ∈ R3, j = ±1 and µ = 1, 2, 3, where ω is the dispersion relation defined by

ω(k) = |k|.

Here φ̂ is the Fourier transform of the charge distribution φ. The vectors e+1(k) and e−1(k)

are called polarization vectors, that is, e+1(k), e−1(k) and k/|k| form a right-hand system at

k ∈ R3;

ei(k) · ej(k) = δij , ej(k) · k = 0, e+1(k)× e−1(k) = k/|k|.

The quantized radiation field with cutoff function φ̂ is defined by
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Figure 1: Polarization vector

Aµ(x) =
1√
2

∑
j=±1

(a∗(℘j
µ(x), j) + a(℘̃j

µ(x), j)), µ = 1, 2, 3.

In the case of φ̂/
√
ω ∈ L2(R3) and φ̂(k) = φ̂(−k), Aµ(x) is symmetric, and moreover essentially

self-adjoint on Ffin for each x ∈ R3. We denote the closure of Aµ(x)⌈Ffin
by the same symbol.

Aµ is a self-adjoint operator on

D(Aµ) =

{
F ∈ H

∣∣∣∣F (x) ∈ D(Aµ(x)) a.e. x and

∫
R3

∥Aµ(x)F (x)∥2Fdx <∞
}

and acts as (AµF )(x) = Aµ(x)F (x) for F ∈ D(Aµ). Since k · ej(k) = 0, it implies the Coulomb

gauge condition

∇x ·A = 0.

This in turn yields
∑3

µ=1[∇µ, Aµ] = 0. The formally it is written as

Aµ(x) =
1√
2

∑
j=±1

∫
R3

ejµ(k)

(
φ̂(k)√
|k|
e−ikxa∗(k, j) +

φ̂(−k)√
|k|

e+ikxa(k, j)

)
dk.

Let us explain the term φ̂(k)√
|k|
dk in Aµ(x). Let

Hm = {k ∈ R4 | k · k̃ = m2, k0 > 0}

be called mass hyperboloids. Here k̃ = (k0,−k1,−k2,−k3). The Lorentz group L is the set of

linear transformations on R4 that preserve k · l̃, i.e.,

Λ ∈ L iff k · l̃ = Λk · Λ̃l ∀k, l ∈ R4.

The restricted Lorentz group L ↑
+ is the subgroup of L such that Λ = (Λµν)0≤µ,ν≤3 ∈ L ↑

+ iff

detΛ = 1 and Λ00 > 0. The mass hyperboloids is invariant under the restricted Lorentz group

L ↑
+. Let Vm : Hm → R3 for m > 0 and V0 : H0 → R3 \ {0} for m = 0 be the homeomorphisms

defined by Vm(k0, k1, k2, k3) = (k1, k2, k3). Define

ρ(E) =

∫
Vm(E)

1√
k21 + k22 + k23 +m2

dk1dk2dk3, E ⊂ Hm.
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Then ρ is a measure on Hm. The measure ρ is invariant with respect to all Λ ∈ L ↑
+, i.e.,

ρ(ΛE) = ρ(E). From this the measure
1√
|k|

dk

on R3 is called the relativistically covariant measure for m = 0. If φ̂ ̸= 1, then

φ̂(k)√
|k|

dk

breaks relativistic covariance.

Next we introduce the free field Hamiltonian on F . Let us consider the massless and free rel-

ativistic Schrödinger operator
√
−∆ on L2(R3). Then the N -body massless and free relativistic

Schrödinger operator is given by

N∑
j=1

√
−∆j (3.2)

on L2(R3N ) ∼= ⊗NL2(R3). The free field Hamiltonian Hf on F is the direct sum of (3.2), and

then given in terms of the second quantization of ω(k):

Hf = dΓ(ω).

It leaves the n-particle subspace F (n) = ⊗n
sL

2(R3 × Z2) invariant, i.e., for f ∈ F (n),

Hff(k1, . . . , kn, j1, . . . , jn) =

 N∑
j=1

ω(kj)

 f(k1, . . . , kn, j1, . . . , jn).

See Appendix A.2 for second quantizations.

The Pauli-Fierz model describes the minimal interaction between an electron and the quan-

tized radiation field. The electron is described by the Schrödinger operator

Hp = −1

2
∆ + V

in L2(R3). The Hamiltonian for the electron decoupled with the quantized radiation field is

given by

H0 = −1

2
∆⊗ 1l + 1l⊗Hf

with domain

D(H0) = D

(
−1

2
∆⊗ 1l

)
∩D(1l⊗Hf).

The interaction is obtained by the minimal coupling −i∇µ ⊗ 1l 7→ −i∇µ ⊗ 1l−Aµ. Then the

Pauli-Fierz Hamiltonian is defined by

H =
1

2
(−i∇⊗ 1l−A)2 + V ⊗ 1l + 1l⊗Hf . (3.3)
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We give a remark on the definition of H. When defining the sum of operators, each opera-

tor should be defined on the same Hilbert space. For the Pauli-Fierz Hamiltonian, however,

−i∇ ⊗ 1l, V ⊗ 1l and 1l ⊗ Hf are defined on Hilbert space L2(R3) ⊗ F , but A on
∫ ⊕
R3 Fdx. It

confuses readers who see it for the first time. However we respect and follow the traditional

definition of the Pauli-Fierz Hamiltonian under the identification of L2(R3)⊗F and
∫ ⊕
R3 Fdx in

(3.1).

It is also known that Hamiltonians defined through different polarizations are unitary equiv-

alent each others. Thus we may fix polarization vectors as they are the most convenient.

In what follows we neglect tensor notation ⊗ unless confusions may arise. Then H is simply

written as

H =
1

2
(−i∇−A)2 + V +Hf .

We say V ∈ RKato iff D(∆) ⊂ D(V ) and there exist 0 ≤ a < 1 and 0 ≤ b such that

∥V f∥ ≤ a

∥∥∥∥−1

2
∆f

∥∥∥∥+ b∥f∥

for f ∈ D(∆). Moreover we say that φ ∈ U iff φ ∈ S ′(R3) satisfies that φ̂ is a local L1-function,

φ̂(−k) = φ̂(k) and √
ωφ̂ ∈ L2(R3), φ̂/

√
ω ∈ L2(R3), φ̂/ω ∈ L2(R3).

We give comments on the class U . φ̂(−k) = φ̂(k) and φ̂/
√
ω ∈ L2(R3) ensure that A is well-

defined and symmetric. φ̂/ω ∈ L2(R3) implies that A is relatively bounded with respect to

H
1/2
f , and

√
ωφ̂ ∈ L2(R3) yields ∇µAν is well-defined.

In this paper unless otherwise stated we suppose the following assumptions.

Assumption 3.1 φ ∈ U and V ∈ RKato.

Under this assumption on V , by the Kato-Rellich theorem [84] one can see that Hp is self-adjoint

on D(∆).

Proposition 3.1 ([61, 63, 105, 52, 35]) Suppose that Assumption 3.1 holds. Then H is self-

adjoint on D(H0) and essentially self-adjoint on any core of H0.

Note that condition for the self-adjointness is weakend in [105].

3.3 Pauli-Fierz Hamiltonian in Schrödinger representation

We introduce a Q-space associated with the quantized radiation field and reformulate the Pauli-

Fierz Hamiltonian on L2(R3) ⊗ L2(Q) instead of H. This is called Schrödinger representation.

Furthermore, we introduce Euclidean quantum fields associated with the Pauli-Fierz Hamilto-

nian to derive a functional integral representation of e−tH . We refer to see [122, 123] for a

Q-space representation of a Fock space and [114, 125] for Euclidean fields.

The following setting is taken from [61]. For a real-valued f ∈ L2(R3) we set

Aµ(f) =
1√
2

∑
j=±1

∫
R3

ejµ(k)(f̂(k)a
∗(k, j) + f̂(−k)a(k, j))dk.
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With this notation we write Aµ(x) = Aµ(φ̃(· − x)), where φ̃ = (φ̂/
√
ω)̌. The relations

(Ω, Aµ(f)Ω) = 0, (3.4)

(Ω, Aµ(f)Aν(g)Ω) =
1

2
(f̂, δ⊥µν ĝ) (3.5)

are immediate. Here δ⊥µν(k) is the transversal delta function defined by

δ⊥µν(k) = δµν −
kµkν
|k|2

, µ, ν = 1, 2, 3,

and we used the identity: ∑
j=1,2

ejµ(k)e
j
ν(k) +

kµkν
|k|2

= δµν .

Let δ⊥ = (δ⊥µν)1≤µ,ν≤3 be the 3× 3 matrix:

δ⊥(k) =


1− k21

|k|2
−k1k2

|k|2
−k1k3

|k|2

−k2k1
|k|2

1− k22
|k|2

−k2k3
|k|2

−k3k1
|k|2

−k3k2
|k|2

1− k23
|k|2

 .

In order to construct the functional integral representation of (F, e−tHG) we prepare prob-

ability spaces (Q#,Σ#, µ#), # = 0, 1, and Gaussian random variables Â#(f) indexed by

f ∈
⊕3 L2

R(R3+#) with mean zero:

Eµ#
[Â#(f)] = 0,

and the covariance:

Eµ#
[Â#(f)Â#(g)] = q#(f, g).

Here the bilinear forms q# on (
⊕3 L2

R(R3+#))× (
⊕3 L2

R(R3+#)) are defined by

q0(f, g) =
1

2
(f̂, δ⊥ĝ), (3.6)

q1(F,G) =
1

2
(F̂, δ⊥Ĝ). (3.7)

Note that F̂ = F̂ (k0, k), Ĝ = Ĝ(k0, k) but δ
⊥ = δ⊥(k) for (k0, k) ∈ R × R3. The definitions of

(3.6) and (3.7) are motivated by (3.4) and (3.5). It is established that there exist a probability

space (Q#,Σ#, µ#) and a family of Gaussian random variables (Â#(f), f ∈
⊕3 LR(R3+#)) such

that the mean is zero and the covariance is given by q#. Define the µth component of Â# by

Â#,µ(f) = Â#

(
3⊕

ν=1

δµνf

)
, f ∈ L2(R3+#).

We shall set Â = Â0, q = q0, Q = Q0, µM = µ0, and A = Â1, qE = q1, QE = Q1, µE = µ1,
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It is known that

LH

:
n∏

j=1

Â#(fj):, 1l

∣∣∣∣∣ fj ∈
3⊕
L2(R3+#), j = 1, ..., n, n ∈ N

 (3.8)

is dense in L2(Q#) Here :. . .: denotes the Wick product. Thus∫
Q#

:

n∏
j=1

Â#(fj)::
m∏
i=1

Â#(gi):dµ# = 0, n ̸= m.

We set (3.8) as L2
fin(Q#). We define the second quantization Γ##′(T ). Here and in what

L2(R3+#)
T //

��

L2(R3+#′
)

��
L2(Q#)

Γ##′ (T )
// L2(Q#′)

Figure 2: Fanctor Γ##′

follows for the operator S : L2(R3+#) → L2(R3+#′
) we use the same notation S as for the

operator
⊕3 S :

⊕3 L2(R3+#) →
⊕3 L2(R3+#′

), (f1, f2, f3) 7→ (Sf1, Sf2, Sf3) for notational

convenience, and we write simply Â#(Tf) for Â#((
⊕3 T )f) etc. Let Γ##′(T )1l = 1l and

Γ##′(T ):

n∏
i=1

Â#(fi): = :

n∏
i=1

Â#′(Tfi):.

If T is a contraction operator, then so is Γ##′(T ). Thus Γ##′ is a functor between sets of

contraction operators {T : L2(R3+#) → L2(R3+#′
)}. We write Γ00 = Γ : L2(Q) → L2(Q),

Γ11 = ΓE : L2(QE) → L2(QE) and Γ01 = ΓInt : L
2(Q) → L2(QE).

L2(R3)
jt //

i−1/2

��

⟳
L2(R4)

i−1

��
Ḣ−1/2(R3)

τt=δt⊗·
// Ḣ−1(R4)

Figure 3: Isometries jt between L
2(R3) and L2(R4)

We introduce a family of isometries connecting the Minkowski quantum field and the Eu-

clidean quantum field. Let Ḣν(Rn) be the homogeneous Sobolev space:

Ḣν(Rn) = {f ∈ S ′(R3) | f̂(k)|k|ν/2 ∈ L2(R3)}.
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Thus

τt : Ḣ−1/2(R3) → Ḣ−1(R4)

is defined by τtf = δt ⊗ f . Then ∥τtf∥Ḣ−1(R4) = ∥f∥Ḣ−1/2(R3). Let i−1/2 : L2(R3) → Ḣ−1/2(R3)

and i−1 : L
2(R4) → Ḣ−1(R4) be given by

î−1/2f(k) =
√
ω(k)f̂(k),

î−1f(k0, k) =
√
ω(k)2 + |k0|2f̂(k0, k).

In [61] we define the family of isometries jt : L
2(R3) → L2(R4) by

jt = (i−1)
−1 ◦ τt ◦ i−1/2, t ∈ R.

See Figure 3. We see that

j∗sjt = e−|s−t|ω̂,

where ω̂ = ω(−i∇). See Figure 4.

L2(R3)
jt //

e−|s−t|ω̂

��

L2(R4)

j∗s

{{ww
ww
ww
ww
ww
ww
ww
ww⟳

L2(R3)

Figure 4: Decomposition of e−|s−t|ω̂

L2(Q)
Jt //

e−|s−t|Hf

��

L2(QE)

J∗s

{{ww
ww
ww
ww
ww
ww
ww
ww⟳

L2(Q)

Figure 5: Decomposition of e−|s−t|Hf

Define the family of isometries Jt : L
2(Q) → L2(QE) by the second quantization of jt, i.e.,

Jt = ΓInt(jt).

Let K be a self-adjoint operator in L2(R3). Then {Γ(eitK) : t ∈ R} turns to be the strongly

continuous one-parameter unitary group. Then the Stone’s theorem tells us that there exists a

unique self-adjoint operator dΓ(K) such that

Γ(eitK) = eitdΓ(K), t ∈ R.

Let

dΓ(ω̂) = Ĥf .

Since e−tHf = Γ(e−tω̂), e−tĤf can be decomposed as

J∗tJs = e−|s−t|Ĥf .

See Figure 5. Isometry Jt plays an important role in functional integral representations, which

connects Minkowskian quantum fields with Euclidean quantum fields. Let ĥ = h(−i∇) be

the self-adjoint operator with a real-valued symbol h. Then JtΓ(e
−iĥ) = ΓE(e

−iĥ⊗1l)Jt and

JtdΓ(ĥ) = dΓE(ĥ⊗ 1l)Jt hold. See Figure 6.
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L2(Q)
Jt //

Γ(e−iĥ)

��

⟳
L2(QE)

ΓE(e
−iĥ⊗1l)

��
L2(Q)

Jt
// L2(QE)

Figure 6: Intertwining properties

3.4 Wiener-Itô-Segal isomorphism between F and L2(Q)

The Wiener-Itô-Segal isomorphism U is an isomorphism between L2(Q) and F . Let us define

U : F → L2(Q) by

UΩ = 1l,

U :

n∏
i=1

A(fi):Ω = :
n∏

i=1

Â(fi):.

Thus U becomes a unitary operator from F to L2(Q). We denote 1l⊗U : H → L2(R3)⊗L2(Q)

by U for simplicity. Note that the inverse Fourier transform of g(k, x) = e−ikxφ̂(k)/
√
ω(k)

equals ǧ(y, x) = φ̃(y − x), where φ̃ = (φ̂/
√
ω)̌ ∈ L2(R3). Notice that the test function of Aµ(f)

is f̂ but not f .

F
A(f) //

U

��

⟳
F

U

��
L2(Q)

Â(f)

// L2(Q)

Figure 7: Wiener-Itô-Segal isomorphism U

As seen above, the isometry Jt connects L
2(Q) with L2(QE). We can also see the intertwining

properties:

JtÂ(f) = A(jtf)Jt.

See Figure 8. This property is very important to construct functional integral representations

for Pauli-Fierz type Hamiltonians.

Now we define the Pauli-Fierz Hamiltonian in the Schrödinger representation. The relations

UAµ(x)U
−1 = Âµ(φ̃(· − x)),

UHfU
−1 = Ĥf ,

follow directly. As a result

UHU−1 =
1

2
(−i∇− Â)2 + V + Ĥf ,
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L2(Q)
Â(f) //

Jt

��

⟳
L2(Q)

Jt

��
L2(QE) A(jtf)

// L2(QE)

Figure 8: Â(f) and A(f)

with Â = (Â1, Â2, Â3). In what follows we use notation H for UHU−1 and Hf for Ĥf . The

Pauli-Fierz Hamiltonian in Schrödinger representation is defined by

H =
1

2
(−i∇− Â)2 + V +Hf

in L2(R3) ⊗ L2(Q). Unless confusions arise we also denote L2(R3) ⊗ L2(Q) by H, and we set

HE = L2(R3)⊗ L2(QE).

3.5 Hilbert space-valued stochastic integrals

We define a Hilbert space-valued stochastic integral. It will be first explained in some generality

and then applied to the Pauli-Fierz Hamiltonian. Let K be a Hilbert space and define

Cn(R3;K) =
{
f : R3 → K |f is n times strongly continuously differentiable

}
and

Cn
b (R3;K) =

{
f ∈ Cn(R3;K)

∣∣ sup
|z|≤n,x∈R3

∥∇zf(x)∥K <∞
}
,

where |z| = z1 + z2 + z3 for z = (z1, z2, z3) and ∇z = ∇z1
x1
∇z2

x2
∇z3

x3
denotes strong derivative. We

set L2(X ) = L2(X ,dWx). The proof of the following lemma is straightforward and similar to

the case of real-valued processes. Let f ∈ C1
b(R× R3;K). The sequence defined by

Jµn(f) =

2n∑
j=1

f

(
j − 1

2n
t, B j−1

2n
t

)(
Bµ

j
2n

t
−Bµ

j−1
2n

t

)

is a Cauchy sequence in L2(X )⊗K. For f ∈ C1
b(R× R3;K) the limit∫ t

0
f(s,Bs)dB

µ
s = s− lim

n→∞
Jµn(f)

defines a K-valued stochastic integral. By the above definition

E
[(∫ t

0
f(s,Bs)dB

µ
s ,

∫ t

0
g(s,Bs)dB

ν
s

)
K

]
= δµνE

[∫ t

0
(f(s,Bs), g(s,Bs))Kds

]
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holds. Jµn(f) is defined by the sum of f evaluated at the left endpoints. Then f( j−1
2n t, B j−1

2n
t)

and Bµ
j
2n

t
− Bµ

j−1
2n

t
are independent, while we define Sµ

n(f) below by evaluating at both of the

left and right endpoints. Let f ∈ C2
b(R3;K) and

Sµ
n(f) =

2n∑
j=1

(
f(B j

2n
t) + f(B j−1

2n
t)
)(

Bµ
j
2n

t
−Bµ

j−1
2n

t

)
.

Similarly to the case of real-valued processes we can see that

s− lim
n→∞

Sµ
n(f) =

∫ t

0
f(Bs)dB

µ
s +

1

2

∫ t

0
∇µf(Bs)ds

holds in L2(X )⊗K. Thus extra term 1
2

∫ t
0 ∇µf(Bs)ds appears.

We will construct the functional integral through the Euclidean quantum field, and will use

an L2(R4)-valued stochastic integral of the form∫ t

0
jsφ̃(· −Bs)dB

µ
s . (3.9)

However, since

∥jsf − jtf∥2

|s− t|2
= 2

(
f̂,

(1− e−|s−t|ω)

|s− t|
f̂

)
1

|s− t|

diverges as t → s for f̂ ∈ D(ω), R × R3 ∋ (s, x) 7→ jsφ̃(· − x) ∈ L2(R4) is not strongly

differentiable in s ∈ R. Then jsφ̃(· − x) /∈ C1
b(Rs × R3

x;L
2(R4)). Therefore we need to give a

proper definition of (3.9).

Lemma 3.2 If λ̂, ωλ̂ ∈ L2(R4), then for each µ = 1, 2, 3,

Sµ
n(λ) =

2n∑
j=1

j (j−1)t
2n

λ
(
· −B (j−1)t

2n

)(
Bµ

jt
2n

−Bµ
(j−1)t

2n

)
, n = 1, 2, 3, . . . ,

is a Cauchy sequence in L2(X )⊗ L2(R4).

Proof: Fix an µ. Write Sn = Sµ
n(λ) and η∗ = j∗λ(· −B∗). Then

Sn+1 − Sn =
2n∑

m=1

(
η (2m−1)t

2n+1
− η (2m−2)t

2n+1

)(
Bµ

2mt
2n+1

−Bµ
(2m−1)t

2n+1

)
.

Hence

Ex[∥Sn+1 − Sn∥2] =
2n∑

m=1

Ex

[∥∥∥∥η (2m−1)t

2n+1
− η (2m−2)t

2n+1

∥∥∥∥2
]

t

2n+1
.

We have ∥∥∥∥η (2m−1)t

2n+1
− η (2m−2)t

2n+1

∥∥∥∥2 ≤ ∥ωλ̂∥2
∣∣∣∣Bµ

(2m−1)t

2n+1

−Bµ
(2m−2)t

2n+1

∣∣∣∣2 + t

2n
∥λ∥∥ωλ̂∥.
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We conclude that

(
Ex[∥Sm − Sn∥2]

)1/2 ≤ (2∥λ∥∥ωλ̂∥+ ∥ωλ̂∥2

2

)1/2 m∑
j=n+1

t

2(j+1)/2
,

thus {Sn}∞n=1 is a Cauchy sequence.

QED

Let λ̂, ωλ̂ ∈ L2(R4). Then∫ t

0
jsλ(· −Bs)dB

µ
s = s− lim

n→∞
Sµ
n , µ = 1, 2, 3,

defines an L2(R4)-valued stochastic integral, where the strong limit is in the strong topology of

L2(X )⊗ L2(R4). By the definition it is seen that

Ex

[(∫ t

0
jsλ(· −Bs)dB

µ
s ,

∫ t

0
jsρ(· −Bs)dB

ν
s

)]
= tδµν(λ, ρ).

3.6 Functional integral representations for the Pauli-Fierz Hamiltonian

Using the Trotter product formula and the factorization formula e−|s−t|Hf = J∗tJs, we derive a

functional integral representation of e−tH . A combination of the functional integral representa-

tion of e−tHp and the equality e−tHf = J∗0Jt gives

(F, e−tH0G)H = (J0F, e
−tHpJtG)HE

=

∫
R3

Ex[e−
∫ t
0 V (Bs)ds(J0F (B0), JtG(Bt))L2(QE)]dx.

The next theorem is due to [60]. See also [40, 130], and [104] for great extensions.

Theorem 3.3 We suppose that V ∈ L∞(R3). Then

(F, e−tHG) =

∫
R3

Ex
[
e−

∫ t
0 V (Bs)ds(J0F (B0), e

−iA(Kt)JtG(Bt))L2(QE)

]
dx. (3.10)

Here Kt denotes the
⊕3 L2(R3)-valued stochastic integral given by

Kt =

3⊕
µ=1

∫ t

0
jsφ̃(· −Bs)dB

µ
s .

Proof: Firstly we assume that V = 0, and we write As(x) = A(
⊕3 jsφ̃(· − x)) in this proof.

Define the family of symmetric contraction operators Ps : H → H by

PsF (x) =

∫
R3

Πs(x− y)eiH(x,y)F (y)dy, s > 0,

with P0F = F , where Πs(x) =
1

(2πs)3/2
exp(−|x|2/2s) is the heat kernel and

H(x, y) =
1

2
(Â(x) + Â(y)) · (x− y).

32



By a direct computation

(F, (P t
2n
)2

n
G) =

∫
R3

dx

∫
(R3)2n

F (x)ei
∑2n

j=1 HjG(x2n)

 2n∏
j=1

Π t
2n
(xj−1 − xj)

 2n∏
j=1

dxj

with x = x0, Hj = H(xj−1, xj). This can be expressed by using Brownian motion as

(F, (P t
2n
)2

n
G) =

∫
R3

Ex[(F (B0), e
−iÂ(Ln)G(Bt))]dx,

where Ln =
3⊕

µ=1

2n∑
m=0

(φ̃(· −Bt m
2n
) + φ̃(· −Btm−1

2n
))(Bµ

t m
2n

−Bµ

tm−1
2n

). It is seen that

Ln → Lt =

3⊕
µ=1

∫ t

0
φ̃(· −Bs)dB

µ
s

as n→ ∞ strongly in
⊕3 (L2(X )⊗ L2(R3)

)
. Here we used the Coulomb gauge condition. This

implies that for F,G ∈ HE,

lim
n→∞

(F, (P t
2n
)2

n
G) =

∫
R3

Ex[(F (B0), e
−iÂ(Lt)G(Bt))]dx. (3.11)

From (3.11) it follows that |limn→∞(F, (P t
2n
)2

n
G)| ≤ ∥F∥∥G∥. Hence for each t ≥ 0 there exists

a symmetric bounded operator St such that

lim
n→∞

(F, (P t
2n
)2

n
G) = (F, StG).

Since (P t
2n
)2

n
is uniformly bounded as ∥(P t

2n
)2

n∥ ≤ 1, the above weak convergence improves to

s− lim
n→∞

(P t
2n
)2

n
= St, t ≥ 0. (3.12)

Furthermore, by (3.11)

(F, StG) =

∫
R3

Ex[(F (B0), e
−iÂ(Lt)G(Bt))]dx. (3.13)

Putting these together we can show that {St : t ≥ 0} is a symmetric C0-semigroup, thus there

exists a unique self-adjoint operator K such that St = e−tK , t ≥ 0. Let

H(Â) =
1

2
(−i∇− Â)2.

We have

lim
t→∞

(F, t−1(1l− Pt)G) = (F,H(Â)G) (3.14)

for F,G ∈ C∞
0 (R3)⊗ L2

fin(Q) in Lemma 3.4 below. This leads to

(t−1(e−tK − 1l)F,G) = lim
n→∞

(t−1((P t
2n
)2

n − 1l)F,G) = −
∫ 1

0
(H(Â)F, e−tsH(Â)G)ds. (3.15)
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In the second equality above we used (3.14). (3.15) can be immediately extended to vectors

F ∈ D(H0) and G ∈ D(K). Take t ↓ 0 on both sides of (3.15). Then it holds that (F,KG) =

(H(Â)F,G) for F ∈ D(H0) and G ∈ D(K), which implies that K ⊃ H(Â)⌈D(H0) as H(Â) is

self-adjoint. Define

Ĥ = K +̇ Hf ,

where +̇ denotes the quadratic form sum [85]. The Trotter product formula for quadratic form

sums [88, 87] and the factorization e−
t
n
Hf = J∗kt

n

J (k+1)t
n

yield that

(F, e−tĤG) = lim
n→∞

(
J0F,

(
n−1∏
i=0

Ri

)
JtG

)
,

where Rj = J jt
n
e−

t
n
KJ∗jt

n

. Using the definition of e−tK we get

Jse
−tKJ∗sG(x) = s− lim

n→∞

∫
(R3)2n

Jse
i
∑2n

j=1 HjJ∗sG(x2n)

 2n∏
j=1

Π t
2n
(xj−1 − xj)

 2n∏
j=1

dxj

with x = x0. Write δj = δj(n, t, nj) = t/(n2nj ) for j = 0, 1, . . . , n− 1 and define Ps,j : HE → HE

by Ps with H(x, y) replaced by the Euclidean version H jt
n
(x, y) given by

Hs(x, y) =
1

2
(As(x) + As(y)) · (x− y)

with As(x) = A(jsφ̃(· − x)) as

Ps,jF (x) =

∫
R3

Πs(x− y)e
iH jt

n
(x,y)

F (y)dy.

We have (
J0F,

(
n−1∏
i=0

Ri

)
JtG

)
= lim

n0→∞
. . . lim

nn−1→∞

(
J0F,

(
n−1∏
i=0

(Pδi,i)
2ni

)
JtG

)
.

Here we used the Markov property [115, 113, 125] of the projection Es = J0J
∗
s. As a result we

have (
J0F,

(n−1∏
i=0

Ri

)
JtG

)
= lim

n0→∞
. . . lim

nn−1→∞

∫
R3

Ex[(J0F (B0), e
−iA(K)JtG(Bt))]dx

with K = K(n0, n1, . . . , nn−1, n) given by

K =
3⊕

µ=1

n−1∑
j=0

2nj∑
m=1

j jt
n
(φ̃(· −B t

n
( m

2
nj

+j)) + φ̃(· −B t
n
(m−1

2
nj

+j)))(B
µ
t
n
( m

2
nj

+j)
−Bµ

t
n
(m−1

2
nj

+j)
).

Note that

K →
3⊕

µ=1

n−1∑
j=0

∫ t(j+1)/n

jt
n

j jt
n
φ̃(· −Bs)dB

µ
s
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as n0, n1, . . . , nn−1 → ∞ in
⊕3(L2(X )⊗ L2(R3)). Finally as n→ ∞ we have

(F, e−tĤG) =

∫
R3

Ex[(J0F (B0), e
−iA(Kt)JtG(Bt))]dx. (3.16)

By the construction of Ĥ,

Ĥ ⊃ 1

2
(−i∇− Â)2 +Hf⌈D(H0), (3.17)

but Proposition 3.1 yields that

Ĥ =
1

2
(−i∇− Â)2 +Hf

follows, and Ĥ is self-adjoint on D(H0). A functional integral representation of e−tĤ including

non-zero V can be obtained by the Trotter product formula

(F, e−tĤG) = lim
n→∞

(F, (e−
t
n
Ke−

t
n
V e−

t
n
Hf )nG).

This completes the proof.

QED

It remains to show (3.14).

Lemma 3.4 It follows (3.14), i.e.,

lim
t→∞

(F, t−1(1l− Pt)G) = (F,H(Â)G)

for F,G ∈ C∞
0 (R3)⊗ L2

fin(Q).

Proof: It is directly seen that

d

ds
(F, PsG) =

∫
R3

dx

∫
R3

Πs(x− y)

(
F (x),

1

2
∆ye

iH(x,y)G(y)

)
dy.

We have

(F (x),∆yµe
iH(x,y)G(y)) = I+µ (x, y) + I−µ (x, y),

where

I+µ (x, y) =

(
F (x), eiH(x,y)

(
Âµ(y)i∇yµ +

1

2
iÂµµ(y) +

1

2
Âµ(y)(Âµ(x) + Âµ(y))

)
G(y)

)
(x− y)

− 1

4
(F (x), eiH(x,y)(Âµ(y)(x− y))2G(y)),

I−µ (x, y) =

(
F (x), eiH(x,y)

(
∆yµ − (Âµ(x) + Âµ(y))i∇yµ − 1

4
(Âµ(x) + Âµ(y))

2

)
G(y)

)
.

Here Âµ(y) = ∇yµÂ(y) and Â
µµ(y) = ∇2

yµÂ(y). We have

lim
t→0

∫
R3

dx

∫
R3

Πt(x− y)I+µ (x, y)dy = 0.
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It can be also seen that the map y 7→ I−µ (x, y) is continuous for each x ∈ R3 and it follows that

limy→x I
−
µ (x, y) = −(F (x), (−i∇xµ −Aµ(x))

2G(x)). Hence we have

lim
t→0

∫
R3

dx

∫
R3

Πt(x− y)I−µ (x, y)dy = −
∫
R3

(F (x), (−i∇xµ −Aµ)
2G(x))dx.

Together with them we have

lim
t→∞

1

t
(F, (1l− Pt)G) = − lim

t→0+

d

dt
(F, PtG) = (F,H(Â)G).

Thus the lemma follows.

QED

In Theorem 3.3 we assumed boundedness of external potentials. We can offer an extension

of the functional integral representation to a wider potential class.

Theorem 3.5 ([60]) Take

H =
1

2
(−i∇− Â)2 +Hf +̇ V+ −̇ V−

for V+ ∈ L1
loc(R3) and V− which is −1

2∆ form bounded with relative bound < 1. Then (3.10)

holds for H.

Proof: The proof is a minor modification of [127, Theorem 6.2]. The following proof is taken

from [60]. Let

V+n(x) =

{
V+(x), V+(x) < n,

n, V+(x) ≥ n,
V−m(x) =

{
V−(x), V−(x) < m,

m, V−(x) ≥ m.

Set Vn,m = V+n − V−m and h = 1
2(−i∇− Â)2 +Hf . Then

(F, e−t(H+Vn,m)G) =

∫
R3

Ex
[
e−

∫ t
0 Vn,m(Bs)ds

(
F (B0), J

∗
0e

−iA(Kt)JtG(Bt)
)]

dx. (3.18)

Define the closed quadratic forms

qn,m(F, F ) = (h1/2F, h1/2F ) + (V
1/2
+n F, V

1/2
+n F )− (V

1/2
−mF, V

1/2
−mF ),

qn,∞(F, F ) = (h1/2F, h1/2F ) + (V
1/2
+n F, V

1/2
+n F )− (V

1/2
− F, V

1/2
− F ),

q∞,∞(F, F ) = (h1/2F, h1/2F ) + (V
1/2
+ F, V

1/2
+ F )− (V

1/2
− F, V

1/2
− F ),

whose form domains are Q(qn,m) = Q(h), Q(qn,∞) = Q(h) and Q(q∞,∞) = Q(h) ∩ Q(V+).

Note that

qn,m ↓ qn,∞, m ↑ ∞

and

qn,∞ ↑ q∞,∞, n ↑ ∞.
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By [85, VIII. Theorem 3.11], qn,∞ is a closed quadratic form, and we can conclude that for all

t ≥ 0,

exp (−t (h+ V+n − V−m)) → exp
(
−t
(
h+ V+n −̇V−

))
(3.19)

as m→ ∞. By [85, VIII. Theorem 3.13] and [126], q∞,∞ is also a closed quadratic form, and

exp(−t(h +̇V+n −̇V−)) → exp(−t(h +̇V+ −̇V−)) (3.20)

as n → ∞ strongly. By taking first n → ∞ and then m → ∞ it can be proven that both sides

of (3.18) converge. I.e., the left-hand side of (3.18) converges by (3.19) and (3.20). We have the

inequality ∫
R3

Ex
[
e−

∫ t
0 Vn,m(Bs)ds

∣∣∣(F (B0), J
∗
0e

−iA(Kt)JtG(Bt)
)∣∣∣] dx

≤
∫
R3

Ex
[
e−

∫ t
0 Vn,∞(Bs)ds(|F (B0)|, e−tHf |G(Bt)|)

]
dx <∞.

Here the finiteness of the second term can be derived. Since

|e−
∫ t
0 Vn,m(Bs)ds(F (B0), J

∗
0e

−iA(Kt)JtG(Bt))| ≤ e−
∫ t
0 Vn,∞(Bs)ds(|F (B0)|, e−tHf |G(Bt)|),

the dominated convergence theorem yields that

lim
m→∞

∫
R3

Ex
[
e−

∫ t
0 Vn,m(Bs)ds

(
F (B0), J

∗
0e

−iA(Kt)JtG(Bt)
)]

dx

=

∫
R3

Ex
[
e−

∫ t
0 Vn,∞(Bs)ds(F (B0), J

∗
0e

−iA(Kt)JtG(Bt))
]
dx.

Furthermore since ∫
R3

Ex
[
e−

∫ t
0 Vn,∞(Bs)ds

∣∣∣(F (B0), J
∗
0e

−iA(Kt)JtG(Bt)
)∣∣∣] dx

≤
∫
R3

Ex
[
e−

∫ t
0 Vn,∞(Bs)ds(|F (B0)|, e−tHf |G(Bt)|)

]
dx <∞

and ∣∣∣e− ∫ t
0 Vn′,∞(Bs)ds

(
F (B0), J

∗
0e

−iA(Kt)JtG(Bt)
)∣∣∣ ≤ e−

∫ t
0 Vn,∞(Bs)ds(|F (B0)|, e−tHf |G(Bt)|)

for n ≤ n′, the dominated convergence theorem again yields that

lim
n→∞

∫
R3

Ex
[
e−

∫ t
0 Vn,∞(Bs)ds

(
F (B0), J

∗
0e

−iA(Kt)JtG(Bt)
)]

dx

=

∫
R3

Ex
[
e−

∫ t
0 V (Bs)ds(F (B0), J

∗
0e

−iA(Kt)JtG(Bt))
]
dx.

Together with them the right-hand side of (3.18) converges to∫
R3

Ex[e−
∫ t
0 V (Bs)ds(F (B0), J

∗
0e

−iA(Kt)JtG(Bt))]dx

for any F,G ∈ D(H0) as first m→ ∞ and then n→ ∞. Then the proof is complete.

QED
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3.7 Pauli-Fierz Hamiltonian with Kato-class potential

We consider the Pauli-Fierz Hamiltonian with Kato-class potential V . This section is due to

[54]. We introduce the assumption below.

Assumption 3.2 φ ∈ U and V is Kato-decomposable.

Firstly we are interested in defining H with a Kato-class potential as a self-adjoint operator.

This will be done through the functional integral representation established in the previous

section. We have

(e−tHG)(x) = Ex[e−
∫ t
0 V (Bs)dsJ∗0e

−iA(Kt)JtG(Bt)]. (3.21)

Conversely, we shall show that a sufficient condition to define the right-hand side of (3.21) is

that V is of Kato-class. The idea used for Schrödinger operators with Kato-class potentials [23]

can be extended to the Pauli-Fierz Hamiltonian.

Let V be a Kato-decomposable potential and define the family of operators

(KtF ) (x) = Ex[e−
∫ t
0 V (Br)drJ∗0e

−iA(Kt)JtF (Bt)].

Lemma 3.6 Suppose Assumption 3.2. Then Kt is bounded on H.

Proof: Let F ∈ H. By Schwarz inequality we have

∥KtF∥2H ≤
∫
R3

E0[e−2
∫ t
0 V (Br+x)dr]E0[∥F (Bt + x)∥2]dx.

Since V is of Kato-class, we have supx∈R3 E0[e−2
∫ t
0 V (Br+x)dr] = C <∞, and thus

∥KtF∥2H ≤ C∥F∥2H.
QED

We shall show that {Kt : t ≥ 0} is a symmetric C0-semigroup. To do that we introduce a

time shift operator ut on L
2(R4) by

utf(x0, x) = f(x0 − t, x), x = (x0, x) ∈ R× R3.

It is straightforward that u∗t = u−t and u
∗
tut = 1. We denote the second quantization of ut by

Ut = ΓE(ut) which acts on L2(QE) and is unitary. It follows that utjs = js+t for every t, s ∈ R.
It derives the formula UtJs = Js+t (Figure 9).

Lemma 3.7 Suppose Assumption 3.2. Then KsKt = Ks+t holds true for s, t ≥ 0. Moreover

t 7→ Kt is strongly continuous and K0 = 1l.

Proof: By the definition of Kt we have

KsKtF = Ex
[
e−

∫ s
0 V (Br)drJ∗0e

−iA(Ks)JsEBs [e−
∫ t
0 V (Br)drJ∗0e

−iA(Kt)JtF (Bt)]
]
. (3.22)

By the formulae JsJ
∗
0 = EsU

∗
−s (Figure 11) and Jt = U−sJt+s, we see that (3.22) is equal to

Ex
[
e−

∫ s
0 V (Br)drJ∗0e

−iA(Ks)EsEBs [e−
∫ t
0 V (Br)drU∗

−se
−iA(Kt)U−sJt+sF (Bt)]

]
. (3.23)
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Since Us is unitary, we have

U∗
−se

−iA(Kt)U−s = e−iA(u∗
−sKt)

as an operator. The test function of the exponent u∗−sKt is given by

u∗−sKt =
3⊕

µ=1

∫ t

0
jr+sφ̃(· −Br)dB

µ
r .

Moreover by the Markov property of Et, t ∈ R, we can neglect Es in (3.23), and by the Markov

property of (Bt)t≥0 we have

(KsKtF )(x)= Ex[e−
∫ s
0 V (Br)drJ∗0e

−iA(Ks)Ex[e−
∫ s+t
s V (Br)dre−iA(Ks+t

s )Js+tF (Bs+t)|Fs]]

= Ex[e−
∫ s+t
0 V (Br)drJ∗0e

−iA(Ks+t)Js+tF (Bs+t)] = Ks+tF,

where we recall that (Ft)t≥0 denotes the natural filtration of (Bt)t≥0. The second statement

can be proven immediately.

QED
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Figure 11: Es and Us

Theorem 3.8 Suppose Assumption 3.2. Then {Kt : t ≥ 0} is a symmetric C0-semigroup.

Proof: It was shown that {Kt : t ≥ 0} is a C0-semigroup. Hence it is enough to show that Kt is

symmetric for each t ≥ 0. Recall that R = Γ(r) is the second quantization of the reflection r,

where r : L2(R4) → L2(R4) such that rf(x0, x) = f(−x0, x) for (x0, x) ∈ R× R3. We have

(F,KtG) = (UtRF,UtRKtG) =

∫
R3

Ex
[
e−

∫ t
0 V (Bs)ds

(
JtF (B0), e

−iA(utrKt)J0G(Bt)
)]

dx.
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Notice that utrKt =
∫ t
0 jt−sφ̃(·−Bs)dB

µ
s . Note that Ḃs = Bt−s−Bt, 0 ≤ s ≤ t is also Brownian

motion. Exchanging integrals
∫
X dW0 and

∫
R3 dx and changing the variable x to y+Bt, we can

see

(F,KtG) = E0

[∫
R3

e−
∫ t
0 V (Bt−s+y)ds

(
JtF (Bt + y), e+iA(Kt)J0G(y)

)]
dy.

Then

(F,KtG) =

∫
R3

Ey
[
e−

∫ t
0 V (Bs)ds

(
J∗0e

−iA(Kt)JtF (y +Bt), G(y)
)]

dy = (KtF,G)

and Kt is symmetric. Then the proof is complete.

QED

By Theorem 3.8 and the Stone’s theorem for semigroups there exists a self-adjoint operator

K such that

Kt = e−tK, t ≥ 0.

3.8 Positivity improving

It is known that second quantizations and positivity improving are deeply related. We refer to

see [129, 125, 43, 48, 124, 36, 100, 101, 108, 109] for positivity improving, and this section is due

to [62]. Let T be a contraction operator on L2(R3). Then it is known that Γ(T ) is positivity

preserving in L2(Q). I.e.,

(Φ,Γ(T )Ψ) ≥ 0, Φ ≥ 0, Ψ ≥ 0.

Furthermore let f : R3 → R be a non-negative function such that the Lebesgue measure of

{k ∈ R3 | f(k) = 0} is zero. Then Γ(e−f(−i∇)) is positivity improving on L2(Q). I.e.,

(Φ,Γ(e−f(−i∇))Ψ) ⪈ 0, Φ ≥ 0, Ψ ≥ 0.

In particular J∗0Jt = e−tHf = Γ(e−tω̂) is positivity improving on L2(Q). See Figure 12. We are

interested in asking if J∗0XJt is positivity improving or not for some X.

Let S# = exp(−iπ2N#), where N denotes the Number operator on L2(Q) and NE that on

L2(QE). S (resp. SE) is a unitary operator on L2(Q) (resp. L2(QE)). Then we can show that

S−1
E e−iA(f)SE is a shift operator on L2(QE). In particular, it is positivity preserving on L2(QE).

Since Jt and J∗0 are positivity preserving, we see that J∗0S
−1
E e−iA(f)SEJt is positivity preserving

on L2(Q). We can show a stronger statement below. See Figure 13.

Proposition 3.9 ([62]) J∗0S
−1
E e−iA(f)SEJt is positivity improving in L2(QE).

Corollary 3.10 ([62]) S−1e−tHS is positivity improving.

Proof: Let F,G ∈ H be non-negative but not identically zero. We have

(F,S−1e−tHSG) =

∫
R3

Ex[e−
∫ t
0 V (Bs)ds(F (B0), J

∗
0S

−1
E e−iA(Kt)SEJtG(Bt))]dx

=

∫
R3

E0[e−
∫ t
0 V (Bs+x)ds(F (x), J∗0S

−1
E e−iA(Kt(x))SEJtG(Bt + x))]dx,
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where Kt(x) =
∫ t
0 jsφ̃(· −Bs − x)dBs.

f(x,w) = e−
∫ t
0 V (Bs)ds(F (x), J∗0S

−1
E e−iA(Kt(x))SEJtG(Bt + x))

is a function with respect to (x,w) ∈ R3 × X . We can see that there exists a measurable

set M × B ⊂ R3 × X such that
∫
M×B dWdx > 0 and f(x,w) > 0 for (x,w) ∈ M × B from

Proposition 3.9. Hence (F,S−1e−tHSG) =
∫
R3 E0[f ]dx ≥

∫
M×B fdWdx > 0 and the corollary

is proven.

QED

Corollary 3.11 ([62]) If H has a ground state Ψg. Then S−1Ψg is strictly positive.

Proof: This follows from Corollary 3.10 and the Perron Frobenius theorem.

QED

3.9 Baker-Campbell-Hausdorff formula and Fock representation

In Sections 3.6 and 3.7 we obtain the functional integral representation of the semigroup gener-

ated by H in the Schrödinger representation. In this section we show a functional integral rep-

resentation of e−tH in the Fock representation by applying Baker-Campbell-Hausdorff formula.

Let a♯E be the annihilation operator and the creation operator acting in F(L2(R4) ⊕ L2(R4)).

Let

φ̃j = (φ̃1j , φ̃2j , φ̃3j), j = ±1,

where φ̃µj denotes the inverse Fourier transform of ejµ
φ̂√
ω
. Let

ĵs = F−1jsF, (3.24)

where F denotes the Fourier transform on L2(R3). We note that following identification:

Â(Kt) ∼=
1√
2

(
a∗E(Mt) + aE(M̃t)

)
,

where

Mt =
⊕
j=±1

∫ t

0
ĵs
φ̂√
ω
e−ikBsej · dBs,

M̃t =
⊕
j=±1

∫ t

0
ĵs

˜̂φ√
ω
e+ikBsej · dBs.

We have the theorem below.
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Theorem 3.12 (3.10) can be represented as

(F, e−tHG) =

∫
R3

Ex
[
e−

∫ t
0 V (Bs)dse−Kt(F (B0), e

a∗(Lt)e−tHfea(L̃t)G(Bt))L2(Q)

]
dx. (3.25)

Here

Lt = − i√
2

⊕
j=±1

∫ t

0
e−|t−s|ω(k) φ̂(k)√

ω(k)
e−ikBsej(k) · dBs, (3.26)

L̃t = − i√
2

⊕
j=±1

∫ t

0
e−|s|ω(k) φ̂(−k)√

ω(k)
e+ikBsej(k) · dBs (3.27)

and

Kt =
1

4

∑
j=±1

∥∥∥∥∫ t

0
jsφ̃j(· −Bs) · dBs

∥∥∥∥2
L2(R4)

=
1

2
qE(Kt,Kt). (3.28)

Proof: By Baker-Campbell-Hausdorff formula we can see that

J∗0e
−iA(Kt)Jt = J∗0e

−Kte−ia∗E(Mt)e−iaE(M̃t)Jt = e−Kte−ia∗(j∗0Mt)e−tHfe−ia(j∗t M̃t).

It can be seen that −ij∗tMt = Lt and −ij∗0M̃t = L̃t. Together with them we obtain the desired

results.

QED

The exponent Kt is formally written as

Kt
formal
=

1

4

∑
1≤µ,ν≤3

∫ t

0
dBµ

s

∫ t

0
dBν

r

∫
R3

|φ̂(k)|2

ω(k)
e−|s−r|ω(k)e−ik(Bs−Br)

(
δµν −

kµkν
|k|2

)
dk.

This expression is formal. The double stochastic integral
∫ t
0

∫ t
0 . . . dB

µ
s dBν

r is delicate. We

discuss this in [15]. In fact it is derived in [15, Proposition 3.1] that

Kt=
1

4

∑
1≤µ,ν≤3

∫
R3

dk
|φ̂(k)|2

ω(k)

∫ t

0
e−ikBsdBµ

s

(
δµν −

kµkν
|k|2

)∫ s

0
e−(s−r)ω(k)eikBrdBν

r .

3.10 Translation invariant Pauli-Fierz Hamiltonian

We consider the translation invariant Pauli-Fierz Hamiltonian, which is obtained by setting

the external potential V identically zero, resulting in the fact that H commutes with the total

momentum operator. This section is due to [64].

We begin with defining a fiber Hamiltonian. As said, a standing assumption throughout this

section is Assumption 3.2 but V = 0. Put

Pfµ = dΓ(kµ), µ = 1, 2, 3,

which describes the field momentum. The total momentum operator PT on H is defined by the

sum of the momentum operator for the particle and that of field:

PT
µ = −i∇µ + Pfµ, µ = 1, 2, 3.

It follows that

[H,PT
µ ] = 0, µ = 1, 2, 3. (3.29)
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Remark 3.1 We give a comment on (3.29). Both H and PT are unbounded, and then (3.29)

holds on D(HPT)∩D(HPT). Precisely we can show that [e−tH , e−isPT
] = 0 for t ≥ 0 and s ∈ R

on the whole Hilbert space by a functional integral representation.

This leads to a decomposition ofH with respect to the spectrum of the total momentum operator

σ(PT
µ ) = R. The Pauli-Fierz Hamiltonian with total momentum p ∈ R3 is defined by

H(p) =
1

2
(p− Pf −A(0))2 +Hf , p ∈ R3,

with domain D(H(p)) = D(Hf) ∩ D(P2
f ), where Aµ(0) = Aµ(x = 0). We give a relationship

between H and H(p). Define the unitary operator

T : L2(Rx)⊗F → L2(Rp)⊗F

by

T = (F̂ ⊗ 1l)

∫ ⊕

R3

exp(ixPf)dx, (3.30)

with F̂ denoting the Fourier transformation from L2(Rx) to L
2(Rp). For Ψ ∈ H,

(T Ψ)(p) =
1

(2π)3/2

∫
R3

e−ixpeixPfΨ(x)dx.

Theorem 3.13 For each p ∈ R3, H(p) is a non-negative self-adjoint operator, and∫ ⊕

R3

Fdp ∼= H,
∫ ⊕

R3

H(p)dp ∼= H.

Here the unitary equivalence is implemented by T .

The self-adjointness of H(p) ensures that {e−tH(p) : t ≥ 0} is a symmetric C0-semigroup. As

in the previous section, we transform H(p) from the Fock representation to the Schrödinger

representation in order to construct a functional integral representation. Then H(p) becomes

H(p) =
1

2
(p− Pf − Â(0))2 +Hf

on L2(Q), where Â(0) = Â(x = 0). We use the same notations H(p), Hf and Pf in both

the Fock representation and the Schrödinger representation. Recall that Pf = dΓ(−i∇) and

Hf = dΓ(ω(−i∇)). The functional integral representation of e−tH(p) can be also constructed as

an application of that of e−tH .

Theorem 3.14 ([64]) Let Ψ,Φ ∈ L2(Q). Then

(Ψ, e−tH(p)Φ) = E0[(J0Ψ, e
−iA(Kt)Jte

+i(p−Pf)BtΦ)L2(QE)]. (3.31)

In particular

e−tH(p)Φ = E0[J∗0e
−iA(Kt)Jte

+i(p−Pf)BtΦ]. (3.32)
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Proof: Write Fs = Πs ⊗Ψ and Gr = Πr ⊗ Φ, where Πs is the 3D-heat kernel:

Πs(x) =
1

(2πs)3/2
exp(−|x|2/2s).

Due to the fact that H = T (
∫ ⊕
R3 H(p)dp)T −1, we have the key identity:

(Fs, e
−tHe−iξPT

Gr) =

∫
R3

e−iξp((T Fs)(p), e
−tH(p)(T Gr)(p))dp

for any ξ ∈ R3. Note that lim
s→0

(T Fs)(p) =
1

(2π)3/2
Ψ strongly in L2(Q) for each p ∈ R3. Hence

lim
s→0

(Fs, e
−tHe−iξPT

Gr) =
1

(2π)3/2

∫
R3

(Ψ, e−tH(p)e−iξp(T Gr)(p))dp. (3.33)

By using the fact eiξP
T
Gr(x) = Πr(x− ξ)e−iξPfΦ, we obtain by the functional integral represen-

tation in Theorem 3.3 that

(Fs, e
−tHe−iξPT

Gr) =

∫
R3

Ex[Πs(x)Πr(Bt − ξ)(J0Ψ, e
−iA(Kt)Jte

−iξPfΦ)]dx.

Then it follows from Πs(x) → δ(x) as s→ 0 that

lim
s→0

(Fs, e
−tHe−iξPT

Gr) = E0[Πr(Bt − ξ)(J0Ψ, e
−iA(Kt)Jte

−iξPfΦ)]. (3.34)

Combining (3.33) and (3.34) leads to

1

(2π)3/2

∫
R3

e−iξp(Ψ, e−tH(p)(T Gr)(p))dp = E0[Πr(Bt − ξ)(J0Ψ, e
−iA(Kt)Jte

−iξPfΦ)]. (3.35)

Taking the inverse Fourier transform on both sides of (3.35) with respect to p gives

(Ψ, e−tH(p)(T Gr)(p)) =
1

(2π)3/2
E0

[∫
R3

eiξpΠr(Bt − ξ)(J0Ψ, e
−iA(Kt)Jte

−iξPfΦ)dξ

]
(3.36)

for almost every p ∈ R3. Since both sides of (3.36) are continuous in p, the equality stays valid

for all p ∈ R3. After taking r → 0 on both sides we arrive at (3.31).

QED

By Baker-Campbell-Hausdorff formula we can also have a functional integral representation

in the Fock representation. Then the proof is similar to that of Theorem 3.12

Corollary 3.15 Let Ψ,Φ ∈ L2(Q). Then

(Ψ, e−tH(p)Φ) = E0[e−Kt(Ψ, ea
∗(Lt)e−tHfea(L̃t)e+i(p−Pf)BtΦ)]. (3.37)

In particular

e−tH(p)Φ = E0[e−Ktea
∗(Lt)e−tHfea(L̃t)e+i(p−Pf)BtΦ]. (3.38)

Here Lt, L̃t and Kt are given by (3.26), (3.27) and (3.28), respectively.
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3.11 Pauli-Fierz Hamiltonian with the dipole approximation

The Pauli-Fierz Hamiltonian with the dipole approximation is defined byH with A =
∫ ⊕
R3 A(x)dx

replaced by 1l⊗A(0). This implies that collisions between an electron and photons are ignored.

Hence it is of the form

Hdip =
1

2
(−i∇⊗ 1l− 1l⊗A(0)) + V ⊗ 1l + 1l⊗Hf .

By introducing the dipole approximation the model can be solvable. More precisely it can be

diagonalized when V = 0.

3.11.1 Bogoliubov transformation

In this section we suppose that

(1) φ̂/ω3/2 ∈ L2(R3), φ̂(k) = φ̂(−k), and φ̂(k) = φ̂(|k|).

(2) φ̂ ∈ C∞
0 (R3).

Note that we can weaken these conditions, but for simplicity we assume (1) and (2). A weaker

conditions are given in [76, Assumption 3.4].

Let K be a Hilbert-Schmidt operator on L2(R3)⊕ L2(R3) such that

Kf =
∞∑
n=0

λn(ψn, f)ϕn.

Here {ψn} and {ϕn} are orthogonal vectors in L2(R3)⊕ L2(R3), and
∑∞

n=1 λ
2
n <∞. Note that

{ψn} and {ϕn} are not necessarily orthonormal systems in L2(R3)⊕ L2(R3). Then we define

∆∗
K = lim

M→∞

M∑
n=1

λna
∗(ψ̄n)a

∗(ϕn),

∆K = lim
M→∞

M∑
n=1

λna(ψ̄n)a(ϕn).

It is established in [6] that ∆∗
K and ∆K are densely defined closed operators in F . Moreover let

{en} be a orthonormal system in L2(R3)⊕L2(R3), and S a bounded operator on L2(R3)⊕L2(R3).

We define

NS = lim
M→∞

M∑
n=1

a∗(en)a(S∗en).

This is also a densely defined closed operator. In particular choosing S = 1l, we see that N1l is

the number operator. These are studied in [6, 118, 119]. Let

W± = (W±ij)1≤i,j≤2
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be the operators defined by

W+ij =
1

2

∑
1≤µ,ν≤3

eiµ

(
1√
ω
T ∗
µν

√
ω +

√
ωT ∗

µν

1√
ω

)
ejν ,

W−ij =
1

2

∑
1≤µ,ν≤3

eiµ

(
1√
ω
T ∗
µν

√
ω −

√
ωT ∗

µν

1√
ω

)
Tejν .

Hete T is defined by Tf(k) = f(−k) and Tµν by

Tµνf = δµνf +
φ̂

D+(ω2)

√
ωG

√
ωδ⊥µνφ̂f

with

Gf(k) = lim
ε↓0

∫
R3

f(k′)

(ω(k)2 − ω(k′)2 + iε)
√
ω(k)ω(k′)

dk′

and

D+(s) = 1− 4π

3

(
lim
ε↓0

∫
|s−x|>ε

φ̂(
√
x)|2

√
|x|

s− x
dx− πi|φ̂(

√
s)|2

√
s

)
.

Let

Sp = exp(−iΠp),

where

Πp =
i√
2

1

meff

∑
j=±1

(
a∗
(
p · ej φ̂

ω3/2
, j

)
− a

(
p · ej φ̂

ω3/2
, j

))
with

meff = 1 +
2

3

∥∥∥∥ φ̂ω
∥∥∥∥2 .

Let

U = C exp(−1

2
∆∗

W−W−1
+

) : exp(−N
1l−(W−1

+ )∗
) : exp(−1

2
∆−W−1

+ W−
),

where

C = det(1l− (W−W
−1
+ )∗(W−W

−1
+ ))1/4.

Note that ∥U1l∥ = 1. Define

U =

∫ ⊕

R3

SpUe
iπ
2
Ndp.

Thus we can see that U is the unitary operator on H. See [5] and [76, Section 3.4].

Proposition 3.16 ([5, 77]) It follows that

U−1HdipU = − 1

2meff
∆⊗ 1l + 1l⊗Hf + g. (3.39)

Here

g =
3

2π

∫ ∞

−∞

2
3

∥∥∥ t√
t2+ω2

φ̂√
t2+ω2

∥∥∥2
1 + 2

3

∥∥∥ φ̂√
t2+ω2

∥∥∥2 dt.
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A functional integral representation of e−tHdip is a minor modification of the full Hamiltonian.

The stochastic integral
∫ t
0 jsφ̃(· −Bs)dB

µ
s appearing in the functional integral representation of

e−tH is replaced by
∫ t
0 jsφ̃dB

µ
s .

Proposition 3.17 It follows that

(F, e−tHdipG) = Ex[e−
∫ t
0 V (Bs)ds(F (B0), J

∗
0e

−iA(Kdip
t )JtG(Bt)] (3.40)

where Kdip
t =

⊕3
µ=1

∫ t
0 jsφ̃dB

µ
s .

Let V = 0. Then together with Propositions 3.16 and 3.17 we have the identity:

(F, e−tHdipG) = e−tg

∫
R3

Ex[(U−1F (B0), e
−tHfU−1G(Bt/meff

)]dx. (3.41)

3.11.2 Translation invariant Pauli-Fierz Hamiltonian with the dipole approxima-
tion

Let V = 0. Then

[Hdip, pµ] = 0 µ = 1, 2, 3.

We have

Hdip =

∫ ⊕

R3

Hdip(p)dp,

where

Hdip(p) =
1

2
(p−A(0)) +Hf .

Thus we have the proposition below.

Proposition 3.18 It follows that

(Ψ, e−tHdip(p)Φ) = E0[(Ψ, J∗0e
−iA(Kdip

t )Jte
+i(p−Pf)BtΦ)]. (3.42)

Proof: The proof is a minor modification of that of Theorem 3.14.

QED

Let p = 0 and Ψ = Φ = 1l. Thus we have

(1l, e−tHdip(p)1l) = E0[e−
1
2
qE(K

dip
t ,Kdip

t )]. (3.43)

Here we can see that

1

2
qE(K

dip
t ,Kdip

t )
formal
=

1

4

∑
1≤µ,ν≤3

∫ t

0
dBµ

s

∫ t

0
dBν

r

∫
R3

|φ̂(k)|2

ω(k)
e−|s−r|ω(k)

(
δµν −

kµkν
|k|2

)
dk.

This expression is formal. In a similar manner to [15, Proposition 3.1] it is derived that

1

2
qE(K

dip
t ,Kdip

t )=
1

4

∑
1≤µ,ν≤3

∫
R3

dk
|φ̂(k)|2

ω(k)

∫ t

0
dBµ

s

(
δµν −

kµkν
|k|2

)∫ s

0
e−(s−r)ω(k)dBν

r .
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Corollary 3.19 It follows that

E0[e−
1
2
qE(K

dip
t ,Kdip

t )] = e−tgdet(1l− (W−W
−1
+ )∗(W−W

−1
+ ))1/2(e

− 1
2
∆∗

K01l, e
− 1

2
∆∗

Kt1l),

where Kt = −j∗t (W
−1
+ W−)

∗jt and K0 = −j∗0(W
−1
+ W−)

∗j0.

Proof: We have

U(p)−1Hdip(p)U(p) =
1

2meff
p2 +Hf + g

for every p ∈ R3. Here

U(p) = SpUe
iπ
2
N .

Then

(1l, e−tHdip(p)1l) = e−tgE0[(U(0)−11l, e−tHfU(0)−11l)] = e−tgE0[(J0U(0)−11l, JtU(0)−11l)].

Note that

U(0)−11l = det(1l− (W−W
−1
+ )∗(W−W

−1
+ ))1/4e

− 1
2
∆∗

−(W−1
+ W−)∗1l.

Since j#e
− 1

2
∆∗

−(W−1
+ W−)∗1l = e

− 1
2
∆∗

K#1l for # = 0, t. Then the corollary follows.

QED

4 Relativistic Pauli-Fierz model

4.1 Relativistic Pauli-Fierz Hamiltonian

In quantum mechanics a relativistic Schrödinger operator with a vector potential a is defined by

HR(a) = ((−i∇− a)2 +m2)1/2 −m+ V , and a functional integral representation of e−tHR(a) is

shown in Section 2.2. A key element in the construction of the functional integral representation

of e−tHR(a) is to use the subordinator (Tt)t≥0. In this section the analogue version of the Pauli-

Fierz model is defined and its functional integral representation is given. This section is due

to [65, 55]. We also refer to see [107, 89, 90, 91, 92, 56, 57]. We say that V ∈ RRKato iff

D(
√
−∆) ⊂ D(V ) and there exist 0 ≤ a < 1 and 0 ≤ b such that ∥V f∥ ≤ a∥

√
−∆f∥+ b∥f∥ for

f ∈ D(
√
−∆) with 0 ≤ a < 1 and 0 ≤ b. Instead of Assumption 3.1 throughout this section we

suppose the assumption below unless otherwise stated.

Assumption 4.1 φ ∈ U , ω3/2φ̂ ∈ L2(R3), and V ∈ RRKato.

In Assumptions 4.1 we add the extra condition ω3/2φ̂ ∈ L2(R3) to Assumption 3.1, and instead

of V ∈ RKato, we suppose that V ∈ RRKato. Let D = D(∆) ∩ C∞(N) and

H(Â) =
1

2
(−i∇− Â)2⌈D .

To define the relativistic Pauli-Fierz Hamiltonian (2H(Â) +m2)1/2 −m +Hf + V , we have to

define (2H(Â)+m2)1/2 as a self-adjoint operator. It is however not trivial to choose a self-adjoint

extension of H(Â). We have the lemma below.
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Proposition 4.1 ([61]) Suppose that ω3/2φ̂ ∈ L2(R3), φ̂/
√
ω ∈ L2(R3) and φ̂(−k) = φ̂(k).

Then H(Â) is essentially self-adjoint.

We keep denoting the unique self-adjoint extension of H(Â) by the same symbol H(Â) for

simplicity, and we define (2H(Â) +m2)1/2 by the spectral resolution of H(Â). The relativistic

Pauli-Fierz Hamiltonian is defined by

HR = (2H(Â) +m2)1/2 −m +̇ Hf +̇ V.

Here m ≥ 0 is a parameter, but it describes the mass of an electron in physics.

4.2 Functional integral representations for the relativistic Pauli-Fierz Hamil-
tonian

We will construct a functional integral representation of e−tHR through the Trotter product

formula. We set

Tk = (2H(Â) +m2)1/2 −m. (4.1)

By the Trotter product formula for quadratic form sums we see that

(F, e−tHRG) = lim
n→∞

(
F,
(
e−

t
2n

Tke−
t
2n

Hfe−
t
2n

V
)2n

G

)
.

Suppose V ∈ C∞
0 (R3). Then(
F,
(
e−

t
2n

Tke−
t
2n

Hfe−
t
2n

V
)2n

G

)
=

∫
R3

Ex,0

[(
J0F (BT0), e

−iA(KR
t (n))JtG(BTt)

)
e
−

∑2n

j=0
t
2n

V (BTtj
)
]
dx,

where

KR
t (n) =

3⊕
µ=1

2n∑
j=1

∫ Ttj

Ttj−1

jtj−1φ̃(· −Bs)dB
µ
s

with tj =
jt
2n , and

∫ Ttj

Ttj−1
jtj−1φ̃(· −Bs)dB

µ
s denotes an L2(R4)-valued stochastic integral∫ S

T
jtj−1φ̃(· −Bs)dB

µ
s

evaluated at T = Ttj−1 and S = Ttj . (KR
t (n))t≥0 can be regarded as a sequence of

⊕3 L2(R4)-

valued random processes on the product probability space (X × Xν ,B × Bν ,Wx ⊗ ν). Let

Nν ∈ Bν be a null set, i.e., ν(Nν) = 0, such that for arbitrary w ∈ Xν \Nν , the path t 7→ Tt(w)

is nondecreasing and right-continuous, and has the left-limit. We have the lemma below.

Lemma 4.2 ([65]) For each w ∈ Xν\Nν and each t ≥ 0, KR
t (n) strongly converges in L2(X )⊗

(
⊕3 L2(R4)) as n→ ∞, i.e,. there exists

KR
t ∈ L2(X )⊗ (

3⊕
L2(R4))

such that lim
n→∞

Ex
[
∥KR

t (n)−KR
t ∥2

]
= 0.
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By Lemma 4.2 and a limiting argument it follows that

(F, e−t(Tk+̇Hf)G) =

∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )JtG(BTt)
)]

dx.

The immediate consequence is bounds of e−t(Tk +̇Hf). Let F,G ∈ H. Then it follows that

|(F, e−t(Tk +̇Hf)G)| ≤ (|F |, e−t((−∆+m2)1/2−m+Hf)|G|)H,

|(F, e−t(Tk +̇Hf)G)| ≤ (∥F∥L2(Q), e
−t((−∆+m2)1/2−m)∥G∥L2(Q))L2(R3).

From these bounds we can conclude a relative boundedness with respect to V .

Lemma 4.3 (1) and (2) follow.

(1) If V is relatively form bounded with respect to (−∆ + m2)1/2 − m with a relative bound

a, then |V | is also relatively form bounded with respect to (Tk +̇Hf) with a relative bound

smaller than a.

(2) If V is relatively bounded with respect to (−∆+m2)1/2 −m with a relative bound a, then

V is also relatively bounded with respect to Tk +̇Hf with a relative bound a.

Suppose Assumption 4.1. Then (Tk +̇Hf) + V is self-adjoint on D(Tk +̇Hf) by (1) of Lemma

4.3.

Theorem 4.4 Suppose Assumption 4.1. Then

(F, e−tHRG) =

∫
R3

Ex,0
[
e−

∫ t
0 V (BTs )ds(J0F (B0), e

−iA(KR
t )JtG(BTt))

]
dx. (4.2)

Proof: When V is bounded and continuous, the theorem can be proven by the Trotter formula.

Furthermore, it can be extended to a general V in the same way as that of Theorem 3.5.

QED

We have the corollary. Let S# = exp(−iπ2N#).

Corollary 4.5 ([65]) (1) S−1e−tHRS is positivity improving. (2) If HR has a ground state

Ψg. Then S−1Ψg is strictly positive.

Proof: Let F,G ∈ H be non-negative but not identically zero. We have

(F,S−1e−tHRSG) =

∫
R3

Ex,0
[
e−

∫ t
0 V (Bs)ds(F (B0), J

∗
0S

−1
E e−iA(KR

t )SEJtG(BTt))
]
dx.

Since J∗0S
−1
E e−iA(KR

t )SEJt is positivity improving, the corollary can be proven in a similar man-

ner to Corollary 3.10.

QED
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4.3 Invariant domain and self-adjointness

In this section by using the functional integral representation derived in Theorem 4.4 we show

the self-adjointness of HR. The fundamental lemma is as follows.

Lemma 4.6 Let K be a non-negative self-adjoint operator. Suppose that there exists a dense

domain D such that D ⊂ D(K) and e−tKD ⊂ D for all t ≥ 0. Then K⌈D is essentially

self-adjoint.

Proof: It suffices to show that for some λ > 0, Ran((λ+K)⌈D) is dense. Suppose the contrary.

Then there exists nonzero f such that (f, (λ+K)ψ) = 0 for all ψ ∈ D. We have

d

dt
(f, e−tKψ) = (f,−Ke−tKψ) = λ(f, e−tKψ).

Thus (f, e−tKψ) = eλt(f, ψ). If (f, ψ) ̸= 0, then limt→∞ |(f, e−tKψ)| = ∞, contradicting the fact

that e−tK is a contraction. Hence (f, ψ) = 0 for all ψ ∈ D(K), but (f, ψ) can not equal zero for

all ψ ∈ D(K), since D(K) is dense. Hence we conclude that Ran((λ+K)⌈D) is dense.
QED

To prove the essential self-adjointness of HR we find an invariant domain D so that

D ⊂ D(HR), e−tHRD ⊂ D.

Let ω̂ = ω(−i∇) ⊗ 1l under L2(R4) ∼= L2(R3) ⊗ L2(R). Let α > 0. We can estimate the

forth moment Ex,0
[
∥ω̂α/2KR

t ∥4⊕3 L2(R4)

]
. Suppose that φ̂/

√
ω, ω(α−1)/2φ̂ ∈ L2(R3). Then the

Burkholder-Davis-Gundy (BDG) type inequality [61, 65] holds:

Ex,0
[
∥ω̂α/2KR

t ∥4⊕3 L2(R4)

]
≤ C∥ω(α−1)/2φ̂∥4L2(R3),

where C is a constant.

Lemma 4.7 Let V = 0. Then (1) and (2) hold true.

(1) For F ∈ D(−i∇µ) and G ∈ D(−i∇µ) ∩D(H
1/2
f ) it follows that

(−i∇µF, e
−tHRG) ≤ C

(
(∥
√
ωφ̂∥+ ∥φ̂∥)∥(Hf + 1l)1/2G∥+ ∥− i∇µG∥

)
∥F∥.

In particular e−tHRD(
√
−∆) ∩D(H

1/2
f ) ⊂ D(

√
−∆) for t ≥ 0.

(2) For F,G ∈ D(Hf) it follows that

(HfF, e
−tHRG) ≤

(
∥HfG∥+ (∥

√
ωφ̂∥+ ∥φ̂∥)∥(Hf + 1l)1/2G∥+ ∥φ̂/

√
ω∥2∥G∥

)
∥F∥.

In particular e−tHRD(Hf) ⊂ D(Hf) for t ≥ 0.

Proof: We show the outline of a proof. Notice that

(eis(−i∇µ)F, e−tHRG) =

∫
R3

Ex,0
[(

J0F (BT0), e
+isPfµe−iA(KR

t )e−isPfµJte
−is(−i∇µ)G(BTt)

)]
dx.

(4.3)
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Here we used

eis(−i∇µ+Pfµ)e−tHR = e−tHReis(−i∇µ+Pfµ).

We see that

e+isPfµe−iA(KR
t )e−isPfµ = e−iA(eis(−i∇µ⊗1)KR

t ).

Take the derivative at s = 0 on both sides of (4.3). We have

(∇µF, e
−tHRG) =

∫
R3

Ex,0
[(

J0F (BT0),−iAµ(∇µK
R
t )e

−iA(KR
t )JtG(BTt)

)]
dx

+

∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )Jt(−∇µG)(BTt)
)]

dx. (4.4)

It is trivial to see that∣∣∣∣∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )Jt(−∇µG)(BTt)
)]

dx

∣∣∣∣ ≤ ∥F∥∥∇µG∥.

We can estimate the first term on the right-hand side of (4.4) by BDG inequality as∣∣∣∣∫
R3

Ex,0
[(

J0F (BT0),Aµ(∇µK
R
t )e

−iAµ(KR
t )JtG(BTt)

)]
dx

∣∣∣∣
≤ C(∥ω1/2φ̂∥+ ∥φ̂∥)∥(Hf + 1l)1/2F∥∥G∥.

Then (1) follows. We have

(HfF, e
−tHRG) =

∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )SJtG(BTt)
)]

dx,

where S = eiA(K
R
t )Hfe

−iA(KR
t ) = Hf − i[Hf ,A(KR

t )] + g with g = q(KR
t ,K

R
t ). It is trivial to see

that ∣∣∣∣∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )HfJtG(BTt)
)]

dx

∣∣∣∣ ≤ ∥F∥∥HfG∥.

In the same way as the estimate of the first term of the right-hand side of (4.4) we can see that∣∣∣∣∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )[Hf ,A(KR
t )]JtG(BTt)

)]
dx

∣∣∣∣
≤ C(∥

√
ωφ̂∥+∥φ̂∥)∥F∥∥(Hf + 1l)1/2G∥

with some constant C > 0. Here we used BDG inequality. Finally we see that g ≤ C∥KR
t ∥2 and

by BDG inequality again,∣∣∣∣∫
R3

Ex,0
[(

J0F (BT0), e
−iA(KR

t )gJtG(BTt)
)]

dx

∣∣∣∣ ≤ C∥φ̂/
√
ω∥2∥F∥∥G∥.

Then (2) follows.

QED

Theorem 4.8 ([65]) Suppose Assumption 4.1 and m > 0. Then HR is essentially self-adjoint

on D(
√
−∆) ∩D(Hf).

52



Proof: Suppose V = 0. Let D∞ = C∞
0 (R3)⊗ L2

fin(Q). Let F ∈ D∞. We see that

∥(Tk +̇Hf)F∥2 ≤ C1∥
√
−∆F∥2 + C2∥HfF∥2 + C3∥F∥2 (4.5)

with some constants C1, C2 and C3. Since D∞ is a core of
√
−∆+Hf ,

D(
√
−∆) ∩D(Hf) ⊂ D(Tk +̇Hf) (4.6)

follows from a limiting argument. By Lemmas 4.7, we also see that

e−t(Tk +̇Hf)
(
D(

√
−∆) ∩D(Hf)

)
⊂
(
D(

√
−∆) ∩D(Hf)

)
. (4.7)

(4.6) and (4.7) imply that Tk +̇Hf is essentially self-adjoint on D(
√
−∆)∩D(Hf) by Lemma 4.6.

Next we suppose that V satisfies Assumption 4.1. Then V is also relatively bounded with respect

to Tk +̇Hf with a relative bound strictly smaller than one. Then the theorem follows by the

Kato-Rellich theorem.

QED

Furthermore we can establish the self-adjointness of HR. The key inequality to show the

self-adjointness of HR on D(
√
−∆) ∩D(Hf) is the following inequality.

Lemma 4.9 ([55]) Suppose Assumption 4.1 and that m ≥ 0 and V = 0. Then there exists a

constant C such that

∥
√
−∆F∥2 + ∥HfF∥2 ≤ C∥(Tk +̇Hf + 1l)F∥2 (4.8)

for all F ∈ D(
√
−∆) ∩D(Hf).

Theorem 4.10 ([55]) Suppose Assumption 4.1. Then HR is self-adjoint on D(
√
−∆)∩D(Hf).

Proof: Suppose that V = 0. We write H(m) for HR to emphasize m-dependence. Let m > 0.

Then H(m) is essentially self-adjoint on D(
√
−∆)∩D(Hf). While by (4.8), H(m)⌈D(

√
−∆)∩D(Hf)

is closed. Then H(m) is self-adjoint on D(
√
−∆) ∩D(Hf). Note that

H(0) = H(m) + (H(0) −H(m))

and H(0) − H(m) is bounded. Then H(0) is also self-adjoint on D(
√
−∆) ∩ D(Hf) for V = 0.

Finally let V be potential satisfying Assumption 4.1. Then V is also relatively bounded with

respect to H(m) with a relative bound strictly smaller than one. Then the theorem follows from

the Kato-Rellich theorem.

QED

A spinless hydrogen like atom is defined by introducing the Coulomb potential

V (x) = − g

|x|
, g > 0,

which is relatively form bounded with respect to (−∆ +m2)1/2 with a relative bound strictly

smaller than one if g ≤ 2/π by [53]. Furthermore if g < 1/2, V is relatively bounded with respect

to (−∆ + m2)1/2 with a relative bound strictly smaller than one. Let ÂΛ be the quantized

radiation field with

φ̂(k) =
1

(2π)3/2
1l|k|≤Λ(k).

By Theorem 4.10 when g < 1/2, HR is self-adjoint on D(
√
−∆) ∩D(Hf).
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4.4 Non-relativistic limit

Schrödinger operators do not contain the velocity of the light in the definition. On the other

hand Dirac operators

H(c) = cα ·
(
−i∇− 1

c
a

)
+ βmc2 + V

can be regarded as relativistic versions of Schrödinger operators. Here c denotes the velocity of

the light, and α and β are 4× 4 Dirac matrices given by

α =

(
0 σi
σi 0

)
, i = 1, 2, 3, β =

(
1l2×2 0
0 −1l2×2

)
with 2× 2 Pauli matrices σ1, σ2 and σ3. This was introduced by P. A. M. Dirac to construct a

relativistically covariant quantum theory. Hence non-relativistic limits of Dirac operators have

been studied so far. We refer to see [132, Section 6] for non-relativistic limits of Dirac operators

and [102, 103] for those of non-linear Dirac and Klein-Gordon equations. Formally it can be

shown that

lim
c→∞

(H(c)−mc2 − z)−1 =

(
( 1
2m(−i∇− a)2 + V − z)−1 0

0 0

)
.

On the other hand we are concerned with semi-relativistic Schrödinger operators in this section.

Since we have √
c2|p|2 +m2c4 −mc2 =

1

2m
|p|2 +O(

|p|4

m3c2
),

intuitively we have

exp

(
− t
(√

c2(−∆) +m2c4 −mc2
))

→ exp

(
t

2m
∆

)
as c→ ∞. This intuition becomes substantial by means of the so-called non-relativistic limit of

semi-relativistic Schrödinger operators. Define

Hc =
√
−c2∆+m2c4 −mc2 + V.

By using a functional integral representation we can show that Hc → H∞ as c→ ∞ in a specific

sense, and the limit operator is the Schrödinger operator

H∞ = − 1

2m
∆+ V.

For every c > 0 consider the subordinator (T c
t )t≥0 with parameter c such that

E[e−uT c
t ] = e−t(

√
2c2u+m2c4−mc2), u ≥ 0.

Proposition 4.11 Let f be a bounded continuous function on R. Then

lim
c→∞

EP [f(T
c
t )] = f(

t

m
).
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Proof: Let f ∈ S (R). We have

E[f(T c
t )] =

1√
2π

∫
R
f̌(k)E[eikT

c
t ]dk.

We see that

E[eikT
c
t ] =

∫ ∞

0

ct√
2π
emc2ts−3/2 exp

(
−1

2

(
c2t2

s
+ (2ki +m2c2)s

))
ds

and then

Eµ[e
ikT c

t ] = e−(
√
2ki+m2c2−mc)ct.

Furthermore, we have

c(
√

2ki +m2c2 −mc) = c((4k2 +m4c4)1/4 −mc)eiθ/2 +mc2(eiθ/2 − 1),

where tan θ = 2k/m2c2 with |θ| < π/2. The first term converges to zero as c → ∞. For the

second term it can be seen that mc2(eiθ/2 − 1) = mc2(cos(θ/2)− 1 + i sin(θ/2)). Since

mc2(cos(θ/2)− 1) ∼ mc2(θ/2)2/2 ∼ mc2(k/m2c2)2/2 ∼ 0

and

imc2 sin(θ/2) ∼ imc2θ/2 ∼ ik/m

as c→ ∞, we get

lim
c→∞

EP [e
ikT c

t ] = ei
tk
m

as c→ ∞, and the proposition follows. When f is chosen to be a bounded continuous function,

it can be uniformly approximated by functions in S (R) and the proof is completed by a simple

limiting argument.

QED

We derive the non-relativistic limit of e−tHc .

Corollary 4.12 Let V be a bounded continuous function. Then

s− lim
c→∞

e−tHc = e−tH∞ .

Proof: We suppose that V is non-negative without loss of generality. It is enough to show the

weak limit

lim
c→∞

(f, e−tHcg) = (f, e−tH∞g). (4.9)

Since Hc ≥ 0 for every c > 0, ∥e−tHc∥ ≤ 1 uniformly with respect to c > 0. It is also

sufficient to show (4.9) for arbitrary f, g ∈ S (R) by a simple limiting argument. Note that by

Proposition 4.11 it can be seen that

(f, e−t(
√
−∆+m2c4−mc2+V )g) =

∫
R3

Ex,0
[
f̄(x)g(BT c

t
)e−

∫ t
0 V (BTc

s
)ds
]
dx

→
∫
R3

Ex
[
f̄(x)g(B t

m
)e

−
∫ t
0 V (B s

m
)ds
]
dx = (f, e−t(− 1

2m
∆+V )g)

as c→ ∞.

QED

KR
t (c) is defined by KR

t with Tt replaced by T c
t .
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Lemma 4.13 It follows that limc→∞KR
t (c) = Kt strongly in L2(X × Xν)⊗ (

⊕3 L2(R4)).

Proof: Let

Icn =
3⊕

µ=1

2n∑
j=1

∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s ,

In =

3⊕
µ=1

2n∑
j=1

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s .

We have seen that Icn → KR
t (c) and In → Kt as n→ ∞ strongly in L2(X ×Xν)⊗ (

⊕3 L2(R4)).

We have

∥KR
t (c)−Kt∥ ≤ ∥KR

t (c)− Icn∥+ ∥Icn − In∥+ ∥In −Kt∥

and

Ex[∥Icn − Ick∥2] ≤ 3T c
t ∥φ̂/

√
ω∥2

( k∑
j=n+1

2−j/2

)2

.

From this we have

Ex,0[∥Icn −KR
t (c)∥2] ≤ 3E0[T c

t ]∥φ̂/
√
ω∥2

( ∞∑
j=n+1

2−j/2

)2

.

Since E0[T c
t ] =

t
m which is independent of c > 0, we obtain that

Ex,0[∥Icn −KR
t (c)∥2] ≤

3t

m
∥φ̂/

√
ω∥2

( ∞∑
j=n+1

2−j/2

)2

and we conclude that

Ex,0[∥Icn −KR
t (c)∥2] → 0 (4.10)

as n → ∞ uniformly in c. Let ε > 0 be arbitrary. There exists n0 such that for all n > n0
Ex,0[∥KR

t (c)− Icn∥2] < ε2 and Ex,0[∥In −Kt∥2] < ε2 uniformly in c. Now we estimate ∥Icn − In∥.
We have

Icn − In =

3⊕
µ=1

2n∑
j=1

(∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s −

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

)
.

We note that s→
∫ s
a jtj−1φ̃(· −Bs)dB

µ
s and s→

∫ b
s jtj−1φ̃(· −Bs)dB

µ
s are almost surely contin-

uous. Hene

(S, T ) → Ex

(∫ T

S
jtj−1φ̃(· −Bs)dB

µ
s ,

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

)
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is continuous. This implies that for every j,

Ex,0

(∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s ,

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

)
→ Ex

(∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s ,

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

) =
(tj − tj−1)

m
∥φ̂/

√
ω∥2 (4.11)

as c→ ∞. We have

Ex,0[∥Icn − In∥2] = 3
2n∑
j=1

Ex,0

∥∥∥∥∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s −

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

∥∥∥∥2
 ,

and

Ex,0

∥∥∥∥∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s −

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

∥∥∥∥2


= Ex,0

[∥∥∥∥∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s

∥∥∥∥2
]
+ Ex,0

∥∥∥∥∫
tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

∥∥∥∥2


− 2Ex,0

(∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s ,

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

)
=

1

m
∥φ̂/

√
ω∥2(E0[T c

tj − T c
tj−1

] + tj − tj−1)

− 2Ex,0

(∫ T c
tj

T c
tj−1

jtj−1φ̃(· −Bs)dB
µ
s ,

∫ tj
m

tj−1
m

jtj−1φ̃(· −Bs)dB
µ
s

) .
Note that E0[T c

tj −T
c
tj−1

] = tj − tj−1 and (4.11). We can see that Ex,0[∥Icn− In∥2] → 0 as c→ ∞.

We have

lim
c→∞

(Ex,0[∥KR
t (c)−Kt∥]2)1/2 ≤ 2ε+ lim

c→∞
(Ex,0[∥Icn − In∥])1/2 = 2ε.

Thus the lemma is proven.

QED

Now we show a non-relativistic limit of the relativistic Pauli-Fierz Hamiltonian.

Theorem 4.14 ([67]) Suppose that V is bounded and continuous. Then for every t ≥ 0 it

follows that

s− lim
c→∞

e−tHR = e−tH .

Proof: Suppose that F,G ∈ C∞
0 (R3)⊗ L2(Q). We have

(F, e−tHRG) =

∫
R3

Ex,0
[
e−

∫ t
0 V (BTc

s
)ds(J0F (x), e

−iA(KR
t (c))JtG(BT c

t
))
]
dx.
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It follows that

lim
c→∞

(F, e−tHRG) =

∫
R3

Ex
[
e
−

∫ t
0 V (B s

m
)ds

(J0F (x), e
−iA(Kt)JtG(B t

m
))
]
dx = (F, e−tHG).

Since HR ≥ infx∈R3 V (x) = g > −∞, e−tHR ≤ e−tg. Let F,G ∈ H. There exists Fn, Gn ∈
C∞
0 (R3) ⊗ L2(Q) such that Fn → F and Gn → G strongly as n → ∞. By the uniform

bound e−tHR ≤ e−tg, we can show limc→∞(F, e−tHRG) = (F, e−tHG). Finally since the weak

convergence of e−tHR implies the strong convergence, the theorem follows.

QED

4.5 Translation invariant relativistic Pauli-Fierz Hamiltonian

For the relativistic Pauli-Fierz Hamiltonian with V = 0, as well as H, it can be seen that

[HR,P
T
µ ] = 0. This allows that there exists a self-adjoint operator HR(p) in F such that

HR =

∫ ⊕

R3

HR(p)dp.

The self-adjoint operator HR(p), p ∈ R3, is called the relativistic Pauli-Fierz Hamiltonian with

a total momentum p. We can show the similar results to those of H(p) by using the functional

integral representation of e−tHR . The theorem below can be proven in a similar manner to that

of Theorem 3.14.

Theorem 4.15 ([65]) Suppose Assumption 4.1 with V = 0. Let Ψ,Φ ∈ L2(Q). Then

(Ψ, e−tHR(p)Φ) = E0,0
[(

J0Ψ, e
−iA(KR

t )Jte
+i(p−Pf)BTtΦ

)]
.

We can see the explicit form of the fiber Hamiltonian HR(p). Let

K(p) = (p− Pf − Â(0))2 +m2.

Then we have

(Ψ, e−tK(p)Φ) = e−tm2
E0,0

[
eipBt

(
Ψ, e−iÂ(Lt)e−iPfBtΦ

)]
.

Let D = D(P2
f ) ∩D(Hf). Set K̄(p) = K(p)⌈D. We define LR(p) by

LR(p) = K̄(p)1/2 +̇ Hf , p ∈ R3.

Theorem 4.16 ([65]) Suppose Assumption 4.1 with V = 0. Then

HR
∼=
∫ ⊕

R3

LR(p)dp.

In particular HR(p) = LR(p).
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5 Pauli-Fierz model with spin 1/2

5.1 Pauli-Fierz Hamiltonian with spin 1/2

In this section we are concerned with the Pauli-Fierz Hamiltonian with spin 1/2. This section is

due to [72], and in this section we assume Assumption 3.1 unless otherwise stated. The Hilbert

space consisting of state vectors of the Pauli-Fierz Hamiltonian with spin 1/2 is

HS = L2(R3;C2)⊗ L2(Q).

The Pauli-Fierz Hamiltonian with spin 1/2 is formally given by

1

2

(
σ · (−i∇− Â)

)2
+ V +Hf =

1

2
(−i∇− Â)2 + V +Hf −

1

2
σ · B̂. (5.1)

Here σ = (σ1, σ2, σ3) are the 2× 2 Pauli matrices, and the quantized magnetic field B̂ is defined

by the curl of Â as usual:

B̂(x) = (B̂1(x), B̂2(x), B̂3(x)) = curlxÂ(x).

Both sides of (5.1) are formally identical. It is straightforward to see that

B̂µ(x) =

3∑
λ,α,ν=1

Âλ(δλνε
µαν∇xαφ̃(· − x)), (5.2)

where εαβγ denotes the antisymmetric tensor defined by

εαβγ =


1 αβγ is an even permutation of 123,
−1 αβγ is an odd permutation of 123,
0 otherwise.

Then

B̂µ =
1√
2

∑
j=±1

{
a∗
(
−i(k × ej)µ

φ̂√
ω
e−ikx, j

)
+ a∗

(
i(k × ej)µ

˜̂φ√
ω
eikx, j

)}
.

In this paper the right-hand side of (5.1) is adopted as the definition of the Pauli-Fierz Hamil-

tonian with spin 1/2:

HS =
1

2
(−i∇− Â)2 + V +Hf −

1

2
σ · B̂. (5.3)

HS is self-adjoint on D(−∆) ∩ D(Hf) and bounded from below. Moreover, it is essentially

self-adjoint on any core of H0 = Hp +Hf .

5.2 Scalar representations

As in the classical case in order to construct a functional integral representation of (F, e−tHSG)

with a scalar integrand we introduce a two-valued spin variable θ ∈ Z2 and redefine the Pauli-

Fierz Hamiltonian with spin 1/2. We identify HS with L2(R3 × Z2)⊗ L2(Q) by

HS ∋ F =

(
F (·,+1)

F (·,−1)

)
∼= F (·, θ) ∈ L2(R3 × Z2)⊗ L2(Q).
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Since

HS =
1

2
(−i∇− Â)2 + V +Hf −

1

2

(
B̂3 B̂1 − iB̂2

B̂1 + iB̂2 −B̂3

)
,

HS can be regarded as an operator HZ2 acting on L2(R3 × Z2)⊗ L2(Q):

(HZ2F )(θ) =

(
1

2
(−i∇− Â)2 + V +Hf + Ĥd(θ)

)
F (θ) + Ĥod(−θ)F (−θ).

See Table 5 below.

spin σ1 =
(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Z2-action f(θ) → f(−θ) f(θ) → −iθf(−θ) f(θ) → θf(θ)

Table 5: Correspondence between spin 1/2 and Z2-actions

Here Ĥd and Ĥod denote the diagonal part and the off-diagonal part, respectively, which are

explicitly given by

Ĥd(x, θ) = −1

2
θB̂3(x), Ĥod(x,−θ) = −1

2

(
B̂1(x)− iθB̂2(x)

)
, θ ∈ Z2.

Write

K = L2(R3 × Z2)⊗ L2(Q).

We define the Pauli-Fierz Hamiltonian with spin 1/2 on K by HZ2 , and consider a functional

integral representation of (F, e−tHZ2G) for (F, e−tHSG).

5.3 Functional integral representations for the Pauli-Fierz Hamiltonian with
spin 1/2

The idea of constructing a functional integral representation of e−tHZ2 is to use the identification:

K ∼=
∫ ⊕

Q
L2(R3 × Z2)dµ(ϕ). (5.4)

In other words, we regard K as the set of L2(R3 × Z2)-valued L
2-functions on Q. We make the

decomposition

HZ2 =

∫ ⊕

Q
K(ϕ)dµ(ϕ) +Hf ,

where K(ϕ) is a self-adjoint operator on L2(R3 ×Z2) for each ϕ ∈ Q. For each ϕ ∈ Q, we define

the Hamiltonian K(ϕ) on L2(R3 × Z2) by

(K(ϕ)F )(x, θ) =

(
1

2
(−i∇− Â(ϕ))2 + V + Ĥd(θ, ϕ)

)
F (x, θ) + Ĥod(−θ, ϕ)F (x,−θ). (5.5)
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We construct the functional integral representation of e−tHZ2 through functional integral repre-

sentations of both e−tK(ϕ) and e−tHf , and the Trotter product formula. In order to do that we

will use the identity

(F, e−t
∫⊕
Q K(ϕ)dµG)K =

∫
Q

(
F (ϕ), e−tK(ϕ)G(ϕ)

)
L2(R3×Z2)

dµ(ϕ),

while we have already done that of (F (ϕ), e−tK(ϕ)G(ϕ)), ϕ ∈ Q, in the classical case (f, e−thS(a,b)g)

introduced in Section 2.1. To prevent the off-diagonal part Ĥod vanishes we introduce a regu-

larization HZ2,ε of HZ2 by

HZ2,εF (θ) =

(
1

2
(−i∇− Â)2 + V +Hf + Ĥd(θ)

)
F (θ) + Ψε(Ĥod(−θ))F (−θ),

where Ψε(X) = X + εψε(|X|) and ψε ∈ C∞
0 (R) is given by

ψε(z) = ψε(|z|) =


1, |z| < ε/2,

≤ 1, ε/2 ≤ |z| ≤ ε,

0, |z| > ε.

Also, let Kε(ϕ) be the counterpart of K(ϕ) with Ĥod(ϕ) replaced by Ψε(Ĥod(ϕ)), i.e.,

(Kε(ϕ)F )(x,θ) =

(
1

2
(−i∇− Â(ϕ))2 + V + Ĥd(θ, ϕ)

)
F (x,θ) + Ψε(Ĥod(−θ, ϕ))F (x,−θ).

Recall that θt = (−1)Nt and (Xt)t≥0 = (Bt, θt)t≥0 is the (R3 × Z2)-valued random process on

X × Xµ. If φ̃ ∈ C∞
0 (R3), then for every ϕ ∈ Q, Kε(ϕ) is self-adjoint on D(−∆) ⊗ Z2 and for

g ∈ L2(R3 × Z2),

(e−tKε(ϕ)g)(x, α) = etEx,α[e−
∫ t
0 V (Bs)dseZt(ϕ,ε)g(Xt)], (x, α) ∈ R3 × Z2,

where

Zt(ϕ, ε) = −i

∫ t

0
Â(φ̃(· −Bs), ϕ)dBs

−
∫ t

0
Ĥd(Bs, θNs , ϕ)ds+

∫ t+

0
log
(
−Ψε(Ĥod(Bs,−θNs− , ϕ))

)
dNs.

Next we define an operator Kε(Â) on K through Kε(ϕ) and the constant fiber direct integral

representation (5.4) of K. Take φ̃ ∈ C∞
0 (R3) and define the self-adjoint operator Kε(Â) on K by

Kε(Â) =

∫ ⊕

Q
Kε(ϕ)dµ(ϕ).

Then we can define the self-adjoint operator Kε by

Kε = Kε(Â) +̇ Hf .

In what follows we construct a functional integral representation of e−tKε and show that e−tKε =

e−tHZ2,ε . Let us define a dense subspace by K∞ = C∞
0 (R3 × Z2)⊗̂L2

fin(Q).
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Lemma 5.1 Under Assumption 3.1 it follows that

s− lim
ε↓0

e−tHZ2,ε = e−tHZ2 . (5.6)

Suppose that φ̃ ∈ C∞
0 (R3). Then HZ2,ε = Kε and in particular it follows that

(F, e−tHZ2G) = lim
ε↓0

(F, e−tKεG). (5.7)

Proof: It is seen that Kε = HZ2,ε on K∞, implying that Kε = HZ2,ε as a self-adjoint operator

since K∞ is a core of HZ2,ε. Moreover, HZ2,ε → HZ2 on K∞ as ε→ 0 and K∞ is a common core

of the sequence {HZ2,ε}ε≥0. Thus (5.6) and (5.7) follow.

QED

By Lemma 5.1 to give the functional integral representation of (F, e−tHZ2G) for any φ̂ given

in Assumption 3.1 it suffices to construct a functional integral representation of the right-hand

side of (5.7) and to take an approximation argument on φ̂. To obtain the functional integral

representation of e−tKϵ , we apply the Trotter product formula as usual, i.e.,

e−tKε = s− lim
n→∞

(e−
t
n
Kϵ(Â)e−

t
n
Hf )n = s− lim

n→∞
J∗0

( n−1∏
i=0

J it
n
e−

t
n
Kε(Â)J∗it

n

)
Jt.

The Euclidean version of B̂µ(g) with test function g ∈ L2(R4) is defined by

Bµ(g) =

3∑
λ,α,ν=1

Aλ(δλνε
µαν∇xαg). (5.8)

Here ∇xαg = ∇xαg(· − x)⌈x=0, hence ∇̂xαg = −ikαĝ(k). Define the Euclidean versions of

Ĥd(x, θ) and Ĥod(x,−θ) by

Hd(x, θ, s) = −1

2
θB3 (jsφ̃(· − x)) , (5.9)

Hod(x,−θ, s) = −1

2
(B1(jsφ̃(· − x))− iθB2(jsφ̃(· − x))), (5.10)

respectively.

5.4 Technical estimates

This section is a brief version of [73, Sections 3.8.7 and 3.8.8]. To avoid complicated computations

we introduce self-adjoint operators L and LR for R > 0 which satisfy that

(|F |, e−tLR |G|)| ↑ (|F |, e−tL|G|) as R ↑ ∞

and diamagnetic type inequality:

|(F, e−tHZ2G)| ≤ (|F |, e−tL|G|).

See Table 6. Applying this inequality we can avoid technical difficulties to construct the func-

tional integral representation of (F, e−tHZ2G). We introduce two cutoff functions for each R > 0.

Let χ−
R ∈ C∞(R) be defined by
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(1) χ−
R(x) = x for x > −R+ 1,

(2) −R ≤ χ−
R(x) ≤ −R+ 1 for −R ≤ x ≤ −R+ 1,

(3) χ−
R(x) = −R for x < −R.

We also define χ+
R ∈ C∞(R) by

(1) χ+
R(x) = R for x > R,

(2) R− 1 ≤ χ+
R(x) ≤ R for R− 1 ≤ x ≤ R,

(3) χ+
R(x) = x for x < R− 1.

Furthermore note that |χ±
R(x) − χ±

R(y)| ≤ c|x − y| with some c for any x, y ∈ R. We define

Ψε(|Ĥod(−θ)|)R and Ĥd(θ)R by

Ψε(|Ĥod(−θ)|)R = χ+
R

(
Ψε(|Ĥod(−θ)|)

)
, (5.11)

Ĥd(θ)R = χ−
R

(
Ĥd(θ)

)
. (5.12)

Hence −R ≤ Ĥd(θ)R and ε ≤ Ψε(|Ĥod(−θ)|)R ≤ R. Let φ̃ ∈ C∞
0 (R3). We set for each ϕ ∈ Q,

(MR(ϕ)F )(θ) = (Hp + Ĥd(ϕ, θ)R)F (θ)−Ψε(|Ĥod(ϕ,−θ)|)RF (−θ)

for each R > 0, and

(M(ϕ)F )(θ) = (Hp + Ĥd(ϕ, θ))F (θ)−Ψε(|Ĥod(ϕ,−θ)|)F (−θ).

Then MR(ϕ) and M(ϕ) are self-adjoint on L2(R3 × Z2) and we define

MR =

∫ ⊕

Q
MR(ϕ)dµ(ϕ), M =

∫ ⊕

Q
M(ϕ)dµ(ϕ).

We also define

LR =MR +̇Hf , L =M +̇Hf .

In the Fock representation LR and L are given by

LR = Hp + Ĥf −

 (12B̂3)R Ψε

(
1
2

√
B̂

2
1 + B̂

2
2

)
R

Ψε

(
1
2

√
B̂

2
1 + B̂

2
2

)
R

−(12B̂3)R

 ,

L = Hp + Ĥf −


1
2B̂3 Ψε

(
1
2

√
B̂

2
1 + B̂

2
2

)
Ψε

(
1
2

√
B̂

2
1 + B̂

2
2

)
−1

2B̂3

 .

In the Fock representation we have |Ĥod(−θ)| = 1
2

√
B̂

2
1 + B̂

2
2 which leads that |Ĥod(−θ)| is

independent of θ. The family of self-adjoint operators LR, R > 0, have also a common core K∞
and limR→∞ LRF = LF for F ∈ K∞. Hence e−tLR → e−tL strongly as R → ∞. A functional

integral representation of e−tLR can be done by the Trotter product formula.
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Operator Exponent

e−tMR L(t, ε, R) = −
∫ t
0 Ĥd(Bs, θNs)Rds+

∫ t+
0 logΨε(|Ĥod(Bs,−θNs)|)RdNs

Jse
−tMRJ∗s L(t, s, ε, R) = −

∫ t
0 Hd(Br, θNr , s)Rdr +

∫ t+
0 logΨε(|Hod(Br,−θNr , s)|)RdNr

e−tLR YR = −
∫ t
0 Hd(Bs, θNs , s)Rds+

∫ t+
0 logΨε(|Hod(Bs,−θNs , s)|)RdNs

e−tL Y = −
∫ t
0 Hd(Bs, θNs , s)ds+

∫ t+
0 logΨε(|Hod(Bs,−θNs , s)|)dNs

e−tHZ2,ε Zt(ε) = −iA(Kt)−
∫ t
0 Hd(Bs, θNs , s)ds+

∫ t+
0 logΨε(−Hod(Bs,−θNs , s))dNs

e−tHZ2 Zt = −iA(Kt)−
∫ t
0 Hd(Bs, θNs , s)ds+

∫ t+
0 logΨε(−Hod(Bs,−θNs , s))dNs

Table 6: List of operators and exponents

5.4.1 Estimate of Jse
−tMRJ∗s

Let

L(t, s, ε, R) = −
∫ t

0
Hd(Br, θNr , s)Rdr +

∫ t+

0
logΨε(|Hod(Br,−θNr , s)|)RdNr.

Here Hd(x, θ, s) and Hod(x,−θ, s) are given by (5.9) and (5.10), respectively, and truncated

functions Hd(Br, θNr , s)R and Ψε(|Hod(x,−θ, s)|)R are defined in a similar way to (5.11) and

(5.12), respectively. Let KE = L2(R3)⊗ L2(QE).

Lemma 5.2 Assume that V ∈ L∞(R3) and φ̃ ∈ C∞
0 (R3). Let F,G ∈ KE. Then∫

R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr(F (q0),Ese

L(t,s,ε,R)EsG(qt))
]
dx

is finite and

(F, Jse
−tMRJ∗sG) = et

∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr(F (q0),Ese

L(t,s,ε,R)EsG(qt))
]
dx. (5.13)

Proof: Let us set V∞ = supx∈R3 Ex[e−2
∫ t
0 V (Bs)ds] <∞. Notice that the right-hand side of (5.13)

is finite, since eL(t,s,ε,R) is a bounded function. For each (x, α,w,m) ∈ R3 × Z2 × X × Xµ, we

have

|(F (q0),Ese
L(t,s,ε,R)EsG(qt))| ≤ ∥F (q0)∥∥G(qt)∥∥eL(t,s,ε,R)∥.

Here ∥eL(t,s,ε,R)∥ is the operator norm of bounded operator eL(t,s,ε,R) on L2(QE). Then it follows

that

|RHS(5.13)| ≤ et
∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr∥F (q0)∥∥G(qt)∥∥eL(t,s,ε,R)∥

]
dx. (5.14)
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We will also prove in Lemma 5.3 below that there exists a random variable At on (Xµ,Bµ, µ)

such that

(1) ∥eL(t,s,ε,R)∥ ≤ At,

(2) At is independent of (x, α,w) ∈ R3 × Z2 × X ,

(3) Eµ[A
2
t ] <∞.

By (1), (2) and (3) above and (5.14),

|RHS (5.13)| ≤ ∥G∥∥F∥V 1/2
∞ (Eµ[A

2
t ])

1/2 <∞. (5.15)

Next we prove the equality (5.13). Note that MR is defined by a direct fiber integral represen-

tation we have

(J∗sF, e
−tMRJ∗sG) = et

∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)drEµE

[
(J∗sF )(ϕ, q0)e

Lt(ϕ,ε)(J∗sG)(ϕ, qt)
]]

dx.

Here we used Fubini’s lemma and

Lt(ϕ, ε) = −
∫ t

0
Ĥd(ϕ,Bs, θNs)Rds+

∫ t+

0
logΨε(|Ĥod(ϕ,Bs,−θNs)|)RdNs.

Let

L(t, ε, R) = −
∫ t

0
Ĥd(Bs, θNs)Rds+

∫ t+

0
logΨε(|Ĥod(Bs,−θNs)|)RdNs.

We rewrite as

(J∗sF, e
−tMRJ∗sG) = et

∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr(F (q0), Jse

L(t,ε,R)J∗sG(qt))
]
dx.

We can see that Jse
L(t,ε,R)J∗s = Ese

L(t,s,ε,R)Es by a limiting argument, leading to (5.13). Then

the proof can be completed.

QED

Now we have to prove (1), (2) and (3) used in the proof of Lemma 5.2.

Lemma 5.3 For each t ≥ 0, operator eL(t,s,ε,R) is bounded, and there exists a random variable

At on (Xµ,Bµ, µ) satisfying (1)-(3) in the proof of Lemma 5.2.

Proof: Since R < ∞, we have |eL(t,s,ε,R)| ≤ etRe
∫ t+
0 logRdNs . For each m ∈ Xµ, the number

of jumps of map s 7→ Ns(m) for 0 ≤ s ≤ t is denoted by N(m). Hence
∫ t+
0 logRdNs =

logRN(m) and then |eL(t,s,ε,R)| ≤ etRRN(m). Set At = At(m) = etRRN(m). Then Eµ[A
2
t ] =

e2tR
∑∞

N=0
tNR2N

N ! e−t = et(R
2+2R−1) <∞. Then At satisfies (1), (2) and (3).

QED
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5.4.2 Estimate of e−tLR

In the next lemma we construct a functional integral representation of e−tLR for R > 0. Let

YR = −
∫ t

0
Hd(Bs, θNs , s)Rds+

∫ t+

0
logΨε(|Hod(Bs,−θNs− , s)|)RdNs.

Lemma 5.4 Suppose that V ∈ L∞(R3) and φ̃ ∈ C∞
0 (R3). Then for every t ≥ 0 and all F,G ∈ K

it follows that J∗0e
YRJt is a bounded operator on L2(Q) for every (x, α,w,m) ∈ R3×Z2×X ×Xµ

and

(F, e−tLRG) = et
∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Bs)ds(F (q0), J

∗
0e

YRJtG(qt))
]
dx. (5.16)

Proof: In a similar manner to the proof of Lemma 5.3 for each m ∈ Xµ, the number of jumps

of map s 7→ Ns(m) for 0 ≤ s ≤ t is denoted by N(m). Fix m ∈ Xµ. Hence by virtue of cutoff

parameter R > 0 it can be seen that ∥J∗0eYRJtΦ∥ ≤ etRRN(m)∥Φ∥, which implies that J∗0e
YRJt is

bounded for every (x, α,w,m) ∈ R3 × Z2 × X × Xµ.

By the Trotter product formula, the Markov property of JsJ
∗
s = Es and Lemma 5.2 we can

see that

(F, e−tLRG) = lim
n→∞

(F,
n∏

j=0

(
e−

t
n
MRe−

t
n
Hf

)n
G) = lim

n→∞
(F, J∗0

n−1∏
j=0

(
J jt

n
e−

t
n
MRJ∗jt

n

)
JtG)

= lim
n→∞

∑
α∈Z2

∫
R3

Ex,α
[
e−

∫ t
0 V (Bs)ds(F (q0), J

∗
0e

YR(n)JtG(qt))
]
dx, (5.17)

where

YR(n) =−
n∑

i=1

∫ it
n

(i−1)t
n

Hd

(
Bs, θNs ,

(i− 1)t

n

)
R

ds

+

n∑
i=1

∫ it
n
+

(i−1)t
n

logΨε

(
|Hod

(
Bs,−θNs− ,

(i− 1)t

n

)
|
)

R

dNs.

Then∣∣∣∣∣∣
∑
α∈Z2

∫
R3

Ex,α
[
e−

∫ t
0 V (Bs)ds(F (q0), J

∗
0e

YR(n)JtG(qt))
]
dx

∣∣∣∣∣∣
≤
∑
α∈Z2

∫
R3

Ex,α
[
e−

∫ t
0 V (Bs)ds∥F (q0)∥∥G(qt))∥etRRN(·)

]
dx ≤ ∥F∥∥G∥V 1/2

∞ e
t
2
(R2+2R−1) <∞.

(5.18)

Since the right-hand side above is independent of n, it is enough to prove (5.16) for F,G ∈ K∞,

hence we suppose that F,G ∈ K∞ in what follows in this proof. We can see that∥∥∥∥∥
n∑

i=1

∫ it
n

(i−1)t
n

Hd

(
Bs, θNs ,

(i− 1)t

n

)
R

dsF

∥∥∥∥∥ ≤ tC∥|k|φ̂/
√
ω∥∥(N + 1l)1/2F∥
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and similarly ∥∥∥∥∫ t

0
Hd (Bs, θNs , s)R dsF

∥∥∥∥ ≤ tC∥|k|φ̂/
√
ω∥∥(N + 1l)1/2F∥

with some constant C. By |χ−
R(x)−χ

−
R(y)| ≤ c|x−y| with some constant c, we can also see that∥∥∥∥∥

(
n∑

i=1

∫ it
n

(i−1)t
n

Hd

(
Bs, θNs ,

(i− 1)t

n

)
R

ds−
∫ t

0
Hd (Bs, θNs , s)R ds

)
F

∥∥∥∥∥
≤ c

n∑
i=1

(∫ it
n

(i−1)t
n

∥∥∥∥|Hd

(
Bs, θNs ,

(i− 1)t

n

)
−Hd(Bs, θNs , s)|F

∥∥∥∥2 ds
)1/2 √

t√
n
.

It can be seen that∥∥∥∥∣∣∣∣Hd

(
Bs, θNs ,

(i− 1)t

n

)
−Hd(Bs, θNs , s)

∣∣∣∣F∥∥∥∥2 ≤ c′
t

n
∥|k|φ̂∥2∥(N + 1l)1/2F∥2

with some constant c′. Then∥∥∥∥∥
(

n∑
i=1

∫ it
n

(i−1)t
n

Hd

(
Bs, θNs ,

(i− 1)t

n

)
R

ds−
∫ t

0
Hd(Bs, θNs , s)Rds

)
F

∥∥∥∥∥
≤ cc′∥|k|φ̂∥ t

√
t√
n
∥(N + 1l)1/2F∥ → 0

as n→ ∞. Thus it can be straightforwardly seen that

exp

(
−

n∑
i=1

∫ it
n

(i−1)t
n

Hd

(
Bs, θNs ,

(i− 1)t

n

)
R

ds

)
F → exp

(
−
∫ t

0
Hd(Bs, θNs , s)Rds

)
F. (5.19)

Next we consider

exp

(
n∑

i=1

∫ it
n
+

(i−1)t
n

logΨε(|Hod

(
Bs,−θNs− ,

(i− 1)t

n
)|
)

R

dNs

)
.

Points of discontinuity of map r 7→ Nr(m) are denoted by s1 = s1(m), . . . , sN = sN (m) ∈ (0,∞).

For a sufficiently large n the number of discontinuous points in interval ( (i−1)t
n , itn ] is at most

one. Then by taking n large enough and denoting (n(si), n(si) +
t
n ] for the interval containing

si, we get

exp

(
n∑

i=1

∫ it
n
+

(i−1)t
n

logΨε

(
|Hod

(
Bs,−θNs− ,

(i− 1)t

n

)
|
)

R

dNs

)
=

N∏
i=1

χ+
R(|ϕi|+ εψε(|ϕi|)),

where ϕi = Hod(Bsi ,−θNsi−
, n(si)). By the Lipschitz continuity of χ+

R and ψε we have∥∥(Ψε(|Hod(Bs,−θNs− , n(si))|)R −Ψε(|Hod(Bs,−θNs− , si)|)R
)
F
∥∥

≤ C∥
(
|Hod(Bs,−θNs− , n(si))| − |Hod(Bs,−θNs− , si)|

)
F∥.

67



Note that

∥
(
|Hod(Bs,−θNs− , n(si))| − |Hod(Bs,−θNs− , si)|

)
F∥2

≤ C∥|k|φ̂∥2|n(si)− si|∥(N + 1l)1/2F∥2

with some C > 0. Clearly, n(si) → si as n→ ∞. Then

lim
n→∞

Hod(Bsi ,−θNsi−
, n(si)) = Hod(Bsi ,−θNsi−

, si)

on K∞ and we have

lim
n→∞

exp

(
n∑

i=1

∫ it
n
+

(i−1)t
n

logΨε

(
|Hod

(
Bs,−θNs− ,

(i− 1)t

n

)
|
)

R

dNs

)

=

N∏
i=1

Ψε(|Hod(Bsi ,−θNsi−
, si)|)R = exp

(∫ t+

0
logΨε(|Hod(Bs,−θNs− , s|)RdNs

)
. (5.20)

Then by (5.19) and (5.20) we can see that for each (x, α,w,m) ∈ R3 × Z2 × X × Xµ,(
F (q0), J

∗
0e

YR(n)JtG(qt)
)
→
(
F (q0), J

∗
0e

YRJtG(qt)
)

as n→ ∞. Together with (5.18), the Lebesgue dominated convergence theorem yields that∫
R3

∑
α∈Z2

E
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

YR(n)JtG(qt)
)]

dx

→
∫
R3

∑
α∈Z2

E
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

YRJtG(qt)
)]

dx

for F,G ∈ K∞. Then the proof is complete.

QED

5.4.3 Estimate of e−tL

In this section we estimate the integral kernel of e−tL by using the Baker-Campbell-Hausdorff

formula and Theorem B.6 in Appendix B. Let us define

Y = −
∫ t

0
Hd(Bs, θNs , s)ds+

∫ t+

0
logΨε(|Hod(Bs,−θNs− , s)|)dNs. (5.21)

We have already seen that J∗0e
YRJt is bounded for each R < ∞, but it is not trivial to see that

J∗0e
Y Jt is bounded.

Proposition 5.5 ([73, Lemma 3.93],[72, Lemma 4.9]) For each (x, α,w,m) ∈ R3 × Z2 ×
X × Xµ, operator J∗0e

Y Jt is bounded in L2(Q).

Proof: Let Y = Y1 + Y2, where

Y1 = −
∫ t

0
Hd(Br, θNr , s)Rdr,

Y2 =

∫ t+

0
log(Ψε(|Hod(Br,−θNr− , s)|))dNr.
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Using Baker-Campbell-Hausdorff formula we expand J∗0e
Y Jt. Thus formally we have to estimate

J∗0e
Y Jt = J∗0e

B†
√

2
+ B√

2

N∏
j=1

(∣∣∣∣∣C
†
j√
2
+
Cj√
2

∣∣∣∣∣+ εψε(

∣∣∣∣∣C
†
j√
2
+
Cj√
2

∣∣∣∣∣)
)
Jt, (5.22)

where in the Fock representation B♯ and C♯
i are defined by

B† = −a∗E

⊕
j=±1

∫ t

0
Sj(θNr )̂js

(
φ̂√
ω

)
e−ikBrdr

 ,

B = −aE

⊕
j=±1

∫ t

0
Sj(θNr )̂js

(
φ̂√
ω

)
eikBrdr

 ,

C†
i = a∗E

⊕
j=±1

Tj(θNsi
)̂js

(
φ̂√
ω

)
e−ikBsi

 ,

Ci = aE

⊕
j=±1

Tj(θNsi
)̂js

(
φ̂√
ω

)
eikBsi

 .

Here

Sj(θ) = −1

2
θηj3,

Tj(θ) = −1

2
(ηj1 − iθηj2)

with ηj = −ik×ej(k). Note that ∥ψε(

∣∣∣∣C†
j√
2
+

Cj√
2

∣∣∣∣)∥ ≤ 1 for any j. Now fix (w,m) ∈ X ×Xµ. In

a similar way to the case of R <∞ there exist N = N(m) ∈ N and points 0 ≤ s1 < . . . < sN ≤ t,

sj = sj(m), j = 1, ..., N , depending on m such that s 7→ Ns(m) is not continuous. Then by

taking n large enough and denoting (n(si), n(si) + t/n] for the interval containing si, we get

eY2 =
N∏
i=1

(|ϕi|+ εψε(|ϕi|)),

where ϕi = Hod(Bsi ,−θNsi−
, n(si)). We have

N∏
i=1

(|ϕi|+ εψε(|ϕi|)) ≤ 1 +

N∏
i=1

(ϕi + εψε(ϕi))(ϕi + εψε(ϕi))

and (ϕi + εψε(ϕi))(ϕi + εψε(ϕi)) ≤ (1 + ε)ϕiϕi + ε2. Then

|eY2 | ≤ 1 +

N∏
i=1

((1 + ε)ϕiϕi + ε2).

Hence it follows that

|(F, J∗0eY JtG)| ≤

(
|F |, J∗0eY1

(
1 +

N∏
i=1

((1 + ε)ϕiϕi + ε2)

)
Jt|G|

)
. (5.23)
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Since Baker-Campbell-Hausdorff formula yields that

eY1 = eβe
B†
√
2 e

B√
2 ,

where β = [B,B†]/4. We have

J∗0e
Y1

k∏
i=1

ϕiJt = J∗0e
βe

B†
√
2 e

B√
2

k∏
i=1

(
C†
i√
2
+
Ci√
2

)
Jt. (5.24)

We apply Wick’s theorem to compute the commutator between
∏k

i=1

(
C†

i√
2
+ Ci√

2

)
and e

B†
√
2 e

B√
2 .

Set ji = i for simplicity. Hence

k∏
i=1

(
C†
i√
2
+
Ci√
2

)
=

[k/2]∑
p=0

1

2p

pair∑
i1,...,i2p

(
p∏

l=1

Ci2l−1,i2l

)
cki1,...,i2k .

Here Ci,j = [Ci, C
†
j ], and

∑pair
i1,...,i2p

denotes the summation over all p-pairs chosen from {1, ..., k},
and

cki1,...,i2p = 2−(k−2p)/2
k−2p∑
l=0

∑
{n1,...,nl}⊂{i1,...,i2p}c

∏
i∈{n1,...,nl}

C†
i

∏
i∈{n1,...,nl}c∩{i1,...,i2p}c

Ci.

Hence

e
B†
√
2 e

B√
2

k∏
i=1

(
C†
i√
2
+
Ci√
2

)
=

[k/2]∑
p=0

1

2p

pair∑
i1...,i2p

(
p∏

l=1

Ci2l−1,i2l

)
k−2p∑
l=0

∑
{n1,...,nl}⊂{i1,...,i2p}c

Xe
B†
√
2 e

B√
2Z, (5.25)

where X =
∏

i∈{n1,...,nl}(C
∗
i + yi) and Z =

∏
i∈{n1,...,nl}c∩{i1,...,i2p}c Ci with yj = [B,C†

j ]. Let us

define operators in F by

B†(l) = −a∗
⊕

j=±1

∫ t

0
e−|s−l|ω(k)Sj(θNr)

φ̂√
ω
e−ikBr(w)dr

 ,

B(l) = −a

⊕
j=±1

∫ t

0
e−|s−l|ω(k)Sj(θNr)

φ̂√
ω
eikBr(w)dr

 ,

C†
i (l) = a∗

⊕
j=±1

e−|s−l|ω(k)Tj(θNsi
)
φ̂√
ω
e−ikBsi

 ,

Ci(l) = a

⊕
j=±1

e−|s−l|ω(k)Tj(θNsi
)
φ̂√
ω
eikBsi

 .
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By intertwining properties J∗0B
† = B†(0)J∗0, J0B(0) = BJ0, J0C

†
i = C†

i (0)J
∗
0 and J0Ci(0) = CiJ0,

and factorization formula J∗0Jt = e−tHf , we see by (5.25) that

W (k) = J∗0e
B†
√
2 e

B√
2

k∏
i=1

(
C†
i√
2
+
Ci√
2

)
Jt

=

[k/2]∑
p=0

1

2p

pair∑
i1,...,i2p

(
p∏

l=1

Ci2l−1,i2l

)
k−2p∑
l=0

∑
{n1,...,nl}⊂{i1,...,i2p}c

X(0)e
B†(0)√

2 e−tĤfe
B(t)√

2 Z(t),

where X(0) and Z(t) are defined by X and Z with Cj replaced by Cj(0) and Cj(t), respectively.

Let α =
1√
2
(∥|k|φ̂/

√
ω∥ + ∥|k|φ̂/ω∥) and β =

1√
2
∥|k|φ̂/

√
ω∥. Then |[Ci(l), C

†
j (l)]| ≤ β2 for

any i, j. Let

ξ(l,m) =
∞∑

j,j′=0

γj+j′′
√
(j + l)!

√
(j′ +m)!

j!j′!

and

ξr(l,m) =

∞∑
j,j′=0

γj+j′′
√
(j + l)!

√
(j′ +m)!

r(j+l)/2r(j′+m)/2j!j′!
.

Here γ = ∥|k|φ̂/
√
ω∥ + ∥|k|φ̂/ω∥. The following estimates (5.26) and (5.27) are proven in

Theorem B.6.

Case (t ≥ 1):

∥W (k)Ψ∥ ≤ w(k)
∥∥∥e− 1

2
(t−1)Ĥf

∥∥∥2 ∥Ψ∥, (5.26)

where

w(k) = k!

[k/2]∑
p=0

∑
l+m+2p=k

(
β2

4

)p
(α+ y)lαm

p!l!m!
ξ(l,m)

and y = tβ2.

Case (t < 1): For any 0 < r < t, we have

∥W (k)Ψ∥ ≤ w(r, k)
∥∥∥e− 1

2
(t−r)Ĥf

∥∥∥2 ∥Ψ∥, (5.27)

where

w(r, k) = k!

[k/2]∑
p=0

∑
l+m+2p=k

(
β2

4

)p
(α+ y)lαm

p!l!m!
ξr(l,m).

Hence W (k) is bounded. Since

J∗0e
Y1

(
1 +

N∏
i=1

((1 + ε)ϕiϕi + ε2)

)
Jt

= J∗0e
Y1Jt +

N∑
k=0

∑
{i1,...,ik}⊂{1,...,N}

ε2(N−k)(1 + ε)kJ∗0e
Y1

 k∏
j=1

ϕij ϕ̄ij

 Jt,
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in a similar manner to (5.26) and (5.27) we see the bound:∥∥∥∥∥∥J∗0eY1

 k∏
j=1

ϕij ϕ̄ij

 Jt

∥∥∥∥∥∥ ≤ w(r, 2k)
∥∥∥e− 1

2
(t−r)Ĥf

∥∥∥2
with 0 < r < t for t < 1 and r = 1 for t ≥ 1, we have∥∥∥∥∥J∗0eY1

(
1 +

N∏
i=1

((1 + ε)ϕiϕi + ε2)

)
Jt

∥∥∥∥∥
≤

(
w(r, 0) +

N∑
k=0

N !

(N − k)!k!
ε2(N−k)(1 + ε)kw(r, 2k)

)∥∥∥e− 1
2
(t−r)Ĥf

∥∥∥2 .
Then the proof is complete.

QED

Lemma 5.6 Let V ∈ L∞(R3) and φ̃ ∈ C∞
0 (R3). Then for every t ≥ 0 and all F,G ∈ K it

follows that

(F, e−tLG) = et
∫
R3

∑
α∈Z2

Ex,α[e−
∫ t
0 V (Bs)ds(F (q0), J

∗
0e

Y JtG(qt))]dx. (5.28)

Proof: Let F,G ∈ K such that F ≥ 0 and G ≥ 0. By Lemma 5.4 we have

(F, e−tLRG) = et
∫
R3

∑
α∈Z2

Ex,α[e−
∫ t
0 V (Bs)ds(F (q0), J

∗
0e

YRJtG(qt))]dx. (5.29)

Here 0 ≤ g(R) = (F (q0), J
∗
0e

YRJtG(qt)) and g(R) is a monotonously increasing function in R.

Hence (F, e−tLRG) is also increasing in R and (F, e−tLRG) ↑ (F, e−tLG) as R ↑ ∞. For each

ϕ ∈ Q, it follows that

J0F (q0) · eYRJtG(qt) → J0F (q0) · eY JtG(qt)

as R→ ∞. Then the monotone convergence theorem yields that the function on the right-hand

side above J0F (q0) · eY JtG(qt) is finite for a.e. (ϕ, x, α,w,m) ∈ QE × R3 × Z2 × X × Xµ, and

(F, e−tLG) = lim
R→∞

(F, e−tLRG)

= et
∫
R3

∑
α∈Z2

Ex,α

[
lim

R→∞
e−

∫ t
0 V (Bs)ds(F (q0), J

∗
0e

YRJtG(qt))

]
dx

= et
∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Bs)dsEµE [J0F (q0) · e

Y JtG(qt)]
]
dx.

For general F,G ∈ K , the lemma is proven by decomposing F and G as a linear sum of positive

functions: F = ℜF+−ℜF−+i(ℑF+−ℑF−) and G = ℜG+−ℜG−+i(ℑG+−ℑG−). Finally we

show that J∗0e
Y JtG(qt) ∈ L2(Q) for each (x, α,w,m) ∈ R3 × Z2 × X × Xµ in Proposition 5.5.

Then EµE [J0F (q0) · eY JtG(qt)] = (F (q0), J
∗
0e

Y JtG(qt)) follows and the lemma is proven.

QED
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5.4.4 Estimate of e−tHZ2,ε

Let Zt = Yt(1) + Yt(2) + Yt(3), where

Yt(1) = −iA

 3⊕
µ=1

∫ t

0
jsφ̃(· −Bs)dB

µ
s

 ,

Yt(2) = −
∫ t

0
Hd(Bs, θNs , s)ds,

Yt(3) =

∫ t+

0
log(−Hod(Bs,−θNs− , s))dNs.

We shall see that Zt turns to be the exponent of an integral kernel of e−tHZ2 . We furthermore

define Zt(ε) by Zt with Yt(3) replaced by Yt(3, ε), i.e., Zt(ε) = Yt(1) + Yt(2) + Yt(3, ε), where

Yt(3, ε) =

∫ t+

0
log(−Ψε(Hod(Bs,−θNs− , s)))dNs.

Lemma 5.7 For each (x, α,w,m) ∈ R3 × Z2 × X × Xµ, J
∗
0e

Zt(ε)Jt is a bounded operator.

Proof: Let Φ,Ψ ∈ L2(Q). By Y defined in (5.21) we see that

|(Φ, J∗0eZt(ε)JtΨ)| ≤ (|Φ|, J∗0eY Jt|Ψ|) ≤ ∥Φ∥∥Ψ∥∥J∗0eY Jt∥

follows from Proposition 5.5. Then the lemma is proven.

QED

Theorem 5.8 Suppose Assumption 3.1. Then for every t ≥ 0 and all F,G ∈ K it follows that

(F, e−tHZ2G) = limε↓0(F, e
−tHZ2,εG) and

(F, e−tHZ2,εG) = et
∫
R3

∑
α∈Z2

E[e−
∫ t
0 V (Bs)ds(F (q0), J

∗
0e

Zt(ε)JtG(qt))]dx. (5.30)

Proof: Since e−tHZ2,ε → e−tHZ2 strongly as ε → 0, (F, e−tHZ2G) = limε↓0(F, e
−tHZ2,εG) follows.

Now we turn to proving (5.30). Suppose that φ̃ ∈ C∞
0 (R3) and V ∈ L∞(R3). Write

XS,T (ε, s) = −i

∫ T

S
A(jsφ̃(· −Br))dBr

−
∫ T

S
Hd(Br, θNr , s)dr +

∫ T+

S
log(−Ψε(Hod(Br,−θNr− , s)))dNr.

Define Sε
t,s : K∞

E → K∞
E by

(Sε
t,sG)(x, θα) = etEx,α[e−

∫ t
0 V (Br)dreX0,t(ε,s)G(qt)].

It can be seen that Sε
t,s has the property:

Sε
t,sS

ε
t′,s′G(x, θα) = et+t′Ex,α[e−

∫ t+t′
0 V (Br)dreX0,t(ε,s)+Xt,t+t′ (ε,s

′)G(qt+t′)]. (5.31)
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Note that for s1 ≤ . . . ≤ sn,

eX0,t1 (ε,s1)+Xt1,t1+t2 (ε,s2)+···+Xt1+···+tn−1,t1+···+tn (ε,sn) ∈ E[s1,sn]. (5.32)

Since (F, e−tHZ2,εG) = (F, e−tKεG), by the Trotter product formula, (5.31), (5.32) and the

Markov property of Es, s ∈ R, we obtain that

(F, e−tHZ2,εG) = et lim
n→∞

∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)]
dx, (5.33)

where Zn
t (ε) = Y n

t (1) + Y n
t (2) + Y n

t (3, ε) with

Y n
t (1) = −iA

 3⊕
µ=1

n∑
j=1

∫ tj

tj−1

jtj−1φ̃(· −Bs)dB
µ
s

 ,

Y n
t (2) = −

n∑
j=1

∫ tj

tj−1

Hd(Bs, θNs , tj−1)ds,

Y n
t (3, ε) =

n∑
j=1

∫ tj

tj−1

log(−Ψε(Hod(Bs,−θNs− , tj−1)))dNs

and tj = jt/n. Put

⟨F, TnG⟩ = et
∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)]
dx,

⟨F, TG⟩ = et
∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

Zt(ε)JtG(qt)
)]

dx.

Notice that by the definition of ⟨F, TnG⟩ we see that |⟨F, TnG⟩| ≤ ∥F∥∥G∥. Suppose that Fm →
F and Gm → G as m → ∞. Then by a telescoping we can see that |⟨F, TnG⟩−⟨Fm, TnGm⟩| ≤
∥F − Fm∥∥G∥ + ∥G − Gm∥∥Fm∥. By using facts that |JtF | ≤ Jt|F |, |e±Yt(1)F | = |F | and
|eYt(2)+Yt(3,ε)F | = eY |F |, we can see that |⟨F, TG⟩| ≤ a∥F∥∥G∥, where a = e−t inf Spec(L). Hence

we have

|⟨Fm, TGm⟩ − ⟨F, TG⟩| ≤ a∥Fm − F∥∥Gm∥+ a∥F∥∥G−Gm∥.

Suppose that ∥F − Fm∥ < ε and ∥G−Gm∥ < ε. Together with them we have

|⟨F, TnG⟩ − ⟨F, TG⟩| ≤ ε(∥G∥+ a∥Gm∥+ ∥Fm∥+ a∥F∥) + |⟨Fm, TnGm⟩ − ⟨Fm, TGm⟩|.
(5.34)

It can be concluded from (5.34) that it is enough to show the lemma for arbitrary F,G included

in some dense domain. We shall show the lemma for F,G ∈ K∞. We claim that

(1) For each (x, α,w,m) ∈ R3 × Z2 × X × Xµ, there exists Ct(m) such that

|(F, J∗0eZ
n
t (ε)JtG)L2(Q)| ≤ Ct(m),

where Ct(m) is independent of (x, α,w) ∈ R3 × Z2 × X , ε > 0 and n, and it is satisfied

that Eµ[C
2
t ] <∞.
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(2) For each (x, α,m) ∈ R3 × Z2 × Xµ,

lim
n→∞

Ex
W [(F (q0), J

∗
0e

Zn
t (ε)JtG(qt))] = Ex

W [(F (q0), J
∗
0e

Zt(ε)JtG(qt))].

The proof of (1) and (2) will be given in Lemma C.1 and Lemma C.2 in Appendix C below,

respectively. We set

RHS (5.33) = et
∫
R3

∑
α∈Z2

Ex,α[ξn]dx, (5.35)

where ξn = e−
∫ t
0 V (Bs)ds

(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)
. Thus we have

Ex
W [|ξn|] ≤ Ex

W [e−
∫ t
0 V (Bs)dsCt(m)∥F (q0)∥∥G(qt)∥]

and ∫
R3

∑
α∈Z2

Ex,α[e−
∫ t
0 V (Bs)dsCt(m)∥F (q0)∥∥G(qt)∥]dx ≤ V 1/2

∞ (Eµ[C
2
t ])

1/2∥F∥∥G∥ <∞.

Since Ex
W [ξn] → Ex

W [ξ∞] as n→ ∞ for each (x, α,m) ∈ R3×Z2×Xµ, by the Lebesgue dominated

convergence theorem,

lim
n→∞

∫
R3

∑
α∈Z2

Eα
µ[Ex

W [ξn]]dx =

∫
R3

∑
α∈Z2

Eα
µ[Ex

W [ξ∞]]dx

follows. For V ∈ RKato by a limiting argument we can show the theorem. Finally for φ̂ in

Assumption 3.1, we can see (5.30) by an approximation, which is also shown in Lemma 5.9

below.

QED

Lemma 5.9 (5.30) is valid for φ̂ in Assumption 3.1.

Proof: It is enough to show (5.30) for F,G ∈ K∞ by an approximation argument. Take a

sequence φ̂n ∈ C∞
0 (R3) such that |k|φ̂n/

√
ω → |k|φ̂/

√
ω as n → ∞. Then (5.30) is valid for

each φ̂n:

(F, e−tHZ2,ε(n)G) =

∫
R3

∑
α∈Z2

E[e−
∫ t
0 V (Bs)ds(F (q0), J

∗
0e

Zn
t (ε)JtG(qt))]dx.

Here Zn
t (ε) is defined by Zt(ε) with φ̂ replaced by φ̂n, and HZ2,ε(n) by HZ2,ε with φ̂ replaced

by φ̂n. It can be seen that HZ2,ε(n) → HZ2,ε as n → ∞ on a common core K∞. Then

e−tHZ2,ε(n) → e−tHZ2,ε strongly as n → ∞. Let Y n
t (1), Y n

t (2) and Y n
t (3) be Yt(1), Yt(2) and

Yt(3) with φ̂ replaced by φ̂n, respectively. In a similar approximation argument to the proof of

Lemma C.2 we can show that

(1) Ex
W [∥(eY n

t (1) − eYt(1))F ] → 0 as ∥(φ̂n − φ̂)/
√
ω∥ → 0,

(2) ∥(eY n
t (2) − eYt(2))F∥ → 0 as ∥|k|(φ̂n − φ̂)/

√
ω∥ → 0,
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(3) ∥(eY n
t (3,ε) − eYt(3,ε))F∥ → 0 as ∥|k|(φ̂n − φ̂)/

√
ω∥ → 0

for F ∈ L2
fin(Q). Hence

(F, e−tHZ2,εG) = lim
n→∞

∫
R3

∑
α∈Z2

E[e−
∫ t
0 V (Bs)ds(F (q0), J

∗
0e

Zn
t (ε)JtG(qt))]dx

=

∫
R3

∑
α∈Z2

E[e−
∫ t
0 V (Bs)ds(F (q0), J

∗
0e

Zt(ε)JtG(qt))]dx

for F,G ∈ K∞. Then the proof is complete.

QED

5.5 Functional integral representations of e−tHZ2

As was mentioned above we need the regularization Ψε(Ĥod) of Ĥod to prevent zeros of Ĥod.

The zeros of Ĥod produces the zeros of e
∫ t+
0 log(−Hod(Bs,−θNs− ,s))dNs . In order to avoid limε→0 in

the functional integral representation, instead of introducing regularization Ψε we introduce a

subset W of R3 × X × XN ×QE by

W =

{∫ t+

0
log

(
1

2

√
|b1(s, x,Bs)|2 + |b2(s, x,Bs)|2

)
dNs>−∞

}
, (5.36)

where bα(s, x,Bs) = Bα(jsφ̃(· −Bs − x)).

Theorem 5.10 Suppose Assumption 3.1. Then for every t ≥ 0 and all F,G ∈ K it follows that

(F, e−tHZ2G) = et
∫
R3

∑
α∈Z2

Ex,α[e−
∫ t
0 V (Bs)ds(J0F (q0), e

Zt1lWJtG(qt))]dx. (5.37)

Here W is given by (5.36) and the exponent Zt is defined by

Zt = −i

∫ t

0
A(jsφ̃(· −Bs))dBs

−
∫ t

0
Hd(Bs, θNs , s)ds+

∫ t+

0
log(−Hod(Bs,−θNs− , s))dNs

and ∫ t+

0
log(−Hod(Bs,−θNs− , s))dNs =

∑
r∈[0,t]

Nr+ ̸=Nr−

log(−Hod(Br,−θNr− , r))

possibly takes infinity.

Proof: By the Lebesgue dominated convergence theorem we have

lim
ε→0

∫
R3

∑
α∈Z2

Ex,α[e−
∫ t
0 V (Bs)ds(J0F (q0), e

Zt(ε)JtG(qt))]dx

=

∫
R3

∑
α∈Z2

Ex,α[e−
∫ t
0 V (Bs)ds lim

ε→0
(J0F (q0), e

Zt(ε)JtG(qt))]dx.
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We can also show that limε→0(J0F (q0), 1lW ceZt(ε)JtG(qt)) = 0 and

lim
ε→0

(J0F (q0), e
Zt(ε)JtG(qt)) = lim

ε→0
(J0F (q0), 1lW e

Zt(ε)JtG(qt)) = (J0F (q0), 1lW e
ZtJtG(qt)).

Then the theorem follows.

QED

5.6 Translation invariant Pauli-Fierz Hamiltonian with spin 1/2

We study the translation invariant Pauli-Fierz Hamiltonian with spin 1/2, that is, HS with

V identically zero. We suppose Assumption 3.1 with V = 0 in this section. The Pauli-Fierz

Hamiltonian with spin 1/2 and a fixed total momentum p is defined by

HS(p) =
1

2
(p− Pf − Â(0))2 +Hf −

1

2
σ · B̂(0), p ∈ R3,

with domain D(HS(p)) = D(Hf) ∩ D(P2
f ). HS(p) is self-adjoint and essentially self-adjoint on

any core of Hf + P2
f .

As in the case of H(p) and HR(p) we have the unitary equivalence below:

L2(R3;C2)⊗ L2(Q) ∼=
∫ ⊕

R3

C2 ⊗ L2(Q)dp,

HS
∼=
∫ ⊕

R3

HS(p)dp,

which are implemented by T defined in (3.30). We now construct a functional integral rep-

resentation for the translation invariant Pauli-Fierz Hamiltonian with spin 1/2. As before, we

transform HS(p) on C2 ⊗ L2(Q) to HZ2(p) on ℓ
2(Z2)⊗ L2(Q) which is defined by

(HZ2(p)Ψ)(θ) =

(
1

2
(p− Pf − Â(0))2 + Ĥd(0, θ) +Hf

)
Ψ(θ) + Ĥod(0,−θ)Ψ(−θ),

where

Ĥd(0, θ) = −1

2
θB̂3(0),

Ĥod(0,−θ) = −1

2
(B̂1(0)− iθB̂2(0)).

The strategy of constructing a functional integral representation of e−tHZ2 (p) is similar to that

of the spinless case.

Theorem 5.11 Let Φ,Ψ ∈ ℓ2(Z2)⊗ L2(Q). Let W0 ⊂ X × Xµ ×QE be defined by

W0 =

{
(w,m, ϕ) ∈ X × Xµ ×QE |

∫ t+

0
log

(
1

2

√
|b1(s,Bs)|2 + |b2(s,Bs)|2

)
dNs>−∞

}
.

Then

(Φ, e−tHS(p)Ψ) = et
∑
α∈Z2

E0,α[(J0Φ(X0), e
Zt1lW0Jte

i(p−Pf)BtΨ(Xt))],
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where the exponent Zt is given by

Zt = −i

∫ t

0
A(jsφ̃(· −Bs))dBs

−
∫ t

0
Hd(Bs, θNs , s)ds+

∫ t+

0
log(−Hod(Bs,−θNs− , s))dNs.

Proof: In addition to the proof of Theorem 3.14 the theorem can be shown by mimicking the

proof of Theorem 5.10.

QED

5.7 Symmetry and non-degeneracy of ground states

For the Pauli-Fierz Hamiltonian H and the relativistic Pauli-Fierz Hamiltonian HR, we can

show that the associated semigroups are positivity improving. Thus the ground state for H and

HR is unique if it exists. We are concerned with e−tHS in this section.

Before concerning with HS we study a toy model H(ε) defined by

H(ε) =
1

2
(−i∇−A)2 + V +Hf − εσ1, ε ∈ R.

When ε = 0,

H(0) =

(
1
2(−i∇−A)2 + V +Hf 0

0 1
2(−i∇−A)2 + V +Hf

)
.

Then all the eigenvalues of H(0) are degenerate. Let us consider ε ̸= 0. Since H(ε) ∼= H(−ε),
we may assume ε > 0.

Proposition 5.12 Let ε > 0. Then S−1e−H(ε)S is positivity improving. In particular the

ground state of H(ε) is unique, if the ground state exists.

Proof: Let F,G ∈ HS. It follows that

(F, e−tH(ε)G) = et
∑
α∈Z2

∫
R3

Ex,α[e−
∫ t
0 V (Bs)ds(J0F (X0), e

ZtJtG(Xt))]dx.

Here Zt = −i
∫ t
0 A(jsφ̃(· −Bs))dBs +

∫ t+
0 log εdNs. Let F,G ≥ 0. Then

(F,S−1e−tH(ε)SG)

= et
∑
α∈Z2

∫
R3

Ex,α
[
εNte−

∫ t
0 V (Bs)ds(J0F (X0),S

−1
E e−i

∫ t
0 A(jsφ̃(·−Bs))dBsSEJtG(Xt))

]
dx > 0

and S−1e−tH(ε)S is positivity improving.

QED

We study HS from now on. Suppose that B = 0. Then similar to H(0) mentioned above,

all the eigenvalues of HS are degenerate. However B ̸= 0, unlike H(ε) the ground state of HS is

also degenerate. We shall show this in the following. The idea is to show that

HS =
⊕

w∈Z1/2

HS(w)

78



and HS(w) ∼= HS(−w) by symmetries hidden in HS. This section is taken from [78]. Also refer

to see [131] and [73, Sections 3.8.4 and 3.8.9].

The polarization vectors e±1 are coherent polarization vectors in direction n ∈ S2 whenever

there exists z ∈ Z such that for any ϕ ∈ [0, 2π) and any k with k/|k| ̸= n,(
e+1
µ (Rk)
e−1
µ (Rk)

)
=

(
cos(zϕ) − sin(zϕ)
sin(zϕ) cos(zϕ)

)(
(Re+1(k))µ
(Re−1(k))µ

)
, µ = 1, 2, 3,

where R = R(n, ϕ) is the matrix denoting the rotation around n ∈ S2 with angle ϕ ∈ [0, 2π).

Let J : L2(R3)⊕ L2(R3) → L2(R3)⊕ L2(R3) be given by

J = i

(
0 −1lL2(R3)

1lL2(R3) 0

)
.

We define

Sf = dΓ(zJ).

Let ℓk = k × (−i∇k) be the triplet of angular momentum. We define Lf by

Lf = (Lf,1, Lf,2, Lf,3) = dΓ(ℓk). (5.38)

Sf is called the helicity and Lf the angular momentum of the field. For (n, z) ∈ S2 × Z define

Jf = Jf(n, z) by Jf = n · Lf + Sf and Jp = Jp(n) by Jp = n · ℓx − 1
2n · σ. Write

J = Jp ⊗ 1l + 1l⊗ Jf .

Clearly, J = J(n, z) is defined for each (n, z) ∈ S2 × Z.

Proposition 5.13 If the polarization vectors are coherent in direction n, and φ̂ and V are

rotation-invariant, then eiϕJHSe
−iϕJ = HS for every ϕ ∈ R.

Proof: Write a♯(
(
f
g

)
) for a♯(f ⊕ g). Notice that for a rotation-invariant f ,

eiϕJfa∗
(
fe−ikx

(
e+µ

e−µ

))
e−iϕJf = a∗

(
feiϕ(zJ+nℓk)e−ikx

(
e+µ

e−µ

))
.

Since the polarization vectors are coherent, we have

eiϕJfa∗
(
fe−ikx

(
e+µ

e−µ

))
e−iϕJf =

3∑
ν=1

Rµνa
∗
(
fe−ikR−1x

(
e+ν
e−ν

))
, (5.39)

where R = R(n, ϕ) = (Rµν)1≤µ,ν≤3. By (5.39), we see that

(S)



eiϕJfHfe
−iϕJf = Hf ,

eiϕJfAµ(x)e
−iϕJf = (RA)µ(R−1x),

eiϕn·ℓxxµe
−iϕn·ℓx = (Rx)µ,

eiϕn·ℓx(−i∇x)µe
−iϕn·ℓx = (R(−i∇x))µ,

eiϕn·(1/2)σσµe
−iϕn·(1/2)σ = (R−1σ)µ.
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Then

eiϕJHSe
−iϕJ =

1

2
(Rσ · (R(−i∇)−RA(x)))2 +Hf + V (Rx) = HS.

QED

Denote the set of half integers by Z1/2 = {w/2|w ∈ Z}. For each (n, z) ∈ S2 ×Z, notice that

σ(n · (ℓx + 1
2σ)) = Z1/2, σ(n · Lf) = Z and σ(Sf) =

{
Z, z ̸= 0,

0, z = 0.
Thus for each (n, z) ∈ S2 × Z,

it follows that

σ(J) = Z1/2. (5.40)

Theorem 5.14 Suppose that the polarization vectors are coherent in direction n, and φ̂ and V

are rotation-invariant. Then HS and HS can be decomposed as

HS =
⊕

w∈Z1/2

HS(w), HS =
⊕

w∈Z1/2

HS(w). (5.41)

Here HS(w) is the subspace spanned by eigenvectors of J associated with eigenvalue w ∈ Z1/2

and HS(w) = HS⌈HS(w).

Proof: This follows from Proposition 5.13 and (5.40).

QED

The Pauli-Fierz Hamiltonians with different polarization vectors, however, are unitary equiv-

alent. Denote the Pauli-Fierz Hamiltonian with polarization vectors e±1 by HS(e
±1). Let η±1

be arbitrary polarization vectors. Then

HS(η
±1) ∼=

⊕
w∈Z1/2

HS(e
±1, w).

By using symmetries of the Pauli-Fierz Hamiltonian with spin 1/2 we can show the degeneracy

of ground states of HS. Assume that V is rotation-invariant and the polarization vectors e±1

are given by

e+1(k) =
(−k2, k1, 0)√

k21 + k22
, e−1(k) = k̂ × e+1(k) =

(−k3k1,−k2k3, k21 + k22)

|k|
√
k21 + k22

. (5.42)

These are coherent in direction (0, 0, 1) and their helicity is zero. Let Λ : R3 → R3 be the flip

defined by Λ

k1k2
k3

 =

 k1
−k2
k3

, and ũ, u : L2(R3)⊕ L2(R3) → L2(R3)⊕ L2(R3) by

ũ :

(
f

g

)
7→
(
f ◦ Λ
g ◦ Λ

)
, u :

(
f

g

)
7→
(
−f ◦ Λ
g ◦ Λ

)
.

A computation gives

u♯
−1
kµu

♯ =

{
kµ, µ = 1, 3,
−kµ, µ = 2,

u♯
−1∇µu

♯ =

{
∇µ, µ = 1, 3,
−∇µ, µ = 2,
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where u♯ = u or ũ. We have for rotation-invariant f and g,

u−1

(
e+1
µ f

e−1
µ g

)
=


(e+1

µ f

e−1
µ g

)
, µ = 1, 3,

−
(e+1

µ f

e−1
µ g

)
, µ = 2.

Then the second quantization Γ(u) of u induces the unitary operator on F and for rotation-

invariant φ̂ we obtain

Γ(u)−1Aµ(x)Γ(u) =

{
Aµ(Λx), µ = 1, 3,
−Aµ(Λx), µ = 2,

(5.43)

Γ(u)−1HfΓ(u) = Hf . (5.44)

Next we consider the transformation on σ = (σ1, σ2, σ3) given by

σµ 7→ σ2σµσ2 =

{
−σµ, µ = 1, 3,
σµ, µ = 2.

(5.45)

Under the identification L2(R3)⊕ L2(R3) ∼= C2 ⊗ L2(R3), we define τ = σ2 ⊗ ũ. This satisfies

τ−1(σµ ⊗ f)τ =

{
−σµ ⊗ f ◦ Λ−1, µ = 1, 3,
σµ ⊗ f ◦ Λ−1, µ = 2,

(5.46)

τ−1(σµ ⊗∇µ)τ = −σµ ⊗∇µ, µ = 1, 2, 3. (5.47)

We finally define the unitary operator J : HS → HS by

J = τ ⊗ Γ(u).

Combining (5.43)-(5.47), for rotation-invariant φ̂ and V

J−1σµ(−i∇µ −Aµ)J = −σµ(−i∇µ −Aµ),

J−1HfJ = Hf ,

J−1V J = V

are obtained. From these relations we can show the theorem below.

Theorem 5.15 If φ̂ and V are rotation-invariant, and the polarization vectors e±1 are given

by (5.42), then HS(z) and HS(−z) are unitary equivalent.

Proof: Since e±1 is coherent in direction (0, 0, 1) and its helicity is zero, J is of the form J =

(ℓx,3 − 1
2σ3)⊗ 1l + 1l⊗ Lf,3. It follows that J−1JJ = −J. This implies that J maps HS(w) onto

HS(−w). Furthermore, J−1HSJ = HS. Thus J
−1HS(w)J = HS(−w) follows.

QED

An application of Theorem 5.15 is to estimate the multiplicity of eigenvalues of HS.

Corollary 5.16 Suppose that V and φ̂ are rotation-invariant. Then the multiplicity of any

eigenvalue is a non-negetaive even number. Moreover S−1e−tHSS is not positivity improving.

Proof: We may suppose that the polarization vectors of HS are given by (5.42). Thus HS =⊕
w∈Z1/2

HS(w). Theorem 5.15 implies HS(w) ∼= HS(−w), and the multiplicity of any eigenvalue

is even. The existence of the ground state is established in e.g., [10, 12, 11, 13, 45, 96, 9, 8, 51, 21].

S−1e−tHSS can not be positivity improving, since the ground state is degenerate.

QED
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6 Energy comparison inequalities

We show several inequalities derived from functional integral representations for the Pauli-Fierz

type Hamiltonians. These inequalities are useful to study the properties of the Pauli-Fierz type

Hamiltonians. See Table 7 below.

Energy comparison inequality

H E(0) ≤ E(e2)

H(p) E(e2, 0) ≤ E(e2, p)

HR ER(0) ≤ ER(e
2)

HR(p) ER(e
2, 0) ≤ ER(e

2, p)

HS max
(αβγ)=(123),(231),(312)

E(0,

√
B̂

2
α + B̂

2
β, 0, B̂γ) ≤ E(e2, B̂1, B̂2, B̂3)

HS(p) max
(αβγ)=(123),(231),(312)

E(0, p,

√
B̂

2
α + B̂

2
β, 0, B̂γ) ≤ E(e2, p, B̂1, B̂2, B̂3)

Table 7: Energy comparison inequality

6.1 Pauli-Fierz Hamiltonian H and H(p)

An application of the functional integral representation of (F, e−tHG) is a diamagnetic inequality.

Corollary 6.1 Under the conditions of Theorem 3.3 it follows that

|(F, e−tHG)| ≤ (|F |, e−t(Hp+Hf)|G|). (6.1)

Proof: By the functional integral representation in Theorem 3.3 we have

|(F, e−tHG)| ≤
∫
R3

Ex[e−
∫ t
0 V (Bs)ds(J0|F (B0)|, Jt|G(Bt)|)]dx = (|F |, e−t(Hp+Hf)|G|).

Here we used that |JsF | ≤ Js|F |, since Js is positivity preserving.

QED

(6.1) is called the diamagnetic inequality. The diamagnetic inequality shows that coupling a

particle to a quantized radiation field by minimal interaction increases the ground state energy

of the non-interacting system. The exact statement is as follows. We introduce a coupling

constant e ∈ R to the Pauli-Fierz Hamiltonian H as

H =
1

2
(−i∇− eÂ)2 + V +Hf .

By a symmetry we can see that

1

2
(−i∇− eÂ)2 + V +Hf

∼=
1

2
(−i∇+ eÂ)2 + V +Hf .

Then inf σ(H) depends on e2. Let E(e2) = inf σ(H).
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Corollary 6.2 We have E(0) ≤ E(e2).

Proof: Corollary 6.1 implies that

sup
F ̸=0

(F, e−tHF )

∥F∥2
≤ sup

F ̸=0

(|F |, e−t(Hp+Hf)|F |)
∥F∥2

≤ sup
F ̸=0

(F, e−t(Hp+Hf)F )

∥F∥2
.

Hence ∥e−tH∥ ≤ ∥e−t(Hp+Hf)∥ = ∥e−tHp∥. It implies that inf σ(Hp) ≤ inf σ(H). Thus the

corollary follows.

QED

Another significant property of e−tH is positivity improving. Unitary operator eit(−i∇µ) is a

shift operator on L2(R3), hence it is positivity preserving. While e−t(−∆) is positivity improving.

I.e., (f, e−t(−∆)g) > 0 for any non identically zero functions f ≥ 0 and g ≥ 0. By the integral

kernel e−iÂ(Kt), in general (F, e−tHG) ∈ C for F ≥ 0 and G ≥ 0. Let Ψg be the ground state of

H. By Corollary 3.10 we see that e−i(π/2)NΨg is strictly positive. Hence (f⊗1l, e−i(π/2)NΨg) ̸= 0

for any non identically zero f ≥ 0. It is easy to see that limt→∞(f ⊗ 1l, e−t(H−E(e2))f ⊗ 1l) =

|(f ⊗ 1l,Ψg)|2 > 0 and hence

− lim
t→∞

1

t
log(f ⊗ 1l, e−tHf ⊗ 1l) = − lim

t→∞

1

t
log
{
e−tE(e2)(f ⊗ 1l, e−t(H−E(e2))f ⊗ 1l)

}
= E(e2)− lim

t→∞

1

t
log(f ⊗ 1l, e−t(H−E(e2))f ⊗ 1l) = E(e2).

This allows to derive an expression of the ground state energy E(e2).

Corollary 6.3 Suppose either Assumption 3.1 or Assumption 3.2. Then the function

e2 7→ E(e2)

is monotonously increasing, continuous and concave.

Proof: Notice that

(1l, e−ieÂ(Kt)1l) = e−(e2/2)q(Kt,Kt).

For f ≥ 0, we have

E(e2) = − lim
t→∞

1

t
log(f ⊗ 1l, e−tHf ⊗ 1l)

= − lim
t→∞

1

t
log

∫
R3

Ex[f(B0)f(Bt)e
−

∫ t
0 V (Bs)dse−(e2/2)q(Kt,Kt)]dx.

As e−(e2/2)qE(Kt,Kt) is log-convex in e2, E(·) is concave. Thus E(e2) is continuous on (0,∞).

Since E(e2) is continuous at e = 0, E(e2) can be expressed as

E(e2) = E(0) +

∫ e2

0
ρ(t)dt

with a suitable non-negative function ρ(t). This implies that E(e2) is monotonously increasing

in e2.

QED
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Remark 6.1 The formula

− lim
t→∞

1

t
log(f ⊗ 1l, e−tHf ⊗ 1l) = E(e2)

holds for arbitrary strictly positive function f regardless of the existence of ground states. See

[73, Lemma 1.56].

We derive a similar inequality for e−tH(p) to that for e−tH .

Corollary 6.4 It follows that

|(Ψ, e−tH(p)Φ)| ≤ (|Ψ|, e−t(P2
f +Hf)|Φ|).

Proof: By the functional integral representation of (Ψ, e−tH(p)Φ) we have

|(Ψ, e−tH(p)Φ)| ≤ E[(J0|Ψ|, Jte−iBtPf |Φ|] = (|Ψ|, e−t(P2
f +Hf)|Φ|).

Here we used that e−iBtPf is positivity preserving and hence |e−iBtPfΦ| ≤ e−iBtPf |Φ|.
QED

From this diamagnetic inequality, we can only deduce the trivial energy comparison in-

equality 0 = inf σ(P2
f + Hf) ≤ inf σ(H(p)). However, combining the unitary transformation

e−i(π/2)N with the functional integral representation, we obtain an interesting result. Denote

E(e2, p) = inf σ(H(p)).

Corollary 6.5 It follows that

(1) Let p = 0. Then ei(π/2)Ne−tH(0)e−i(π/2)N is positivity improving.

(2) The ground state of H(0) is unique whenever it exists.

(3) E(e2, 0) ≤ E(e2, p) holds.

(4) Map p 7→ E(e2, p) is continuous and E(e2, 0) = inf σ(HV=0), where HV=0 is H with V = 0.

Proof: In the case of p = 0 we remark that eipBt = 1. Then we have

(Ψ, ei(π/2)Ne−tH(0)e−i(π/2)NΦ) = E0[(J0Ψ, e
−iπ(Kt)Jte

−iPfBtΦ)].

Since J∗0e
−iπ(Kt)Jt is positivity improving and e−iPfBt is positivity preserving, (1) follows. (2) is

implied by (1) and the Perron-Frobenius theorem [47]. We have

|(Ψ, ei(π/2)Ne−tH(p)e−i(π/2)NΦ)| ≤ E0[(J0|Ψ|, e−iπ(Kt)Jte
−iPfBt |Φ|)]

= (|Ψ|, ei(π/2)Ne−tH(0)e−i(π/2)N |Φ|).

This yields (3). Finally we show (4). From |(Ψ, (e−tH(p) − e−tH(q))Φ)| ≤ c|p− q| the continuity

follows. Let E = inf σ(HV=0) and we set E(e2, p) = E(p). We have

(Ψ,HΨ) =

∫
R3

(Ψ(p),H(p)Ψ(p))dp ≥ E(0)∥Ψ∥.
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Then E(0) ≤ E follows. Let Φδ =
∫ ⊕
R3 Φ(q)1{|p−q|≤δ}dq, where we assume that Φ(q) satisfies

E(q) ≤ (Φ(q),H(q)Φ(q))

∥Φ(q)∥2
< E, |p− q| ≤ δ.

We have

E∥Φδ∥2 >
∫
|q−p|≤δ

(Φ(q),H(q)Φ(q))dq = (Φδ,HΦδ).

This contradicts that E is the bottom of the spectrum of HV=0. Hence E(0) ≤ E ≤ E(p) for

all p ∈ R3. From the continuity of E(p), it follows that E(0) = E.

QED

6.2 Relativistic Pauli-Fierz Hamiltonian HR and HR(p)

For HR by using the functional integral representation we can obtain similar results to those of

H. Let ER(e
2) = inf σ(HR) and ER(e

2, p) = inf σ(HR(p)).

Corollary 6.6 Suppose Assumption 4.1.

(1) It follows that

|(F, e−tHRG)| ≤
(
|F |, e−t((−∆+m2)1/2−m+V+Hf)|G|

)
.

(2) The function e2 7→ ER(e
2) is monotonously increasing, continuous and concave.

(3) It follows that

|(Ψ, e−tHR(p)Φ)| ≤ (|Ψ|, e−t(
√

P2
f +m2−m+Hf)|Φ|).

(4) Statements (1)-(4) below are satisfied.

(1) Let p = 0. Then ei(π/2)Ne−tHR(0)e−i(π/2)N is positivity improving.

(2) The ground state of HR(0) is unique whenever it exists.

(3) Energy comparison inequality ER(0) ≤ ER(p) holds.

(4) Map p 7→ ER(p) is continuous and ER(0) = inf σ(HRV=0), where HRV=0 is HR with

V = 0.

6.3 Pauli-Fierz Hamiltonian with spin 1/2 HZ2 and HZ2(p)

Let us consider HZ2 . By using the functional integral representation we can estimate the ground

state energy of HZ2 . Write

E(e2, B̂1, B̂2, B̂3) = inf σ(HZ2).

For the spinless Pauli-Fierz HamiltonianH we have inf σ(H) = E(e2, 0, 0, 0) and the diamagnetic

inequality E(0, 0, 0, 0) ≤ E(e2, 0, 0, 0) was already seen. We extend this inequality toHZ2 . Define

(HZ2(0)F )(θ) = (Hp +Hf + Ĥd(θ))F (θ)− |Ĥod(−θ)|F (−θ),

where

|Ĥod(−θ)| =
1

2

√
B̂

2
1(x) + B̂

2
2(x)
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is independent of θ ∈ Z2. HZ2(0) corresponds to

Hp +Hf −
1

2

 B̂3

√
B̂

2
1 + B̂

2
2√

B̂
2
1 + B̂

2
2 −B̂3


acting in L2(R3;C2)⊗ L2(Q). The functional integral representation of e−tHZ2 (0) is given by

(F, e−tHZ2 (0)G) = lim
ε↓0

et
∑
α∈Z2

∫
R3

Ex,α[e−
∫ t
0 V (Bs)ds(J0F (X0), e

X⊥
t (ε)JtG(Xt))]dx,

where

X⊥
t (ε) = −

∫ t

0
Hd(Bs, θNs , s)ds+

∫ t+

0
log(Ψε(|Hod(Bs, s)|))dNs. (6.2)

Corollary 6.7 It follows that

|(F, e−tHZ2G)| ≤ (|F |, e−tHZ2 (0)|G|) (6.3)

and

max
(αβγ)=(123),(231),(312)

E(0,

√
B̂

2
α + B̂

2
β, 0, B̂γ) ≤ E(e2, B̂1, B̂2, B̂3). (6.4)

Proof: Since |Ψε(Hod)| ≤ Ψε(|Hod|), |eZt(ε)| ≤ eX
⊥
t (ε) and |JtG| ≤ Jt|G|, by the functional

integral representation of e−tHZ2 we have (6.3). From this,

E(0,

√
B̂

2
1 + B̂

2
2, 0, B̂3) ≤ E(e2, B̂1, B̂2, B̂3)

is obtained. We will show that

E(e2, B̂1, B̂2, B̂3) = E(e2, B̂2, B̂3, B̂1) = E(e2, B̂3, B̂1, B̂2) (6.5)

by SU(2)-symmetry. Let R ∈ O(3) be such that R

x1x2
x3

 =

x2x3
x1

. Then there exists (n, ϕ) ∈

S2 × R such that R = R(n, ϕ). Here R(n, ϕ) describes the rotation around n ∈ R3 by angle

ϕ ∈ [0, 2π). Hence we see that

eiϕn·(1/2)σσµe
−iϕn·(1/2)σ = (R−1σ)µ.

Now we write HZ2 by HZ2(e, B̂1, B̂2, B̂3). Thus we obtain that

eiϕn·(1/2)σHZ2(e, B̂1, B̂2, B̂3)e
−iϕn·(1/2)σ = HZ2(e, B̂2, B̂3, B̂1)

which implies the first equality in (6.5). The second one is proven in the same way.

QED

Write

E(p, Â, B̂1, B̂2, B̂3) = inf σ(HZ2(p)),
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and define HZ2(p, 0) by

(HZ2(p, 0)Ψ)(θ) =

(
1

2
(p− Pf)

2 + Ĥd(0, θ)

)
Ψ(θ)− |Ĥod(0,−θ)|Ψ(−θ),

where |Ĥod(0,−θ)| = 1
2

√
B̂1(0)2 + B̂2(0)2. This corresponds to

1

2
(p− Pf)

2 +Hf −
1

2

 B̂3(0)

√
B̂1(0)2 + B̂2(0)2√

B̂1(0)2 + B̂2(0)2 −B̂3(0)


in C2 ⊗ L2(Q). Note that |Ĥod(0,−θ)| is independent of θ.

Corollary 6.8 It follows that

|(Φ, e−tHZ2 (p)Ψ)| ≤ (|Φ|, e−tHZ2 (p,0)|Ψ|) (6.6)

and

max
(αβγ)=(123),(231),(312)

E(0, 0,

√
B̂

2
α + B̂

2
β, 0, B̂γ) ≤ E(p, Â, B̂1, B̂2, B̂3). (6.7)

Proof: We have

|(Φ, e−tHS(p)Ψ)| ≤ et lim
ε↓0

∑
θ∈Z2

E0,α[(J0|Φ(θα)|, eX
⊥
t (ε)Jte

−iPfBt |Φ(θNt)|)] = RHS (6.6),

where X⊥
t (ε) is given by (6.2). (6.7) is immediate from (6.6) and a similar argument to (6.4).

QED

7 Concluding remarks

(1) The positivity improvingness of the semigroups generated by translation invariant Hamil-

tonians is introduced in this paper only for the case p = 0. We can also show the positivity

improvingness for p ̸= 0 by functional integral representation. We refer to see [69]. This is also

prove in [109] in the different manners.

(2) To find an invariant domain by using functional integral representations can be extended to

more general cases. We refer to see [68].

(3) The Nelson model without cutoff function can be defined through a renormalization. The

Nelson model with a cutoff function is defined by

H = Hp ⊗ 1l + 1l⊗Hf + ϕ(φ̃(· − x)),

where ϕ(f) for f ∈ L2(R3) denotes a scalar field satisfying E[ezϕ(f)] = ez
2∥f∥2/2 for z ∈ C,

E[ϕ(f)ϕ(g)] = 1
2(f, g) and E[ϕ(f)] = 0. The renormalization was succeeded in by Edward

Nelson [111, 110], and gave a proof in terms of a path measure by [49, 106]. The spectral

properties of the renormalized Nelson Hamiltonian H∞ is studied in [59, 74, 75]. In particular

in [74] a Gibbs measure [14, 17] associated with the ground state Ψg of H∞ is constructed, and

(Ψg,OΨg) for O = eβN , eϕ(f)
2
are expressed in terms of the Gibbs measure.

For the Gibbs measure associated with the ground state of the Pauli-Fierz Hamiltonian is

constructed in [65], but there is no useful applications.
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A Abstract boson Fock space

A.1 Annihilation operators and creation operators

In this Appendix we introduce general tools concerning with abstract boson Fock spaces and

second quantization. Instead of physical space-time dimension we work in general d dimension.

Let H be a separable Hilbert space over C. Consider the operation ⊗n
s of n-fold symmetric

tensor product defined through the symmetrization operator

Sn(f1 ⊗ · · · ⊗ fn) =
1

n!

∑
π∈Sn

fπ(1) ⊗ · · · ⊗ fπ(n), n ≥ 1,

where f1, . . . , fn ∈ H and Sn denotes the permutation group of order n. Define

F (n) =

{
Sn(⊗nH), n ≥ 1,
C, n = 0.

The space

F = F(H) =

{ ∞⊕
n=0

F (n) ∋
∞⊕
n=0

Ψ(n)

∣∣∣∣∣∥Ψ∥2F =

∞∑
n=0

∥Ψ(n)∥2F(n) <∞

}
is called the boson Fock space over H. The boson Fock space F can be identified with the space

of ℓ2-sequences (Ψ
(n))n≥0 such that Ψ(n) ∈ F (n) and

∑∞
n=0 ∥Ψ(n)∥2F(n) <∞. F is a Hilbert space

endowed with the scalar product

(Ψ,Φ)F =
∞∑
n=0

(Ψ(n),Φ(n))F(n) .

The vector Ω = (1, 0, 0, . . . ) is called Fock vacuum. The subspace F (n) can be interpreted

as consisting of the states of the quantum field having exactly n boson particles, while the

permutation symmetry corresponds to the fact that the particles are indistinguishable.

There are two fundamental operators, the creation operator denoted by a∗(f), f ∈ H, and

the annihilation operator by a(f) defined by

(a∗(f)Ψ)(n) =

{ √
nSn(f ⊗Ψ(n−1)), n ≥ 1,

0, n = 0

with domain

D(a∗(f)) =
{
(Ψ(n))n≥0 ∈ F

∣∣∣ ∞∑
n=1

n∥Sn(f ⊗Ψ(n−1))∥2F(n) <∞
}
,

and

a(f) = (a∗(f̄))∗.

Note that a♯(f) is linear in f by the definitions.

As the terminology suggests, the action of a∗(f) increases the number of bosons by one,

while a(f) decreases it by one. The relation

(Φ, a(f)Ψ) = (a∗(f̄)Φ,Ψ)
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holds. Furthermore, since both operators are closable by the dense definition of their adjoints,

we use and denote their closed extensions by the same symbols. Let D ⊂ H be a dense subset.

It is known that

LH{a∗(f1) · · · a∗(fn)Ω,Ω| fj ∈ D, j = 1, . . . , n, n ≥ 1}

is dense in F(H). The space

Ffin = {(Ψ(n))n≥0 ∈ F| Ψ(m) = 0 for all m ≥M with someM}

is called the finite particle subspace. The field operators a(f) and a∗(f) leave Ffin invariant and

satisfy the canonical commutation relations

[a(f), a∗(g)] = (f̄, g)1l, [a(f), a(g)] = 0 = [a∗(f), a∗(g)]

on Ffin. We introduce several technical estimates. Let

Φ(f) =
1√
2
(a∗(f) + a(f̄)).

Then Φ(f) is essentially self-adjoint on Ffin. The conjugate momentum operator is also defined

by

Π(f) =
i√
2
(a∗(f)− a(f̄)).

They satisfy that

[Φ(f),Π(g)] = iℜ(f, g), [Π(f),Π(g)] = iℑ(f, g), [Φ(f),Φ(g)] = iℑ(f, g).

Products
∏m

j=1Φ(fj) can be represented by the sum of Wick ordered operators. We see this in

the lemma below. We simply write

cmj1,...,jk = :Φ(f1) · · · Φ̂(fj1) · · · · · · Φ̂(fjk) · · ·Φ(fm):,

where Φ̂(f) describes neglecting Φ(f). We also set

cm = :Φ(f1) · · ·Φ(fm):.

Lemma A.1 Let fj ∈ H, j = 1, ..., n. Then
∏m

j=1Φ(fj) can be represented in terms of Wick

ordered operators as follows.

(m = 2n)

2n∏
j=1

Φ(fj) = c2n +
n∑

k=1

1

2k

pair∑
j1,...,j2k

(
k∏

i=1

(fj2i−1 , fj2i)

)
c2nj1,...,j2k , (A.1)

where
∑pair

j1,...,j2k
describes the summation over all k-pairs chosen from {1, . . . , 2n}.

(m = 2n+ 1)

2n+1∏
j=1

Φ(fj) = c2n+1 +
n∑

k=1

1

2k

pair∑
j1,...,j2k

(
k∏

i=1

(fj2i−1 , fj2i)

)
c2n+1
j1,...,j2k

, (A.2)

where
∑pair

j1,...,j2k
also describes the summation over all k-pairs chosen from {1, . . . , 2n+ 1}.
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Proof: From the definition of Wick products the lemma directly follows.

QED

Lemma A.2 Let f ∈ H. Then

Φ(f)n = n!

[n/2]∑
k=0

∑
l+m+2k=n

(∥f∥
2

4 )k

k!

( 1√
2
a∗(f))l

l!

( 1√
2
a(f̄))m

m!
. (A.3)

Here [m] is the integer part of m, i.e., [2n/2] = n and [(2n+ 1)/2] = n.

Proof: We see that by Lemma A.1

Φ(f)n =

[n/2]∑
k=0

n!

k!(n− 2k)!

(
∥f∥2

4

)k

:Φ(f)n−2k:,

:Φ(f)m: = 2−m/2
m∑
k=0

(
m

k

)
a∗(f)ka(f̄)m−k.

Together with them (A.3) follows. Then the lemma is proven.

QED

A.2 Second quantization

Given a bounded operator T on H, the second quantization of T is the operator Γ(T ) on F
defined by

Γ(T ) =

∞⊕
n=0

(⊗nT ).

Here it is understood that ⊗0T = 1l. In most cases Γ(T ) is an unbounded operator.

H
T //

��

H

��
F(H)

Γ(T )
// F(H)

Figure 14: Fanctor Γ

However, for a contraction operator T , the second quantization Γ(T ) is also a contraction

on F , or equivalently, Γ is a functor

Γ : C (H → H) → C (F → F),

of the set C (X → Y ) of contraction operators from X to Y . The functor Γ has the semi-

group property, while C (H → H) is a ∗-algebra with respect to operator multiplication and

conjugation ∗. The map Γ pulls this structure over to F so that

Γ(S)Γ(T ) = Γ(ST ), Γ(S)∗ = Γ(S∗), Γ(1l) = 1l, (A.4)
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F (n) a∗(f) //

Γ(T )

��

F (n+1)

Γ(T )

��

⟳
F (n)

a∗(Tf)
// F (n+1)

Figure 15: a∗(f) and Γ(T )

F (n) a(f) // F (n−1)

⟳
F (n)

Γ(T )

OO

a(jT ∗jf)
// F (n−1)

Γ(T )

OO

Figure 16: a(f) and Γ(T )

for S, T ∈ C (H → H).

We can see relationship between a♯(f) and Γ(T ). Intertwining properties

Γ(T )a∗(f) = a∗(Tf)Γ(T ), (A.5)

a(f)Γ(T ) = Γ(T )a(jT ∗jf) (A.6)

can be checked directly and from this we can derive commutation relations

[Γ(T ), a∗(f)] = a∗((T − 1l)f)Γ(T ), (A.7)

[Γ(T ), a(f)] = Γ(T )a(j(1l− T ∗)jf), (A.8)

where jf = f̄ denotes the complex conjugate of f . Suppose in particular that T satisfies that

T ∗T = 1l and TT ∗ = E. Then (A.5) and (A.6) yield that

Γ(T )a∗(f)Γ(T ∗) = a∗(Tf)Γ(E), (A.9)

Γ(T )a(f)Γ(T ∗) = Γ(E)a(jT jf). (A.10)

F (n−1)

Γ(T )

��

⟲

F (n)a(f)oo a∗(f) //

⟲

F (n+1)

Γ(T )

��
F (n−1) F (n)

Γ(E)a(jT jf)
oo

Γ(T ∗)

OO

a∗(Tf)Γ(E)
// F (n+1)

Figure 17: Creation and annihilation operators, and second quantization

A.3 Differential second quantization

For a self-adjoint operator h on H the structure relations (A.4) imply in particular that {Γ(eith) :
t ∈ R} is a strongly continuous one-parameter unitary group on F . Then by the Stone’s theorem

there exists a unique self-adjoint operator dΓ(h) on F such that

Γ(eith) = eitdΓ(h), t ∈ R.
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The operator dΓ(h) is called the differential second quantizationof h or simply second quantiza-

tion of h. Thus we have

eitdΓ(h)a∗(f)e−itdΓ(h) = a∗(eithf), (A.11)

eitdΓ(h)a(f)e−itdΓ(h) = a(jeithjf). (A.12)

Since dΓ(h) = −i ddtΓ(e
ith)⌈t=0 on some domain, we have

dΓ(h) = 0⊕

 ∞⊕
n=1

 n∑
j=1

1l⊗ · · ·⊗
j

h ⊗ · · · ⊗ 1l︸ ︷︷ ︸
n

 , (A.13)

where j on top of h indicates its position in the product. Thus the action of dΓ(h) is given by

dΓ(h)Ω = 0,

dΓ(h)a∗(f1) · · · a∗(fn)Ω =
n∑

j=1

a∗(f1) · · · a∗(hfj) · · · a∗(fn)Ω.

Then it holds that

[dΓ(h), a∗(f)] = a∗(hf), [dΓ(h), a(f)] = −a(hf).

It can be also seen by (A.13) that

σ(dΓ(h)) = {λ1 + · · ·+ λn|λj ∈ σ(h), j = 1, . . . , n, n ≥ 1} ∪ {0},
σp(dΓ(h)) = {λ1 + · · ·+ λn|λj ∈ σp(h), j = 1, . . . , n, n ≥ 1} ∪ {0}.

If 0 /∈ σp(h) and h ≥ 0, the multiplicity of 0 in σp(dΓ(h)) is one. A crucial operator in quantum

field theory is the number operator defined by the second quantization of the identity operator

on H:

N = dΓ(1l).

Let h be a positive self-adjoint operator and f ∈ D(h). The following bound is a fundamental.

Let f ∈ D(h−1/2) and Ψ ∈ D(dΓ(h)1/2). Then Ψ ∈ D(a♯(f)) and

∥a(f)Ψ∥ ≤ ∥h−1/2f∥∥dΓ(h)1/2Ψ∥, (A.14)

∥a∗(f)Ψ∥ ≤ ∥h−1/2f∥∥dΓ(h)1/2Ψ∥+ ∥f∥∥Ψ∥. (A.15)

In particular, D(dΓ(h)1/2) ⊂ D(a♯(f)), whenever f ∈ D(h−1/2).

B The case of H = L2(R3)

This section is taken from [73, Section 1.2].
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B.1 Useful bounds

We set H = L2(R3) and Hf = dΓ(ω). Then F (n) ∋ Φ is a function Φ(k1 . . . , kn) which is

symmetric with respect to any permutation of k1, . . . , kn. Thus the annihilation operator and

the creation operator are defined by

(a(f)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
R3

f(k)Φ(n+1)(k, k1 . . . , kn)dk,

(a∗(f)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
j=1

f(kj)Φ
(n−1)(k1 . . . , k̂j . . . , kn).

Furthermore

HfΨ
(n)(k1, . . . , kn) =

 n∑
j=1

ω(kj)

Ψ(n)(k1, . . . , kn).

We show some useful inequalities on a♯ and Hf .

Lemma B.1 Let ψ ∈ D(H
m/2
f ). Suppose that ∥fj/

√
ω∥ < ∞ for j = 1, . . . ,m. Then ψ ∈

D(
∏n

j=1 a(fj)) and ∥∥∥∥∥∥
m∏
j=1

a(fj)ψ

∥∥∥∥∥∥ ≤
m∏
j=1

∥fj/
√
ω∥∥Hm/2

f ψ∥.

Proof: Let n > m. Since ψ(n) is symmetric, by the definition of Hf we have

(ψ(n), (Hm
f ψ)

(n)) = n(n− 1) · · · (n−m+ 1)

∫
Rdn

|ψ(n)(k1, . . . , kn)|2
n∏

j=1

ω(kj)dk1 · · · dkn.

While by the definition of a(f) we can see that∥∥∥∥∥∥(
m∏
j=1

a(fj)ψ)
(n−m)

∥∥∥∥∥∥
2

≤ n(n− 1) · · · (n−m+ 1)

m∏
j=1

∥fj/
√
ω∥
∫
Rdn

|ψ(n)(k1, . . . , kn)|2
m∏
j=1

ω(kj)dk1 · · · dkn.

Thus we have ∥∥∥∥∥∥(
m∏
j=1

a(fj)ψ)
(n−m)

∥∥∥∥∥∥
2

≤
m∏
j=1

∥fj/
√
ω∥(ψ(n), (Hm

f ψ)
(n))

for m ≤ n. For m > n, the above inequality also holds true since the left hand side is zero.

Summing over n on both sides, we conclude the desired results.

QED

Let us consider to evaluate the product of creation operators ∥
∏m

j=1 a
∗(fj)Φ∥. Since we

know a bound of the product of annihilation operators ∥
∏m

j=1 a(fj)Φ∥, we can also evaluate
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∥
∏m

j=1 a
∗(fj)Φ∥, but which is rather technically complicated than that of ∥

∏m
j=1 a(fj)Φ∥. To

see this we use the fact ∥∥∥∥∥∥
m∏
j=1

a∗(fj)Φ

∥∥∥∥∥∥
2

=

Φ,
m∏
j=1

a(f̄j)
m∏
j=1

a∗(fj)Φ


and compute the commutation relation

[∏m
j=1 a(f̄j),

∏m
j=1 a

∗(fj)
]
. We then conclude that

∥∥∥∥∥∥
m∏
j=1

a∗(fj)Φ

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∏
j=1

a(f̄j)Φ

∥∥∥∥∥∥
2

+

Φ,

 m∏
j=1

a(f̄j),

m∏
j=1

a∗(fj)

Φ

 .

Evaluating the second term of the right-hand side above, we can have a bound of
∥∥∥∏m

j=1 a
∗(fj)Φ

∥∥∥.
Lemma B.2 Let fi, gj ∈ D(1/

√
ω) for i, j = 1, ..., n and Φ ∈ D(H

n/2
f ). Then∣∣∣∣∣∣

 n∏
j=1

a∗(gj)Φ,

n∏
j=1

a∗(fj)Φ

∣∣∣∣∣∣ ≤ n!2n

(
n∏

l=1

∥fl∥ω∥gl∥ω

)
n∑

m=0

1

m!
∥Hm/2

f Φ∥2,

where ∥f∥ω = ∥f∥+ ∥f/
√
ω∥.

By Lemma B.2 we have useful bounds for products of annihilation operators and creation

operators. We summarize them as follows. Suppose that fj ∈ D(1/
√
ω) for j = 1, ..., n. Then

for Φ ∈ D(H
n/2
f ), we have∥∥∥∥∥∥

n∏
j=1

a(fj)Φ

∥∥∥∥∥∥ ≤

 n∏
j=1

∥fj/
√
ω∥

 ∥Hn/2
f Φ∥, (B.1)

∥∥∥∥∥∥
n∏

j=1

a∗(fj)Φ

∥∥∥∥∥∥ ≤
√
n!2n/2

(
n∏

l=1

∥fl∥ω

)(
n∑

m=0

1

m!
∥Hm/2

f Φ∥2
)1/2

. (B.2)

B.2 Exponent of annihilation operators and creation operators

Although exponential operator ea
∗(f) is unbounded, it can be seen in the proposition below that

ea
∗(f)e−

t
2
Hf is bounded for any t > 0.

Proposition B.3 Let t > 0. (1) Let f ∈ D(1/
√
ω). Then both ea

∗(f)e−
t
2
Hf and e−

t
2
Hfea(f) are

bounded. (2) Let f ∈ L2(R3). Then both ea
∗(f)e−

t
2
N and e−

t
2
Nea(f) are bounded.

Proof: Suppose that t < 1. For any s < t we have for Φ ∈ F ,∥∥∥∥∥
m∑

n=0

1

n!
a∗(f)ne−

t
2
HfΦ

∥∥∥∥∥ ≤
m∑

n=0

1√
n!
2n/2s−n/2∥f∥nω

(
n∑

k=0

1

k!
∥(sHf)

k/2e−
t
2
HfΦ∥2

)1/2

.
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We can see that sequence {
∑m

n=0
1
n!a

∗(f)ne−
t
2
HfΦ}∞m=0 is a Cauchy sequence in F . Hence

e−
t
2
HfΦ ∈ D(ea

∗(f)) and as m→ ∞ on both sides above and we have

∥ea∗(f)e−
t
2
HfΦ∥ ≤ A(f, s)∥e−

1
2
(t−s)HfΦ∥,

where

A(f, s) =

∞∑
n=0

1√
n!
2n/2s−n/2∥f∥nω. (B.3)

Choosing s such that s < t, we can see that ∥e−
1
2
(t−s)HfΦ∥ ≤ ∥Φ∥ and ea

∗(f)e−
t
2
Hf for t < 1 is

bounded. Suppose 1 ≤ t. Choosing s = 1 in the above discussion, we have

∥ea∗(f)e−
t
2
HfΦ∥ ≤ A(f, 1)∥e−

1
2
(t−1)HfΦ∥ ≤ A(f, 1)∥Φ∥.

Thus ea
∗(f)e−

t
2
Hf for t ≥ 1 is bounded. Finally since

(
e−

t
2
Hfea(f)

)∗
⊃ ea

∗(f̄)e−
t
2
Hf , the second

statement follows. Then (1) follows. (2) is similarly proven by replacing ω with the identity 1l.

QED

B.3 Technical estimates I

Let X = ea
∗(g)ea(ḡ) for g ∈ L2(R3). We already see that ea

∗(g)e−
t
2
Hfea(ḡ) is bounded for any

t > 0. We extend this to more general cases. By (A.3) we know the explicit form of Wick

ordering of Φ(f)n, and see that

XΦ(f)nΨ = n!

[n/2]∑
k=0

∑
l+m+2k=n

(∥f∥
2

4 )k

k!

( 1√
2
a∗(f) + y)l

l!
X

( 1√
2
a(f̄))m

m!
Ψ. (B.4)

Here y = (g, f)/
√
2. Operator XΦ(f)n is not bounded, but we are interested in estimating

operator Z(t, n) which is defined by inserting e−tHf into XΦ(f)n as

Z(t, n) = n!

[n/2]∑
k=0

∑
l+m+2k=n

(∥f∥
2

4 )k

k!

( 1√
2
a∗(f) + y)l

l!
ea

∗(ḡ)e−tHfea(ḡ)
( 1√

2
a(f̄))m

m!
. (B.5)

Lemma B.4 Let f ∈ D(1/
√
ω). Then Z(t, n) is bounded for t > 0, and the bound of ∥Z(t, n)Ψ∥

is given as follows.

(t ≥ 1)

∥Z(t, n)Ψ∥ ≤ zt(n)
∥∥∥e− 1

2
(t−1)Hf

∥∥∥2 ∥Ψ∥,

where

zt(n) = n!

[n/2]∑
k=0

∑
l+m+2k=n

(
∥f∥2
4

)k
(∥f∥ω + |y|)l∥f∥mω
k!l!m!

ξ(l,m)

with y = (g, f)/
√
2 and

ξ(l,m) =

∞∑
j,j′=0

(
√
2∥g∥ω)j+j′′

√
(j + l)!

√
(j′ +m)!

j!j′!
.
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(t < 1) For any 0 < s < t,

∥Z(t, n)Ψ∥ ≤ zt(s, n)
∥∥∥e− 1

2
(t−s)Hf

∥∥∥2 ∥Ψ∥,

where

zt(s, n) = n!

[n/2]∑
k=0

∑
l+m+2k=n

(
∥f∥2
4

)k
(∥f∥ω + |y|)l∥f∥mω
k!l!m!

ξs(l,m)

and

ξs(l,m) =

∞∑
j,j′=0

(
√
2∥g∥ω)j+j′′

√
(j + l)!

√
(j′ +m)!

s(j+l)/2s(j′+m)/2j!j′!
.

Proof: In this proof we set s = 1 for t ≥ 1 and 0 < s < t for t < 1. Since∥∥∥∥∥
N∑

n=0

a∗(f)n

n!
Φ

∥∥∥∥∥ ≤
N∑

n=0

(
√
2∥f∥ω)ns−n/2

√
n!

∥∥∥e 1
2
sHfΦ

∥∥∥ ,
and

∥(a∗(f) + y)ma∗(g)nΨ∥ ≤
m∑
k=0

(
m

k

)
|y|k∥a∗(f)m−ka∗(g)nΨ∥

≤ s−(n+m)/2(
√
2∥f∥+ |y|)m(

√
2∥g∥ω)n

√
(n+m)!∥e

1
2
sHfΨ∥,

we have for any non-negative integers m ≥ 0∥∥∥(a∗(g) + y)mea
∗(f)Φ

∥∥∥ ≤
∞∑
n=0

(
√
2∥f∥ω + |y|)m(

√
2∥g∥ω)n

√
(n+m)!

s(n+m)/2n!

∥∥∥e 1
2
sHfΦ

∥∥∥ .
We have

∥Z(t, n)Ψ∥ ≤
[n/2]∑
k=0

∑
l+m+2k=n

n!
(
∥f∥2
4

)k
k!l!m!

∥∥∥∥(a∗(f)√
2

+ y)lea
∗(g)e−

t
2
Hf

∥∥∥∥∥∥∥∥e− t
2
Hfea(ḡ)(

a(f̄)√
2
)m
∥∥∥∥ ∥Ψ∥.

(B.6)

Inserting inequalities:∥∥∥∥(a∗(f)√
2

+ |y|)lea∗(g)e−
t
2
Hf

∥∥∥∥ ≤
∞∑
j=0

(
√
2∥g∥ω)j(∥f∥ω + |y|)l

√
(j + l)!

s(j+l)/2j!
A,

∥∥∥∥e− t
2
Hfea(ḡ)(

a(f̄)√
2
)m
∥∥∥∥ ≤

∞∑
j=0

(
√
2∥g∥ω)j∥f∥mω

√
(j +m)!

s(j+m)/2j!
A

with A =
∥∥∥e− 1

2
(t−s)Hf

∥∥∥ into (B.6), we prove the lemma.

QED

Next we estimate operator Z(t) defined by

Z(t) =
∞∑
n=0

tn

n!
Z(t, n). (B.7)
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Lemma B.5 Let f, g ∈ D(1/
√
ω). Then Z(t) for t > 0 is bounded with

∥Z(t)∥≤ e
∥f∥2

4

∥∥∥∥e− t−s
2 Hf

∥∥∥∥2
C(h)2(

1− h√
s
(
√
2∥g∥ω + ∥f∥ω + y)

)(
1− h√

s
(
√
2∥g∥ω + ∥f∥ω)

) . (B.8)

Here s = 1 for t ≥ 1 and 0 < s < t for t < 1, and C(h) is a constant depending on h > 0 such

that 1− h√
s
(
√
2∥g∥ω + ∥f∥ω + y) > 0 for y = (g, f)/

√
2.

Proof: In this proof we set s = 1 for t ≥ 1 and 0 < s < t for t < 1. By Lemma B.4 and the fact

that Z(t) =
∑∞

n=0
tn

n!Z(t, n) we have

∥Z(t)Ψ∥ ≤ zt

∥∥∥e− 1
2
(t−1)Hf

∥∥∥2 ∥Ψ∥,

where

zt =

∞∑
n=0

∑
l+m+2k=n

(
∥tf∥2

4

)k
(∥tf∥ω + t|y|)l∥tf∥mω
k!l!m!

ξs(l,m).

Then we replace tf and t|y| by f and |y|, respectively in what follows. We have

zt = e∥f∥
2/4ξs(y)ξs(0), (B.9)

where

ξs(y) =
∞∑
j=0

∞∑
l=0

ajbl
√
(j + l)!

l!j!
. (B.10)

with a =
√
2∥g∥ω/

√
s and b = (∥f∥ω + y)/

√
s. Let 0 < h be such that h < 1/(a+ b). Then

ξs(y) =
∞∑

j,l=0

ajblhj+l(j + l)!

l!j!

(1/h)j(1/h)l√
(j + l)!

≤ C

1− h(a+ b)
<∞.

Here C = C(h) = sup(j,l)∈N×N
(1/h)j(1/h)l√

(j+l)!
. It can be also shown that ξ(0) is finite. Hence we

have (B.8). Then zt is finite, and the lemma is proven.

QED

B.4 Technical estimates II

Operator Z(t, n) is defined through commutation relations: [X,Φ(f)n], where X = ea
∗(g)ea(ḡ).

We also need to see operator W (t, n) defined through commutation relations:X, n∏
j=1

Φ(fj)

 . (B.11)
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To compute the commutation relation (B.11) explicitly we apply Wick’s theorem to product∏n
j=1Φ(fj):

n∏
j=1

Φ(fj) =

[n/2]∑
k=0

1

2k

pair∑
j1,...,j2k

(
k∏

i=1

(fj2i−1 , fj2i)

)
cnj1,...,j2k .

Since

:

n∏
j=1

Φ(fj): = 2−n/2
m∑
k=0

∑
{j1,...,jk}⊂{1,...,n}

∏
j∈{j1,...,jk}

a∗(fj)
∏

i∈{j1,...,jk}c
a(f̄i),

we can compute cnj1,...,j2k as

cnj1,...,j2k = 2−(n−2k)/2
n−2k∑
l=0

∑
{i1,...,il}⊂{j1,...,j2k}c

∏
j∈{i1,...,il}

a∗(fj)
∏

i∈{i1,...,il}c∩{j1,...,j2k}c
a(f̄i).

Hence

X

n∏
j=1

Φ(fj) =

[n/2]∑
k=0

1

2k

pair∑
j1,...,j2k

(
k∏

i=1

(fj2i−1 , fj2i)

)
n−2k∑
l=0

∑
{i1,...,il}⊂{j1,...,j2k}c

AXB

where

A =
∏

j∈{i1,...,il}

(
a∗(fj)√

2
+ yj), B =

∏
i∈{i1,...,il}c∩{j1,...,j2k}c

a(f̄i)√
2

(B.12)

with yj = (g, fj)/
√
2. Since X

∏m
j=1Φ(fj) is not bounded, we then define W (t, n) by inserting

e−tHf into X
∏m

j=1Φ(fj) as

W (t, n) =

[n/2]∑
k=0

1

2k

pair∑
j1,...,j2k

n−2k∑
l=0

∑
{i1,...,il}⊂{j1,...,j2k}c

(
k∏

i=1

(fj2i−1 , fj2i)

)
Aea

∗(g)e−tHfea(ḡ)B. (B.13)

Furthermore we set

W (t) =

∞∑
n=0

tn

n!
W (t, n). (B.14)

W (t, n) and W (t) are extensions of Z(t, n) and Z(t) discussed in (B.5) and (B.7), respectively.

Formula proved in Theorem B.6 below is used to estimate integral kernels of semigroup e−tL

in Section 5.4.3. The integral kernel of e−tL is

J∗0e
Y Jt = J∗0e

B†
√

2
+ B√

2

N∏
j=1

(∣∣∣∣∣C
†
j√
2
+
Cj√
2

∣∣∣∣∣+ εψε(

∣∣∣∣∣C
†
j√
2
+
Cj√
2

∣∣∣∣∣)
)
Jt. (B.15)

See (5.22). (B.15) is of the form of W (t) given by (B.14). Theorem B.6 tells that the integral

kernel of e−tL is bounded.
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Theorem B.6 Let fj ∈ D(1/
√
ω), j ∈ N. Suppose that there exists α > 0 such that ∥fj∥ω ≤ α

for any j. Then W (t, n) and W (t) are bounded for t > 0 with

∥W (t)∥≤
e

α2

4

∥∥∥e− t−s
2

Hf

∥∥∥2C(h)2(
1− h√

s
(
√
2∥g∥ω + α+ y)

)(
1− h√

s
(
√
2∥g∥ω + α)

) .
Here s = 1 for t ≥ 1 and 0 < s < t for t < 1, y = α∥g∥/

√
2, and C(h) is a constant depending

on h > 0 such that 1− h√
s
(
√
2∥g∥ω + α+ y) > 0.

Proof: In this proof we set s = 1 for t ≥ 1 and 0 < s < t for t < 1. Let A and B be (B.12). We

can estimate
∥∥Aea∗(g)e−tHfea(ḡ)B

∥∥ as∥∥∥Aea∗(g)e−tHfea(ḡ)B
∥∥∥ ≤

∥∥∥Aea∗(g)e− t
2
Hf

∥∥∥∥∥∥e− t
2
Hfea(ḡ)B

∥∥∥ ,
with ∥∥∥Aea∗(g)e− t

2
HfΦ

∥∥∥ ≤
∞∑
j=0

(α+ y)l(
√
2∥g∥ω)j

√
(l + j)!

s(j+l)/2j!

∥∥∥e− 1
2
(t−s)Hf

∥∥∥ ,
∥∥∥e− t

2
Hfea(ḡ)B

∥∥∥ ≤
∞∑
j=0

αn−2k−l(
√
2∥g∥ω)j

√
(n− 2k − l + j)!

s(j+n−2k−l)/2j!

∥∥∥e− 1
2
(t−s)Hf

∥∥∥ .
Let y = α∥g∥/

√
2. Then |yj | ≤ y. In a similar manner to the proof of Lemma B.4 we have

bounds below:

(t ≥ 1)

∥W (t, n)Ψ∥ ≤ wt(n)
∥∥∥e− 1

2
(t−1)Hf

∥∥∥2 ∥Ψ∥,

where

wt(n) = n!

[n/2]∑
k=0

∑
l+m+2k=n

(
α2

4

)k
(α+ y)lαm

k!l!m!
ξ(l,m).

(t < 1) For any 0 < s < t,

∥W (t, n)Ψ∥ ≤ wt(s, n)
∥∥∥e− 1

2
(t−s)Hf

∥∥∥2 ∥Ψ∥,

where

wt(s, n) = n!

[n/2]∑
k=0

∑
l+m+2k=n

(
α2

4

)k
(α+ y)lαm

k!l!m!
ξs(l,m).

Here ξ(l,m) and ξs(l,m) defined in Lemma B.4. Hence W (t, n) is bounded. We shall show the

boundedness of W (t). The proof is also similar to that of Lemma B.5. We have

∥W (t)Ψ∥ ≤ wt

∥∥∥e− 1
2
(t−1)Hf

∥∥∥2 ∥Ψ∥,
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where

wt =

∞∑
n=0

∑
l+m+2k=n

(
t2α2

4

)k
(tα+ ty)l(tα)m

k!l!m!
ξs(l,m).

Then we replace tα and ty by α and y, respectively in what follows. We have

wt =

∞∑
n=0

∑
l+m+2k=n

(
α2

4

)k
k!

(α+ y)l

l!

αm

m!
ξs(l,m) = eα

2/4ξs(y)ξs(0),

where

ξs(y) =

∞∑
j=0

∞∑
l=0

(
√
2∥g∥ω)j(α+ y)l

√
(j + l)!

s(j+l)/2l!j!
.

The right-hand side above is finite which is shown in Lemma B.5. Then the proof is complete.

QED

C Proofs of (1) and (2) in the proof of Theorem 5.8

Lemma C.1 Statement (1) of the proof of Theorem 5.8 is true.

Proof: For each (x, α,w,m) ∈ R3×Z2×X ×Xµ, it can be directly seen that F,G ∈ D(eZt(ε)J0)∩
D(eZ

n
t (ε)J0) for any n ∈ N. We see the inequality: ∥Yt(2)Φ∥ ≤ γ

√
m+ 1∥Φ∥ for Φ ∈ L2

m(Q),

where γ =
√
2t∥|k|φ̂/

√
ω∥. Since L2

fin(Q) is the set of analytic vectors for eY
n
t (2), for F ∈ L2

fin(Q)

we have eY
n
t (2)F =

∑∞
j=0

Y n
t (2)j

j! F . We assume that F ∈ L2
m′(Q) and G ∈ L2

m(Q), hence

NF = m′F and NG = mG for the number operator N . Then∥∥∥eY n
t (2)F

∥∥∥ ≤
∞∑
j=0

√
(m+ j − 1) · · · (m+ 1)m

j!
γj∥F∥.

On the other hand by the definition of Y n
t (3, ε) we have

eY
n
t (3,ε) =

n∏
i=1

exp

(∫ it
n
+

(i−1)t
n

log(−Ψε(Hod(Bs,−θNs− ,
(i− 1)t

n
)dNs

)
. (C.1)

For every m ∈ Xµ there exists N = N(m) ∈ N such that map t 7→ Nt(m) is not continuous at

points s1 = s1(m), . . . , sN = sN (m). For sufficiently large n the number of discontinuous points

in ( (i−1)t
n , itn ] is at most one. Then by taking n large enough and putting (n(si), n(si) + t/n] for

the interval containing si, we get

eY
n
t (3,ε) =

N∏
i=1

(−ϕi − εψε(ϕi)),

where ϕi = Hod(Bsi ,−θNsi−
, n(si)). Fix m ∈ Xµ above. We have

N∏
i=1

(−ϕi − εψε(ϕi)) = (−1)N
N∑
p=0

εN−p
∑

{j1,...,jp}⊂[N ]

∏
i ̸∈{j1,...,jp}

ψi ·
p∏

i=1

ϕji ,
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where ψi = ψε(ϕji) and [N ] = {1, . . . , N}, and

(F, J∗0e
Y n
t (1)eY

n
t (2)eY

n
t (3,ε)JtG)

=

N∑
p=0

εN−p
∑

{j1,...,jp}⊂[N ]

e−Y n
t (1)J0F, e

Y n
t (2)

∏
i ̸∈{j1,...,jp}

ψi ·
p∏

i=1

ϕjiJtG

 .

Notice again that ∥ϕjiΦ∥ ≤ 2γ
√
m+ 1∥Φ∥ for Φ ∈ L2(Q) and i = 1, ..., p. Since ψε ≤ 1, each

terms on the right-hand side above can be estimated as∣∣∣∣∣∣
e−Y n

t (1)J0F, e
Y n
t (2)

∏
i ̸∈{j1,...,jp}

ψi ·
p∏

i=1

ϕjiJtG

∣∣∣∣∣∣
≤

∞∑
j=0

εN−p

√
(j + p+m− 1) · · · (m+ 1)m

j!
(2γ)j+p−m+1∥F∥∥G∥.

Thus

|(F, J∗0eY
n
t (1)eY

n
t (2)eY

n
t (3,ε)JtG)|

≤
N∑
p=0

εN−pN !

p!(N − p)!

∞∑
j=0

√
(j + p+m− 1) · · · (m+ 1)m

j!
(2γ)j+p−m+1∥F∥∥G∥

≤ At(N)∥F∥∥G∥,

where

At(N) =
∞∑
j=0

(1 + ε)N
√
(j +N +m− 1) · · · (m+ 1)m

j!
(2γ)j+N−m+1.

The numberN depends onm ∈ Xµ, then At(N(m)) turns to be a random process on (Xµ,Bµ, µ).

We set Ct(m) = At(N(m)). For each (x, α,w,m) ∈ R3 × Z2 × X × Xµ, |(F, J∗0eZ
n
t (ε)JtG)| is

finite with the bound |(F, J∗0eZ
n
t (ε)JtG)| ≤ Ct(m) and

Eµ[C
2
t ] =

∞∑
N=0

tNAt(N)2

N !
e−t

≤ e−t
∞∑

N=0

 ∞∑
j=0

(1 + ε)N (2γ)j+N−m+1

√
(j +N +m− 1) · · · (m+ 1)m

N !j!

2

<∞.

Thus (1) follows.

QED

Lemma C.2 Statement (2) of the proof of Theorem 5.8 is true.

Proof: We show the convergence of J∗0e
Zn
t (ε)Jt as n → ∞. Let F ∈ L2

fin(Q). We show the

convergences of eY
n
t (1), eY

n
t (2) and eY

n
t (3,ε), separately. Thus

∥e−Yt(1)J0F − e−Y n
t (1)J0F∥ ≤

∥∥∥∥∥∥
3⊕

µ=1

n∑
j=1

∫ tj

tj−1

(jtj−1 − js)φ̃(· −Bs)dB
µ
s

∥∥∥∥∥∥ ∥(N + 1l)1/2F∥.
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Then it follows that

Ex
W [∥e−Yt(1)J0F − e−Y n

t (1)J0F∥2] ≤ 3

n∑
j=1

∫ tj

tj−1

∥(jtj−1 − js)φ̃(· −Bs)∥2ds∥(N + 1l)1/2F∥2

= 3
n∑

j=1

∫ tj

tj−1

(
φ̂√
ω
, (1− e−|s−tj−1|ω)

φ̂√
ω

)
ds∥(N + 1l)1/2F∥2

≤ 3
t

n
∥
√
ωφ̂∥2∥(N + 1l)1/2F∥2.

Hence we have

lim
n→∞

Ex
W [∥e−Yt(1)J0F − e−Y n

t (1)J0F∥] = 0. (C.2)

On the other hand in the Fock representation Yt(2) and Y
n
t (2) are represented as

Yt(2) = − 1√
2

∑
j=±1

{
a∗E

(∫ t

0
b−j (s)ds, j

)
− aE

(∫ t

0
b+j (s)ds, j

)}
,

Y n
t (2) = − 1√

2

∑
j=±1

n∑
i=1

{
a∗E

(∫ ti

ti−1

b−j (ti−1)ds, j

)
− aE

(∫ ti

ti−1

b+j (ti−1)ds, j

)}
.

Here b±j (s) = Sj(θNs)e
±ikBs ĵs

φ̂√
ω

and b±j (ti−1) = Sj(θNs)e
±ikBs ĵti−1

φ̂√
ω
. Then the distance be-

tween test functions of Yt(2) and Y
n
t (2) can be estimated as∥∥∥∥∥

∫ t

0
b−j (s)ds−

n∑
i=1

∫ ti

ti−1

b−j (ti−1)ds

∥∥∥∥∥
2

≤ t
n∑

i=1

∫ ti

ti−1

∥∥∥∥Sj(θNs)e
−ikBs (̂js

φ̂√
ω
− ĵti−1

φ̂√
ω
)

∥∥∥∥2 ds.
Since

∥∥∥Sj(θNs)e
−ikBs (̂js

φ̂√
ω
− ĵti−1

φ̂√
ω
)
∥∥∥2 ≤ 2|s− ti−1|∥|k|φ̂∥2, we see that∥∥∥∥∥

∫ t

0
b−j (s)ds−

n∑
i=1

∫ ti

ti−1

b−j (ti−1)ds

∥∥∥∥∥
2

≤ 2

n
t2∥|k|φ̂∥2.

It is concluded that

lim
n→∞

∥∥∥∥∥
∫ t

0
b−j (s)ds−

n∑
i=1

∫ ti

ti−1

b−j (ti−1)ds

∥∥∥∥∥ = 0. (C.3)

Furthermore by (C.3) it can be straightforwardly seen that

eY
n
t (2)F → eYt(2)F (C.4)

by the expansion eY
n
t (2)F =

∑∞
j=0

Y n
t (2)j

j! F .

In the same argument as in the proof of Lemma C.1 for every m ∈ Xµ there exists N =

N(m) ∈ N such that map t 7→ Nt(m) is not continuous at points s1 = s1(m), . . . , sN = sN (m).

We suppose that si is in (n(si), n(si) + t/n] for sufficiently large n. We get

eY
n
t (3,ε) =

N∏
i=1

(−ϕi − εψε(ϕi)),
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where ϕi = Hod(Bsi ,−θNsi−
, n(si)). In Fock representation we can also have

Hod(Bsi ,−θNsi−
, si) ∼=

1√
2

∑
j=±1

{
a∗E

(
c−j (si), j

)
− aE

(
c+j (si), j

)}
,

Hod(Bsi ,−θNsi−
, n(si)) ∼=

1√
2

∑
j=±1

{
a∗E

(
c−j (n(si)), j

)
− aE

(
c+j (n(si)), j

)}
,

where c±j (t) = Tj(−θNsi−
)(̂jt

φ̂√
ω
)e±ikBsi . We then estimate the distance between their test

functions as ∥∥∥c−j (n(si))− c−j (si)
∥∥∥2 ≤ 2

(
|k|φ̂√
ω
, (1− e−|n(si)−si|ω)

|k|φ̂√
ω

)
.

Clearly, n(si) → si as n→ ∞. Then

lim
n→∞

Hod(Bsi ,−θNsi−
, n(si)) = Hod(Bsi ,−θNsi−

, si),

lim
n→∞

ψε(Hod(Bsi ,−θNsi−
, n(si))) = ψε(Hod(Bsi ,−θNsi−

, si))

on K∞ and we have

lim
n→∞

eY
n
t (3,ε) =

N∏
i=1

(−Ψε(Hod(Bsi ,−θNsi−
, si))). (C.5)

Then by (C.2), (C.4) and (C.5) we can see that for each (x, α,m) ∈ R3 × Z2 × Xµ,

Ex
W

[(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)]
→ Ex

W

[(
F (q0), J

∗
0e

Zt(ε)JtG(qt)
)]

as n → ∞ and |Ex
W [
(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)
]| ≤ Ct(m)Ex

W [∥F (q0)∥∥G(qt)∥] and the dominated

function Ct(m)∥F (q0)∥∥G(qt)∥ is integrable. The Lebesgue dominated convergence theorem

yields that ∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)]
dx

→
∫
R3

∑
α∈Z2

Ex,α
[
e−

∫ t
0 V (Br)dr

(
F (q0), J

∗
0e

Zn
t (ε)JtG(qt)

)]
dx

for F,G ∈ K∞ as n→ ∞. Hence the proof of (2) is complete.

QED
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[120] K. I. Sato. Lévy Processes and Infinite Divisibility. Cambridge University Press, 1999.

[121] R. Schilling, R. Song, and Z. Vondracek. Bernstein Functions. Theory and Applications.

Walter de Gruyter, 2010.

[122] I. Segal. Tensor algebras over Hilbert spaces, I. Trans. Amer. Math. Soc., 81:106–134,

1956.

[123] I. Segal. Tensor algebras over Hilbert spaces, II. Ann. Math., 63:160–175, 1956.

[124] B. Simon. Quadratic forms and Klauder’s phenomenon: A remark on very singular per-

turbations. J. Funct. Anal., 14:295–298, 1973.

[125] B. Simon. The P (ϕ)2 Euclidean (Quantum) Field Theory. Princeton University Press,

1974.

[126] B. Simon. A canonical decomposition for quadratic forms with applications to monotone

convergence theorems. J. Funct. Anal., 9:377–385, 1978.

[127] B. Simon. Functional Integrations and Quantum Physics. Academic Press, 1979, 2nd ed.

2005.

[128] B. Simon. Schrödinger semigroups. Bull. Amer. Math. Soc., 7:447–526, 1982.

[129] A. D. Sloan. A nonperturbative approach to nondegeneracy of ground states in quantum

field theory: polaron models. J. Funct. Anal., 16:161–191, 1974.

[130] H. Spohn. Effective mass of the polaron: a functional integral approach. Ann. Phys.,

175:278–318, 1987.

[131] H. Spohn. Dynamics of Charged Particles and their Radiation Field. Cambridge University

Press, 2004.

[132] B. Thaller. The Dirac equation. Springer, 1992.

[133] H. F. Trotter. On the product of semi-groups of operators. Proc. Amer. Math. Soc.,

10:545–551, 1959.

111


