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Schrodinger operator with point interactions

Let & be a locally finite set in R? (d = 1,2, 3), that is,
#(§ N By(R)) < o0

for every R > 0, where B,(R) = {y € R%; |y — 2| < R} and #S is
the cardinality of a set S. Let o = (), e¢ be a sequence of real
numbers. We consider the Schrodinger operator —A,, ¢, formally
written as

—A, ¢ = —A + 'point interactions on &,

where q, is the parameter representing the interaction at the point y.
Basic facts about —A, ¢ are found in the book ‘Solvable models in
quantum mechanics’ by Albeverio et al.
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Definition of Point interactions

A rigorous definition of —A, ¢ is as follows.

—Aa’gu = — A‘Rd\gu,

D(=Aag) = {u € Hp (RT\ &) N L*(RY); —Algayeu € L*(RY),
u satisfies (BC'), for every y € £}.

Here, —A|ga\¢u is defined as a Schwartz distribution on R*\ . The
boundary condition (BC'), is as follows:

u(y+0) = u(y =0) = u(y), u'(y+) —u'(y=) = ayuly).
u(x) = uypologlr —y| +uy1 +o(1) as x — y, and

2Ty Uy 0 + Uy = 0.

u(z) = uyole —y|™' + uy1 + o(1) as z — y, and

—4moyty o + Uy = 0.
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Point processes

Today we assume that ¢ is a locally finite (random) point process,
i.e. a random set £ obeying some probability law, and #(£ N B) < oo
a.s. for every bounded measurable set B.

We identify a point process £ on a measurable set A in R? with a
probability measure 11 = p1(d€) on a configuration space ()5, the
space of all locally finite subsets of A. When A = R?, we write
@ = Qrae. We regard Q5 as a measure space equipped with the
o-algebra generated by the maps Q) 3 £ — #({N E) (E: Borel
subset in A).
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Point processes (2)

When A is a bounded measurable set in R%,
QA = ZAn/ ~ AO = {®}>
n=0

where the equivalence relation ~ is defined by permutation of
coordinates.

For simplicity, we assume that o = «, is a constant sequence, that is,
the value o, is a real constant independent of y,£. We also denote
the common value of ay, by «, for simplicity.
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Examples of point processes (1)

Today we consider the following point processes.

(1) Poisson point process. Most basic point process, which
represents the complete spatial randomness.

(2) Determinantal point process or Fermion point process. Random
points have some repulsive interactions. (cf. Macchi 1975,
Shirai-Takahashi 2003, Ueki 2019, ..., plenary talk by Shirai
2024 in autumn MSJ meeting, etc.) (Today's main topic)

There are many other point processes, e.g., Gibbs point process (a

PP which is absolutely continuous w.r.t. Poisson PP), Cox point
process (a Poisson PP with random intensity measure), etc.
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Examples of point processes (2)

The book

‘Spatial Point Patterns, Methodology and Applications with R’
by Adrian Baddeley, Ege Rubak, and Rolf Turner

contains many examples of point processes, and explains how to
simulate point processes by using the R library spatstat.

Below we shall show some pictures of point processes created by
spatstat.
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Poisson point process (1)

We say i = p(d€) is the Poisson point process on R? with intensity
measure pdz (p > 0 is a constant) if the following holds.

(1) For any bounded measurable set £ of R?, #(£ N E) obeys the
Poisson distribution with parameter p|E|, that is,

pliren B) = iy = WE e 12,

where |E| is the Lebesgue measure of E.

(2) For any disjoint bounded measurable sets E; (j =1 n), the
random variables #({ N E;) (j = 1,...,n) are independent.

In the next slide, we show two examples of the Poisson point process
n [0, 1]* with intensity 100dx.
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Poisson point process (2)

Poisson point process
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Determinantal point process (1)

Let K be a bounded self-adjoint operator on L?*(R?) with integral
kernel K(z,y). We assume the following.
(K1) K >0 (i.e., (u, Ku) > 0 for every u € L*(R%)) and ||K|| < 1.
(K2) For every compact set E in R?, the operator YK X is a trace
class operator on L?*(R%), where x is the characteristic
function of the set E.
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Determinantal point process (2)

According to Theorem 1.2 of Shirai—Takahashi 2003, the
determinantal point process ji_;  is defined by its Laplace transform

,ﬁuLK<f>:=:/Q/L_Lk<df>exp<—«5,f>):=1Det<f——f<¢x
Ky(x,y) = Vo(2)K(z, y)vV ¢(y),
¢(r) =1 —exp(—f(z)), (suppy =supp f)

for any non-negative measurable function f on R% with compact
support. Here, Det is the Fredholm determinant (K, is in the trace
class), and

& NH=> flx), ¢€Q.

el
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n-point correlation function (1)

The n-point correlation function pp(z1,...,2,) (n =1,2,...) of a
point process ;. on R is defined by

/ (&ny fryp(dE) = / folzy, o xn)pn(x, . xy)dey .. day,
Q (Rd)n
<€n7fn> = Z fTb(wl"'wxn)

1,...,xn €E,distinct

for any non-negative measurable function f, on (R%)" with compact
support.
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n-point correlation function (2)

If we take f,, = xg, (1) xE,(z,) for disjoint bounded measurable
sets F1,..., E,, we have

E[F#(E1NE) - #(EnNE)]

= / pn(x1, .. xy)day .. dx,.
Eix-xEnp,

Particularly when n = 1, we have

E[#(EN¢)] = /E pr(2)dz

for every bounded measurable set . From this reason, we call p; the
intensity function of the point process p.

When 1 is the Poisson point process with intensity pdx, we have

pn(x1, ..., 2,) = p" (constant).
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Determinantal point process (4)

According to Theorem 4.1 of Shirai—Takahashi 2003, the n-point
correlation function of the determinantal process 11_; k is given by

Pr—1,k(T1,. .., x,) = det (K (z;, xj))zjzl. (1)
If the kernel K is continuous, (1) means that
pn7_17K(ZE17 . ,J,’n) — 0

as r; — x; — 0 for some ¢ # j, which implies that there is some
repulsive interaction between points in &.
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Gaussian kernel (1)

Let K(x,y) be the Gaussian kernel of convolution type, that is

2
K(z,y) = pexp (—'x BQyI )

where p > 0 and 8 > 0 are constants. If we assume

p(Bm)*? < 1,

then the assumptions (K1) and (K2) are satisfied. Actually, the
Fourier transform of k(z) = pexp(—|z|?/5?) is

k(€)= / k(z)e > dy = p(ﬁQﬂ-)d/?e—ﬂBQlE\Z‘
Rd
Thus o(K) = [0, p(8*7)%?), and (K1) is satisfied. We can prove

(K2) by checking that xzV/K is a Hilbert-Schmidt operator for any
compact set F.
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Gaussian kernel (2)

By (1), the n-point correlation function p,, _1 i for p_1  is given by

lzg—2;12\ ™
— n - 352
Pr—1k(T1, ..., x) =pdet e 7 )
ij=1

In particular, the intensity function is given by
p1-1.k(T1,. .., 2n) = p.
Moreover, we have
Pk (T1,. 1) = p" (B — +0),

which means that ;11 x converges to the Poisson point process with
intensity pdzx.
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Determinantal point process (5 = 0.05)

Determinantal point process beta 0.05

Determinantal point process beta 0.05
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In the sequel, we assume d = 3, and assume one of the following.

(PP) The process p is the Poisson point process with intensity pdz,
where p is a positive constant.

(DP) The process p is the determinantal point process p_y j with the
Gaussian kernel

2
K(z,y) = pexp (_M’Ty\>

where p and (3 are positive constants with

p(37m)*? < 1.
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Self-adjointness, Spectrum

Theorem 1
Let d = 3. Suppose that either (PP) or (DP) holds.
(i) The operator —A, ¢ is a self-adjoint operator on L?(R?) for any
real-valued sequence o = () ee, almost surely.

(ii) Assume further that « is a constant sequence. Then, the
spectrum of —A,, ¢ satisfies 0(—A,¢) = R, almost surely.

.

When (PP) holds, Theorem 1 is proved in Kaminaga—M—-Nakano
2020. For the proof of (i), we use some special criterion of
self-adjointness, called the percolation criterion. For the proof of (ii),
we use the method of admissible potentials, a common method for
calculating the spectrum of random Schrodinger operators.
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Percolation criterion

Theorem 2 (Kaminaga—M-Nakano 2020)

Let d = 2,3 and £ be a locally finite set in R?. Assume that there
exists R > 0 such that every connected component of

(O)r = {x € R% dist(z,€) < R} is bounded. Then, —A,¢ is
self-adjoint for any real-valued sequence «.
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Admissible potentials

Lemma 3

Let d = 3. Suppose that « is a constant sequence, and either (PP)
or (DP) holds. Then, we have almost surely

o(—Bag) = |J o(-Aae).

#E' <oo

This lemma follows from the observation that ‘for any finite
configuration &', we can find an approximation of £’ in the
configuration &, almost surely.” Here we use the independence of
#(£ N Ej) for disjoint E; (7 =1,...,n) for (PP), or the mixing
property of yi_q i with convolution kernel for (DP) (cf. Soshnikov
2000).
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Integrated density of states (1)

Let us define the integrated density of states, in the following way.

For L € N:={1,2,3,...}, let C;, = (0, L)®. For a locally finite set
§ with 90, NE =0, let —AD, - (resp. =AY, ) be the operator
—A, ¢ restricted to C', with the Dirichlet boundary conditions
ulpc, = 0 (resp. Neumann boundary conditions 2%|5c, =0 ).

ForA€e Rand =D, N, let Ni,g,cL(/\) be the number of

eigenvalues of _Ai,g,cL less than or equal to A, counted with
multiplicity.
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Integrated density of states (2)

Theorem 4

Let d = 3. Assume that « is a constant sequence, and either (PP) or
(DP) holds.

(i) For § = D, N, we have

Nigo, ) E[N; ¢ 0, (V)]
g — e 0 e @O O )
L—oo ‘CL’ L—oo |CL‘ ( )

almost surely. Here |C7| = L3 is the Lebesgue measure of C;.

The equality (2) means that the left hand side of (2) is independent
of &, almost surely. For the proof, we use the translational invariance
and the ergodicity of the process yi. Notice that the ergodicity
follows from the mixing property.
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Integrated density of states (3)

Theorem 4 (continued)

(i) We denote the right hand side of (2) by N%(\). Then we have
NP(A40) = NY (A +0)

for every A € R, where f(A +0) :=lim 49 f(A+€).
Moreover, if either NP or NV is continuous at )\, then we have

NP(\) = NY(\) = N°(A+0) = NY(A +0).

In the sequel, we denote
Nao(A) := NA(A+0) (t= D or N),

and call N, () the integrated density of states (IDS).
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Integrated density of states (4)

For A < 0, we can use another expression of N, ()). Let Ny ¢, (N)
be the number of eigenvalues of —A, ¢, less than or equal to A,
counted with multiplicity. Notice that —A, ¢, is a self-adjoint
operator on L*(R?) (not L*(CYy)).

Proposition 5

Suppose the assumptions of Theorem 4 hold. If A < 0 and
NP(X) = NY()), then

The advantage of the expression (3) is that there is an explicit
formula for the spectrum of —A, ¢, .
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Pastur tail (1)

Let us review the result about the asymptotics of

IDS as A\ — —oo, for usual Schrodinger operator
H = —A+V on R? with

Vi)=Y Vo(z—y),

yeg

where £ is the Poisson point process with intensity
measure pdzr, Vo € C°(RY), Vo < 0, and the mini-
mum of V4 is V4(0) < 0.

In this case, we also have o(H) = R, almost
surely (cf. Ando—lwatsuka—Kaminaga—Nakano 2006,
Kaminaga-M 2012). If n random points exist near
0, the depth of the potential well is almost multiplied ~ nVo(0)
by n.
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Pastur tail (2)

The above mechanism also explains very rapid decay of IDS as
A — —o0:

Al
log N(\) = — log Al (14+0(1)) asA— —oc0  (4)
Vo(0)]
(Pastur 1974, 1977). So N(A) decays super exponentially
O(IA|7¢M) as A — —oc.

The asymptotics (4) is roughly explained as follows. A negative
spectrum A is created by at least n = |\|/|V5(0)| random points in a
small ball B.. The probability of this event is

BE " n

p= 6_”|BE|M, n! ~ (2mn)% (n/e)" .

n!
Recently, Nakagawa 2023 gives a remarkable example of the Gibbs
process such that log N(\) ~ —C\? as A\ — —oc.

Takuya Mne (Kyoto Inst. Tech.) IDS for Pl on determinantal PP NKEW 2 I F— 27 /60



Auxiliary function

In order to state our main result, we introduce an auxiliary function.

For s > max(0, —47a), let R,(s) be the unique solution of the
following equation with respect to R:

e*SR
S= ¢ = —4ra. (5)

When a = 0, (5) becomes a simple equation sR = e *%. So we have
explicitly

Ro(s) = %0 (s> 0),

where ¢ is the unique positive solution of ¢t = e~* (to = 0.567).
When o # 0, we have

where, f Ngﬁf/g — 1.
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Asymptotics of IDS for Poisson PI (1)

Theorem 6 (Kaminaga—M—Nakano, submitted)

Let d = 3. Suppose that « is a constant sequence, and . satisfies
(PP). Then we have

2m _
No(=5") = 5-0°Ra(5)’ + O(s™°7) (s = o0), (6)
for every 0 < e < 3. In particular, the principal term is
2
No(—52) ~ %p%%s 3 (s = o0). (7)
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Asymptotics of IDS for Poisson Pl (3)

Theorem 6 says N()\) decays polynomially
Na(A) = O(IA*%) (A = —o0).

The principal term given in (7) is independent of a. When we
calculate IDS numerically, the first term in RHS of (6) gives more
accurate approximation.
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Numerical result (o = 0.0, 10000 tests)
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Numerical result (o = 0.5, 10000 tests)
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Numerical result (a« = —0.5, 10000 tests)
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Asymptotics of IDS for Determinantal Pl

Let d = 3. Suppose « is a constant sequence and (DP) holds
(K (x,y) = pe1#=*/8*) Then we have for every 0 < € < 5

No(—s") = 27p* - f(Ra(s)) +O(s7°7) (s = 00),

f(R) = /OR r (1 — 6_2;;) dr. (8)

The principal term is given by

Ampts s

N(—s?) ~ 572 s

(s = 00). (9)

v

Comparing (9) with (7), we see that the IDS for (DP) decays faster
than the IDS for (PP).
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Numerical result (p =1, 6 = 0.1, 10000 tests)

IDS for determinantal process with Gaussian kernel
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Numerical result (p =1, 5 = 0.5, 10000 tests)

IDS for determinantal process with Gaussian kernel
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Numerical result (p =1, 8 = 0.5, 100000 tests)

IDS for determinantal process with Gaussian kernel
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Spectrum of —A, ¢ for finite £

The following result is taken from the book of Albeverio et al.

Proposition 8 (Spectrum of —A,, ¢ for finite &)

Let d = 3. Let £ = {y;}}_, be a finite set and o = (o)},
(o = ay,). Then, for A = —s* (s > 0), A is an eigenvalue of —A ¢
if and only if det A(s) = 0, where A(s) = (a;x(s)) is the N x N

matrix given by

S .
Qs + E (] = k)?
ajk(s) = e 51V —ukl ( » k)
e — j .
4|y — yil
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Spectrum of —A, ¢ for #£ =1

In the case #£ =1 and a3 = a, A = —s? (s > 0) is an eigenvalue of
—Aq ¢ if and only if

Thus
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Spectrum of —A, ¢ for #£ = 2

In the case #£ =2, |y1 — 2| = Rand a; = ap = a, A = —s?

(s > 0) is an eigenvalue of —A, ¢ if and only if 0 is an eigenvalue of

N ) est
a — —_—
- 41 47 R
A(S) - 6_SR ’
iR ‘T
that is,
P Che s oy
a+-o— |8 = 5 = —4ra
47 R R ’
1 —sR —sR
oH—E(s—eR ) :0<:>s—eR = —4n.

The second equation is the defining equation of R,(s), and
R,(s) = 0as s — o0.
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Asymptotics of IDS and close pairs (1)

The calculus in the previous slide roughly suggests that ‘if we find a
close pair {y1,y2} C & W|th ly1 — 2| < Ra(s), then we find an
eigenvalue less than —s? of —A, ;'. From this consideration, we have

Na(—5?)

\C% | . 1E[#{y€§ﬂCL, ny(Ra(s)) = 2}] (s — 00),
ny(R) = #(£ N By(R)),
By(R) = {z € R’; [z —y| < R}.

Thus the problem is reduced to ‘calculate the expectation of the
number of close pairs’.
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Asymptotics of IDS and close pairs (2)

Let d = 3. Let « is a constant sequence, and p satisfies (PP). Then, for
every 0 with 1/2 < § < 1, and for every m > 0, there exist constants
Ry > 0 and C' > 0 such that

E[NCL<—< o(R) = R™))?

SEl#{y € £ Cr;s ny(R) =2}] - CRY|Cy,
E[NCL(—( o(R) + R™))?

SEl#Hy € €N Cr; ny(R) = 2}] + CR®|Cy,

for every 0 < R < Ry and every L > R™2, where s = 5,(R) is the inverse
function of R = R,(s).

v

If we assume (DP), then R% becomes R'%.
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Number of close pairs for Poisson PP

Proposition 10

Let d =1,2,3,.... Let 1 be the Poisson point process in R? with
intensity measure pdz, where p > 0 is a constant. For L > 0, let
Cp = (0, L)% Then, we have for n =1,2,3, ...

E[#{y e &{nCyp; ny(R) = n}]
Cr
= _;WIBO(RH”*,O%_MBO(R)'.

(n
In particular, when d = 3, n =2, and R = R,(s), we have

1E[#{y € {NCL; ny(Ra(s)) = 2}] . 27TR() >
2 1] 3 7

which is the first term in our result (6).
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Proof of Proposition 10 (1)

(Proof) For a point process p (probability measure on the
configuration space Q) and z € R?, the reduced Palm measure ., is

a probability measure on @ \ {x} (the configuration space on
R?\ {x}), defined by the formula

/ (Zg@:, s>) () = [ Bulo(o g U )] dpr (o).

el

E, [g(r, £ U {2})] = / g(z, € U {2})dpi (6),

Q\{z}
p1(E) = /Q#(E N&)du(§) (intensity measure),

for any non-negative measurable function g on R? x Q. The reduced
Palm measure /', is considered to be the conditional distribution on
@ \ {x} under the condition z € €.
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Proof of Proposition 10 (2)

If 14 is the Poisson PP with intensity pdx, then it is well-known that
p1(dx) = pdx and 1!, = 1 (since the configuration on z and the
configuration on R?\ {x} are independent). We take

)1 (v € CL, n.(R) =n),
g(x,&) = {0 (otherwise),

where n,(R) = #(£ N B,(R)). Then we have
E[#{z € £NCr;n.(R) =n}]

- /C w{#(B.(R) 1 ({2} UE)) = npda
- /C W{#(BL(R) N E) = n — 1hpda

B (pIBo(R)D)"" _iBocr)]
= p|CL| (n—1)] e :

O
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Palm measure for determinantal PP

Theorem 11 (Shirai-Takahashi 2003, Theorem 1.7)

Let p_1 i be the determinantal point process with kernel K (x,y). If
K(zg,z0) > 0, then the reduced Palm measure u;'m is the
determinantal point process (i k=0 with kernel K*°(x,y), where

. v K(z,y) K(z,xo)
K*(z,y) = K (z9, o) det (K(xmy) K(SEO’:EO)) '

If K(x,y) = pe~1#¥’/%” then we have

1
Kﬂfo(x’y) = =
P

_ eyl Jr = wol* + [wo — yP
= pJexp 7 exp 7 .
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Number of close pairs for determinantal PP

Proposition 12

Let d =1,2,.... Let u_; i be the determinantal point process with
kernel K (x,y) = pe~1#=%"/8* ‘and p, § are positive constants with
p(B%*7)¥? < 1. Then, we have

E [#{z € £ N CLina(R) = 2}
= PICl [S] F(B)(1+ O(R™2) (R~ +0),

where |S?7!| is the surface volume of S¢7!, and

f(R) = /ORTd_l (1 - 6_2/;22) dr

2R d+4
IW+O(R ) (R—>+0).
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Proof of Proposition 12 (1)

(Proof) As in the proof of Proposition 10,
E[#{z € N Cping(R) = 2}]
= [ e #H B (B 0E) = iy (o). (D)

The intensity measure dp; 1 k() is given by K (g, zo)dzo = pdx.
The probability fi_1 gx=0{---} can be calculated by the following.
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Probability distribution of #(£ N A)

Lemma 13
For a bounded measurable set A and n =0,1,2, ..., we have

p-1x{#(ENA) = n}
= Det(I — Kp) Tr(A"((I — Ka) "' Ka)),

where Ky = xaKxa and Tr(A%---) = 1. In particular,

px({#(ENA) =1})
= Det([ — KA) - Tr (([ — KA)ilKA) 5

From this formula, we have the bound

((I - KA)‘lKA)}".

n!

M*l,K{#(f N A) = n} S Det([ . KA) {Tl"
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Proof of Proposition 12 (2)

By Lemma 13, we have

/'Lfl,KIO ({#<£ N Bwo (R)) = 1}>

-1
= Det(l = K o) Tr((I = K5 ) 'K ),
where KE&O(R) is an integral operator with kernel

K}?;O(R) (z,y)
= PXBgy(R) (x)XBzO(R) (y)

fosp (FE) g (b ol
B2 B2 '

20 : .
The operator KB%(R) is @ non-negative, trace-class operator.
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Proof of Proposition 12 (3)

Let || - ||, be the trace norm. Since K () is non-negative, we have

IKE Gl = TR )

= / KEZO(R) (z,z)dz
Bao (R)

2
L (e e

R 2r2
Sl [ (1o ol
0

m = | ' (zﬁ— " 0<rd+3>)

2Rd+2
= m + O(Rd+4) (R — +0).
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Proof of Proposition 12 (4)

By Lemma 2.1 of Shirai—Takahashi 2003,

Det(l — K39 ) = 1 +Z "TH(AKE ()

| A" K5 il < 1K ol

Thus we have

Det(I — K () =1+ O(R?) (R — +0).

Moreover

x 1 x 17
(I =Ky ) =1+~ Kg %) Kg, (r)

I = K5 ) Ky (RII<ZIIK””° wl"=O0(R™?) (R — +0).

z0
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Proof of Proposition 12 (5)

By these formulas, we have

fi-1,k00 ({#(§ N Byo (R)) = 1})
= p|SY f(R)(1+ O(R™?)) (R — +0). (8)

Substituting (8) into (7), we have

E [#{r € £NCring(R) = 2}]
= PP Cu] [ F(R) (1 + O(R*?))

2Rd+2
— p2|CL‘ |Sd71| ((

m + O(Rd+4)) (R — —H)). ]

We see that the decay rate O(R4"?) is faster than that in the

Poisson case (O(R?)). This facts also leads us faster decay of IDS
N(—s?) as s — c0.
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Proof of Lemma 13 (1)

(Proof) Assume that we know the Laplace transform

/Q uld€) exp(— (€, £)), - fw)

el

of a point process ji. For a bounded measurable set A, take f = txx.
Then the left hand side becomes

/Q u(d€) exp(—tH(€ N A) = S p#ENA) = n}e ™. (9)

So we have to calculate the expansion of the above Laplace
transform for 1 = p_1 g=o with respect to .
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Proof of Lemma 13 (2)

For a general DPP p_; k, we have by definition

/Q 1 (d€) exp(— (€, tya) = Det(I — K,),

Ky(z,y) = V() K (z,y)Ve(y),

o(z) =1 —exp(—txa(z)) = (1 — e )xalz).
Thus we have

K,=(1—-¢e¢"Ky, Kjy=xaKxa.
Det(I — K,) =Det(I — (1 —e ") Ky)
= Det(] — Ky)Det (I +e (I — Ky)'Ky) .
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Proof of Lemma 13 (3)

We use the expansion of the Fredholm determinant (Proposition 2.1
of Shirai-Takahashi 2003):

Det(I+T) =1+ Y Tr(A"T),

n=1

for a trace class operator 1" on a Hilbert space H, where the operator
A™T on A"H is defined by

/\"T(eil/\---/\ein):Teil/\---/\Tein <21<<2n)

for an ONB {e;}$2, of H.
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Proof of Lemma 13 (4)

Thus we have
Det(I +e (I — Kp) ' Ky)

=14+ f: e ™ Tr(A"((I — Kp) ' Ky)),

Detz;— K,)
= Det(I — K,) (1 + i e ™ Tr(A™((I - KA)—lKA))> :

Comparing with (9), we have
ponse{#H(EN A) = n} = Det(I — Kn) Tr(A" (T = Ka)™' Ky)

for every n € N. m
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Further problems

There are many remaining problems.
(i) Other kernel K7

(i) Asymptotics of IDS for the Schrédinger operator with point
interactions on a-determinantal process?

) Two-dimensional case?
) IDS for hard core process (Lifshitz tail)?
(v) Anderson localization?
) Level statistics?
)

Distribution of resonances?
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