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Schrödinger operator with point interactions

Let ξ be a locally finite set in Rd (d = 1, 2, 3), that is,

#(ξ ∩ B0(R)) < ∞

for every R > 0, where Bx(R) = {y ∈ Rd ; |y − x| < R} and #S is
the cardinality of a set S. Let α = (αy)y∈ξ be a sequence of real
numbers. We consider the Schrödinger operator −∆α,ξ, formally
written as

−∆α,ξ = −∆+ ‘point interactions on ξ’,

where αy is the parameter representing the interaction at the point y.
Basic facts about −∆α,ξ are found in the book ‘Solvable models in
quantum mechanics’ by Albeverio et al.
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Definition of Point interactions

A rigorous definition of −∆α,ξ is as follows.

−∆α,ξu = −∆|Rd\ξu,

D(−∆α,ξ) = {u ∈ H2
loc(R

d \ ξ) ∩ L2(Rd) ; −∆|Rd\ξu ∈ L2(Rd),

u satisfies (BC)y for every y ∈ ξ}.

Here, −∆|Rd\ξu is defined as a Schwartz distribution on Rd \ ξ. The
boundary condition (BC)y is as follows:

d = 1 u(y+0) = u(y− 0) = u(y), u′(y+)− u′(y−) = αyu(y).

d = 2 u(x) = uy,0 log |x− y|+ uy,1 + o(1) as x → y, and
2παyuy,0 + uy,1 = 0.

d = 3 u(x) = uy,0|x− y|−1 + uy,1 + o(1) as x → y, and
−4παyuy,0 + uy,1 = 0.
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Point processes

Today we assume that ξ is a locally finite (random) point process,
i.e. a random set ξ obeying some probability law, and #(ξ ∩B) < ∞
a.s. for every bounded measurable set B.

We identify a point process ξ on a measurable set Λ in Rd with a
probability measure µ = µ(dξ) on a configuration space QΛ, the
space of all locally finite subsets of Λ. When Λ = Rd, we write
Q = QRd . We regard QΛ as a measure space equipped with the
σ-algebra generated by the maps QΛ 3 ξ 7→ #(ξ ∩ E) (E: Borel
subset in Λ).
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Point processes (2)

When Λ is a bounded measurable set in Rd,

QΛ =
∞∑
n=0

Λn/ ∼, Λ0 = {∅},

where the equivalence relation ∼ is defined by permutation of
coordinates.

For simplicity, we assume that α = αy is a constant sequence, that is,
the value αy is a real constant independent of y, ξ. We also denote
the common value of αy by α, for simplicity.
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Examples of point processes (1)

Today we consider the following point processes.

(1) Poisson point process. Most basic point process, which
represents the complete spatial randomness.

(2) Determinantal point process or Fermion point process. Random
points have some repulsive interactions. (cf. Macchi 1975,
Shirai–Takahashi 2003, Ueki 2019, ..., plenary talk by Shirai
2024 in autumn MSJ meeting, etc.) (Today’s main topic)

There are many other point processes, e.g., Gibbs point process (a
PP which is absolutely continuous w.r.t. Poisson PP), Cox point
process (a Poisson PP with random intensity measure), etc.
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Examples of point processes (2)

The book

‘Spatial Point Patterns, Methodology and Applications with R’
by Adrian Baddeley, Ege Rubak, and Rolf Turner

contains many examples of point processes, and explains how to
simulate point processes by using the R library spatstat.

Below we shall show some pictures of point processes created by
spatstat.
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Poisson point process (1)

We say µ = µ(dξ) is the Poisson point process on Rd with intensity
measure ρdx (ρ > 0 is a constant) if the following holds.

(1) For any bounded measurable set E of Rd, #(ξ ∩ E) obeys the
Poisson distribution with parameter ρ|E|, that is,

µ{#(ξ ∩ E) = k} =
(ρ|E|)k

k!
e−ρ|E| (k = 0, 1, 2, . . .),

where |E| is the Lebesgue measure of E.

(2) For any disjoint bounded measurable sets Ej (j = 1, . . . , n), the
random variables #(ξ ∩ Ej) (j = 1, . . . , n) are independent.

In the next slide, we show two examples of the Poisson point process
on [0, 1]2 with intensity 100dx.
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Poisson point process (2)

  Poisson point process   Poisson point process
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Determinantal point process (1)

Let K be a bounded self-adjoint operator on L2(Rd) with integral
kernel K(x, y). We assume the following.

(K1) K ≥ 0 (i.e., (u,Ku) ≥ 0 for every u ∈ L2(Rd)) and ‖K‖ ≤ 1.

(K2) For every compact set E in Rd, the operator χEKχE is a trace
class operator on L2(Rd), where χE is the characteristic
function of the set E.
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Determinantal point process (2)

According to Theorem 1.2 of Shirai–Takahashi 2003, the
determinantal point process µ−1,K is defined by its Laplace transform

Lµ−1,K
(f) :=

∫
Q

µ−1,K(dξ) exp(−〈ξ, f〉) = Det(I −Kφ),

Kφ(x, y) =
√
φ(x)K(x, y)

√
φ(y),

φ(x) = 1− exp(−f(x)), (suppφ = supp f)

for any non-negative measurable function f on Rd with compact
support. Here, Det is the Fredholm determinant (Kφ is in the trace
class), and

〈ξ, f〉 =
∑
x∈ξ

f(x), ξ ∈ Q.
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n-point correlation function (1)

The n-point correlation function ρn(x1, . . . , xn) (n = 1, 2, ...) of a
point process µ on Rd is defined by∫

Q

〈ξn, fn〉µ(dξ) =
∫
(Rd)n

fn(x1, . . . , xn)ρn(x1, . . . , xn)dx1 . . . dxn,

〈ξn, fn〉 =
∑

x1,...,xn∈ξ,distinct

fn(x1, . . . , xn)

for any non-negative measurable function fn on (Rd)n with compact
support.
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n-point correlation function (2)

If we take fn = χE1(x1) · · ·χEn(xn) for disjoint bounded measurable
sets E1, . . . , En, we have

E [#(E1 ∩ ξ) · · ·#(En ∩ ξ)]

=

∫
E1×···×En

ρn(x1, . . . , xn)dx1 . . . dxn.

Particularly when n = 1, we have

E [#(E ∩ ξ)] =

∫
E

ρ1(x)dx

for every bounded measurable set E. From this reason, we call ρ1 the
intensity function of the point process µ.

When µ is the Poisson point process with intensity ρdx, we have

ρn(x1, . . . , xn) = ρn (constant).

Takuya Mne (Kyoto Inst. Tech.) IDS for PI on determinantal PP 九大数物セミナー 13 / 60



Determinantal point process (4)

According to Theorem 4.1 of Shirai–Takahashi 2003, the n-point
correlation function of the determinantal process µ−1,K is given by

ρn,−1,K(x1, . . . , xn) = det(K(xi, xj))
n
i,j=1. (1)

If the kernel K is continuous, (1) means that

ρn,−1,K(x1, . . . , xn) → 0

as xi − xj → 0 for some i 6= j, which implies that there is some
repulsive interaction between points in ξ.
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Gaussian kernel (1)

Let K(x, y) be the Gaussian kernel of convolution type, that is

K(x, y) = ρ exp

(
−|x− y|2

β2

)
,

where ρ > 0 and β > 0 are constants. If we assume

ρ(β2π)d/2 ≤ 1,

then the assumptions (K1) and (K2) are satisfied. Actually, the
Fourier transform of k(x) = ρ exp(−|x|2/β2) is

k̂(ξ) =

∫
Rd

k(x)e−2πiξ·xdx = ρ(β2π)d/2e−π2β2|ξ|2 .

Thus σ(K) = [0, ρ(β2π)d/2], and (K1) is satisfied. We can prove
(K2) by checking that χE

√
K is a Hilbert–Schmidt operator for any

compact set E.
Takuya Mne (Kyoto Inst. Tech.) IDS for PI on determinantal PP 九大数物セミナー 15 / 60



Gaussian kernel (2)

By (1), the n-point correlation function ρn,−1,K for µ−1,K is given by

ρn,−1,K(x1, . . . , xn) = ρn det

(
e
−

|xi−xj |
2

β2

)n

i,j=1

.

In particular, the intensity function is given by

ρ1,−1,K(x1, . . . , xn) = ρ.

Moreover, we have

ρn,−1,K(x1, . . . , xn) → ρn (β → +0),

which means that µ−1,K converges to the Poisson point process with
intensity ρdx.
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Determinantal point process (β = 0.05)

  Determinantal point process beta 0.05   Determinantal point process beta 0.05
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Assumptions

In the sequel, we assume d = 3, and assume one of the following.

(PP) The process µ is the Poisson point process with intensity ρdx,
where ρ is a positive constant.

(DP) The process µ is the determinantal point process µ−1,K with the
Gaussian kernel

K(x, y) = ρ exp

(
−|x− y|2

β2

)
,

where ρ and β are positive constants with

ρ(β2π)3/2 ≤ 1.
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Self-adjointness, Spectrum

Theorem 1
Let d = 3. Suppose that either (PP) or (DP) holds.

(i) The operator −∆α,ξ is a self-adjoint operator on L2(R3) for any
real-valued sequence α = (αy)y∈ξ, almost surely.

(ii) Assume further that α is a constant sequence. Then, the
spectrum of −∆α,ξ satisfies σ(−∆α,ξ) = R, almost surely.

When (PP) holds, Theorem 1 is proved in Kaminaga–M–Nakano
2020. For the proof of (i), we use some special criterion of
self-adjointness, called the percolation criterion. For the proof of (ii),
we use the method of admissible potentials, a common method for
calculating the spectrum of random Schrödinger operators.
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Percolation criterion

Theorem 2 (Kaminaga–M–Nakano 2020)

Let d = 2, 3 and ξ be a locally finite set in Rd. Assume that there
exists R > 0 such that every connected component of
(ξ)R := {x ∈ Rd; dist(x, ξ) < R} is bounded. Then, −∆α,ξ is
self-adjoint for any real-valued sequence α.
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Admissible potentials

Lemma 3
Let d = 3. Suppose that α is a constant sequence, and either (PP)
or (DP) holds. Then, we have almost surely

σ(−∆α,ξ) =
⋃

#ξ′<∞

σ(−∆α,ξ′).

This lemma follows from the observation that ‘for any finite
configuration ξ′, we can find an approximation of ξ′ in the
configuration ξ, almost surely.’ Here we use the independence of
#(ξ ∩ Ej) for disjoint Ej (j = 1, . . . , n) for (PP), or the mixing
property of µ−1,K with convolution kernel for (DP) (cf. Soshnikov
2000).
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Integrated density of states (1)

Let us define the integrated density of states, in the following way.

For L ∈ N := {1, 2, 3, . . .}, let CL = (0, L)3. For a locally finite set
ξ with ∂CL ∩ ξ = ∅, let −∆D

α,ξ,CL
(resp. −∆N

α,ξ,CL
) be the operator

−∆α,ξ restricted to CL with the Dirichlet boundary conditions
u|∂CL

= 0 (resp. Neumann boundary conditions ∂u
∂n
|∂CL

= 0 ).

For λ ∈ R and ♯ = D,N , let N ♯
α,ξ,CL

(λ) be the number of

eigenvalues of −∆♯
α,ξ,CL

less than or equal to λ, counted with
multiplicity.
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Integrated density of states (2)

Theorem 4
Let d = 3. Assume that α is a constant sequence, and either (PP) or
(DP) holds.

(i) For ♯ = D,N , we have

lim
L→∞

N ♯
α,ξ,CL

(λ)

|CL|
= lim

L→∞

E[N ♯
α,ξ,CL

(λ)]

|CL|
(2)

almost surely. Here |CL| = L3 is the Lebesgue measure of CL.

The equality (2) means that the left hand side of (2) is independent
of ξ, almost surely. For the proof, we use the translational invariance
and the ergodicity of the process µ. Notice that the ergodicity
follows from the mixing property.
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Integrated density of states (3)

Theorem 4 (continued)

(ii) We denote the right hand side of (2) by N ♯
α(λ). Then we have

ND
α (λ+ 0) = NN

α (λ+ 0)

for every λ ∈ R, where f(λ+ 0) := limϵ→+0 f(λ+ ϵ).
Moreover, if either ND or NN is continuous at λ, then we have

ND(λ) = NN(λ) = ND(λ+ 0) = NN(λ+ 0).

In the sequel, we denote

Nα(λ) := N ♯
α(λ+ 0) (♯ = D or N),

and call Nα(λ) the integrated density of states (IDS).

Takuya Mne (Kyoto Inst. Tech.) IDS for PI on determinantal PP 九大数物セミナー 24 / 60



Integrated density of states (4)

For λ < 0, we can use another expression of Nα(λ). Let Nα,ξ,CL
(λ)

be the number of eigenvalues of −∆α,ξ∩CL
less than or equal to λ,

counted with multiplicity. Notice that −∆α,ξ∩CL
is a self-adjoint

operator on L2(Rd) (not L2(CL)).

Proposition 5
Suppose the assumptions of Theorem 4 hold. If λ < 0 and
ND

α (λ) = NN
α (λ), then

Nα(λ) = lim
L→∞

E[Nα,ξ,CL
(λ)]

|CL|
. (3)

The advantage of the expression (3) is that there is an explicit
formula for the spectrum of −∆α,ξ∩CL

.
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Pastur tail (1)

Let us review the result about the asymptotics of
IDS as λ → −∞, for usual Schrödinger operator
H = −∆+ V on Rd with

V (x) =
∑
y∈ξ

V0(x− y),

where ξ is the Poisson point process with intensity
measure ρdx, V0 ∈ C∞

0 (Rd), V0 ≤ 0, and the mini-
mum of V0 is V0(0) < 0.

In this case, we also have σ(H) = R, almost
surely (cf. Ando–Iwatsuka–Kaminaga–Nakano 2006,
Kaminaga–M 2012). If n random points exist near
0, the depth of the potential well is almost multiplied
by n.

n points

-
x

nV0(0)

y
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Pastur tail (2)

The above mechanism also explains very rapid decay of IDS as
λ → −∞:

logN(λ) = − |λ|
|V0(0)|

log |λ| · (1 + o(1)) as λ → −∞ (4)

(Pastur 1974, 1977). So N(λ) decays super exponentially
O(|λ|−C|λ|) as λ → −∞.

The asymptotics (4) is roughly explained as follows. A negative
spectrum λ is created by at least n = |λ|/|V0(0)| random points in a
small ball Bϵ. The probability of this event is

p ≑ e−ρ|Bϵ| (ρ|Bϵ|)n

n!
, n! ∼ (2πn)1/2 (n/e)n .

Recently, Nakagawa 2023 gives a remarkable example of the Gibbs
process such that logN(λ) ∼ −Cλ2 as λ → −∞.
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Auxiliary function

In order to state our main result, we introduce an auxiliary function.

For s > max(0,−4πα), let Rα(s) be the unique solution of the
following equation with respect to R:

s− e−sR

R
= −4πα. (5)

When α = 0, (5) becomes a simple equation sR = e−sR. So we have
explicitly

R0(s) =
t0
s

(s > 0),

where t0 is the unique positive solution of t = e−t (t0 ≑ 0.567).
When α 6= 0, we have

Rα(s) ∼
t0
s

(s → ∞),

where, f ∼ g⇔
def

f/g → 1.
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Asymptotics of IDS for Poisson PI (1)

Theorem 6 (Kaminaga–M–Nakano, submitted)

Let d = 3. Suppose that α is a constant sequence, and µ satisfies
(PP). Then we have

Nα(−s2) =
2π

3
ρ2Rα(s)

3 +O(s−6+ϵ) (s → ∞), (6)

for every 0 < ϵ < 3. In particular, the principal term is

Nα(−s2) ∼ 2π

3
ρ2t30s

−3 (s → ∞). (7)
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Asymptotics of IDS for Poisson PI (3)

Theorem 6 says N(λ) decays polynomially

Nα(λ) = O(|λ|−3/2) (λ → −∞).

The principal term given in (7) is independent of α. When we
calculate IDS numerically, the first term in RHS of (6) gives more
accurate approximation.
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Numerical result (α = 0.0, 10000 tests)

IDS
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Numerical result (α = 0.5, 10000 tests)

IDS

s

N
(−

s
^2

)

Experimental

Theoretical

Ratio

alpha= 0.5

intensity= 1

size of box= 5

accuracy= 0.01

number of tests= 10000

0 5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

R
a

ti
o

(E
x
p
./

T
h

e
o

r.
)

0
.0

0
.5

1
.0

1
.5

2
.0

Takuya Mne (Kyoto Inst. Tech.) IDS for PI on determinantal PP 九大数物セミナー 32 / 60



Numerical result (α = −0.5, 10000 tests)
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Asymptotics of IDS for Determinantal PI

Theorem 7
Let d = 3. Suppose α is a constant sequence and (DP) holds
(K(x, y) = ρe−|x−y|2/β2

). Then we have for every 0 < ϵ < 5

Nα(−s2) = 2πρ2 · f(Rα(s)) + O(s−10+ϵ) (s → ∞),

f(R) =

∫ R

0

r2
(
1− e

− 2r2

β2

)
dr. (8)

The principal term is given by

N(−s2) ∼ 4πρ2t50
5β2

s−5 (s → ∞). (9)

Comparing (9) with (7), we see that the IDS for (DP) decays faster
than the IDS for (PP).
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Numerical result (ρ = 1, β = 0.1, 10000 tests)

IDS for determinantal process with Gaussian kernel
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Numerical result (ρ = 1, β = 0.5, 10000 tests)

IDS for determinantal process with Gaussian kernel
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Numerical result (ρ = 1, β = 0.5, 100000 tests)

IDS for determinantal process with Gaussian kernel
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Spectrum of −∆α,ξ for finite ξ

The following result is taken from the book of Albeverio et al.

Proposition 8 (Spectrum of −∆α,ξ for finite ξ)

Let d = 3. Let ξ = {yj}Nj=1 be a finite set and α = (αj)
N
j=1

(αj = αyj). Then, for λ = −s2 (s > 0), λ is an eigenvalue of −∆α,ξ

if and only if detA(s) = 0, where A(s) = (ajk(s)) is the N ×N
matrix given by

ajk(s) =


αj +

s

4π
(j = k),

− e−s|yj−yk|

4π|yj − yk|
(j 6= k).
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Spectrum of −∆α,ξ for #ξ = 1

In the case #ξ = 1 and α1 = α, λ = −s2 (s > 0) is an eigenvalue of
−∆α,ξ if and only if

α +
s

4π
= 0.

Thus

σ(−∆α,ξ) ∩ (−∞, 0) =

{
{−(4πα)2} (α < 0),

∅ (α ≥ 0).
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Spectrum of −∆α,ξ for #ξ = 2

In the case #ξ = 2, |y1 − y2| = R and α1 = α2 = α, λ = −s2

(s > 0) is an eigenvalue of −∆α,ξ if and only if 0 is an eigenvalue of

A(s) =

α +
s

4π
−e−sR

4πR

−e−sR

4πR
α +

s

4π

 ,

that is,

α +
1

4π

(
s+

e−sR

R

)
= 0 ⇔ s+

e−sR

R
= −4πα,

α +
1

4π

(
s− e−sR

R

)
= 0 ⇔ s− e−sR

R
= −4πα.

The second equation is the defining equation of Rα(s), and
Rα(s) → 0 as s → ∞.
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Asymptotics of IDS and close pairs (1)

The calculus in the previous slide roughly suggests that ‘if we find a
close pair {y1, y2} ⊂ ξ with |y1 − y2| < Rα(s), then we find an
eigenvalue less than −s2 of −∆α,ξ’. From this consideration, we have

Nα(−s2)

∼ 1

|CL|
× 1

2
E [#{y ∈ ξ ∩ CL ; ny(Rα(s)) = 2}] (s → ∞),

ny(R) = #(ξ ∩By(R)),

By(R) = {x ∈ R3; |x− y| < R}.

Thus the problem is reduced to ‘calculate the expectation of the
number of close pairs’.
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Asymptotics of IDS and close pairs (2)

Lemma 9
Let d = 3. Let α is a constant sequence, and µ satisfies (PP). Then, for
every δ with 1/2 < δ < 1, and for every m > 0, there exist constants
R0 > 0 and C > 0 such that

E[NCL
(−(sα(R)−Rm))2]

≥ 1

2
E[#{y ∈ ξ ∩ CL ; ny(R) = 2}]− CR6δ|CL|,

E[NCL
(−(sα(R) +Rm))2]

≤ 1

2
E[#{y ∈ ξ ∩ CL ; ny(R) = 2}] + CR6δ|CL|,

for every 0 < R < R0 and every L > R−2, where s = sα(R) is the inverse
function of R = Rα(s).

If we assume (DP), then R6δ becomes R10δ.
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Number of close pairs for Poisson PP

Proposition 10

Let d = 1, 2, 3, . . .. Let µ be the Poisson point process in Rd with
intensity measure ρdx, where ρ > 0 is a constant. For L > 0, let
CL = (0, L)d. Then, we have for n = 1, 2, 3, ...

E[#{y ∈ ξ ∩ CL ; ny(R) = n}]
|CL|

=
1

(n− 1)!
|B0(R)|n−1ρne−ρ|B0(R)|.

In particular, when d = 3, n = 2, and R = Rα(s), we have

1

2

E[#{y ∈ ξ ∩ CL ; ny(Rα(s)) = 2}]
|CL|

≑ 2πRα(s)
3

3
ρ2,

which is the first term in our result (6).
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Proof of Proposition 10 (1)

(Proof) For a point process µ (probability measure on the
configuration space Q) and x ∈ Rd, the reduced Palm measure µ!

x is
a probability measure on Q \ {x} (the configuration space on
Rd \ {x}), defined by the formula∫

Q

(∑
x∈ξ

g(x, ξ)

)
dµ(ξ) =

∫
Rd

Ex [g(x, ξ ∪ {x})] dρ1(x),

Ex [g(x, ξ ∪ {x})] =
∫
Q\{x}

g(x, ξ ∪ {x})dµ!
x(ξ),

ρ1(E) =

∫
Q

#(E ∩ ξ)dµ(ξ) (intensity measure),

for any non-negative measurable function g on Rd ×Q. The reduced
Palm measure µ!

x is considered to be the conditional distribution on
Q \ {x} under the condition x ∈ ξ.
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Proof of Proposition 10 (2)

If µ is the Poisson PP with intensity ρdx, then it is well-known that
ρ1(dx) = ρdx and µ!

x = µ (since the configuration on x and the
configuration on Rd \ {x} are independent). We take

g(x, ξ) =

{
1 (x ∈ CL, nx(R) = n),

0 (otherwise),

where nx(R) = #(ξ ∩ Bx(R)). Then we have

E [#{x ∈ ξ ∩ CL;nx(R) = n}]

=

∫
CL

µ{#(Bx(R) ∩ ({x} ∪ ξ)) = n}ρdx

=

∫
CL

µ{#(Bx(R) ∩ ξ) = n− 1}ρdx

= ρ|CL| ·
(ρ|B0(R)|)n−1

(n− 1)!
e−ρ|B0(R)|.
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Palm measure for determinantal PP

Theorem 11 (Shirai–Takahashi 2003, Theorem 1.7)

Let µ−1,K be the determinantal point process with kernel K(x, y). If
K(x0, x0) > 0, then the reduced Palm measure µ!

x0
is the

determinantal point process µ−1,Kx0 with kernel Kx0(x, y), where

Kx0(x, y) =
1

K(x0, x0)
det

(
K(x, y) K(x, x0)
K(x0, y) K(x0, x0)

)
.

If K(x, y) = ρe−|x−y|2/β2
, then we have

Kx0(x, y) =
1

ρ

∣∣∣∣ ρe−|x−y|2/β2
ρe−|x−x0|2/β2

ρe−|x0−y|2/β2
ρ

∣∣∣∣
= ρ

{
exp

(
−|x− y|2

β2

)
− exp

(
−|x− x0|2 + |x0 − y|2

β2

)}
.
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Number of close pairs for determinantal PP

Proposition 12
Let d = 1, 2, .... Let µ−1,K be the determinantal point process with
kernel K(x, y) = ρe−|x−y|2/β2

, and ρ, β are positive constants with
ρ(β2π)d/2 ≤ 1. Then, we have

E [#{x ∈ ξ ∩ CL;nx(R) = 2}]
= ρ2|CL|

∣∣Sd−1
∣∣ f(R)

(
1 +O(Rd+2)

)
(R → +0),

where |Sd−1| is the surface volume of Sd−1, and

f(R) =

∫ R

0

rd−1

(
1− e

− 2r2

β2

)
dr

=
2Rd+2

(d+ 2)β2
+O(Rd+4) (R → +0).
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Proof of Proposition 12 (1)

(Proof) As in the proof of Proposition 10,

E [#{x ∈ ξ ∩ CL;nx(R) = 2}]

=

∫
CL

µ−1,Kx0{#(Bx0(R) ∩ ξ) = 1}dρ1,−1,K(x0). (7)

The intensity measure dρ1,−1,K(x0) is given by K(x0, x0)dx0 = ρdx0.
The probability µ−1,Kx0{· · · } can be calculated by the following.
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Probability distribution of #(ξ ∩ Λ)

Lemma 13
For a bounded measurable set Λ and n = 0, 1, 2, ..., we have

µ−1,K{#(ξ ∩ Λ) = n}
= Det(I −KΛ) Tr

(
∧n((I −KΛ)

−1KΛ)
)
,

where KΛ = χΛKχΛ and Tr(∧0 · · · ) = 1. In particular,

µ−1,K({#(ξ ∩ Λ) = 1})
= Det(I −KΛ) · Tr

(
(I −KΛ)

−1KΛ

)
.

From this formula, we have the bound

µ−1,K{#(ξ ∩ Λ) = n} ≤ Det(I −KΛ)

{
Tr
(
(I −KΛ)

−1KΛ

)}n
n!

.
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Proof of Proposition 12 (2)

By Lemma 13, we have

µ−1,Kx0 ({#(ξ ∩ Bx0(R)) = 1})
= Det(I −Kx0

Bx0 (R)) · Tr((I −Kx0

Bx0 (R))
−1Kx0

Bx0 (R)),

where Kx0

Bx0 (R) is an integral operator with kernel

Kx0

Bx0 (R)(x, y)

= ρχBx0 (R)(x)χBx0 (R)(y)

·
{
exp

(
−|x− y|2

β2

)
− exp

(
−|x− x0|2 + |x0 − y|2

β2

)}
.

The operator Kx0

Bx0 (R) is a non-negative, trace-class operator.
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Proof of Proposition 12 (3)

Let ‖ · ‖1 be the trace norm. Since Kx0

Bx0 (R) is non-negative, we have

‖Kx0

Bx0 (R)‖1 = Tr(Kx0

Bx0 (R))

=

∫
Bx0 (R)

Kx0

Bx0 (R)(x, x)dx

= ρ

∫
B0(R)

{
1− exp

(
−2|z|2

β2

)}
dz (z = x− x0)

= ρ
∣∣Sd−1

∣∣ ∫ R

0

rd−1

(
1− e

− 2r2

β2

)
dr = ρ

∣∣Sd−1
∣∣ f(R),

f(R) =

∫ R

0

(
2rd+1

β2
+O(rd+3)

)
=

2Rd+2

(d+ 2)β2
+O(Rd+4) (R → +0).
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Proof of Proposition 12 (4)

By Lemma 2.1 of Shirai–Takahashi 2003,

Det(I −Kx0

Bx0 (R)) = 1 +
∞∑
n=1

(−1)n Tr(∧nKx0

Bx0 (R)),

‖ ∧n Kx0

Bx0 (R)‖1 ≤
1

n!
‖Kx0

Bx0 (R)‖
n
1 .

Thus we have

Det(I −Kx0

Bx0 (R)) = 1 + O(Rd+2) (R → +0).

Moreover

(I −Kx0

Bx0 (R))
−1 = I + (I −Kx0

Bx0 (R))
−1Kx0

Bx0 (R),

‖(I −Kx0

Bx0 (R))
−1Kx0

Bx0 (R)‖ ≤
∞∑
n=1

‖Kx0

Bx0 (R)‖
n = O(Rd+2) (R → +0).
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Proof of Proposition 12 (5)

By these formulas, we have

µ−1,Kx0 ({#(ξ ∩ Bx0(R)) = 1})
= ρ

∣∣Sd−1
∣∣ f(R)

(
1 +O(Rd+2)

)
(R → +0). (8)

Substituting (8) into (7), we have

E [#{x ∈ ξ ∩ CL;nx(R) = 2}]
= ρ2|CL|

∣∣Sd−1
∣∣ f(R)

(
1 +O(Rd+2)

)
= ρ2|CL|

∣∣Sd−1
∣∣ ( 2Rd+2

(d+ 2)β2
+O(Rd+4)

)
(R → +0).

We see that the decay rate O(Rd+2) is faster than that in the
Poisson case (O(Rd)). This facts also leads us faster decay of IDS
N(−s2) as s → ∞.
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Proof of Lemma 13 (1)

(Proof) Assume that we know the Laplace transform∫
Q

µ(dξ) exp(−〈ξ, f〉), 〈ξ, f〉 =
∑
x∈ξ

f(x).

of a point process µ. For a bounded measurable set Λ, take f = tχΛ.
Then the left hand side becomes∫

Q

µ(dξ) exp(−t#(ξ ∩ Λ)) =
∞∑
n=0

µ{#(ξ ∩ Λ) = n}e−nt. (9)

So we have to calculate the expansion of the above Laplace
transform for µ = µ−1,Kx0 with respect to e−t.
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Proof of Lemma 13 (2)

For a general DPP µ−1,K , we have by definition∫
Q

µ−1,K(dξ) exp(−〈ξ, tχΛ〉) = Det(I −Kφ),

Kφ(x, y) =
√

φ(x)K(x, y)
√

φ(y),

φ(x) = 1− exp(−tχΛ(x)) = (1− e−t)χΛ(x).

Thus we have

Kφ = (1− e−t)KΛ, KΛ = χΛKχΛ.

Det(I −Kφ) =Det(I − (1− e−t)KΛ)

= Det(I −KΛ)Det
(
I + e−t(I −KΛ)

−1KΛ

)
.
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Proof of Lemma 13 (3)

We use the expansion of the Fredholm determinant (Proposition 2.1
of Shirai–Takahashi 2003):

Det(I + T ) = 1 +
∞∑
n=1

Tr(∧nT ),

for a trace class operator T on a Hilbert space H, where the operator
∧nT on ∧nH is defined by

∧nT (ei1 ∧ · · · ∧ ein) = Tei1 ∧ · · · ∧ Tein (i1 < · · · < in)

for an ONB {ei}∞i=1 of H.
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Proof of Lemma 13 (4)

Thus we have

Det(I + e−t(I −KΛ)
−1KΛ)

= 1 +
∞∑
n=1

e−nt Tr
(
∧n((I −KΛ)

−1KΛ)
)
,

Det(I −Kφ)

= Det(I −KΛ)

(
1 +

∞∑
n=1

e−nt Tr
(
∧n((I −KΛ)

−1KΛ)
))

.

Comparing with (9), we have

µ−1,K{#(ξ ∩ Λ) = n} = Det(I −KΛ) Tr
(
∧n((I −KΛ)

−1KΛ)
)

for every n ∈ N.
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Further problems

There are many remaining problems.

(i) Other kernel K?

(ii) Asymptotics of IDS for the Schrödinger operator with point
interactions on α-determinantal process?

(iii) Two-dimensional case?

(iv) IDS for hard core process (Lifshitz tail)?

(v) Anderson localization?

(vi) Level statistics?

(vii) Distribution of resonances?
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