
Letters in Mathematical Physics          (2025) 115:90 
https://doi.org/10.1007/s11005-025-01981-6

Self-adjointness of unbounded time operators

Fumio Hiroshima1 · Noriaki Teranishi2,3

Received: 1 March 2025 / Revised: 24 July 2025 / Accepted: 25 July 2025
© The Author(s), under exclusive licence to Springer Nature B.V. 2025

Abstract
Time operators associated with an abstract semi-bounded self-adjoint operator H
possessing a purely discrete spectrum are considered. The existence of a bounded
self-adjoint time operator T for such an operator H is known as the Galapon time
operator. In this paper, we construct a self-adjoint but unbounded time operator T for
H with a dense CCR-domain, thereby extending the framework beyond the bounded
setting.
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1 Introduction

We begin by providing the definitions of conjugate operators and time operators as
employed in this paper. Let D(T ) denote the domain of the operator T and let [A, B] =
AB − BA denote the commutator of A and B on D(AB) ∩ D(BA) throughout this
paper.

Definition 1.1 Let H be a self-adjoint operator on a Hilbert spaceH. Suppose that T
satisfies the canonical commutation relation

[H , T ] = −i1l

on a subset DH ,T ⊂ D(HT ) ∩ D(T H) with DH ,T �= {0}.
Then, T is called a conjugate operator of H and DH ,T is referred to as a CCR-

domain. If a conjugate operator T of H is symmetric, then T is called a time operator
of H .
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Consequently, the domain of a conjugate operator is not necessarily dense, whereas
that of a time operator is dense. Moreover, CCR-domains are not dense in general. It
is well known that CCR-domain DH ,T does not contain any eigenvector e of H , since
e /∈ D(T ) or T e /∈ D(H) hold. Therefore, we must pay careful attention to domains.
Note that conjugate and time operators associated with a given self-adjoint operator
H are, in general, not unique. Time operators have been frequently discussed in the
context of physics since early times, as exemplified by historicalworks [1, 8, 11, 14, 15,
18, 20, 21]. In contrast, time operators of Hamiltonians with purely discrete spectra are
studied in [3, 5, 9, 10, 12, 22]. In particular, Galapon [12] andArai-Matsuzawa [5] have
inspired our research on time operators. Motivated by these works, we have recently
constructed and studied time and conjugate operators for 1D-harmonic oscillator in
[16, 17] and the present paper is a continuation of those studies.

In addition, the definition of the so-called strong time operators is given as follows.
A symmetric operator T on H is said to be a strong time operator of a self-adjoint
operator H onH if (1) and (2) are satisfied:

(1) e−i t HD(T ) ⊂ D(T ) for all t ∈ R;
(2) T e−i t Hψ = e−i t H (T + t)ψ for all ψ ∈ D(T ) and all t ∈ R.

The relation (2) is called theweakWeyl relation. Strong timeoperatorswere introduced
in [19], their spectral properties were studied in [2, 5–7, 19], and a comprehensive
investigation is summarized in [4, Chapter 4]. A strong time operator of p2/2 is given
by the so-called Aharonov–Bohm time operator TAB defined by TAB = (p−1q +
qp−1)/2. We refer the reader to [1]. The weak Weyl relation implies the canonical
commutation relation

[H , T̄ ] = −i1l (1.1)

on D(HT̄ ) ∩ D(T̄ H), and D(HT̄ ) ∩ D(T̄ H) is dense. Here T̄ denotes the closure
of T . See [4, Proposition 4.5]. Therefore, the closure of every strong time operator is
automatically a time operator by (1.1). It is noteworthy that if a self-adjoint operator H
admits a strong time operator, then the spectrum of H is purely absolutely continuous.
See [19] and [4, Theorem 4.8]. In particular, H has no point spectrum, and hence
1D-harmonic oscillator does not admit a strong time operator, since the spectrum of
1D-harmonic oscillator is purely discrete.

The self-adjointness of time operators constitutes a particularly compelling subject
of study, not only from amathematical standpoint but also from a physical perspective.
Interestingly, it is known that if the self-adjoint operator H is bounded from below and
has purely absolutely continuous spectrum, then a strong time operator associatedwith
H is neither self-adjoint nor essentially self-adjoint. We refer the reader to [19] and [4,
Theorem 4.10]. Nevertheless, it is known that theGalapon time operator defined below
for the 1D-harmonic oscillator is a bounded self-adjoint operator, whose CCR-domain
is moreover dense in the Hilbert space.

Now we introduce a Galapon time operator for an abstract self-adjoint operator H
and establish some fundamental results. Throughout this paper, we adopt the following
assumption unless otherwise stated.
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Assumption 1.2 Suppose that H is a positive and unbounded self-adjoint operator on
a separable Hilbert space H, σ(H) consists of only simple eigenvalues and H−1 is
Hilbert–Schmidt.

Let en be an eigenvector of H corresponding to the n-th eigenvalue En , for each n ∈ N.
Note that 0 < En < En+1 and

∞∑

n=0

1

E2
n

< ∞. (1.2)

Define the Galapon time operator TG associated with an abstract self-adjoint operator
H by

D(TG) = LH{en | n ∈ N},

TGϕ = i
∞∑

n=0

⎛

⎝
∑

m �=n

(em, ϕ)

En − Em

⎞

⎠ en, ϕ ∈ D(T ).

Here, for a subsetA ofH, LHAmeans the linear hull ofA. The following proposition
is proven in [5, 13]:

Proposition 1.3 The operator TG is a time operator of H and its CCR-domain is given
by LH{en − em | n,m ∈ N}.
Let (p2+q2−1l)/2 be 1D-harmonic oscillator. The Galapon time operator associated
with (p2 + q2 − 1l)/2 is given by

TGϕ = i
∞∑

n=0

⎛

⎝
∑

m �=n

(em, ϕ)

n − m

⎞

⎠ en, ϕ ∈ D(TG).

It can be shown that TG is both bounded and self-adjoint [5]. The proof is straight-
forward: It is immediate to verify that TG is symmetric, and by virtue of the Hilbert
inequality ∣∣∣∣∣∣

∞∑

n=0

∑

m �=n

xn ym
n − m

∣∣∣∣∣∣
≤ π

( ∞∑

n=0

x2n

)1/2 ( ∞∑

n=0

y2n

)1/2

,

one derives the following key inequality:

‖TGϕ‖ ≤ π‖ϕ‖. (1.3)

Hence, TG is bounded, and therefore self-adjoint. We emphasize that the self-
adjointness follows from the boundedness, since it is symmetric. Now let us consider
the self-adjoint operator H so that σ(H) = {nλ | n ∈ N} for some 1/2 < λ < 1. One
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might expect that

TGϕ = i
∞∑

n=0

⎛

⎝
∑

m �=n

(em, ϕ)

nλ − mλ

⎞

⎠ en (1.4)

remains self-adjoint in this setting, as in the case λ = 1, but the self-adjointness of
(1.4) could not been proven so far. We note that TG defined by (1.4) is unbounded, as
established in [5]. Although (1.4) is a candidate for an unbounded self-adjoint time
operator with a dense CCR-domain, to the best of our knowledge, no example of an
unbounded self-adjoint time operator with a dense CCR-domain has been found so
far. A central motivation for this paper lies in the fact that there is currently no known
proof of the self-adjointness of Galapon-type time operators that does not rely on
boundedness.

In our previous paper [16], we constructed three distinct classes T{0}, TD\{0}, T∂D

of conjugate operators for 1D-harmonic oscillator. Each element of these classes is
denoted by Tm,ω with two parameters ω ∈ C and m ∈ N. T{0} consists of T0,m , and
TD\{0} consists of Tω,m with 0 < |ω| < 1. T∂D consists of Tω,m with |ω| = 1, which
are extensions of the Galapon time operator. Here, the subscript ∂D indicates that
parameter ω are included in the unit circle in C. In fact T1,1 + T ∗

1,1 coincides with TG
defined in (1.3). Although the time operators Tm,ω ∈ T∂D are bounded and self-adjoint,
the time and conjugate operators included in T{0} and TD\{0} are not self-adjoint.

Motivated by the above considerations, the purpose of this paper is to construct
a time operator that is both unbounded and self-adjoint with a dense CCR-domain.
This paper is organized as follows: In Section 2, we unitarily transform TG into an
operator T f on 	2(N). Section 3 is devoted to constructing unbounded self-adjoint
time operators with a dense CCR-domain. Section 4 deals with self-adjoint extensions
of time operators. The main results are presented in Theorems 3.13.

2 Galapon time operator on �2(N)

We denote the set of all square summable functions on N by 	2(N). In this paper, the
investigation of time operators is carried out on 	2(N) instead of a given separable
Hilbert spaceH. As a first step, we show that TG is unitarily equivalent to an operator
T f on 	2(N). Let ξn ∈ 	2(N) be the function on N defined by

ξn(m) = δnm, m ∈ N,

where δnm denotes the Kronecker delta function. We write 	2fin(N) for the set of ϕ ∈
	2(N) with a finite support, i.e., there exist m ∈ N and (cn)mn=0 ∈ C

m+1 such that ϕ

can be expressed as
∑m

n=0 cnξn . Note that 	
2
fin(N) is dense in 	2(N). Let L be the left

shift operator on 	2(N):

Lξn =
{

ξn−1 (n ≥ 1),

0 (n = 0).
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The adjoint operator L∗ of L is given by

L∗ξn = ξn+1, n ∈ N.

Let N be the number operator on 	2(N). Then Nξn = nξn for n ∈ N. It is well known
that N is a self-adjoint operator, 	2fin(N) is a core for N , and N satisfies commutation
relations: [N , L] = −L and [N , L∗] = L∗ on 	2fin(N). We introduce sets K and K−
as follows.

Definition 2.1 (K and K−) We denote by K the set of all real valued functions on N

which satisfy the following conditions:

(1) f (0) > 0,
(2) f (n) < f (n + 1) for all n ∈ N.

Set K− = {
f ∈ K

∣∣ 1/ f ∈ 	2(N)
}
.

To define T f for f ∈ K, we set

�k( f , n) = f (n + k) − f (n).

Lemma 2.2 Let f ∈ K. Then 	2fin(N) ⊂ D
(
�k( f , N )−1

)
for every natural number

k ≥ 1.

Proof Since f is strictly increasing, �k( f , N ) is injective. Clearly 	2fin(N) ⊂
D(�k( f , N )) and ξn is an eigenvector of �k( f , N ):

�k( f , N )ξn = �k( f , n)ξn .

This implies that 	2fin(N) ⊂ D
(
�k( f , N )−1

)
. ��

Remark 2.3 Note that, for any f ∈ K, infn∈N �k( f , n) > 0 if and only if�k( f , N )−1

is a bounded operator.

Definition 2.4 Let f ∈ K. We define operators T f ,m and T f on 	2(N) by

T f ,m = i
m∑

k=1

(
L∗k�k( f , N )−1 − �k( f , N )−1Lk

)
,

D(T f ) =
⎧
⎨

⎩ϕ ∈
⋂

m≥1

D
(
T f ,m

)
∣∣∣∣∣∣
lim

m→∞ T f ,mϕ exists in 	2(N)

⎫
⎬

⎭ ,

T f ϕ = lim
m→∞ T f ,mϕ, ϕ ∈ D(T f ).

Lemma 2.5 Let f ∈ K. Then f ∈ K− if and only if 	2fin(N) ⊂ D
(
T f

)
.
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Proof Suppose that f ∈ K−. It is sufficient to show that limm→∞ T f ,mξn exists for
all n ∈ N. Since k ≥ n + 1 implies Lkξn = 0, for any n ≤ m1 ≤ m2,

∥∥(
T f ,m2 − T f ,m1

)
ξn

∥∥2 =
∥∥∥∥∥∥

m2∑

k=m1+1

(
L∗k�k ( f , N )−1 − �k ( f , N )−1 Lk

)
ξn

∥∥∥∥∥∥

2

=
m2∑

k=m1+1

1

( f (n + k) − f (n))2

≤
(
1 − f (n)

f (n + 1)

)−2 m2∑

k=m1+1

1

f (n + k)2
.

As m1,m2 → ∞, the right-hand side above converges to zero. Hence, (T f ,mξn)m∈N
is a Cauchy sequence. Therefore, limm→∞ T f ,mξn exists and ξn ∈ D(T f ).

Conversely, we assume that ξ0 ∈ D(T f ). Then

‖T f ξ0‖2 =
∞∑

k=1

1

( f (k) − f (0))2
≥

∞∑

k=1

1

f (k)2
.

Thus f ∈ K− is concluded. ��
From Lemma 2.5, we see that T f is a densely defined symmetric operator for any
f ∈ K−. A relationship between T f and TG is given by the following theorem.

Theorem 2.6 Suppose that H satisfies Assumption 1.2. Then, there exists a unitary
operator U : H → 	2(N) and a function f ∈ K− such that f (N ) = UHU∗ and T f

is unitarily equivalent to TG on 	2fin(N), i.e.,

UTGU
∗ ⊂ T f .

Here A ⊂ B means that B is an extension of A.

Proof Let En be the n-th eigenvalue of H and f : N → R be a function such that
f (n) = En . Then, by the condition (1.2), f ∈ K−. LetU : H → 	2(N) be the unitary
operator defined by Uen = ξn for any n ∈ N. Clearly, UHU∗ = f (N ). For arbitrary
ϕ ∈ D(TG) = U∗	2fin(N), we see that

UTGϕ = i
∞∑

n=0

(
∑

m<n

(ξm,Uϕ)

En − Em
+

∑

m>n

(ξm,Uϕ)

En − Em

)
ξn

= i
∞∑

n=0

(
∑

m<n

(
Ln−mξn,Uϕ

)

En − Em
+

∑

m>n

(
L∗m−nξn,Uϕ

)

En − Em

)
ξn

= i
∞∑

n=0

( ∞∑

k=1

(
Lkξn,Uϕ

)

En − En−k
−

∞∑

k=1

(
L∗kξn,Uϕ

)

En+k − En

)
ξn .
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Since f (N )ξn = Enξn , it follows that

(En − En−k)
−1Lkξn = �k( f , N )−1Lkξn

and

(En+k − En)
−1ξn = �k( f , N )−1ξn .

From Lemma 2.5, we see that both ξn and Uϕ belong to D(T f ). Thus

UTGϕ = i
∞∑

n=0

( ∞∑

k=1

(
�k( f , N )−1Lk − L∗k�k( f , N )−1

)
ξn,Uϕ

)
ξn

=
∞∑

n=0

(
ξn, i

∞∑

k=1

(
L∗k�k( f , N )−1 − �k( f , N )−1Lk

)
Uϕ

)
ξn .

This shows that UTGϕ = T f Uϕ for any ϕ ∈ D(TG). Then, the theorem is proven. ��
Corollary 2.7 For all f ∈ K−, the operator T f is a time operator of f (N ) with the
dense CCR-domain (1l − L∗)	2fin(N).

Proof By the definition ofK−, the operator f (N ) satisfies Assumption 1.2. According
to Theorem 2.6, the Galapon time operator TG of f (N ) is equal to the operator
T f |	2fin(N). Here A|S denotes the restriction of A to the subspace S. Thus, T f is a
time operator of f (N ) with the dense CCR-domain LH{ξn − ξm | n,m ∈ N} =
(1l − L∗)	2fin(N). ��
Remark 2.8 It can be shown that the set D( f (N )T f )∩D(T f f (N )) ⊂ (1l− L∗)	2(N)

can be utilized as the CCR-domain of f (N ) and T f . For a detailed discussion, refer
to [16].

By Theorem 2.6, the set {T f | f ∈ K−} includes the Galapon time operators TG.
Therefore, in what follows, we focus on the time operators T f .

3 Self-adjointness of time operators

3.1 Bounded cases

Let us recall the case where the operator T f is bounded.

Lemma 3.1 Let f ∈ K. Suppose that 0 /∈ σ(�k( f , N )) for all k ≥ 1 and

∑

k≥1

∥∥∥�k( f , N )−1
∥∥∥ < ∞.

Then, the operator T f is bounded. In particular, T f is a self-adjoint operator.
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Proof For any ϕ ∈ 	2(N) and 1 ≤ m1 < m2,

∥∥(
T f ,m2 − T f ,m1

)
ϕ
∥∥ ≤

m2∑

k=m1+1

(∥∥∥L∗k�k( f , N )−1
∥∥∥ +

∥∥∥�k( f , N )−1Lk
∥∥∥
)

‖ϕ‖

≤ 2‖ϕ‖
m2∑

k=m1+1

∥∥∥�k( f , N )−1
∥∥∥ .

This shows that (T f ,mϕ)m∈N is a Cauchy sequence. Therefore, D(T f ) = 	2(N) and
T f are bounded. ��
Example 3.2 Let λ > 1 and f (x) = xλ + 1. Then f ∈ K−. Since �k( f , n) ≥
�k( f , 0) = kλ, we have

∑

k≥1

∥∥∥�k( f , N )−1
∥∥∥ ≤

∑

k≥1

k−λ < ∞.

Therefore, T f is a bounded self-adjoint time operator of f (N ).

Remark 3.3 A similar result to Lemma 3.1 is obtained in [5, Theorem 4.5]. If

En − Em ≥ C(nλ − mλ), n > m > a (3.1)

for some constants a > 0, C > 0 and λ > 1, then TG is bounded. From the condition
(3.1), the assumptions of Lemma 3.1 can be derived. However, the converse does not
hold, as demonstrated by the following counterexample:

f (n) =
{

(m + 1)2 (n = 2m),

(m + 1)2 + 1 (n = 2m + 1).

3.2 Unbounded cases

In this section, we consider the unbounded cases. As a first step, we provide a sufficient
condition for T f to be unbounded. The proposition below states this condition.

Proposition 3.4 Suppose that f ∈ K− and 0 ∈ σ(�1( f , N )). Then, T f is unbounded.

Proof We refer the reader to [5, Theorem 5.1]. ��
Example 3.5 Let λ ∈ (1/2, 1) and f (x) = xλ + 1. Then f ∈ K−. Since �1( f , n) ≤
nλ−1, we have 0 ∈ σ(�1( f , N )). Hence T f is unbounded by Proposition 3.4.

Let f : N → C and m ∈ N. We denote by f m the function f m : N → C such that
f m(x) = f (x)m for each x ∈ N. Clearly, if f ∈ K−, then f 2 ∈ K− and T f 2 can be
defined. In what follows we consider operators of the form f (N )T f 2 + T f 2 f (N ).
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Lemma 3.6 Let f ∈ K−. Then 	2fin(N) ⊂ D
(
f (N )T f 2

)
and

lim
m→∞ f (N )T f 2,mξn = f (N )T f 2ξn

for all n ∈ N.

Proof Similarly to the proof of Lemma 2.5, for any n ≤ m1 ≤ m2, we have

∥∥ f (N )
(
T f 2,m2

− T f 2,m1

)
ξn

∥∥2 =
m2∑

k=m1+1

f (n + k)2

( f (n + k)2 − f (n)2)2

≤
(
1 − f (n)2

f (n + 1)2

)−2 m2∑

k=m1+1

1

f (n + k)2
.

Therefore, a sequence
(
f (N )T f 2,mξn

)
m∈N is a Cauchy sequence for any n ∈ N and

then limm→∞ f (N )T f 2,mξn exists. Since f (N ) is a closed operator, we obtain the
desired conclusion. ��

The next lemma shows that T f is identical to f (N )T f 2 + T f 2 f (N ) on 	2fin(N).

Lemma 3.7 Let f ∈ K−. Then

f (N )T f 2 + T f 2 f (N ) = T f (3.2)

on 	2fin(N) and

[ f (N ), f (N )T f 2 + T f 2 f (N )] = −i1l (3.3)

on (1l − L∗)	2fin(N).

Proof From Lemma 3.6, for any ϕ ∈ 	2fin(N),

(
f (N )T f 2 + T f 2 f (N )

)
ϕ = lim

m→∞
(
f (N )T f 2,m + T f 2,m f (N )

)
ϕ.

For each m ≥ 1, we obtain

(
f (N )T f 2,m + T f 2,m f (N )

)
ϕ

= i
m∑

k=1

(
L∗k ( f (N + k) + f (N )) �k

(
f 2, N

)−1

−�k

(
f 2, N

)−1
( f (N + k) + f (N )) Lk

)
ϕ

= i
m∑

k=1

(
L∗k�k( f , N )−1 − �k( f , N )−1Lk

)
ϕ

= T f ,mϕ.
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Hence, we see that ϕ ∈ D(T f ) and f (N )T f 2 + T f 2 f (N ) = T f on 	2fin(N). Since T f

is a time operator of f (N ) with a CCR-domain (1l − L∗)	2fin(N),

[
f (N ), f (N )T f 2 + T f 2 f (N )

] = [ f (N ), T f ] = −i1l

on (1l − L∗)	2fin(N) holds true. ��
Intuitively it may be difficult to establish the self-adjointness or essential self-

adjointness of operators f (N )T f 2 + T f 2 f (N ) or T f themselves, since both operators
f (N )T f 2 + T f 2 f (N ) and T f are unbounded from above and below, and the CCR-
domain (1l−L∗)	2fin(N) is not a core of f (N ). To overcome this difficulty, we introduce
an additional term f (N )β into f (N )T f 2 + T f 2 f (N ). Note that [N , f (N )β ] ⊂ 0.
Thus, we consider the modified operator f (N )T f 2 + T f 2 f (N ) + r f (N )β instead of
f (N )T f 2 +T f 2 f (N ) and we shall show that it is a self-adjoint time operator of f (N ).
This result is based on the fact that f (N )T f 2 + T f 2 f (N ) is relatively small compared
to f (N )β .

We introduce classes M(β) and Ms(β) of functions on N.

Definition 3.8 (M(β) and Ms(β)) Let β ≥ 0. The class M(β) consists of all func-
tions f ∈ K− for which there exist functions g : N → (0,∞) and h ∈ 	1(N≥1,R)

satisfying the following conditions:

(1) f 2/g ∈ 	1(N),
(2) for any n ∈ N and k ≥ 1,

g(n)1/2

f (n)β�k( f 2, n)
≤ h(k). (3.4)

The classMs(β) consists of all functions f ∈ M(β) such that, for the above function
g, there exists a constant C > 0 satisfying

sup
n∈N

n∑

k=1

g(n)
{
f (n − k)β

(
f (n)2 − f (n − k)2

)}2 ≤ C . (3.5)

Lemma 3.9 Let f ∈ M(1). Then, T f 2 is bounded.

Proof By (1) of Definition 3.8, supn∈N f (n)2/g(n) is finite. From (3.4), we have

∥∥∥∥�k

(
f 2, N

)−1
∥∥∥∥ = sup

n∈N
�k

(
f 2, n

)−1 ≤ sup
n∈N

(
f (n)2/g(n)

)1/2
h(k).

Since h ∈ 	1(N≥1,R), T f 2 is bounded by Lemma 3.1. ��

Lemma 3.10 Let f ∈ Ms(β). Then, the closure f (N )T f 2 of f (N )T f 2 is relatively
bounded with respect to f (N )β , i.e., there exists a constant a > 0 such that for all
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ϕ ∈ D
(
f (N )β

)

∥∥∥ f (N )T f 2ϕ

∥∥∥ ≤ a
∥∥ f (N )βϕ

∥∥ .

Proof Since 	2fin(N) is a core for f (N )β , it is sufficient to show that f (N )T f 2 f (N )−β

is bounded on 	2fin(N). For any ϕ ∈ 	2fin(N), it follows that ϕ ∈ D
(
f (N )T f 2 f (N )−β

)

and

∥∥ f (N )T f 2 f (N )−βϕ
∥∥2 =

∞∑

n=0

∣∣(ξn, f (N )T f 2 f (N )−βϕ
)∣∣2

≤ ‖ϕ‖2
∞∑

n=0

∥∥ f (N )−βT f 2 f (N )ξn
∥∥2

= ‖ϕ‖2
∞∑

n=0

f (n)2
∥∥ f (N )−βT f 2ξn

∥∥2 .

For all n ∈ N, we see that, from (3.4) and (3.5),

∥∥ f (N )−βT f 2ξn
∥∥2 =

∥∥∥∥∥∥

∑

k≥1

f (N )−β
(
L∗k�k( f

2, N )−1 − �k( f
2, N )−1Lk

)
ξn

∥∥∥∥∥∥

2

=
∑

k≥1

1

f (n + k)2β�k
(
f 2, n

)2

+
n∑

k=1

1

f (n − k)2β( f (n)2 − f (n − k)2)2

≤ 1

g(n)

⎛

⎝
∑

k≥1

h(k)2 + C

⎞

⎠ .

Thus we have

∥∥ f (N )T f 2 f (N )−βϕ
∥∥2 ≤ ‖ϕ‖2

(
‖h‖2

	2
+ C

) ∞∑

n=0

f (n)2g(n)−1.

From the condition (1) ofM(β), f (N )T f 2 f (N )−β is bounded on 	2fin(N). Therefore,
the conclusion follows. ��
Remark 3.11 Let β ≥ 1, f ∈ Ms(β) and T f 2 be bounded. Since the operator T f is

equal to f (N )T f 2 + T f 2 f (N ) on 	2fin(N) by Lemma 3.7, it is easy to see that T f is
also relatively bounded with respect to f (N )β , i.e., there exists a constant a > 0 such
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that for all ϕ ∈ D( f (N )β)

∥∥T f ϕ
∥∥ ≤ a

∥∥ f (N )βϕ
∥∥ .

Proposition 3.12 Let β ≥ 1 and f ∈ Ms(β). If the operator T f 2 is bounded, then
f (N )T f 2 + T f 2 f (N ) is relatively bounded to f (N )β , and f (N )T f 2 + T f 2 f (N ) +
r f (N )β is a self-adjoint operator for sufficiently large |r |.
Proof Since T f 2 is a bounded operator, f (N )T f 2 is closed and T f 2 f (N ) is relatively
bounded with respect to f (N )β . From Lemma 3.10, it follows that there exists a
relative bound a for f (N )T f 2 + T f 2 f (N ) with respect to f (N )β . Therefore, by the
Kato-Rellich theorem, the operator is self-adjoint for all |r | > a. ��

We are in the position to state the main theorem in this paper.

Theorem 3.13 Let β ≥ 1, f ∈ Ms(β) and γ > β. If T f 2 is bounded, then f (N )T f 2 +
T f 2 f (N )+r f (N )γ is a self-adjoint time operator of f (N )with a dense CCR-domain
for all r ∈ R\{0}.
Proof Since f (N )β is infinitesimally small with respect to f (N )γ , from Proposition
3.12, it follows that f (N )T f 2 + T f 2 f (N ) is also infinitesimally small with respect
to f (N )γ . Hence, the operator f (N )T f 2 + T f 2 f (N ) + r f (N )γ is self-adjoint for all
r ∈ R\{0}. Since

[ f (N ), f (N )T f 2 + T f 2 f (N ) + r f (N )γ ] = −i1l

on (1l − L∗)	2fin(N) by Lemma 3.7, f (N )T f 2 + T f 2 f (N ) + r f (N )γ is a self-adjoint
time operator of f (N ) with a dense CCR-domain. ��
Remark 3.14 (1) From (3.2) andRemark 3.11, we see that T f +r f (N )γ is self-adjoint

time operator of f (N )with a denseCCR-domain (1l−L∗)	2fin(N) for all r ∈ R\{0}
provided that β ≥ 1, f ∈ Ms(β) and γ > β.

(2) It seems unlikely that the self-adjointness or essential self-adjointness of the oper-
ators T = T f 2 f (N ) + f (N )T f 2 and T f can be established by means of the
commutator theorem applied to the auxiliary operator A = f (N )γ + T , since the
weak commutator [T , f (N )γ ]w fails to be bounded in terms of f (N )γ . Although
the relation (3.3) might indicate that [T , f (N )γ ]w is controllable, the proof does
not go through because the CCR-domain does not form the core of f (N )γ or T
is not relative bounded with respect to f (N )γ . Likewise, the case of the weak
commutator [T , A]w does not appear to admit a bound in terms of A.

Example 3.15 Let f (x) = xλ + 1 for λ ∈ (3/4, 1). We show that f ∈ Ms(1). Firstly,
it is immediate to see that f ∈ K−. Let α ∈ (1 + 2λ, 6λ − 2), g(x) = xα + 1 and
δ = 6λ − 2 − α. Then, the condition (1) of M(1) is satisfied.

Secondly, by the mean value theorem, we have

f (n + k) − f (n) ≥ λk

(n + k)1−λ
.
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Then we obtain that

g(n)

f (n)2�k
(
f 2, n

)2 = nα + 1

f (n)2( f (n + k)2 − f (n)2)2

≤ (nα + 1)(n + k)2(1−λ)

λ2(nλ + 1)2(n + k)2λk2
≤ 2

λ2k2+δ
.

Thus, the condition (2) of M(1) is satisfied and f ∈ M(1).
Finally, we see that

lim
n→∞

n∑

k=1

g(n)

f (n − k)2
(
f (n)2 − f (n − k)2

)2

= lim
n→∞

⎛

⎝
[n/2]∑

k=1

g(n)

f (n − k)2
(
f (n)2 − f (n − k)2

)2

+
n∑

k=[n/2]+1

g(n)

f (n − k)2
(
f (n)2 − f (n − k)2

)2

⎞

⎠

≤ lim
n→∞

4λ(nα + 1)n2(1−λ)

λ2(nλ + 1)2n2λ

⎛

⎝
[n/2]∑

k=1

1

k2
+ 41−λ

n2(1−λ)

n∑

k=[n/2]+1

1

f (n − k)2

⎞

⎠ < ∞,

where [r ] denotes the greatest integer less than or equal to r ∈ R. Then, the condition
(3.5) is satisfied and f ∈ Ms(1).

In Example 3.5, we showed that T f is unbounded. We see that, from Lemma 3.9
and Theorem 3.13, f (N ) has a self-adjoint time operator with a dense CCR-domain.

Example 3.16 Let f (x) = xλ + 1 for λ ∈ (1/2, 1). Then, T f 2 is bounded by Lemma
3.1. Similar to Example 3.15, we can see that f ∈ Ms(2). Therefore, f (N ) has an
unbounded self-adjoint time operator with a dense CCR-domain by Theorem 3.13.

4 Self-adjoint extension of time operators

Up to this point, we have considered the casewhere f ∈ K−. Fromnowon,we turn our
attention to the case where f ∈ K \K−. In this setting, Lemma 2.5 implies 	2fin(N) �⊂
D(T f ), and therefore greater care must be taken in analyzing the domain of the time
operators. Accordingly we begin by reexamining the domain of f (N )T f 2 +T f 2 f (N ),
as well as the CCR-domain for f (N )T f 2 + T f 2 f (N ) and f (N ).

Lemma 4.1 Let f 2 ∈ K−. Then (1l − L∗)	2fin(N) ⊂ D
(
f (N )2T f 2

) ∩ D(T f 2 f (N ))

and the operator f (N )T f 2 + T f 2 f (N ) is symmetric.

Proof From Corollary 2.7, T f 2 satisfies
[
f (N )2, T f 2

] = −i1l on (1l − L∗)	2fin(N).
This implies that (1l − L∗)	2fin(N) ⊂ D

(
f (N )2T f 2

) ∩ D(T f 2 f (N )). ��
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We establish the analogs of Lemmas 3.6 and 3.7 in the case where f 2 ∈ K−.

Lemma 4.2 Let f 2 ∈ K−. Then (1l − L∗)	2fin(N) ⊂ D
(
f (N )T f 2

)
and

lim
m→∞ f (N )T f 2,m(1l − L∗)ξn = f (N )T f 2(1l − L∗)ξn

for all n ∈ N.

Proof Similarly to the proof of Lemma 3.6, it suffices to prove that ( f (N )T f 2,m(1l −
L∗)ξn)m converges. For any n + 1 ≤ m1 ≤ m2, we have

∥∥ f (N )
(
T f 2,m2

− T f 2,m1

)
(1l − L∗)ξn

∥∥2

= f (n + m1 + 1)2

�m1+1( f 2, n)2
+

m2−1∑

k=m1+1

f (n + k + 1)2
(

1

�k+1( f 2, n)
− 1

�k( f 2, n + 1)

)2

+ f (n + m2 + 1)2

�m2( f
2, n + 1)2

≤
(
1 − f (n)2

f (n + 1)2

)−2
1

f (n + m1 + 1)2
+

m2−1∑

k=m1+1

f (n + k + 1)2�1( f 2, n)2

�k+1( f 2, n)2�k( f 2, n + 1)2

+
(
1 − f (n + 1)2

f (n + 2)2

)−2
1

f (n + m2 + 1)2

≤
(
1 − f (n)2

f (n + 1)2

)−2
1

f (n + m1 + 1)2

+ �1( f 2, n)2

f (n + 1)2

(
1 − f (n + 1)2

f (n + 2)2

)−4 m2−1∑

k=m1+1

1

f (n + k + 1)4

+
(
1 − f (n + 1)2

f (n + 2)2

)−2
1

f (n + m2 + 1)2
.

Since f 2 ∈ K−, ( f (N )T f 2,m(1l − L∗)ξn)m∈N is a Cauchy sequence, and then it
converges. We have the desired conclusion. ��
Lemma 4.3 Let f 2 ∈ K−. Then (1 − L∗)	2fin ⊂ D(T f ) and

f (N )T f 2 + T f 2 f (N ) = T f .

on (1l − L∗)	2fin(N).

Proof The assertion can be derived by modifying the proof of Lemma 3.7, using
Lemma 4.2 in place of Lemma 3.6. For brevity, the details are omitted. ��
Lemma 4.4 Let f ∈ K. Then f (N )(1l − L∗)�1( f , N )−1(1l − L∗)	2fin(N) ⊂ (1l −
L∗)	2fin(N).
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Proof On 	2fin(N), we have

f (N )(1l − L∗)�1( f , N )−1(1l − L∗)

=
(
f (N )�1( f , N )−1 − L∗ f (N + 1l)�1( f , N )−1

)
(1l − L∗)

=
(
f (N )�1( f , N )−1 − L∗ − L∗ f (N )�1( f , N )−1

)
(1l − L∗)

= (1l − L∗)
(
f (N )�1( f , N )−1(1l − L∗) − L∗) .

Therefore, we obtain the desired result. ��
Theorem 4.5 Let f 2 ∈ K−. Then, f (N )T f 2 + T f 2 f (N ) and T f are time operators
of f (N ) with an infinite dimensional CCR-domain.

Proof From Lemmas 4.1 and 4.4, we see that

(1l − L∗)�1( f , N )−1(1l − L∗)	2fin(N)

⊂ D
(
f (N )2T f 2

)
∩ D( f (N )T f 2 f (N )) ∩ D

(
T f 2 f (N )2

)
.

Therefore, the symmetric operator f (N )T f 2 + T f 2 f (N ) satisfies

[
f (N ), f (N )T f 2 + T f 2 f (N )

] = f 2(N )T f 2 − T f 2 f
2(N ) = −i1l

on (1l − L∗)�1( f , N )−1(1l − L∗)	2fin(N), since T f 2 is a time operator of f 2(N ) with
the CCR-domain (1l− L∗)	2fin(N). By Lemma 4.3, T f is also a time operator of f (N )

with an infinite dimensional CCR-domain. ��
Since the domain of T f cannot be expected to contain a core of f (N ), it is difficult

to obtain an estimate similar to Lemma 3.10. Instead, we consider taking a self-adjoint
extension of time operators.

Proposition 4.6 Let f ∈ K. IfD( f (N )T f 2)∩D( f (N )2) is dense and T f 2 is bounded,
then f (N )T f 2 + T f 2 f (N ) + r f (N )2 has a self-adjoint extension for all r ≥ 1.

Proof From

f (N )T f 2 + T f 2 f (N ) + r f (N )2 ⊂ (
f (N ) + T f 2

)2 + (r − 1) f (N )2 − T 2
f 2 ,

we see that f (N )T f 2 + T f 2 f (N ) + r f (N )2 is bounded from below. Thus, it has the
Friedrichs extension. ��
Example 4.7 Let f (x) = √

x + 1. Clearly, f 2 ∈ K−. From Theorem 4.5, we see that
T = f (N )T f 2 +T f 2 f (N )+ f (N )2 is a time operator of f (N ). Since T f 2 is bounded
by [5, Theorem 4.6], T has a self-adjoint extension by Proposition 4.6. Thus, f (N )

has a self-adjoint time operator with an infinite dimensional CCR-domain.
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We finally discuss the case where T f 2 may be unbounded.

Proposition 4.8 If f 2 ∈ K− and T f 4 is bounded, then f (N ) has a self-adjoint time
operator.

Proof By Lemma 3.7, we see that

f (N )T f 2 + T f 2 f (N )

= f (N )3T f 4 + f (N )2T f 4 f (N ) + f (N )T f 4 f (N )2 + T f 4 f (N )3

on (1l − L∗)	2fin(N). We consider the operator

T = f (N )3T f 4 + f (N )2T f 4 f (N ) + f (N )T f 4 f (N )2 + T f 4 f (N )3 + r f (N )6

for some real number r > 1. From Theorem 4.5, we see that T is a time operator of
f (N ). Set r = r1 + r2 such that r1 ≥ 1 and r2 > 0. Clearly the following relations
hold:

f (N )3T f 4 + T f 4 f (N )3 + r1 f (N )6 ⊂
(
f (N )3 + T f 4

)2 + (r1 − 1) f (N )6 − T 2
f 4 ,

f (N )2T f 4 f (N ) + f (N )T f 4 f (N )2 + r2 f (N )6

= f (N )
(
f (N )2 + f (N )T f 4 + T f 4 f (N ) +

∥∥∥T 2
f 4

∥∥∥
)
f (N )

+ r2 f (N )6 − f (N )4 −
∥∥∥T 2

f 4

∥∥∥ f (N )2.

Since f (N )2 and f (N )4 are infinitesimally small compared to f (N )6, the operators
on the right-hand side of the above relations are bounded from below. Consequently
the operator T admits a self-adjoint extension T̃ which serves as a self-adjoint time
operator of f (N ). ��
Example 4.9 Let λ ∈ (1/4, 1) and f (x) = xλ + 1. Then, f 2 ∈ K− and T f 4 are
bounded. Hence, f (N ) admits a self-adjoint time operator by Proposition 4.8.
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