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Abstract—We consider a family of Schrödinger operators Ĥλμk = −Δ− λδk,· − μδ0,· on the one-
dimensional lattice Z, where Δ is a standard discrete Laplacian, δ·,· is a Kronecker delta function,
and λ, μ ∈ R and k ∈ Z are parameters. Eigenvalue behavior of the operators and their dependence
on the parameters are explicitly derived. Moreover, we obtain asymptotics for the eigenvalues as the
distance between two elements of the potential function support approaches infinity.
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1. INTRODUCTION

Behavior of eigenvalues lying below the essential spectrum of the standard Schrödinger operators of
the form−Δ− εV defined onL2(Rn), where V is a positive potential and ε ≥ 0 is a parameter that varies,
has been thoroughly studied [1]. When ε approaches to a critical point εc ≥ 0, the negative eigenvalues
approach to the left edge of the essential spectrum, and consequently they are absorbed into it. A crucial
mathematical problem is to specify whether the edge of the essential spectrum is an eigenvalue or a
threshold resonance at the critical point εc, which is also dependent on the spatial dimension n.

In this work, we study discrete Schrödinger operators, the lattice counterparts of the continuous
Schrödinger operators. Lattice Bose–Hubbard models represent a minimal system with highly con-
trollable parameters such as lattice geometry and dimensionality, particle masses, tunneling, two-body
potentials, temperature, etc. (see, e.g., [2–4] and the references therein). In the traditional condensed
matter systems, stable composite objects are usually formed by the attractive forces, meanwhile the
repulsive forces separate particles in the free space. However, the controllability of the collision properties
of ultracold atoms has enabled to experimentally observe a stable repulsive bound pair of ultracold atoms
in the optical lattice Z

3 [5–7]. In these observations, Bose–Hubbard Hamiltonians became a link
between the basic theoretical approaches and experiments.

Discrete Schrödinger operators have also attracted considerable attention for both combinatorial
Laplacians and quantum graphs (see Refs. [8–14] for some summaries). Particularly, eigenvalue
behavior of such operators were studied in [15–24] and are briefly discussed in [25–27] for the case when
the potential is a delta function with a single point mass. In [15], an explicit example for the parameter-
dependent operator Ĥλμ of the form −Δ− V̂λμ was constructed on the three-dimensional lattice Z

3,
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which possesses both a lower threshold resonance and a lower threshold eigenvalue, where Δ stands for
the standard discrete Laplacian in �2(Z3) and V̂λμ is defined as

V̂λμ(x) = μδx0 +
λ

2

∑
|k|=1

δxk, λ ≥ 0, μ ≥ 0, (1)

with δ·,· being the Kronecker delta.

Restriction of this operator to the Hilbert space �2e(Z
3) of all even functions in �2(Z3) was studied

in [27]. They investigated the dependence of the number of eigenvalues of the operator Ĥλμ on the
parameters λ, μ for λ > 0, μ > 0. It was shown that all eigenvalues arise either from a lower threshold
resonance or from lower threshold eigenvalues under a variation of the interaction energy. Particularly,
they proved that the first lower eigenvalue of the Hamiltonian arises only from a lower threshold
resonance. In the case of λ = 0, Hiroshima et. al. [18] studied a similar problem on the d-dimensional
lattice Z

3, and showed that a threshold eigenvalue does appear for n ≥ 5, but does not for 1 ≤ n ≤ 4.
The discrete Schrödinger operators with potential of the form (1) posses very interesting spectral

properties which are not yet fully studied. In this paper, we consider the problem for an arbitrary
k ∈ Z in the one-dimensional case. In this case, the discrete Schrödinger operator is of the form
Ĥλμk = Ĥ0 − v̂λμk , where Ĥ0 = −Δ is the discrete Laplacian and v̂λμk is a multiplication operator by
the function v̂λμk(x) = λδx0 + μδxk, where λ, μ ∈ R and k ∈ Z are parameters.

For convenience, we study the spectral properties of the family of operators Hλμk = F−1ĤλμkF
acting on L2(T). We show that the operators Hλμk may have zero, one or two eigenvalues depending
on the parameters. In the latter case, one of the eigenvalues lies below the eigenvalues of the operators
Hλ0k and H0μk, while the other is above them. We establish asymptotics for these eigenvalues as k → ∞
and show that they converge to the eigenvalues of Hλ0k and H0μk as k increases. Additionally, we
investigate the spectrum of Hλμk, particularly lower threshold eigenvalues and threshold resonances for
any (λ, μ) ∈ R

2.
The paper is organized as follows. Section 1 is introduction. In Sections 2 and 3, discrete

Schrödinger operators are described in the coordinate and momentum representations, respectively. In
Section 4, we describe the essential spectrum of the operator. Moreover, the Fredholm determinant and
its properties are studied. In Section 5, eigenvalues of the operator Hλμk are investigated (Theorem 2).
Section 6 is devoted to the asymptotics of the eigenvalues of the operator Hλμk as k → ∞.

2. THE DISCRETE SCHRÖDINGER OPERATOR
IN THE POSITION REPRESENTATION

In the one-dimensional case, the standard discrete Laplacian Δ is defined as a self-adjoint (bounded)
Toeplitz-type operator on the Hilbert space �2(Z) [28]

Δ =
1

2

∑
x∈Z,|x|=1

(
T (x)− T (0)

)
,

where T (y), y ∈ Z is a shift operator

(T (y)f̂)(x) = f̂(x+ y), f̂ ∈ �2(Z), x ∈ Z.

Let the discrete Schrödinger operator be defined in the Hilbert space �2(Z) as Ĥλμk = Ĥ0 − v̂λμk,

where Ĥ0 = −Δ and the potential operator v̂ depending on the parameters λ, μ ∈ R and k ∈ Z is
defined by

(v̂λμk f̂)(x) =

⎧⎪⎨⎪⎩
μf̂(x), if x = 0

λf̂(x), if x = k

0, if x ∈ Z \ {k, 0},
f̂ ∈ �2(Z), x ∈ Z.
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3. THE DISCRETE SCHRÖDINGER OPERATOR
IN THE MOMENTUM REPRESENTATION

Let F : L2(T) → �2(Z) be the standard Fourier transform defined as

(Ff)(x) =
1√
2π

∫
T

f(θ)eixθdθ, f ∈ L2(T), x ∈ Z

with the inverse F−1 : �2(Z) → L2(T) acting as

(F−1f)(θ) =
1√
2π

∑
x∈Z

f̂(x)e−ixθ, f̂ ∈ �2(Z), θ ∈ T.

Let the HamiltonianHλμk be the momentum representation of the Hamiltonian Ĥλμk, defined as Hλμk =

F−1ĤλμkF acting on L2(T) as Hλμk = H0 − Vλμk, where the non-perturbed operator H0 = F−1Ĥ0F
is defined on L2(T) as a multiplication operator

(H0f)(p) = e(p)f(p), f ∈ L2(T), p ∈ T,

where e(p) = 1− cos p, p ∈ T. In the physical literature, the function e(·), being a real valued-function
on T, is called the dispersion relation of the Laplace operator (−Δ).

The perturbation Vλμk = F−1v̂λμkF is the two-dimensional integral operator,

(Vλμkf)(p) =
μ

2π

∫
T

f(q)dq +
λ

2π

∫
T

eik(p−q)f(q)dq, f ∈ L2(T), p ∈ T.

It is not hard to see that Hλμk is a self-joint operator.
We remark that for k = 0, the potential Vλμk is an operator of rank one, and that case was investigated

in [18, 19]. In the present work, we assume that k �= 0.
Hereafter, we use Vλμ and Hλμ instead of Vλμk and Hλμk, respectively, for simplicity. But we take into

consideration their dependence on k.

4. FREDHOLM DETERMINANT OF THE OPERATOR Hλμ

The perturbation operator Vλμ is an operator of rank two and in accordance with Weyl’s theorem
on the stability of the essential spectrum, we have σess(Hλμ) = σess(H0). As H0 is a multiplication
operator by a function, the essential spectrum of the operator Hλμ consists of the segment σess(Hλμ) =
[emin, emax] on the real axis, where emin = 0 and emax = 2.

Let T (z), z ∈ C \ [0.2] be a two-dimensional matrix operator defined as

T (z) =

⎡⎣μa(z) λb(z)

μb(z) λa(z)

⎤⎦ ,

where

a(z) =
1

2π

∫
T

1

e(q) − z
dq and b(z) =

1

2π

∫
T

eikq

e(q) − z
dq =

1

2π

∫
T

cos(kq)

e(q)− z
dq.

For any λ, μ ∈ C, we define the Fredholm determinant associated with the operator I − T (z) as an
analytic function in z ∈ C \ [0.2] as

D(λ, μ, z) = Δμ(z)Δλ(z)− λμb2(z), (2)

where Δμ(z) = 1− μa(z) and Δλ(z) = 1− λa(z).
Lemma 1(Birman–Schwinger principle for z ∈ C \ [0.2]).
(1) The number z ∈ C \ [0.2] is an eigenvalue of Hλμ if only if 1 ∈ σ(T (z)).
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(2) Let det
(
T (z)− I

)
= 0 for z ∈ C \ [0.2] and (λ, μ) ∈ R

2, i.e., D(λ, μ, z) = 0. Then, the vector
ω = (ω0, ω1)

T ∈ C
2 is an eigenvector of T (z) associated with the eigenvalue 1 if and only if

f =
μω0 + λω1e

−ikp

e(p)− z

is an eigenfunction of Hλμ associated with the eigenvalue z.

Proof. (1) Let Hλμf = zf , z ∈ C \ [0.2], then
(
e(p)− z

)
f = Vλμf , i.e.,

f(p) =
μc1
2π

1

e(p)− z
+

λc2
2π

e−ikp

e(p)− z
,

where c1 =
∫
T

f(q)dq and c2 =
∫
T

e−ikqf(q)dq. Integrating both sides with respect to the variable p ∈ T

two times: first as it is and then by successively multiplying all terms by eikp, we obtain a system of linear
equations with respect to c1 and c2, {

c1 = c1μa(z) + c2λb(z),

c2 = c1μb(z) + c2λa(z),

i.e., T (z)(c1, c2)
T = (c1, c2)

T , that is 1 is an eigenvalue of T (z).

On the other hand, if 1 is an eigenvalue of T (z) corresponding to the eigenvector (c0, c1)T , i.e.,⎛⎝μa(z) λb(z)

μb(z) λa(z)

⎞⎠⎛⎝c0

c1

⎞⎠ =

⎛⎝c0

c1

⎞⎠ ,

then, it can be easily verified that for

ψ(p) =
μc0

e(p)− z
+

λc1e
−ikp

e(p)− z
,

we have Hλμψ = zψ, i.e., z is an eigenvalue of Hλμ. This proves the second statement of the lemma too.
�

4.1. Properties of the Fredholm Determinant

As b(z) is even with respect to the parameter k, hereafter, we assume k ≥ 1. In the following lemma,
we study the properties of the functions a(z) and b(z).

Lemma 2. (a) For the functions a(z) and b(z), the followings hold

a(z) =
1√

z2 − 2z
, z ∈ (−∞, 0) ∪ (2,+∞)

and

b(z) =

(
1− z −

√
z2 − 2z

)k
√
z2 − 2z

, z ∈ (−∞, 0) ∪ (2,+∞).

(b) Functions a(z) and b(z) satisfy the relations a(z) > b(z) and a′(z) > b′(z).
Proof. (a) According to the residue theorem we have∫

|z|=1

f(z)

g(z)
dz = 2πi

f(z0)

g′(z0)
,

where f(z) and g(z) are analytic functions in the unit ball B = {z ∈ C : |z| < 1}, and z0 is the only zero
of the function g(z) in B.
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We derive a formula for b(z). Let us make the following change of variables in the integral b(z),

eiq = η, e−iq =
1

η
, ieiqdq = dη, dq =

dη

iη
.

Then, we obtain

b(z) =
1

2π

∫
T

eikq

e(q)− z
dq =

1

2π

∫
|η|=1

2ηk[
2− 2z −

(
η + 1

η

)] dη
iη

=
i

π

∫
|η|=1

ηkdη

η2 − (2− 2z)η + 1
.

The residue theorem yields that

b(z) =
i

π
2πi

(
1− z −

√
z2 − 2z

)k
2
(
1− z −

√
z2 − 2z

)
− 2 + 2z

=

(
1− z −

√
z2 − 2z

)k

√
z2 − 2z

,

particularly, when k = 0, we have

a(z) =
1

2π

∫
T

dq

e(q) − z
=

1√
z2 − 2z

.

(b) The proof of the second part of the lemma follows from the relations

d(n)a(z)

dzn
= (n− 1)!

∫
T

dq(
e(q)− z

)n+1 and
d(n)b(z)

dzn
= (n− 1)!

∫
T

eikq(
e(q)− z

)n+1dq

for any n ∈ N, where (·)(n) stands for the nth order derivative. Then,

d(n)a(z)

dzn
>

d(n)b(z)

dzn
.

�

Let us rewrite the Fredholm determinant (2) as

D(λ, μ, z) =
(
a2(z)− b2(z)

)
Hz(λ, μ),

where

Hz(λ, μ) =
(
λ− γ(z)

)(
μ− γ(z)

)
− ξ2(z)

with

γ(z) =
a(z)

a2(z)− b2(z)
and ξ(z) =

b(z)

a2(z) − b2(z)
, z ∈ C \ [0.2].

Lemma 3. a) The function γ(z) is monotonically decreasing in the interval (−∞, 0).
b) The following relations are appropriate

lim
z→−∞

γ(z) = +∞, lim
z→0−

γ(z) =
1

2k
. (3)

Proof. a) Consider the derivative

γ′(z) =
a′(z)

(
a2(z)− b2(z)

)
− a(z)2

(
a(z)a′(z)− b(z)b′(z)

)(
a2(z) − b2(z)

)2 .

Here a(z) > b(z) > 0 and a′(z) > b′(z) > 0, and
(
a2(z)− b2(z)

)2
> 0 follows. Furthermore

a′(z)
(
a2(z) − b2(z)

)
− a(z)2

(
a(z)a′(z)− b(z)b′(z)

)
= 2a(z)b(z)b′(z)− a′(z)

(
a2(z) + b2(z)

)
≤ 2a(z)b(z)a′(z)− a′(z)

(
a2(z) + b2(z)

)
= −a′(z)(a(z) − b(z))2 < 0.

Therefore, γ(z) as a function of z is monotonically decreasing in the interval (−∞, 0).
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b) Using the relations

a(z) =
1√

z2 − 2z
and b(z) =

(
1− z −

√
z2 − 2z

)k
√
z2 − 2z

,

we obtain the following limits

lim
z→−∞

γ(z) = lim
z→−∞

a(z)

a2(z)− b2(z)
= lim

z→−∞

√
z2 − 2z

1−
(
1− z −

√
z2 − 2z

)2k
= lim

z→−∞

−z
√

1− 2
z(

1−
(
1− z − z

√
1− 2

z

)k
)(

1 +
(
1− z − z

√
1− 2

z

)k
) = +∞,

lim
z→0−

γ(z) = lim
z→0−

a(z)

a2(z)− b2(z)
= lim

z→0−

√
z2 − 2z

1−
(
1− z −

√
z2 − 2z

)2k

= lim
z→0−

z − 1

−2k
(
1− z −

√
z2 − 2z

) =
1

2k
.

�

Next, we investigate the function ξ(z).
Lemma 4. a) If k = 1, then ξ(z) = const.
b) If k > 1, then ξ(z) is monotonically increasing in the interval (−∞, 0).
c) The following relations hold

lim
z→−∞

ξ(z) = +∞, lim
z→0−

ξ(z) =
1

2k
. (4)

Proof. a) Let k = 1. Then,

ξ2(z) = − z2 − 2z

4z − 2z2 + 2(1 − z)
√
z2 − 2z

+
1

z2 − 2z

(z2 − 2z)2(√
z2 − 2z

(
2(1− z)− 2

√
z2 − 2z

))2
=

2(z2 − 2z) − 2(1− z)
√
z2 − 2z + 1

4(1 − z)2 − 8(1− z)
√
z2 − 2z + 4(z2 − 2z)

=
1

4
.

b) Let k > 1. On the right hand side of the equalities in Lemma 2, we make a change of variables
ω = 1− z −

√
z2 − 2z, where ω satisfies the equalities

1

ω
+ ω = 2(1 − z),

1

ω
− ω = 2

√
z2 − 2z and 0 < ω < 1 for z < 0.

Hence, ξ(z) takes the form

ξ1(ω) := ξ(z) =
1

2

ωk−1 − ωk+1

1− ω2k
, ω ∈ (0, 1). (5)

The last function can be written in a more convenient way as

ωk−1 − ωk+1

1− ω2k
=

ωk−1(1−w2)

1− ω2k
=

ωk−1

1 + ω2 + ω4 + · · · + ω2k−2
.

For the derivative of the function ξ1(ω), we have

ξ′1(ω) =
1

2

(k − 1)ωk−2
(
1 + ω2 + ω4 + · · ·+ ω2k−2

)
− ωk−1

(
2ω + 4ω3 + · · ·+ (2k − 2)ω2k−1

)(
1 + ω2 + ω4 + · · ·+ ω2k−2

)2
LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 10 2024
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=
wk−2

2

(
(k − 1) + (k − 3)ω2 + (k − 5)ω4 + · · ·+

(
k − (2k − 1)

)
ω2k

)
(
1 + ω2 + ω4 + · · · + ω2k−2

)2 .

If k is odd, then

(k − 1) + (k − 3)ω2 + (k − 5)ω4 + · · ·+
(
k − (2k − 1)

)
ω2k

= (k − 1) + (k − 3)ω2 + (k − 5)ω4 + · · · + 2ωk−1 − 2ωk+1 − · · · − (k − 3)ω2k−2 − (k − 1)ω2k

= (k − 1)(1 − ω2k) + (k − 3)(ω2 − ω2k−2) + · · ·+ 2(ωk−1 − ωk+1).

If k is even, then

(k − 1) + (k − 3)ω2 + (k − 5)ω4 + · · ·+
(
k − (2k − 1)

)
ω2k

= (k − 1) + (k − 3)ω2 + (k − 5)ω4 + · · ·+ ωk−1 − ωk+1 − · · · − (k − 3)ω2k−2 − (k − 1)ω2k

= (k − 1)
(
1− ω2k

)
+ (k − 3)

(
ω2 − ω2k−2

)
+ · · ·+

(
ωk−1 − ωk+1

)
.

As 0 < ω < 1, for n > m, we have ωn < ωm. Therefore, in both cases all the terms are positive, i.e.,
ξ1(ω) > 0. This fact, the chain rule

dξ(z)

dz
=

dξ1(ω)

dω

d
(
1− z −

√
z2 − 2z

)
dz

and the relation (
1− z −

√
z2 − 2z

)′
= −1− z − 1√

z2 − 2z
> 0, z ∈ (−∞, 0),

imply that the function ξ(z) is monotonically increasing in the interval (−∞, 0).
c) Equation (5) yields the limit

lim
z→−∞

ξ(z) = lim
ω→0+

ωk−1

2

1− ω2

1− ω2k
= 0.

Also, we have that

lim
z→0−

ξ(z) = lim
w→1−

1

2

wk−1∑k−1
j=0 w

2j
=

1

2k
.

�

4.2. Continuation of Hz(λ, μ) to the Point z = 0

Using the limits (3) in Lemma 3 and (4) in Lemma 4, we can introduce the continuation of the
function Hz(λ, μ) = (λ− γ(z))(μ − γ(z)) − ξ2(z) at the point z = 0 as

H0(λ, μ) =
(
λ− 1

2k

)(
μ− 1

2k

)
− 1

4k2
.

Let us study the family of rectangular hyperbolas Hz = {(λ, μ) ∈ R
2|Hz(λ, μ) = 0} for z ∈ (−∞, 0].

Denote the left (lower) and right (upper) branches of hyperbola Hz by Γl
z and Γr

z, respectively.

Lemma 5. a) Let k = 1. If z approaches −∞ from 0, then the hyperbola Hz parallelly shifts to
the upper right corner of the λμ-coordinate plane (see Fig. 1).

b) Let k > 1. If z approaches −∞ from 0, the hyperbola Hz shifts to the upper right corner of
the λμ-coordinate plane, but the concavity of a rectangular hyperbola increases (see Fig. 2).

c) Additionally, for any z1 �= z2 ∈ (−∞, 0), the respective branches do not intersect, i.e.,
Γl
z1

⋂
Γl
z2 = ∅ and Γr

z1

⋂
Γr
z2 = ∅.
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�r
0

�l
0 �l

�1/2

� k = 1

�

�r
�1/2

Fig. 1. Motion of hyperbolas for k = 1.

�r
0

�l
0 �l

�1/2

� k = 4

�

�r
�1/2

Fig. 2. Motion of hyperbolas for k > 1.

Proof. a) According to Lemma 5, ξ(z) = const and hyperbola Hz is obtained by a parallel movement
of H0 along the vector

(
− γ(0) + γ(z),−γ(0) + γ(z)

)
,

Hz(λ, μ) = H0(λ, μ) +
(
λ− γ(z)

)(
μ− μ(z)

)
− ξ(z)

=
(
λ− γ(z) + γ(0) − γ(0)

)(
μ− γ(z) + γ(0) − γ(0)

)
− ξ(z)

= H0

(
λ− γ(z) + γ(0), μ − γ(z) + γ(0)

)
.

From Lemma 3, limz→−∞ γ(z) = +∞ and the function γ(z) is monotonically decreasing. Therefore,
hyperbola Hz shifts parallelly upwards when z approaches to −∞ from 0.

b) The coordinates of vertices of the hyperbola are

(λ1, μ1) =

(
1

a(z) + b(z)
,

1

a(z) + b(z)

)
and (λ2, μ2) =

(
1

a(z)− b(z)
,

1

a(z)− b(z)

)
.

As the functions

1/
(
a(z) + b(z)

)
and 1/

(
a(z) − b(z)

)
are monotonically decreasing in the interval (−∞, 0), the vertices of the hyperbola Hz move to the right
as z approaches to −∞.
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Also, from Lemma 3, the function γ(z) =
a(z)

a2(z)− b2(z)
is monotonically decreasing in the interval

(−∞, 0). Hence, the asymptotes of the hyperbola Hz, the functions

λ(z) =
a(z)

a2(z)− b2(z)
and μ(z) =

a(z)

a2(z) − b2(z)

move upwards as z approaches to −∞ from 0, but not parallelly (see Fig. 2).

c) The proof follows the parts a) and b). �

Definition 1. (Threshold eigenvalue and threshold resonance). Let the function f be a solution
of the equation Hλμf = 0.

a) If f ∈ L2(T), 0 is called a lower threshold eigenvalue.

b) If f ∈ L1(T) \ L2(T), 0 is called a lower threshold resonance.

c) If f ∈ Lε(T) \ L1(T) for any ε (0 < ε < 1), 0 is called a lower super threshold resonance.

Theorem 1. (a) z ∈ (−∞, 0) is an eigenvalue of Hλμ if and only if (λ, μ) ∈ Γl
z or (λ, μ) ∈ Γr

z.

(b) For any (λ, μ) ∈ R
2, Hλμ has neither threshold resonances nor super-threshold reso-

nances.

Proof. (a) Assume (λ, μ) ∈ Γl
z or (λ, μ) ∈ Γr

z. Then, Hz(λ, μ) = 0 that is D(λ, μ, z) = 0. According
to Lemma 1, z is an eigenvalue for the operator Hλμ.

(b) Let f ∈ L1(T). Consider the equation Hλμf = 0. Then, from the relation

e(p)f(p)− μ

2π

∫
T

f(q)dq − λ

2π

∫
T

eik(p−q)f(q)dq = 0,

we have f = ϕ(p)
e(p) , where ϕ(p) = μC0 + λC1e

−ikp.

As e(0) = 0, from the inclusion f(p) ∈ L1(T) it follows that ϕ(0) = μC0 + λC1 = 0. Hence,

f(p) =
μ

e(p)

(
1− e−ikp

)
C0.

According to the definition of e(p), the real part of the function

1− e−ikp

e(p)
=

1− cos(kp)

e(p)
+

sin(kp)

e(p)
i

is integrable, but the imaginary part is not. Therefore, the inclusion f ∈ L1(T) yields that μC0 = 0, i.e.,
f = 0.

Let f /∈ L1(T). Then, μ = 0 and f = ϕ(p)/e(p) with ϕ(p) = λC1e
−ikp. From these, we have

C1 =
λ

2π

∫
T

C1

e(p)
dp.

Then, C1 = 0, since
∫
T

1

e(p)
dp = ∞. Therefore, f = 0. �
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Fig. 3. Branches of the Hyperbola H0 and the connected components.

5. MAIN RESULTS

The curves Γl
0 and Γr

0 split the space R
2 into three open sets (see Fig. 3),

G0(k) =
{
(λ, μ) ∈ R

2 : H0(λ, μ) > 0, λ < 1/2k
}
,

G1(k) =
{
(λ, μ) ∈ R

2 : H0(λ, μ) < 0
}
,

G2(k) =
{
(λ, μ) ∈ R

2 : H0(λ, μ) > 0, λ > 1/2k
}
.

The following lemma follows from the definitions of G0(k) and G2(k).
Lemma 6. If k > m, then G0(k) ⊂ G0(m) and G2(k) ⊃ G2(m).
In the next lemma we study zeros of the the operator Hλμ in the interval (−∞, 0).
Lemma 7. Let k ∈ Z be a fixed positive integer.

a) If (λ, μ) ∈ G0(k) ∪ Γl
0, then Hλμ has no eigenvalues in (−∞, 0);

b) If (λ, μ) ∈ G1(k) ∪ Γr
0, then Hλμ has a unique simple eigenvalue zk ∈ (−∞, 0), where zk =

zmin if λμ = 0, zk ∈ (−∞, zmin) if λμ > 0, and zk ∈ (zmin, 0) if λμ < 0;
c) If (λ, μ) ∈ G2(k), then Hλμ has two eigenvalues zk, ζk such that −∞ < zk < zmin ≤ zmax <

ζk < 0.
Proof. According to Lemma 1, Hλμ has an eigenvalue z ∈ (−∞, 0), iff D(λ, μ, z) = 0, equivalently

iff (λ, μ) ∈ Γl
z or (λ, μ) ∈ Γr

z.

a) Let (λ, μ) ∈ G0(k) ∪ Γl
0. Then, (λ, μ) lies below or on Γl

0. From Lemma 5 it follows that Γl
z lies in

Γr
0 ∪G1(k) ∪G2(k) for any z ∈ (−∞, 0). Therefore, for any (λ, μ) ∈ G0(k) ∪ Γl

0, the operator Hλμ has
no eigenvalues in the interval (−∞, 0).

b) Let (λ, μ) ∈ G1(k) ∪ Γr
0. From Lemma 5, we have ∪ζ∈(−∞,0)Γ

l
ζ ⊃ G1(k), Γl

z ∩G1(k) �= ∅ and

Γr
z ∩G1(k) = ∅ for any z ∈ (−∞, 0). Also, for z �= ζ ∈ (−∞, 0), the relation Γl

z ∩ Γl
ζ = ∅ holds.

Accordingly, for any (λ, μ) ∈ Γl
0, the operator Hλμ has a unique eigenvalue in (−∞, 0).

Let λμ = 0, without loss of generality let λ = 0, then from the inclusion (λ, μ) ∈ G1(k) ∪ Γr
0, we have

μ > 0. Then, according to the definition of D(λ, μ, z), D(0, μ, zmin) = 0, i.e., zk = zmin.
Let λμ > 0 (< 0), then

D(λ, μ, zmin) = −λμ
b2(zmin)

a2(zmin)− b2(zmin)
< 0 (> 0).

As D(λ, μ, z) has a unique eigenvalue, from the limit limz→−∞D(λ, μ, z) = 1, we obtain that
zk ∈ (−∞, zmin)

(
zk ∈ (zmin, 0)

)
.
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Fig. 4. Connected components.

c) Now let (λ, μ) ∈ G2(k). From Lemma 5, we have ∪z∈(−∞,0)Γ
l
z ⊃ G2(k) and ∪z∈(−∞,0)Γ

r
z =

G2(k). Moreover, for z �= ζ ∈ (−∞, 0), we have Γl
z ∩Γl

ζ = ∅, Γr
z ∩ Γr

ζ = ∅ and Γl
z ∩ Γr

z = ∅. Therefore,

there exist z �= ζ ∈ (−∞, 0) such that (λ, μ) ∈ Γl
z and (λ, μ) ∈ Γr

ζ . That is, Hλμ has exactly two
eigenvalues in (−∞, 0).

We have shown the existence of two eigenvalues zk < ζk ∈ (−∞, 0). Next we investigate their
location. As (λ, μ) ∈ G2(k), H0(λ, μ) > 0 and D(λ, μ, z) =

(
a2(z)− b2(z)

)
Hz(λ, μ), we obtain the

limits
lim

z→0−
D(λ, μ, z) = +∞ and lim

z→−∞
D(λ, μ, z) = 1.

Moreover, in G2(k), we have λ, μ > 0, therefore,

D(λ, μ, zmin) = −λμ
b2(zmin)

a2(zmin)− b2(zmin)
< 0

and

D(λ, μ, zmax) = −λμ
b2(zmax)

a2(zmax)− b2(zmax)
< 0.

Therefore, D(λ, μ, z) has different signs at the edges of the intervals (−∞, zmin) and (zmax, 0). Conse-
quently, zk ∈ (−∞, zmin) and ζk ∈ (zmax, 0). �

Let us define the following connected components (see Fig. 4).

D0,0 =
{
(λ, μ) ∈ R

2|λ ≤ 0, μ ≤ 0
}
, D0,1 = G1(1) ∪ Γl

0 \ D0,0,

D1,1 =
{
(λ, μ) ∈ R

2|λ+ μ > 0, λμ ≤ 0
}
,

D1,2 =
{
(λ, μ) ∈ G1(k)|λ > 0, μ > 0

}
∪ Γr

0, D2,2 = G2(k).

Theorem 2. The following statements are true for zeros of the function D(λ, μ, z) in (−∞, 0).
(a) For any k ∈ Z and (λ, μ) ∈ D0,0, D(λ, μ, z) has no zeros;
(b) If (λ, μ) ∈ D0,1, then there exists a number k0 ∈ N such that D(λ, μ, z) has no zeros for

k < k0 and has a unique zero zk ∈ (−∞, 0) for k ≥ k0;
(c) If (λ, μ) ∈ D1,1, then for all k ∈ Z, D(λ, μ, z) has a unique zero zk ∈ (−∞, 0);
(d) If (λ, μ) ∈ D1,2, then there exists a number k0 ∈ N such that D(λ, μ, z) has unique zero

zk ∈ (−∞, zmin) for k < k0 and has two zeros zk ∈ (−∞, zmin) and ζk ∈ (zmax, 0) for k ≥ k0;
(e) If (λ, μ) ∈ D2,2, then D(λ, μ, z) has two distinct zeros zk ∈ (−∞, zmin) and ζk ∈ (zmax, 0).
Proof. (a) Let (λ, μ) ∈ D0,0. As D0,0 =

⋂∞
k=1G0(k) (see Fig. 5), we have (λ, μ) ∈

⋂∞
k=1G0(k).

Therefore, from Lemma 7, D(λ, μ, z) has no zeros in (−∞, 0) for any k ∈ N.
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Fig. 5. Motion of hyperbolas with respect to k for z = 0.

(b) Let (λ, μ) ∈ D0,1. Then, from Lemma 6, we have the relations G0(1) ⊃ G0(2) ⊃ G0(3) ⊃ · · · .
Also, we have D0,1 =

⋃∞
k=1G0(k) \G0(k + 1). Therefore, there exists a number k0 ∈ N such that

(λ, μ) ∈ G0(k0) \G0(k0 + 1), that is

(λ, μ) ∈
k0⋂
k=1

G0(k) and (λ, μ) ∈
∞⋂

k=k0+1

G1(k).

Then, from Lemma 7, D(λ, μ, z) has a unique zero in (−∞, zmin) for all k > k0, and has no zeros if
k ≤ k0.

(c) Let (λ, μ) ∈ D1,1, then (λ, μ) ∈
⋂∞

k=1G1(k), therefore, from Lemma 7, D(λ, μ, z) has a unique
zero zk ∈ (−∞, zmin) for all k ∈ N.

(d) Let (λ, μ) ∈ D1,2. Then, from Lemma 6, we have the relations G2(1) ⊂ G2(2) ⊂ G2(3) ⊂ · · · .
Also, D1,2 =

⋃∞
k=1G2(k + 1) \G2(k). Therefore, there exists a number k0 ∈ N such that (λ, μ) ∈

G2(k0 + 1) \G2(k0), that is

(λ, μ) ∈
k0⋂
k=1

G1(k) and (λ, μ) ∈
∞⋂

k=k0+1

G2(k).

Then, from Lemma 7, D(λ, μ, z) two zeros zk ∈ (−∞, zmin) and ζk ∈ (zmax, 0) for k > k0, and a unique
zero zk ∈ (−∞, zmin) for k ≤ k0.

(e) Let (λ, μ) ∈ D2,2. As D2,2 =
⋂∞

k=1G2(k), from Lemma 7, D(λ, μ, z) two zeros zk ∈ (−∞, zmin)
and ζk ∈ (zmax, 0) for all k ∈ N. �

6. ASYMPTOTICS FOR EIGENVALUES OF THE OPERATOR Hλμ

In this section, we study asymptotic behavior of the eigenvalues zk and ζk, as k → ∞, when they
exist.

Let zλ and zμ be zeros of the function Δλ(z) and Δμ(z), respectively, i.e.,

1− λa(zλ) = 0 and 1− μa(zμ) = 0.

Then, zμ and zλ are eigenvalues of the the discrete Schrödinger operators

Ĥ0μk = Ĥ0 − μδ(x) and Ĥλ0k = Ĥ0 − λδ(x− k),

respectively. Let

zmin = min{zμ, zλ} = zλ, zmax = max{zμ, zλ} = zμ.
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Let us introduce the numbers

wmin = 1− zmin −
√

z2min − 2zmin and wmax = 1− zmax −
√

z2max − 2zmax.

Then, 0 < wmin, wmax < 1.

Theorem 3. (a) The eigenvalue zk satisfies the asymptotic relation zk ≈ 1− 1
2

(
wk +

1
wk

)
,

where

wk = wmin −
λμw2k+1

min(
wmin + μ

)(
μ− λ

)
+ 2λμ

(
k + 1

)
w2k

min

.

(b) ζk satisfies the asymptotics ζk ≈ 1− 1
2

(
wk +

1
wk

)
, where

wk = wmax −
λμw2k+1

max(
wmax + μ

)(
λ− μ

)
+ 2λμ

(
k + 1

)
w2k

max
.

Proof. (a) Making the substitution w = 1− z −
√
z2 − 2z on the right hand side of functions a(z)

and b(z) in Lemma 2 and using the equalities

1− z =
1

2

(
1

w
+ w

)
and

√
z2 − 2z =

1

2

(
1

w
−w

)
,

we rewrite the functions a and b as

a(z) = a1(w) =
2w

1− w2
, b(z) = b1(w) =

2wk+1

1− w2
.

Then, equation

D(λ, μ, z) = Δλ(z)Δμ(z) − λμb2(z) = 0

is equivalent to a new equation of the variable w, 0 < w < 1,

(1− w2 − 2μw)(1 − w2 − 2λw) = 4λμw2k+2.

Separating the linear part of the Taylor series of the left hand side of this equation around the point
wmin, we obtain[

−4(wmin + μ)(μ− λ)wmin − 8λμ(k + 1)w2k+1
min

]
(w − wmin) = 4λμw2k+2

min .

From the last equation for w = wk = 1− zk −
√

z2k − 2zk , i.e., zk = 1− 1

2

(
wk +

1

wk

)
, we obtain

wk = wmin −
4λμw2k+2

min

4(wmin + μ)(μ − λ)wmin + 8λμ(k + 1)w2k+1
min

= wmin −
λμw2k+1

min

(wmin + μ)(μ− λ) + 2λμ(k + 1)w2k
min

as k → ∞.
The part (b) can be proven analogously. �
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and P. Zoller, “Repulsively bound atom pairs in an optical lattice,” Nature 441, 853–856 (2006).
7. J. J. Zirbel, K.-K. Ni, S. Ospelkaus, T. L. Nicholson, M. L. Olsen, P. S. Julienne, C. E. Wieman, J. Ye, and

D. S. Jin, “Heteronuclear molecules in an optical dipole trap,” Phys. Rev. A 78, 013416 (2008).
8. F. Chung, Spectral Graph Theory, Vol. 92 of CBMS Regional Conference Series in Mathematics (Am.

Math. Soc., Washington DC, 1997).
9. A. Grigor’yan, “Heat kernels on manifolds, graphs and fractals,” in Proceedings of the European Congress

of Mathematics, Prog. Math. 201, 393–406 (2001).
10. G. Berkolaiko, R. Carlson, S. A. Fulling, and P. A. Kuchment, Quantum Graphs and Their Applications,

Vol. 415 of Contemporary Mathematics (Am. Math. Soc., Providence, RI, 2006).
11. P. Exner, J. P. Keating, P. A. Kuchment, T. Sunada, and A. Teplyaev, Analysis on Graphs and its

Applications, Vol. 77 of Proceedings of Symposia in Pure Mathematics (Am. Math. Soc., Providence,
RI, 2008).

12. G. Berkolaiko and P. A. Kuchment, Introduction to Quantum Graphs, Vol. 186 of AMS Mathematical
Surveys and Monographs (Am. Math. Soc., Providence, RI, 2012).

13. O. Post, Spectral Analysis on Graph-Like Spaces, Lect. Notes Math. 2039, 1 (2012).
14. E. Korotyaev and N. Saburova, “Spectral estimates for Schrödinger operators on periodic discrete graphs,”

Algebra Anal. 30 (4), 61–106 (2018).
15. S. Albeverio, S. N. Lakaev, K. A. Makarov, and Z. I. Muminov, “The threshold effects for the two-particle

Hamiltonians on lattices,” Comm. Math. Phys. 262, 91–115 (2006).
16. P. Exner, P. A. Kuchment, and B. Winn, “On the location of spectral edges in Z-peridoc media,” J. Phys. A

43, 474022 (2010).
17. J. Bellissard and H. Schulz-Baldes, “Scattering theory for lattice operators in dimension d ≥ 3,” Rev. Math.

Phys. 24, 1250020 (2012).
18. F. Hiroshima, I. Sasaki, T. Shirai, and A. Suzuki, “Note on the spectrum of discrete Schrödinger operators,”

J. Math-for-Ind. 4, 105–108 (2012).
19. F. Hiroshima, Z. Muminov, and U. Kuljanov, “Threshold of discrete Schrödinger operators with delta

potentials on N-dimensional lattice,” Lin. Multilin. Algebra, 1–36 (2020).
20. Z. E. Muminov, Sh. U. Alladustov, and Sh. S. Lakaev, “Threshold analysis of the three dimensional lattice

Schrödinger operator with non-local potential,” Lobachevskii J. Math. 41, 1094–1102 (2020).
21. Z. E. Muminov, Sh. U. Alladustov, and Sh. S. Lakaev, “Spectral and threshold analysis of a small rank

perturbation of the discrete Laplacian,” J. Math. Anal. Appl. 496, 124827 (2021).
22. S. N. Lakaev, A. T. Boltaev, and F. M. Almuratov, “On the discrete spectra of Schrödinger-type operators on

one dimensional Lattices,” Lobachevskii J. Math. 43, 770–783 (2022).
23. S. S. Lakaev, G. I. Ismoilov, and O. I. Kurbonov, “The spectrum of a nonlocal discrete Schrödinger operator

with a delta potential on the one-dimentional lattice,” Lobachevskii J. Math. 44, 607–613 (2023).
24. M. O. Akhmadova, I. U. Alladustova, and S. N. Lakaev, “On the number and locations of eigenvalues of the

discrete Schrödinger operator on a lattice,” Lobachevskii J. Math. 44, 1091–1099 (2023).
25. Sh. U. Alladustov, O. I. Kurbonov, and H. Z. Axralov, “On the negative eigenvalues of the discrete

Schrödinger operator with nonlocal potential in three-dimensional case,” Lobachevskii J. Math. 43, 3039–
3047 (2022).

26. P. A. Faria da Veiga, L. Ioriatti, and M. O’Carroll, “Energy-momentum spectrum of some two-particle lattice
Schrödinger Hamiltonians,” Phys. Rev. E 66, 016130 (2002).

27. S. N. Lakaev and I. N. Bozorov, “The number of bound states of one particle Hamilonian on a three-
dimensional lattice,” Theor. Math. Phys. 158, 360–376 (2009).

28. D. R. Yafaev, Scattering Theory: Some Old and New Problems, Lect. Notes Math. 1735, 1 (2000).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
AI tools may have been used in the translation or editing of this article.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 10 2024


		2025-02-02T18:54:52+0300
	Preflight Ticket Signature




