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Abstract

The effective mass meg of the nonrelativistic QED is considered. meg
is defined as the inverse of curvature of the ground state energy with total
momentum zero. The effective mass meg = meg(e?, A, k,m) is a function of
bear mass m > 0, ultraviolet cutoff A > 0, infrared cutoff x > 0, and the
square of charge e of an electron. Introduce a scaling m — m(A) = (bA)?,
B < 0. Then asymptotics behavior of meg as A — oo is studied.

1 Introduction

1.1 The Pauli-Fierz Hamiltonian

This is a joint work with Herbert Spohn.! We consider a single, spinless free
electron coupled to a quantized radiation field (photons). The Hilbert space
of states of photons is the symmetric Fock space:

F= é L2 x {1,2})],

where ®7L?(R® x {1,2}) denotes the n-fold symmetric tensor product of
L3R x {1,2}) with ®YL?(R® x {1,2}) = C. The inner product in F is
denoted by (-,-) and the Fock vacuum by Q2. On F we introduce the Bose
field

af) = Y [ fhiyalhidk, fe L@ x{L2D, (L)

j=1,2
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where a(f) and a*(f) = a(f)* are densely defined and satisfy the CCR

), a*(9)] = (f,9) 23 x {1,2})»
),a(g)]

Z / a(k, j)dk, (1.2)

where the dispersion relation is given by

w(k) = |kl.
The free Hamiltonian H; acts as
HQ =0,
Hea*(f1) - a*(fa) =Y a*(f1)---a*(wfy) - a*(fa)Q
j=1

The Pauli-Fierz Hamiltonian H is defined as a self-adjoint operator acting
on

@
H:L2(R3)®}"%/3 Fdz
R
by

1
H:%(pw®1—€A¢)2+V®l+1®H{‘,

where m and e denote the mass and charge of electron, respectively,

_ <_ 9 ;9 _ia)
Pz = 3.731 8x2’ 83:3

and V' an external potential. The quantized radiation field Ay is defined by

1 @ .

A= 5 [ () + o ()i (13)
where )

Fullh4) = o @lR)elh, e (1)

e(k,1),e(k,2),k/|k| form a right-handed dreibain, and ¢ is a form factor. Ag
acts for ¥ € H as

(4p0)(2) = (a(fo) + 0" (fa))¥(z), z€R’.

Theorem 1.1 Assume that ¢/w,$/\/w,J/wp € L*(R3) and V is relatively
bounded with respect to —A with a relative bound < 1. Then, for arbitrary
values of e, H is self-adjoint on D(A®1)ND(1® Hf) and bounded from below.

Proof: See Hiroshima [3, 4]. O



1.2 Effective mass
The momentum of the photon field is given by
P= Y [ ka*(hgalk, )k (15)
j=1,2
and the total moment by
Piotal =pz ® 1+ 1Q P.

Let as assume that

V=0.

Then we see that
[H, Piotal,] =0, p=1,2,3.

Hence H and H can be decomposable with respect to Spec(Pital) = R3, i.e.,
52
H= [ )y
R3

@D
H= [ Hp)dp.

R3
Note that
eiix®PfPtotaleiz®Pf = Pz,
. . 1
e—zw@PfHem@Pf — 2_(pz R1LI-—1® Pf —el® A@(O)) +1® Hf,
m
where .
Az(0) = —(a +a(fo)).
¢(0) ﬁ( (fo) + a(fo))
From this we obtain that for each p € R?,
H(p) = F,
1
H(p) = %(P — Py —eAy(0)) + Hy,
Let
E, A(p) = inf Spec(H (p)). (1.6)
Let us assume sharp ultraviolet cutoff A and infrared cutoff x, which means
0 for |k| < &,
(k) =14 (2m)~%/% for k < |k| < A, (1.7)
0 for |k| > A.

Lemma 1.2 There exists constants p, and e, such that for
(p,e) € O ={(p,e) € R* x R|[p| < p., le| < '},

H(p) has a ground state 14(p) and it is unique. Moreover g(p) = Vg(p,e) is
strongly analytic and Ep, A (p) = Em a(p, €) analytic with respect to (p,e) € O.
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Proof: See Hiroshima and Spohn [6, 7]. O
In what follows we assume that (p,e) € O.
Definition 1.3 The effective mass meg = meg(e?, A, k,m) is defined by

1

Meff

_ éApE(p, e)[,—o. (1.8)

1.3 Mass renormalization

Removal of the ultraviolet cutoff A through mass renormalization means to
find sequences
A—oo, m—0 (1.9)

such that Ep, A(p) — Em,a(0) has a nondegenerate limit. To achive this, as a
first step we want to find constants

6<0, 0<b

such that
lim meg(e?, A, kAP, (bA)?) = myp, (1.10)

A—o0

where mpy, is a given constant. Actually m), is a physical mass. Namely in
the mass renormalization the scaled bare mass goes to zero and the effective
mass goes to a physical mass as the ultraviolet cutoff A goes to infinity.

We will see later that meg/m is a function of €2, A/m and x/m. Let

% = f(e%, A/m, K/m), (1.11)

where f(0,A/m,x/m) = 1 holds. An analysis of (1.10) can be reduce to
investigate the asymptotic behavior of f as A — co. Namely we want to find

constants
0<y<l1, 0<b
such that (2 / )
. flef,A/m,k/m
1 = bg. 1.12
ASse  (AJ/m)Y 0 (1.12)

If we succeed to find constants v and by such as in (1.12) then by
meg (€%, A, k,m) = mf(e?, A/m,k/m),
we have

meg(e?, A, kAP, (bA)P) = (bA)P f(e2, A/ (BA)P, k/bP) = bo(BA)P (A/(BA)P)7.
(1.13)
Taking

B=—L <o, b=1/0",
g



we see that by (1.13)

I 2 A kAP (DAY = 1im b A ’ A ’y—bb
AgT;omeﬂ(e, kA ( ))—Al_lgo 0 bi/’y (A/(b)V/M)B) 0%

where by is a parameter, which is adjusted such as
bobl = mph.
Hence we will be able to establish (1.10). It is easily seen that

8 A/m+2

( ,A/m, n/m)-l—{—a—l (/ +2)+O(a2),

where o = e?/4r, which suggests
F(€% A /m,r/m) = (A)m)*/°T,
for sufficiently small a and large A, and therefore
v = 8a/3m.
One may assume that
F(€3,A/m, /) = (A /m)*E/m e

for sufficiently small o with some constant b. Then by expading meg/m to
order a? one may expect that

2 ~lras log(My 4 L 2(8 A >2 210g( X 3
fle®,A/m,k/m) =~ 1—i—a37r log(m)—i—2a 3 log(m) +ba log(m)+0(a )
(1.14)

for sufficiently small @ and large A. It is, however, that (1.14) is not confirmed.
Instead of (1.14) we prove that there exists a constant C' > 0 such that

8 A/m+2

f(e?, A/m, n/m)—l—i—a—l (/ +2)+a20 A/m 4+ O(a?).

The effective mass and its renormalization have been studied from a math-
ematical point of viwe by many authors. Spohn [10] investigates the effective
mass of the Nelson model [9] from a functional integral point of view. Lieb
and Loss [8] studied mass renormalization and binding energies of models of
matter coupled to radiation fields including the Pauli-Fierz model. Hainzl and
Seiringer [2] computed exactly the leading order in « of the effective mass of
the Pauli-Fierz Hamiltonian with spin.



2 Perturbative expansions

The effective masses for H(p) and

1
are identical. Then in what follows we redefine H (p) as

Hp) = % (p— Pr — eAy(0))% +H;.

Furthermore for notational convenience we write A and E(p) for Az(0) and
EpA(p), respectively.

2.1 Formulae

Lemma 2.1 We have

mo_q_ 2 ) (15(0), (P + eA)u(H (0) — E(0) 7! (P + eA),utb4(0))
3

Meff n=1,2,3 (/(?/}g(o)’ ¢g(0))
Proof: 1t is seen that E(p,e) = E(p,—e) = E(—p,e). Then
13}
—E(p, e){ =0, pu=1,23, (2.1)
8])” pu=0

follows. Moreover it is seen that E(p,e) is a function of e? and
d2m—1

In this proof, f’(p), means the strong derivative of f(p) with respect to pj,.
Since

H(p)g(p) = E(p)¢e(p),

we have

H'(p)ug(p) + H(p)Yy () = E'(p)uibe(p) + E()thy(P)n (2.3)

and

H"(p)uihg(p) + 2H' (p) g (p) s + H(p)Yg (P)u
= E”(p)“i/Jg(p) + 2E'(p),ﬂ/)é(p)“ + E(p)d’g(p)u- (2.4)

By (2.1) it follows that E'(0), = 0, and by (2.3) with p =0,
(Pr+ eA)utbg(0) € D((H(0) - B(0)) ™),
Y(0) = (H(0) — E(0)) ™" (Pt + eA) g (0).
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Then we have by (2.3) and (2.4),

m 1 (1¢(0), E"(0) b5 (0))
TMheft 3,555 (¥s(0),45(0))
_ 2 ) ((Pr + eA)utg(0), (H(0) = E(0)) " (Pr + eA) g (0))
3 p=123 (1g(0), ¥g(0))

Thus the lemma follows. O

Let o o o

Ue(0) =Y S, E0) =Y B,
n=0 n: n=0 (2n)

Note that

pom € D FCO™,  pomy1 € @ FE.

m=0 m=0

We want to get the explicit form of ¢,. Let
Fin = {{T™12 € F]®™ =0 for m > ¢ with some ¢},
Fo = {0}z, € Fou| () €O =0,

(i) SUPD(ry,.. 1 yesn O™ (k1 ooy By 1, s ) Z (0, 0)}}

Lemma 2.2 We see that o C D(Hy").
Proof: Let ¥ = {®M™}> ¢ 7. Since

(HO‘I!)(H) (kla ceey knajla "'7.jn)

\II(n)(kla ey knajla "'7.jn)7

1 n
§(k1 ot k) ) w(ky)
j=1

we see that
(Ho ") ™ (ky, ... kny 1 s jn)
—1
U (ky, oy by g1, ey Gin)-

1 n
LGRS kn)? + ) w(ky)
j=1

Since supp(khm’kn)eRsn‘I!(")(kl, ooy kny J1y -y Jn) F {(0,...,0)}, we obtain that

finite
[ Ho 0|5 = Y [[(Ho " &)™, < co.
n=1
Then the lemma follows. O

We split H(0) as
2
e
H(0)=Ho+eH; + EH27
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where

1
Hy = §Pf2 + Hs,

Hi = %(Pf-A—kA-Pf) P A=A-P,
Hy =:A% .
Lemma 2.3 We have Eg = E1 = Fy = E3 =0 and
wo=Q, ¢1=0, @o=—Hy 'HsQ, 3=3Hy "HiHy "H>Q.
In particular gy € F?) and o3 € FO) 0 FG),

Proof: Let us set H(0), E(0) and ¢4(0) as H, E and g, respectively. It
is obvious that Fy = 0 and ¢ = af) with arbitrary a € C, and by (2.2),
Ey = E5 = 0. Set a = 1. We denote the strong derivative of f = f(e) with
respect to e by f’. We have

H'tg + Hipy = E'pg + Ethy (2.5)
and
H"hg + 2H"py + HYy = E"pg + 2E', + Etfy. (2.6)
From (2.6) it follows that

(g, H'"tPg) + (g, 2H" ) + (g, Hy) = E" (g, ) + (Vg 2E"4 ) + (Y, Bl

(2.7)
Put e =0 in (2.7). Then

(Q,HQQ) + (Q, 2Hlﬂ) + (Q, Ho(pg) = EQ(Q, Q) (28)

Since the left-hand side of (2.8) vanishes, we have Fy = 0. From (2.5) with
e = 0 and the fact Fy = Fq, = 0, it follows that

H.Q+ Hyp1 =0,

from which it holds that Hyyi1 = 0. Since Hg has the unique eigenvector €2
(the ground state) with eigenvalue zero, it follows that ¢1 = bQ with some
constant b. ¢; € P, F@m+1) which implies b = 0. Hence ¢; = 0 follows.
By (2.6) with e = 0, we have

HyQ +2H1p1 + Hopo = 0.
Since HsQ) € Fy, we see that by Lemma 2.2, HyQ) € D(H(;l). Thus we have
@y = —Hg 'H5Q. From the identity
H" g + 3H"Y), + 3H'Y! + Hyp, = E" g + 3E"Y, + 3E'W! + B, (2.9)

it follows that at e = 0,
3Hyp2 + Hops = 0.

Since Hypy = —H1Hy ' HyQ € Fy, Lemma 2.2 ensures that Hyps € D(Hg ).
Hence @3 = —3Hg 'Hips = 3Hg 'HiHy ' H5Q. Then the lemma is proven.
O



2.2 Order ¢*

In this subsection we expand m/meg up to order e*. We define A~ and AT
by

+ Lo,
a(f), AT =—=a"(f).

Then A = AT + A—.

Lemma 2.4 We have

3
=1- e2§ > (9 AuHT4,9)
pn=1

m

Meff

_64§ i {2 (\1157 Hoil\plli> + (‘IﬂZﬂHOil\IﬂQL) -2 (q/g,HoilHlHoil\Iﬂf)

(w, Ho  Hy H o) + (0 H01H1H01H1H01\If‘1‘)} +0(e°),
(2.10)

N | =

where
T = 4,9,
1 -
Ul = 5 PruHo LAT.Ah)Q,

1

1
Uy =3 {_AuHol(A+-A+)Q + 5 PruHo H(Pr-A + A-Pf)Hol(A+'A+)Q} '

Proof: In Lemma 2.1 we have seen that

m 1— 2 Z ((Pr + eA)utg(0), (H(0) — E(0)) (Pt + eA),u1g(0))
3

M o (06(0), 95(0))

(2.11)
We can strongly expand (H(0) — E(0)) ! as

(H(0) — BE(0)) ™' = Hy ' — eHy 'H1Hy !
1
+e? <—§H01H2Ho1 + H01H1H01H1H01) +0(e%). (2.12)
Here we set
HJ‘{ L, j>3.
Note that

0o € FO, 0y € FP o3 € FO N FW o, € FO 0 FO),



In particular

Ll
et ¢ 5P2%)

) +O(5) = 1— e (pa, 02) + O(e0).

—et(Q,
4
(2.13)

1

24
Moreover we have

9,1 3,1 1 4

(Pt +eA)ug(0) = ed, N +e (ipfu‘pZ) te (§AM‘P2 + ngu‘pi%) +0(e")

= eW) + U + 30 + O(eh). (2.14)
Substitute (2.12), (2.13) and (2.14) into (2.11). Then the lemma follows. O
For each k € R? let us define the projection Q(k) on R® by

Qk) = Y lej(k)){e; (k).

j=1,2
We set
@]:Qé(k])a w]:w(kj)a Q( ) Q]a ]_172
Let
! = ! ) =1,2
F, 3241 IS
1 1 >0 1<X<1
- = y T,T2 2 U, —1 > >~ 1.
Fis (T%+2T1T2X—|—T%)/2+7‘1+7‘2 1,72

Lemma 2.5 We have

o= 1= aay(A/m, 5/m) — a”ax(A/m, 5/m) + O(a?),
where
s (8fmnfm) = - tog (212 (2.15)
and
aa(A/m, /)

(4m)” / dX/A/md /A/md x
(27r 53 r1 o/ TomT1T2

1 1 > 72 4+ 2r1ro X + 13
F12 Fio 2

{ (1+X?)
+<Fi1+ >( 1 >2w2X( 14+ X%) — 22 (14 X?)

(1+X2)+(

F12 F1F2
1

r? 11
a4 (1—X2)+———r1r2X( 1+ X%, (2.16)
F? Fio

+
Fy Fy Fia

10



Proof: Note that

2
ar(A k) = g(\/47r)2(AlfQ,Ho_1AlJ[Q)

B El (A/m+2>
37 ¢ k/m+2)"

Thus (2.15) follows. To see as(A, k) we exactly compute the five terms on the
right-hand side of (2.10) separately. Let

1 1 i
B kP2te; 707
1 1

Eiz [k + ka2 /2 4 w1 +ws
(1) We have

2 (W4, Ho 10} ) = (0, (A~ A7) Hy *A, Hy ' A1Q)

1
+5 (92, (A= A7) Hg ' (Pr-A + A-P)Hg ' Py Ho ' A5 Q).

A2 1,512 1 1
/ 1dk; 901 % E12(E1 + Ez) r(Q1Q2).

(2.17)
(2) We have
(s, Hy ')
1 2
= <§> (Pquofl(AJr_AJr)Q,HoflpfﬂHofl(A+'A+)Q>
Ly? 3121 | ol
=13 dk?dk; ky + ko224
<2> / 2901 2w, <E12) k1 + ko |*2tr(Q1Q2).
(2.18)
(3) We have
2 (W4, Hy ™ HyHe )
1
T2 (Pr Ho™ (AT AT)Q, Hy™ (P A + A- P Hy ™' A Q)
A2 1,512 1 2 1 1
// Y2901 2ws \ Epp (E1+E2)( 2, Q1Q2k1).  (2.19)
(4) We have

—% (\Ilf,Ho’ngHo’l\Il’f)

_ 1 (A*Q, Hy Y((AT-AT) +2(AT-A7) + (A*-A*))Ho*IAZQ)

2 2 1 1
dk3dk3 (81" |2 2.20
/ JAL o tr(QiQw) (2:20)
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(5) We have
(\Iﬂf, H0_1H1H0_1H1H0_1\IJ‘1‘)
1

2
= (§> <AZQ, Hoil(Pf-A + A-Pf)Hoil(Pf'A + APf)HoilA;Q>

212 148012 1 1 2 1 2
// 14k 9y Eps | \ B (k1, Q2k1) + 7, (ka, Q1k2)

1121602 1 1 1
asqpel Pl lel” 11 1 k). 2.21
+// Y2 901 2wy Erp By E2( 2, Q1Q2k1) ( )

Changing variables to the polar coordinate, we obtain (2.16) from Lemma 2.4,
(2.17), (2.18), (2.19), (2.20), (2.21) and the facts

tr[Q1Q2) = 1+ (K1, k2)?,
(1, QaQukz) = (K1, k2)((kr, ko)® — 1),
(k1, Qok) = [ka|*(1 — (ku, k2)?).
Thus the proof is complete. O

3 Main theorem

The main theorem is as follows.

Theorem 3.1 There exist strictly positive constants Ciin and Cupax such that

. a2(A/m, k/m)
min < 1 ———F— < Chax-
Conin < 0= K = o
Proof: We show an outline of a proof. See Hiroshima and Spohn [7] for details.
By (2.16) we can see that

N
[}

az(A, k (3.1)

OJ

where

bi(A/m) = /(1+X)(;1 +Fi2) Fim

1 24 2rr9 X + 12
bo(A/m) :/(1+X ) (F12> Ty 7'1;“2 7“2,

b3(A/m) = /X —1+ X*)riry <; Fl'2> <FL12)2’

bals/m) =~ (14 X%) 1o

ba(Afm) = [ (1= X?) (F +F—) oy

11 1
F Fy Fio’

bg(A/m) = /X —1+ X?)ryry—

12



where

1 A/m A/m
/ = / dX / drl / dT27T7'17'2.
-1 K/m K/m

Let pp(+,+) : [0,00) x [—1,1] — R be defined by
pr=paA(r, X) =r2 4+ 20rX + A2+ 2r 420 = (r+ AX +1)2 + A,

where
A=A*(1-X*+2A0(1-X)—1. (3.2)

Then we can show that there exist constants Cq, Cy, C3 and C4 such that for
sufficiently large A > 0,

1 A 1 1
1 /dX/dr7<C’—,
M) o pa(n X) T
1 A 1 2 1
2 dX /| dr| ——— ) <Cy—
@ [oxflar (o) <Oz
1 A 1 1 log A
3 dX /[ d < C
®) /4 /0 TpA(r,X)r—i—Q =32
1 A 1 2 ) 1
4 /dX/d <7) 1-X°)<Cy—.
) -1 Jo " pa(r, X) ( ) A

Using (1)—(4) we can prove that there exists a constant C' > 0 such that

bj(A/m)| < Cllog(A/m)?, 5 =14,
ba(A/m)| < C(A/m)"?,
by (A/m)| < Clog(A/m), j =3,5,6.

Hence there exists a constant Ci,.x such that

lim az(A/m,k/m)

A /Afm

Next we can show that there exists a positive constant £ > 0 such that

S Cmax-

. d
Ah_lfgo A/WW@(A/W) > &,

which implies that there exists a constan £ such that

¢ < lim ba(A/m)

~ A—oo A/m )

Thus we have A
Cuin < Jim ax(Afm.w/m) _ o

ST VA/m
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Remark 3.2 Theorem 3.1 may suggests v > 1/2 uniformly in e but e # 0.

Remark 3.3 (1) aa(A/m,k/m)/\/A/m converges to a nonnegative constant
as A — oco. (2) By (3.1), we can define az(A/m,0) since bj(A/m) with k =0
are finite. Moreover az(A/m,0) also satisfies Theorem 3.1. (8) In the case of
k =0, Chen [1] established that H(0) has a ground state 1g(0) but does not

for H(p) with p # 0.

4 Concluding remarks

The Pauli-Fierz Hamitonian with the dipole approximation, Hy;p, is defined
by H with Ay replaced by 1 ® Ag(0), i.e.,

1
Hyip = %(p@u—e1®A¢,(0))2+V®1+1®Hf.
Set V' = 0. Note that
[Hdipa Ptotal] 7é 0.
It is established in [5] that there exists a unitary operator U : H — H such
that

UHgpU™t = — A®1+1® Hf + G,

2(m + ém)
where
22 2
S =m -+ ¢ o/,
R
T J—oo m + (2€2/3)||p/ VT + w?|?
Hence

[UHdipUila Ptotal] =0.
Then we can define the effective mass meg for U Hg;, U —! and which is
4
meg/m =1+ a3—(A/m — Kk/m).
s

Hence v = 1, then the mass renormalization for Hyg;, is not available.
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