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Abstract: Existence of critical renormalization group trajectory for a hierarchical Ising
model in 4 dimensions is shown. After 70 iterations of renormalization group transfor-
mations, the critical Ising model is mapped into a vicinity of the Gaussian fixed point.
Convergence of the subsequent trajectory to the Gaussian fixed point is shown by power
decay of the effective coupling constant. The analysis in the strong coupling regime is
computer-aided and Newman'’s inequalities on truncated correlations are used to give
mathematical rigor to the numerical bounds. In order to obtain a criterion for conver-
gence to the Gaussian fixed point, characteristic functions and Newman'’s inequalities
are systematically used.

1. Introduction and Main Result

Dyson'’s Hierarchical spin system is an equilibrium statistical mechanical system defined
as follows [4,16,3,6,14]. LeA be a positive integer, and denote tHeZriables (spin
variables)py, HamiltonianH, , and the expectation valués, respectively, by
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wherer is a single spin measure density normalized as

/ h(x)dx = 1.
R

In the following, we shall fix the so far arbitrary normalization of the spin variables
by

1
_z 1.1

5 (1.1)

Hierarchical models are so designed that the block-spin renormalization group trans-
formationR has a simple form. In fac®R is a non-linear transformation of functions
onRR, defined as follows. Define the block spigisby

:3=

Sl

¢ = % D $eor. T=(ta-1,.... T0).

61=0,1

If a function F (¢) depends o through¢’ only, namely, if there is a functioR”’(¢")
on the block spins such that

F(¢) = F'(¢"),
then it holds that

(F)an = (F')A-1Rh>

where
Rh(x) = const. expéxz)/ h (i n y> h(-— — y)dy, x eR. (1.2)
2 g \Ve NG
Note that
hg(x) = const. ex;(—%xz) (1.3)

is a fixed point ofR, which we shall refer to as the density function of the massless
Gaussian measure. By looking into the asymptotics of e.g., susceptibility for the hierar-
chical massless Gaussian model defined by (1.3), and comparing it with that of standard
nearest neighbor massless Gaussian models-dimensional regular lattice, we see
that the dimensionality of the system may be identified (at least for the Gaussian fixed
point) as

¢ =212 (,3 - %(22/”1 - 1)). (1.4)

We shall extend the correspondences to hierarchical models with arbitrary measures,
and use the terminology-dimensional hierarchical modeishenever (1.4) holds.
Asymptotic properties of the renormalization group trajectories

hy =RNho, N=0,1,2,---, (1.5)

are extensively investigated in a “weak coupling regime” i.e., in a “neighborhood” of
hg [16,3,6-8]. In particular, it is known that, if > 4, then there are no non-Gaussian
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fixed points in a “neighborhood” dfs, and that a “continuum limit” constructed from a
critical trajectory with an initial function in a “neighborhood” b§ is trivial (Gaussian).
However, in order to study asymptotic properties of strongly coupled models, we
have to analyze trajectories (1.5) with initial functions in a “strong coupling regime” far
away from the Gaussian fixed point.
As a typical example, we consider in this paper the hierarchical Ising model, which
is defined by the Ising spin measure density parameterizedb9:

1
hys(x) = E(S(x—S)+8(x+S)), (1.6)

which may be regarded as a strong coupling limit of¢Heneasures:
hy 5 (x) = const. eX|()—,ux2 — Ax4), n= —2s2, A — oo.

Here and in the following, we use the standard notatian-s) dx denoting a probability
measure with unit mass on a single point s. The hierarchical Ising model has an
infinite volume limitA — o0, if 0 < ¢ < 2 (d > 0), and has a phase transition, if
l<c<2(d=>2)[4].

It has been widely believed without proof that the hierarchical Ising modékind
dimensions has a critical trajectory converging to the Gaussian fixed point and that the
“continuum limit” of the hierarchical Ising model ih > 4 dimensions will be trivial. In
this paper, we prove this fact. In the present analysis, it is crucial that the critical Ising
model is mapped into a weak coupling regime aftsnmallnumber of renormalization
group transformations (in fact, 70 iterations tbe= 4). Moreover, using a framework
essentially different from that of [16, 7], we see in the weak coupling regime that the
“effective coupling constant” of a critical model decays a4 N + c») after N iterations
in d = 4 dimensions (exponentially faf > 4). Our framework in the weak coupling
regime is designed especially for a critical trajectory starting at the strong coupling
regime so that the criterion of convergence to the Gaussian fixed point can be checked
numerically with mathematical rigor.

Corresponding results, triviality (Wfﬁ spin model on regular lattice (“full model”),
are far harder, and a proof of triviality of Ising model on 4 dimensional regular lattice
is, though widely believed, still open. We should here note the excellent and hard work
of [9,10] where the existence of critical trajectory in the weak coupling regime (near
Gaussian fixed point; “weak triviality”) is solved by rigorous block spin renormalization
group transformation.

Our main theorem is the following:

Theorem 1.1. If d > 4 (i.e. ¢ > +/2), there exists a “critical trajectory” converging

to the Gaussian fixed point starting from the hierarchical Ising models. Namely, there
exists a positive real numbeyf such that ifaiy, N = 0,1, 2, - - -, are defined by (1.5)
with g = h 5., then the sequence of measuligegx)dx, N =0, 1,2, - - -, converges
weakly to the massless Gaussian measurer) dx.

Remark. Our proof is partially computer-aided and showsdoe 4 that
se € [1.7925671170092624.7925671170092635

In the following sections, we give a proof of Theorem 1.1. We will concentrate on
the casel = 4, since the casest > 4 can be proved along similar lines (with weaker
bounds).
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2. Strategy

The proof of Theorem 1.1 is decomposed into two parts: Theorem 2.1(analysis in the

weak coupling regime) and Theorem 2.2 (analysis in the strong coupling regime). They

are stated in Sect. 2.3, and their proofs are given in Sect. 4 and Sect. 5, respectively.
Theorem 1.1 is proved at the end of this section assuming them.

(1) In Theorem 2.1, we control the renormalization group flow in a weak coupling
regime by means of #nite number of truncated correlations (Taylor coefficients of
logarithm of characteristic functions), and, in terms of the truncated correlations,
we give a criterion, a set of sufficient conditions, for the measure to be in a domain
of attraction of the Gaussian fixed point.

(2) In Theorem 2.2, we prove, by rigorous computer-aided calculations, that there is
a trajectory whose initial point is an Ising measure and for which the criterion in
Theorem 2.1 is satisfied after a small number of iterations.

The first part (Theorem 2.1) is essentially the Bleher—Sinai argument [1, 2, 16]. How-
ever, the criteria introduced in the references [16, 7] seem to be difficult to handle when
“strong coupling constants” are present in the model, as in the Ising models. In order to
overcome this difficulty, we use characteristic functions of single spin distributions and
Newman’s inequalities for truncated correlations.

The second part (Theorem 2.2) is basically simple numerical calculations of trun-
cated correlations up to 8 points to ensure the criterion. The results are double checked
by Mathematica an&€++ programs, and furthermore they are made mathematically
rigorous by means of Newman’s inequalities.

It should be noted that rigorous computer-aided proofs are employed in [14] to
Dyson’s hierarchical model id = 3 dimensions, to prove, with [13], an existence
of a non-Gaussian fixed point. (The “physics” are of course different between3
andd = 4.) We also focus on a complete mathematical proof, by combining rigorous
computer-aided bounds with mathematical methods such as Newman'’s inequalities and
the Bleher—Sinai arguments.

2.1. Characteristic functionDenote the characteristic function of the single spin dis-
tributionhy as

i (&) = Fhy(e) = / VB (x) dx. (2.2)
R
The renormalization group transformation fov is
hyi1=FRF Yhy, (2.2)
which has a decomposition
FRF1=TSsS, (2.3)
where
2
C
Sg¢)=¢g (‘/7_ ) , (2.4)

Tg(&) = const. ex;:(—éA) g(&), (2.5)
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and the constant is so defined that

The transformation (2.2) has the same form astthe 2 case of the Gallavotti hier-
archical model [5,11,12]. Note that only faf = 2 the Gallavotti model is equivalent
(by Fourier transform) to the Dyson’s hierarchical model.

We introduce a “potentialVy for the characteristic functioly and its Taylor coef-
ficientsu, v by

hy(g) =e WE, (2.6)
VN(E) =) tnnE". (2.7)
n=1

(Note thathy (0) = 1.) The coefficieni, y is called a truncated point correlation.
They are functions of Ising parametein 4o = h; ¢, but to simplify expressions, we
will always suppress the dependences amthe following.

In particular, for the initial conditiolkg = h; 5, we have

ho(€) = hy(£) = Fhys(§) = coss&),
1 1 1 17 4

2 4 6
T2 T 120 =25 = o5, ete,
H20= 5% MA0T ot Me0= ggth HMBOT 550
and
ha(x) = Rhys(x) = const(eP**"/2(8(x — s/@) +8(x + 53/} +25(x)).
A 1 .
h1(8) = —— (1+kcos/esg)), with k = e /2,

1+k
k 2 k 2 3
m21=kE€, pa1= 6(216 - D5, ue1= %(16k — 13+ 1)¢°,

k cs?
= — (2723 — 297k? + 60k — 1)¢*, etc, with ¢ = .
81 = 2550 + ) 20+ 1)

2.2. Newman'’s inequalitiesThe functionVy has a remarkable positivity property and
its Taylor coefficients obey Newman'’s inequalities (for a brief review of relevant part,
see Appendix A):

1
0<pamn < ~(uan)"’?, n=345- .. (2.8)
n

These inequalities follow from [15, Theorem 3, 6], since we have chosen the Ising spin
distributiong = h; ; and the function of; defined by

/enth(x)dx = <exp(n(§)1v Z¢9>> ] (2.9)
0 N,hj g

has only pure imaginary zeros as is shown in [15, Theorem 1]. Note also that (1.2) and
(1.6) imply
Moty =0, n=0,12,---. (2.10)
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The bounds (2.8) are extensively used in this paper. We here note the following facts:

(1) The right-hand side of (2.7) has a nonzero radius of convergence.
(2) It suffices to prov% limuwa y = 0 in order to ensure thaty, v, n > 3, converges
—00

to zero, hence the trajectory converges to the Gaussian fixed point.

2.3. Proof of Theorem 1.1Let hg = ks andd = 4. Note the following simple obser-
vations on the “mass termiz, v, which is the variance diy (x) dx.

(1) w2 n is continuous in the Ising parametkembecausé y (x) dx is a result of a finite
number of renormalization group transformation (1.2).
(2) p2,n isincreasing irs, vanishes at = 0, and diverges as— oo.

We then put, fov = 0,1, 2, -- -,
sy =inf {S>0|M2,N21}, (2.112)

. . 3
sy = inf {s>0|u2,sz|n{1+ 72#4,1\1,2-1-\/5}}. (2.12)

Obviously, we have
O<sy <5y <o0.

Note also that

3
l<wpon <14+ —=pan (2.13)

V2

holds fors € [s y,sn]. As is seen in Sect. 4, (2.13) is necessary for the model to be
critical. We call thisa critical mass condition

The following theorem states our result in the weak coupling regime and is proved
in Sect. 4.

Theorem 2.1. Lethg = h; s andd = 4. Assume that there exist intege¥g and Ny,
satisfyingNg < N1, such that, for € [S nys S Aa ] the bounds

0 < jug N, < 0.0045 (2.14)
1.6u3 ny < oo < 6.07u3 vy (2.15)
0< ugn, < 484693 y,. (2.16)
and
pon <24++/2, No<N < N, (2.17)

hold. Then there exists ap € [$ nys S V1] such that ifs = s, then
lim =0,
N HaN

lim on =1
N%oou ’
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0.0045

1.0 Ho

Fig. 2.1. A schematic view of trajectories afuy, 4-plane) in Theorem 2.1. Trajectories for= SNy and
fors = s y, (solid lines) and the critical trajectory for= s. (broken line) are shown. The Gaussian fixed
point corresponds to the poift.0, 0). The region defined by inequalities fauy, 14) analogous to (2.13)
and (2.14) (and (2.17)) is shaded

Remark.The original Bleher—Sinai argument tak¥s = N;. We include theVg < N

case which makes it possible to complete our proof by evaluating various quantities
only at 2 endpoints of the interval in consideration for Ising parametieistead of all
values in the interval, as is implicit in the assumptions of Theorem 2.1. This point will
be clarified at the end of Sect. 5.3.

The following theorem states our result in the strong coupling regime and is proved
in Sect. 5.

Theorem 2.2. The assumptions of Theorem 2.1 are satisfiedVfpe= 70andN; = 100,
wheres y, ands y, satisfy

1.7925671170092624 s ,, s, < 1.7925671170092625

Proof of Theorem 1.1 fod = 4 assuming Theorem 2.1 and Theorem Z.Beo-
rem 2.1 and Theorem 2.2 imply that there exist& [S nys S V1] such that, fos = s,
Nlim wan =0 andNIim w2~y = 1hold. Then (2.6), (2.7), and (2.8) imply

—00 — 00

lim /(€)= e,
N—o00
uniformly in & on any closed interval iR. It is easy to see that¢” is the characteristic

function of the massless Gaussian meaguyrehence Theorem 1.1 holds fér= 4.
The bounds on y, ands y, in Theorem 2.2 imply

1.7925671170092624 s, < 1.7925671170092625 O
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3. Truncated Correlations

In this section, we prepare basic (recursive) bounds on the truncated correlations that
will be used in Sect. 4. The renormalization group transformation is decomposed as
(2.3). Since the mapping§ is simple, the essential part of our work is an analysi% of

The consequence in this section is Proposition 3.1.

3.1. RecursionsNote first that in terms oV the mappingS can be expressed as

(se) @) = e (%9), (3.1)

Using (2.7), (2.10), (1.4) we also have

o
c _
2Vy (%— ) — 221 (1+2/d)n/L2n,N€2n~ (32)
n=1
Next, write (2.5) as
Tg =constgg, g =exp—tA)g, (3.3)

2
whereAg(&) = Z?g@)' andg = %(\/ﬁ — 1) ford = 4. g, is a solution to

8gt

— = —Ag;, =g.
91 8, 80=8§8

Hence, if we put

81 (§) = exp(—Vi(§)),
thenV; satisfies

d
V= (VV)2 = AV, (3.4)

a
wherevV;(§) = a—Vt (&). In other wordsVx +1 is given as a solution of (3.4) at= 8/2

(modulo constant term), with the initial condition (3.2} at O.
If we write

Vi€) =) o€,
n=0
then (3.4) implies

d
() = - (2n +2)(2n + Dpon42(1)

n (3.5)
+ ) (20(2n — 2¢ + Qe (1) pan-20+2(0).
(=1
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In particular, we have

%Mz(t) = 4uz(t)” — 124(t), (3.6)
%m(t) = 16u2(t) na(t) — 30us(?), (3.7)
%Mﬁ(t) = 24uo(1) pe(r) + 1614(r)* — 56us(r), (3.8)
£ wol) = 32 alr) + 48ua(1ie(r) — IOusoln). (3.9)

Thus,uz, v anduo, y+1 are related fodd = 4 by e.g.,

1 1 1 1
0 = — O = - O = —= 5 0 - =
12(0) ﬁuz,zv, 14(0) ZHAN wne(0) SﬁMG,N ung(0) 3"

_ (B —u(? —ue(? —us(f
M2, N+1 = U2 2 » M4, N+1 = 44 2 » MB,N+1 = L6 2 ) “8,N+1 = U8 5 )"

3.2. Bounds.We first note that the quantitigs, (r) obey Newman'’s inequalities: by
comparing (2.5) and (3.3) we see that the correspond&rce> V (¢) is obtained by a
replacemeng — 2t in (1.2). Thereforeu, (¢) also is a truncated point correlation of
a measure to which arguments in [15] apply, hence an analogue of (2.8) holds:

8,N>

1
0<po(t) < =(ua)?, n=345-. (3.10)
n

We have to show decay @fs y asN — oo. In cased > 4, the decay follows from
(3.6) and (3.7) withi-dependent coefficients, namely, if we throw out the negative con-
tributions—u4(z) and—ue(?) to the right-hand sides of (3.6) and (3.7), respectively, then
we have upper bounds @i (z) andu4(¢). This argument eventually yields exponential
decay ofua v.

In cased = 4, the situation is more subtle, since the decaygiy is weak, i.e.,
powerlike instead of exponential. In order to derive the delicate bound,an, a lower
bound forug(r) must be incorporated, which in turn needs an upper boundsor.
Thus, we have to deal with Egs. (3.6)—(3.9). This is the principle of our estimation.

The result is the following:

Proposition 3.1. Letd = 4and N be a positive integer, and put
_ 1 _ 1
1-(V2-Duanv -1 V2-(W2-Duan
_ \/Z’N -1 _ N 1
«/§M2,N M2,N «/EMZ,N '

N (3.11)

N (3.12)

() If

poN <242, (3.13)
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then
M2,N+1 = TNU2,N, (3.14)
H2N+1 > TNH2N — SraLn N (3.15)
(i) If, furthermore,
M4, N 15 21 5, 5
ot s T — 3.16
4 = 8«/2§NM&N+ 4§NM4,N7 ( )
pen 1 123 , 7
> 2 — R 3.17
82 + 2§NM4N > 288 ud y + SﬁZNM,N/LG,N + gévusN (3.17)
3 evman = 1268050+ 22 (3.18)
2 N = 26w _
2 N MH4a,N NM4 N 8«/5 NM6,N
then
fo.N+1 < TNH2N — 3% <§NM4 N —8Cuus N — ECZMG N) (3.19)
N+1 = , N : NHaN = g ENHeN )
4N+ > TN <M4,N 2¢—§NM6 N — 1@1%/.14421,1\/) , (3.20)

15
[an+1 < TN (M4,N - Z_ﬁCNMG,N - 214“1%,%21,1\/
105
2\/—§N/L4 NMU6,N + 447§'N/¢L4 Nt — 2 §1%/M8,N) ) (3.22)
6N
HeN+1 STy ( NG +A4Lnug N) (3.22)

e, 123
He.N+1 > Ty (Tg + 4€N,U«421,N - 192{;%1#3,/\/ - EQ%IM,NMG,N - 7CNM8,N> ,

(3.23)
HeN+1 < TS (MB 1—2CNM4 NUeN + 24815 N) : (3.24)
2 J2 ' ’ '
The rest of this section is devoted to a proof of Proposition 3.1.
Proof. Now, observe thafi>(r) defined by
L oa) = 402 )?, Jin(0) = — (3.25)
g2 = 4)", () = ﬁuz,zv, .
is an upper bound qi2(¢):
_ 1
pa(t) < fia(t) = 22N (3.26)

V2 1-242uo Nt

: B V2-1 R
This, atr = 3 (_ 7 ford = 4) implies (3.14).
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Put

1
1—2y2up nt’
m(t) = jia(t) — pa(t).

M(t) =

We haven () > 0, and (3.13) implies tha¥ (¢) is increasing it € [0, 8/2].
By a change of variable = M(r) — 1 (dz = 2v/2u2 y M ()?dt) and by putting

m(z) =m@) /M), 1ia(z) = na(t)/M @)%,
He(z) = ue(t)/M(1)°, 1is(z) = na(t)/M ()8,

we have, from (3.6)—(3.9),

a0 = 5 [ B ~ sz (327)
te(z) = ;%TN + \/-MZN/ (81ia(2)? — 12 (2)4is(2) — 284i8(2))dz,  (3.28)
hg(z) = MBN / (244i4(z) pie(2) — 16m(2)1ig(z) — 45u10(2))dz,
f 2u2.N
(3.29)
1 4
m(z) = N /O (61i4(z) — 2 (2)2)dz, (3.30)
Egs. (3.27)—(3.30) with positivity gfio, () imply
ia(z) < ’”T‘N, (3.31)
te(z) < HenN | _t /Z 81i4(2)%dz < PeN | MiN Z, (3.32)
8V2 V2 MZN 8V2  2v2up
fis(2) < ot + —=—— me / 244i4(2) i6(2)dz
M8N | 3[iaNMeN §I‘L4‘N 2
I R 2, (3.33)
1 RN 3ua,N
m(z) < / 614(2)dz < . (3.34)
V2o N ¢ 2V 2o

In particular, (3.34) at = g (z= M(g) —1=+/2r, — 1ford = 4) implies (3.15).

Using (3.31), (3.32), (3.34) in (3.27), we have

15 2
fia(z) > BN N Wi » (3.35)
4 " Tuan.  Buly
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Using (3.32), (3.33), (3.34), (3.35) in (3.28) and (3.30) we further have

6N KN 1213 v A 123uanpeN o TugwN
te(z) = + - 52 — zZ,
8V2  2V2upn “/_“21\1 16243 8v2uaz N
(3.36)
. 3ua N bufn 5 45uen
m(z) > —z — 7" — "z (3.37)
2V2uan N2u3 16v2u3
2—-1
Whend=4,ﬂ=«/_2 andz=M<§ —1:«/§rN—1<M<§>=«/§rN>.

Then the assumptions (3.16) — (3.18) of Proposition 3.1 imply that the right-hand sides

of (3.35), (3.36), and (3.37) are non-negative at g On the other hand, they are

concave ing for z > 0. Recall also that = M(r) — 1 is increasing it € [0, 8/2].
Therefore, they are non-negative foral [0, 8/2]. Using (3.35), (3.36), and (3.37) in
(3.27), we therefore have

tan 1 z 34N 6ug N A A5ue N
Ha(z) < —— — - F4 51| %
4 V2uan 2V2uon N23, T 16V2uf
(IM,N _ Louew 21/“‘421‘1\/22)
4 16u2 v SM%,N
2
W 12u3 12 7
+15(M6,N L Mav 4N 3 _ 3M4,Nl;6,NZ2 _ Tugn z) dz
8v2  2V2uan  N2u3 16243 8212 N

_ Han ouen 21“4,1\/ 2

= Z
46w 83,

70514, N 16, N 3 44703 A 105ug, ¥ 2
32“%,1\/ 16Mg,N 32'“2 N

Recalling thatat = 8/2 (z = M(%) —1=+/2ry — 1) we have

+

(3.38)

M_Z(g) =TINM2N,

2
foN+1 =TNp2N — (N 2ry — DM <§> ,

4
paN+1 = Ha(N2ry — DM <§

6
teN+1 = He(N2ry — M <§) ,

pe.N+1 = ds(W2ry — HM <§

we see that (3.37), (3.35), (3.38), (3.32), (3.36), (3.33) imply (3.19)—(3.24), respectively.
This completes a proof of Proposition 3.10
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4. Bleher—Sinai Argument

In order to show Theorem 2.1, we confirm existence of a critical parametes. by

means of Bleher—Sinai argument, and, at the same time, we derive the expected decay
of wa,n. In Bleher=Sinai argument, monotonicity ©f andsy with respect toN is
essential.

Proposition 4.1. Letd = 4. Then the following hold:

(1) If MzN -1< Othenm N+1 < U2,N-
() |f >paN—1> fM4N thenuz y 11 > 2 N.

Proof. Note that for both cases in the statement, the assumption (3.13) in Proposition 3.1
holds. Hence, (3.14), with (3.11) and monotonicity.fy, implies

Ny —1<0 = ry <1 = poN41 < H2,N- (4.1)

Next we see that (3.15), with (3.11) and (3.12), implies

moN —1 - 3n(2ry — 1)
pan  (2- ﬁ)M%N

= U2N+1 = M2N- (4.2)

Put
3
V2x (V2 = (V2 = Dx)?’

Then by straightforward calculation we see

Li(x) =

5
15xsz = Li(x) < L1(D) =

S

and (3.11) implies

3ry(V2ry — 1)

L = .
1(u2,N) 2 ﬁ)ME,N

Therefore (4.2) implies that

- —1> > 4.3
4~ e IM4N:>M2N+1 HU2,N- (4.3)

O
Corollary 4.2. Letd = 4. Then, for the ,, defined in (2.11), it holds thaty < s 1.
Proof. Sincepuy y is increasing iy, if s < s, thenuo v < 1, hence Proposition 4.1

impliesua y+1 < m2 v < 1, further implyings < s 1. Hence the statement holds.
O



26 T. Hara, T. Hattori, H. Watanabe

For later convenience, define

" 1
ry = v 3 , (4.4)
1-W2-1H)—
( )ﬁM,N
by =1- = 45)
*N =— \/Ev .
N2rk —1
= u 3 . (4.6)
\/E <1 + EIMLN)
Then we see that if (2.13) holds, then we have, from (3.11) and (3.12),
1<ry <ry, 4.7)
CsN <CN < Cn- (4.8)
Proposition 4.3. Letd = 4 and put
ap=0.0045 w1 =16, ay=6.07, az= 48469
Assume that there exists an integésuch that (3.13) and
(0 =) pan < o, (4.9)
o1l y < pHeN < d2ud . (4.10)
(0 =) gy < asud v (4.11)
hold. Then (3.16)—(3.18) hold, and the following also hold:
(0 ) pmant1 < uan(@d—0.08u4y) (<o), (4.12)
01G N1 < M6N+1 < 020G N1, (4.13)
(Ole) g N+1 < 03143 N y1- (4.14)

Proof. Forx > 0 put

1
Lr(x) = ,
3
1—(&—1)72x
1
L) =1— —.
d(x) 7
euoc):—f%(x)g_ L
5(1+ =
f( +J§x)

15
Lo(x)=1— (Z—ﬁazeu(x) + 21£u(x)2> x. (4.15)
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In particular, (4.4), (4.5), (4.6) imply
ry =L (pan), N =La(uan), ¢y =Lu(uan).
By explicit calculation, we see that
Lo(x) >0, 0<ux <ap. (4.16)
The right-hand side of (3.16) is then bounded from above by

1 1
ZM4,N(1 — La(pnan)) < 214N

hence (3.16) holds. Similarly, (3.18) is seen to hold fot sy < g, if we note that
the right-hand side of (3.18) is bounded from above by
evig oy (1205 + 45 C o2 (1 Lo(uan))pan < 3M4N

The condition (3.17) is seen to hold with similar argument, if we note the right-hand
side is bounded from above by

123 7

3 2

2 + —yaz + —a3 ),
CNH4,N( 4{]\/ 8\/§§N 2 8 3)

while the left-hand side is bounded from below by

2
+
Han <8f QV)

Therefore, the conclusions of Proposition 3.1 hold, in particular, (3.20)—(3.23) imply

15
[L4,N+1 = TN 4N <1 - (Z—ﬁENOéz + 214“1%/) M4,N> . (4.17)
Favd o (1— (E;Naw 21;2) pan
na.nN —='N 2\/2 N s
705 4 , 105, ) 5 )
+ | —=¢ya2 +44T7y + —nva , 4.18
<2ﬁ§N 2 vt N3 ey (4.18)
2
EaNHL < ( AN ) 8 (2 +4;N>, (4.19)
K4, N 11 Ha.N+1 V2
2
Me,N+1 na,N 6 (al 3, 123 ,
> rv | —= +4¢y — (192; + —=¢ya2+ Tinas | uan |,
15 N1 <u4,zv+1) Mv2 AV e
(4.20)
3
M8,N+1 a4, N 8 <0t3 12 2)
< rv | =+ —=¢vaz + 2425 ) - (4.21)
M;SLN_;,_J_ (M4,N+l> N 2 \/z N
Rewriting (4.17), using (4.7) and (4.8), we have
pav 1 ! <t (4.22)

man+1 ~ ry 1 ~ La(pnaN)

15
s vaz+ 25 )
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This and (4.19) imply

1
—a2 + 44, (ua N)

M6N+1 _ g,

iy La(pan)?

By explicit calculation, we see that

1
EWZ + 4, (x)

L? =

Therefore the upper bound in (4.13) holds.
In a similar way, we note that (4.21) and (4.22) imply

O<x<ay =

1 12
Zag+ =Ly (a N + 24, (s N)?
M8 N+1 _ 2 Ng)

M3 N1 La(ugn)3

By explicit calculation, we see that

u( ) u( )
2 3 \/_ X 2 X

O<x<ap =

< .
La(x)? =%

Therefore (4.14) holds.
Similarly, from (4.20) and (4.18), we see that ikOua v < @o, then
M6,N+1

2
Ha N1
o1 123
N 72 + 404 (nan) — (1920, (pa n)® + Eﬂu(m,zv)zaz + 78, (La,N)o3) s, N
o Er(lMLN)Z D?
> al,
where
D (15£( Yot + 226,4( >2)
=1—-[——= o
>/ a(pa n)aa a(aN) ) nan

705 105
+ <2—ﬁzu<u4m3az + 4470, (ua n)* + Tzu(m,zv)zas) uay. (4.23)

The lower bound in (4.13) therefore holds.
Finally, from (4.18), we have, again with similar argument,

W4, N+1 15
ZANEL < (uan)? (1 (g (pa e + 220 (man)Duan
Ha.N 22
705 3 4 105 2 ) 2 )
+(—=¢ ap + 44T + == o
(2ﬁ u(a, N) a2 u(a,N) 7 ula,N) a3 ) ug N
< 1-0.08uqy,

if 0 < uan < ap. Therefore (4.14) holds.o
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Corollary 4.4. Letd = 4, and assume that for sométhe assumptions (4.9)—(4.11) in
Proposition 4.3 hold for alk satisfyings 5 < s < sy, wheres 5, andsy are defined in
(2.11) and (2.12). Then it holds thag; 1 < sn.

3 .
Proof. By (4.9), 1+ EM’N <2442, if s y <s <sn.Hence, by (2.12),

. 3
sy =inf {S >0 uzn > 1+—M4,N},

V2

and, from monotonicity ofiz v in s, (3.13) holds ifs < sy.
Continuity of w2 y andus, y in s imply

3 .
poN =1+ —=puan, if s=5y.
NZ)
. 5 " o
(In particular, we may assume th2t> w2 n.) Hence Proposition 4.1 implies

3
M2 N+1 > 1+ —=pan, fors=5y. (4.24)

V2
By assumptions at= s, we see, from Proposition 4.3, that y+1 < w4 n, Which,
with (4.24), implies

3
MU2.N+1 > 1+ —pa n+1-
+ NG +

This proves y4+1 <sy. O
Proof of Theorem 2.1Note first that Corollary 4.2 implies
Sy<Syy1» N=Ni,Ni+1LN1+2---. (4.25)

With assumptions of the theorem and by inductiomarProposition 4.3 implies that
for anys satisfyings 5, < s <5 n;, the bounds (4.9)—(4.11) hold fof = N1. Hence
Corollary 4.4 implies y,+1 < s n;-

Also sinces < sy, implies (3.13) forN = Ny, Proposition 4.3 implies that (4.9)—
(4.11) hold forN = N1 + 1 ands y, 3 < s <5 n;+1. We can proceed with induction
on N and repeat this argument to conclude that (4.12)—(4.14) hold ok s < sy,
N=Ny,Ni+1, N1+ 2,---,and

SN+1 <5y, N=N1,N1+1N1+2,---. (4.26)
The bounds (4.25) and (4.26) imply that a sequence of closed interv®s on
[S vy SN D (8 Np1 SN+ DS yp g2 SNg2] D -
is contracting, hence there existssansatisfyings y, < s. <5 n;, such that

Sy <8c<5y, N=Ni,Ni+1N1+2---.
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Hence, in particular, (4.12) holds for all integ€r> N1 ats = s.. This implies
lim =0,
N—oo Han

ats = s..
Also we see that if = s, then (2.13) holds for alN > Ni. Therefore we have

lim oy =1,
N—>ooM’

ats = s.. This completes a proof of Theorem 2.10

5. Strong Coupling Problem

We shall prove Theorem 2.2 by (computer-aided) brute force evaluation of the Taylor
coefficients ofiy (¢) instead ofVy (&).

5.1. Taylor expansionDefine the Taylor coefficients, y,n € Z, of hy by
= 1
hn @) =) (=1)" SannE>" (5.1)
n:
n=0
In particular,ao, y = iy (0) = 1. Note also that
apn >0, nelZs.

un,n @anda, y are related, e.g., as

2 3
M2N =0ai1N, MH4N = Gy %2y HeN = Ly _ aNazN + BN
J 2 IV ) 2 ’ , 3 2 6 N
a4 612 a (12
pay = =¥ _ 2N 2N 2N | 9LNA3N _ G4N
’ 4 2 8 6 24

For Ising measurég = Ay g,

I d2j !
n O(O): n

e e W 2n)!

n!
fo” hys(x)dx = (2n)!S2n’ neZsy. (5.2

Note that one of the Newman inequalities (see (A.6)), or the Gaussian inequalities, imply
that

an,N = aiN = ,U«'é,N, neZs. (5.3)
Defineb, y,n € Z4, by

. N A=
(Shy)(E) = hy (75) = ;f—l) an,NsZ",
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whereS is in (2.4). Then

c\" n
bn N = (Z) (E) ag N dnp—¢,N, N € Z+. (5.4)
£=0
With (5.3) we have,
bay < (C“ZZN)", neZy. (5.5)

Next definea, y,n € Z4, by

o0 1 m d2m R s 1
3y = <_E) —_Shy () = Z(—l)";&n,zvéz”.

2m
mzom! 2 d& =
Then
i — (B\" (2m + 2n)!n!
an,N == mX:;) <§) bm_;,_n’Nm, ne Z+, (56)

and (2.5) implies

1 = 1
hne1€) = ==Y (=" =an x5,
ao,N =0 n:

where we fixed the constant in the definitiorﬂbbyﬁNH(O) = 1. Comparing this with
(5.1) we obtain a recursion relation Mfor a, y:

a N
an,N+1 = ~n s ne Z+, N e Z+. (57)
ao,N

5.2. Truncation.We will evaluate a finite number, say, ofa, y's (n=1,2,-- -,

M) explicitly with aid of computer calculations, by evaluatiagy, n > M, “theoreti-
cally”. For this, we need to give bounds of series in (5.4) and (5.6) in terms of sums of
finite terms. The following proposition serves for this purpose.

Proposition 5.1. Let M be a positive integer, and define

én,Ns b}l,N? I’l:O, 1,2,...’2M’

and

SN

n,N» an,N: Qn,Ns an,N, n=051725"'sMs

inductively inN € Z., by

_ n!
@n0=ano= s, n=0,12--,M,
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and
cnn Yo (aenan—en. O<n=<M,
ZnN = (Z) x M (58)
Simw-m (Daenan—en, M <n<2M,
e\ e 0\~ — 0
(Z) ;) (£>GZ,N an—¢,N» <n<M,
b_,N = . c\" n\ _—_ _ Cc?l n
! mm{(z) Z <€>ae,N an—t,N + Aby N, ( 2’N> }
n—M<t<M
M <n <2M,
(5.9)
2M—n m
- B (2m + 2n)!n!
= =] b _ <n<M, 5.10
e m=0 <2 N\ (m + n)!(2n)! ="= (510
2M —n m
- — 2m + 2n)!n! —
an,N = (é) bm+n,N# + Aapy, 0<n<M, (5.11)
fr 2 m!(m + n)!(2n)!
én,N — 2-l_n,N
Ap N+l = =——, uN+1=—=——, 1<n=<M, (5.12)
’ O,N ’ ao N
and

aonN+1=aon+1=1

where we put

n _

L cai N n 1 apm.N

Ab, N = 2( : ) ( ) X — X — (5.13)
4 n—M-1 1— %g—l/(M+l) QQ{N

and
—  \2M+1 _
— 1\" N
Adnn = (_) (Bearn)” < ) VL (5.14)
28 1-2Bcaiy \n aiy
If for an integerN it holds that

— 1
al,N < = O S N S le (5.15)

2Bc

thena, n, by N, Gn.n,n € Zy, N € Z,, defined inductively by (5.2), (5.4), (5.6), (5.7),
satisfy, for allN < N1,

by <bun <buy, n=012--- 2M,

—n

<

én,NSan,Nfan,Ny n=o51’25"'5

<

C_ln,N S an,N S a_I‘l,N7 n= Os 17 21 Tt (5-16)
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The rest of this subsection is devoted to a proof of this proposition.

Proof. The claimed bounds an, y in (5.16) hold forN = 0. We proceed by induction
on N, and assume that they hold far.

By comparing (5.4) with (5.8), and noting that y are non-negative, we see that the
lower bound fo, v in (5.16) holds.

Assume for a moment that the upper bound #gry in (5.16) also holds. Then
comparing (5.6) with (5.10), we see that the lower boundifay in (5.16) holds. If the
upper bound foé, y also holds, then (5.7) and (5.12) imply that the boundsfav 11
in (5.16) also hold.

Hence we are left with proving the upper bounds#gpr, anda, » in (5.16).

Upper bound orb,, ». Note first thatifs < M, then
c\" " n c\" " n\_— — —
byN = (21) ; <£>GZ,N n—¢,N < (4_1> ;) (Z)QZ,N n—¢,N = by N,

henceb, y < b,y holds. Also, (5.5) implies

CH2,N\" cain\"
b << ’)< i ,
(%)

hence it suffices to prove

c\" n\_— — v
bpn < (Z) n_Mng <E>a£,N an—¢,N + Aby Ny, M <n <2M. (5.17)

To prove (5.17), first note

— c\" n\ — —
Aby N =byN — <Z> Z (£>QZ,N an—¢,N

n—M<L<M

c\" n
= <4_1> Z <£>GZ,N an—¢,N -

O<t<n—M or M<{<n

(5.18)

Using the Newman inequalities (A.6) we see that if M,

M

ag,N < am,Nae-M,N < aM,N aj y - (5.19)
Hence
M

n
ag,N am,N ay y

n —M
Z)CIM,N a1 N an@yN} (5.20)
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where we also used (5.5). Write the summation in the right-hand side as

n_ﬁ_l n\ n 1+n—M—1+n—M—1n—M—2
¢  \n—-M-1 M+2 M+2 M+3

=0
n—-M-1n—-M-2n—M -3
--- . (.21
M+2 M+3 M+4 } (®-21)
Noting that
7% 4, ae (0,1, xel01] (5.22)
1+x
n—
we find, by puttingz = ande = ——,
yPUling: = 1 & = 1
n—M—k a — ke ke
Mtk+1 1+4ke - “¢ (5.23)
Hence (5.21) has a bound
n—M-1 n n 00 n 1
< k ,—k(k+De
Z (E>_(n—M—1>XZae _<n—M—1>X1—ae_5’
=0 k=0
n—M 1
= ’6= ’
T M1 M+1
which implies
Aby .y < Abyy, (5.24)

WhereA—an is defined in (5.13). This proves (5.17).

Upper bound ord, x. Put

2M—¢
_ B\ — (2m + 26)'¢!
sy =au = 32 (3) et o

m=0

0 m

B > (2m + 20)!¢!

= Z <_ bM+€,N— (525)
AN m!(m + 0)!(20)!

oo

= Y @B buten

m=2M+1—¢

Using (5.19) and (5.5), we see thahift- 2M,

o= (' 2 (v = (6" 3 (ot 52
_ (C ai N )" am,N
2

(2m +2¢ — 1!l
@m)l (2¢ — DI’

T
a3 N
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Therefore
o0
_ ay.N /cainy\?¢ m @2m+2¢— D!
Aagny < —7 ’ (Becarn)" ——r——
a%( 2 ) m:z;rl_z @m)! (2¢ — DN
oo
am,N (cain\*t m (m+L
<
<o > (e ("))
al,N( 2 ) m=2M+1—¢ ¢
o0
am,N (cain\t 2M+1—¢ t (2M +1+k
= — —) (Bcain) (Bcayn) (
ai‘fIN ( 2 ) kXC:) V4
aun (1" > 2M + 1+ k
=0 (= (Bcarn)® }: Beain)* . . (5.27)
apy \28 k=0
Here,
o o
v (2M + 1+ k 2M +1+k
Tom41,e(r) = Z (Bcai,n) < ¢ ) = Zrk ( ¢ >
k=0 k=0
¢
1 2M + 1\
= ) 5.28
1-r Wg( £—m )q ( )

wherer = fcay y, andg = -
the summand is largest when= 0, because ® + 1 > 2M > 2¢. Therefore,

l
1 (2M+1 11 (2M+1
< R
1= < ¢ >m2=0q _1—r1—q( ¢ )

1 2M +1
= ) 5.29
1—2r< L ) ( )
This proves
2M+1
_ 1 ¢ (ﬂcalN) 2M +1 apmy N —
A <|l=) — — < A , 5.30
N = <2ﬂ> 1= 2carn ( ¢ )X o = Ay (530)

whereAay. y is defined in (5.14). This provés y < a, . O

Remark.We can “improve” Proposition 5.1 by employing (correct) bounds, in a similar
way as the term proportional té)mﬂ) in (5.9). In actual calculations, we improve

anN+1,n=1,2,---, M,in(5.12), the upper bounds fa y1's, using (A.6) (as well
as its special case (5 5)). To be more specific, we compave 1 in (5. 12) W|tha2 N+
and replace the definition if the latter is smaller. Then we go on to “imprage/1

by comparing withay 144 y+1, @and so on. Conceptually there is nothing really new
here, but this procedure improves the actual value of the bounds in Proposition 5.1.
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5.3. Computer resultsin this subsection we prove Theorem 2.2 on computers using
Proposition 5.1. We double checked by Mathematica @hel programs on interval
arithmetic. Here we will give results fro@++ programs.

Our program employs interval arithmetic, which gives rigorous bounds numerically.
The idea is to express a number by a pair of “vectors”, which consists of an array of
lengthM of “digits”, taking values in{0, 1, 2, - - - , 9}, and an integer corresponding to
“exponent”. To give a simple example, l&t = 2. One can view that.0523 is expressed
on the program, for example, & = [5.2 x 1072, 5.3 x 10-2], and 3 is expressed as
I, = [3.0x 10°, 3.0 x 10°]. When the divisior1/ I, is performed, our program routines
are so designed that they give correct bounds as an output. Namely, the computer output
of I1/1> will be [1.7 x 1072,1.8 x 1072]. We may occasionally lose the best possible
bounds, but the program is so designed that we never lose the correctness of the bounds.
Thus all the outputs are rigorous bounds of the corresponding quantities.

In actual calculation we tookd = 70 digits, which turned out to be sufficient.

We also note that interval arithmetic is employed in [14] for the hierarchical model in
d = 3 dimensions. We took an independent approach in programming — we focused on
ease in implementing the interval arithmetic to main programs developed for standard
floating point calculations — so that structure and details of the programs are quite
different. However, our numerical calculations are “not that heavy” to require anything
special. For the program which we used for our proof, see the supplement to [17].

As will be explained below, we only need to consider 2 values for the initial Ising
parametes:

s— =1.7925671170092624 and s, = 1.7925671170092625

We perform explicit recursion on computers for each s1 using Proposition 5.1.
We summarize what is left to be proved:

_ 1 . .
Q) aan < TR 0<s <sn,0< N < Np, whereN; = 100. This condition is
C

from (5.15), imposed because we are going to do evaluation using Proposition 5.1.
Note that this condition is stronger than (2.17) in the assumptions in Theorem 2.1,
1 1
because:z? =52+ V?2) =1.707--. ford = 4.
C
(2) s— < sy, ands y, <s;.To prove this, itis sufficient (as seen from the definitions
(2.11) and (2.12)) to prove

3
ua.n, <1, whens=s_, and puzn, > 1+ —=pan,. Whens=s,.

V2
(5.31)
(3) For anys satisfyings_ < s < s, the bounds
(0 =)pa N, < 0.0045 (5.32)
1.6u3 vy < Me.No < 6.07u3 ny (5.33)
(0 <)pg Ny < 484693 .. (5.34)

hold for Ng = 70. This condition comes from the assumptions in Theorem 2.1
(sufficient, ifs_ < sy, andsy; <s3).

We now summarize our results from explicit calculations.
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_ 1
(1) We haveny y < Esi =1.6066---,0<s <s4,0=< N < Ni. The largest value

for a1y in the range of parameters is actually obtainedats, andN = 0.

(2) Our calculations turned out to be accurate to obtain more than 40 digits below
decimal point correctly fog2 100 andus 100 ats = s+, which is more than enough
to prove (5.31). In fact, we have

0.99609586499804791366176669341357334889503943 100
< w2100 < a1,100 < 0.99609586499804791366176669341357334889503972
ats =s_,

and

1.0131857903720691722396611098376636943838021 100
< u2.100 < a1.100 < 1.0131857903720691722396611098376636943838031

0. 00281027097809098768088795100753480139767915

2( a2100+all o < 14,100 < ( azloo~|—alloo)
<0. 00281027097809098768088795100753480139767969

at s = s4.

(3) To prove (5.32)—(5.34), we note the following. Let us write thdependences of
an,y andu, n explicitly like a, y(s) andpu, y(s). For any integeiv and for any
s satisfyings_ < s < s, the monotonicity otz y (s) with respect tor implies

1 1
Han(s) = S(—azn(s) + a1n(s)?) < S(caa (o) + a1.n(s+)%) =t fian.
(5.35)

Hence if we can prove
4,70 < 0.0045

then we have proved (5.32). In a similar way, sufficient conditions for (5.33) and
(5.34) are
m _
16< =870 HOT0 _go7 H8T0 _ 45469
a0 Ha70 13 70

with obvious definitions (as in (5.35) f@ta v ) for 70 andji, 7o.

The bounds we have for these quantities are (We shall not waste space by writing
too many digits):

ia70 < 0004144 36459< =870 870 3754 M870 _ 55469
15 70 K470 Ha.70

This completes a proof of Theorem 2.2, and therefore Theorem 1.1 is proved.
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A. Newman's | nequalities

Let X be a stochastic variable which is in cladsf [15]. X € £ has Lee-Yang property,
which states that the zeros of the moment generating funct[owf’é’ ] are pure imag-

inary. In fact, it is shown in [15, Prop. 2] using Hadamard's Theorem tHat’E" | has
the following expression:

E[eHX]:eszl_[<l+H—22>, (A1)

j 9

whereb is a non-negative constant aag, j = 1,2, 3, - - -, is a positive nondecreasing
o
i -2
sequence saﬂsfymE a;© < oo.
j=1

Consequences of (A.1) in terms of inequalities among momergsiat functions)
are given in [15], among which we note the following:

1. Positivity [15, Theorem 3]. Put

1 4> JoIEX

Then,
M211207n=071527"" (A3)

(Note that (A.1) impliest2,+1 = 0.)
2. Newman'’s bound [15, Theorem 6]. Rut, = nu2,. Then,

vap < Vf, Ve < A/ vavg, Vant2 < Vg vZ_l, (A.4)

where the first and third inequalities follow from (2.10) of [15], while the second one
is (2.12) of [15]. These implyz, < vj/2, n > 2, and therefore

2 n/2
an(/m) n=2234--. (A.5)

Furthermore, we will prove the following.

.. N!
Proposition A.1. Putay = WE[ x2N ] N € Z,. Then,

apm+N = apyan N,M=012,---. (A6)

Proof. Puty; = ozj_z > 0. Then

E[eHX]=ebH2H(l+H2yj). A7)

J
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Expand the infinite product to obtain

H* H®
[T(2+ %)) =1+ H2Y v+ 5 D v+ 5 D ikt
J C i sk

J

o pron (A.8)
= _'Cny
s n!
Cp = Z Yi1YiaYiz -+ Yip» (A.9)

i1,02,...,0pn

where primed summations denote summations over non-coinciding indices. Hence we
have,

HX o 2N b™ ¢y o N YooV g,
E[e ]:ZH 3 %E=ZH Z—(N—n)!ﬁ (A.10)
N=0 m,n:m+n=N N=0 n=0
00 ay
; ; HX | _ AN 12N ;
Comparing with E[ e ] => vy HE ) we obtain
N=0
N
N _
ay = Z (n)bN "en
n=0
Note that (A.9) implies
Cntm = CmCn, (All)

because the conditions of primed summations are weaker for the left-hand side. This
with b > 0 implies

M\ (N
ay ay = Z Z( >< )bM+N—m—n Cm Cn
m=0n=0 m n
M N
M\ (N
> Z Z < )( )bM+N—m—n Cotn
m=0n=0 m n
M+N 4
=Y pMNte, Y <M>< N )
£=0 m:0<m<M, m t—m
0<l—m<N
M+N
_ M+ N
(=0

where, in the last line, we also used

> G5 =) w2

m: 0<m<M,
0<¢{—m<N

which is seen to hold if we compare the coefficients 0bf an identity(1 + x) ™V =
A+0M1+0". o
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