日時 | 12月11日(金) 15:30--17:00 |
---|---|
講師 | 中尾 愼宏 氏 (九州大学・名誉教授) |
題目 | Energy decay for a nonlinear Generalized Klein-Gordon equation in exterior domains with a localized nonlinear dissipative term |
概要 | We give a certain energy decay rate for solutions of the exterior initial-boundary value problem of the nonlinear wave equations. We call our equation as a nonlinear generalized Klein-Gordon equation since the term $g(u)$ plays an essential role in our argument. Note that concerning energy decay, no result is known when both of $\rho(x,u_t)$ and $g(u)$ are nonlinear.
Download PDF |