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S t a n d a r d  Modu les  of Level 1 for  s i2 

I n  T e r m s  of 

Virasoro  Algeb ra  Represen ta t ions  

Lzn WENG and Yuchzng YOU 

Department of hlathematics. Nat,ional University of Singapore. 

10 Kent Ridge Crescent. Singapore 119260 

e-mail: matwenglQleonis.nus.sg 

matyouyQ1conis.nus.sg 

I t  is well-known that for a level 1 integrable irreducible highest weight module L(A) 

of the affine Lie algebra g = y C3 C((t)) + C . c associated to  a finite dimensional simple 

Lie algebra g over the complex number field. we may introduce a set of Virasoro operators 

{Lnjntz  in the sense of Sugawara. The construction is as follows: let { , l a ) ~ ~ ; y  be an 

orthonormal basis with respect to  the normalizrd Cartan-Killing form of g ,  (the inner 

poduct of the highest long root is t,wo.) then 

d ~ m  g Z : J U ( m )  J a ( n - m ) : .  L,, .= - 
2(9* + 1 )  m E Z  a;] 

Here g* denotes t,he the dual Coxeter number of g and : . : denotes the normal ordrring. 

The linear span of {L,,},,,z together with the one-dimensional central extension forms a 

Lie algebra, which is usually called the Virasoro algrbra (associat,ed to L ( A ) ) .  Denote t h ~ s  

Lie algebra by Vir. Then its central charge is %. 
In this paper, we will give the irredncit)le decomposition of the level one integrable 

highest weight modules of . s j 2  associated to sl?(C) for the action of the (assoc,iateti) Vira- 

soro algebra. In fact. using a realization of tlic. rriodules, we will explicitly constr11c.t thr 

Copyr~ght O 1998 by Marcel Drkkcr. Inc 
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614 WENG AND YOU 

highest weight vectors for the Virasoro algebra. As a by-product. wc obtain the nerin of 

these highest weight vect,ors for the inner product introduced by Garland [GI. Wti hope 

that such results can be used in the study of the hermitian theory o f  vector bundles of 

conformal blocks in conformal field theory [TUY]. 

From now on. we consider the affine Lie algebra slz associated to the s~nlple Lie algebra 

slz with st,andard basis 

In this case, the dual Coxeter number g* is 2 For X E s12, let X ( n )  denote the element 

x 8 tn in ~1~ 

Let L(A) be  an integrable irreducible highest weight module of siz. If 1 is the level of 

L(A), we define 

One checks that  {L,(N)JnEz together with the one-dirnens~onal central extension also 

form a Virasoro algebra, denoted by Vir(H), whose central charge is 1. That  is. we have 

As a matter of fact, we find that  to understand the action of Vir, it is convenient to  use 

Vir(H) 

Remark. The operators 1, := L, - L,(H) together with the one-dimensional central 

extension also form a Virasoro algebra (with central charge w). and they are called 

the coset Vwasoro operators. 

For our purpose, we consider the case 1 = 1, i.e., the level one modules. From the 

representation theory of affine Lie algebras, there are only two irreducible integrable highest 

weight si2-modules of level 1, namely L(Ao) and L(A1). More precisely. L(Ao) is the 

induced module from the trivial module Vo of slz, while L(A1) is the mduced module from 

the irreducible rnodule V(X1) of s12 wit,h the highest weight Xi. \I.~CI.P X I  denotes n/2. 

the fundamental dominant weight for sip. Rloreover, we have ver,v prrc.isc. realizations for 

these two level one rriodules of siz.  Indeed, there are several different xvavs. In the so-called 

bosonic picture. we have the principal realization and the homogeneous realization. In this 

paper, we take the homogeneous realization. 
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VIRASORO ALGEBRA REPRESENTATIONS 615 

Theorem 0. ([LP], [K]. [Y]) For k = 0,1, L(Ak) = C [ X ~ ,  52.. . .] @ C[q, q-'1, and the Lze 

algebra s12 action zs gzven by 

2 ~ - 3  8 
E12(z)(f @ q") ( - l ) " e x p [ C  z3s3] exp[- -- f ]  @ qa+'. 

3 3 8x3 
2 ~ - J  a 

E ~ ' ( Z ) ( ~  @ q") = z - 2 " + ' + k ( - ~ ) a + 1 e ~ p [ C  -Z 'T~]  e x p [ x  -- f] 8 qa-I. 
3 3 8x3 

where E,,(z) := xnEZ E,, 8 2-" 

First, we consider the module L(Ao). In this case, one knows that the energy operator 

(-d) = Lo acts as follows: 

i f f  is principally homogenous, where the gradration is given by degx, = I .  We also define 

the principal degree of f 3 qa to be deg f + a2. 

Lemma 1. With the same notatzon as above, L, = L,(H). 

Proof. Recall that,  by definition, 

So, for a fixed a,  all L,(H) leave each C [ X ~ , X ~ , .  . .] 8 Cqn invariant. Moreover. it is 

well-known that, for all m,  n t 2,  

[L,,(H), H(m)]  = -mH(n + m).  (1) 

Not,e that the original Virasoro operat,or L, by definition is just 

So it is obvious from the r~alization theorem that L,, leaves each copy C[x l  . r p .  . .] :.: Cqo 
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invariant as well. Furthermore, 

WENG AND YOU 

(2 )  

for all m. PZ E Z, and X E s12 [TUY]. 

Define L, := L, - L,(H). Then, by (1) and (2),  L, commutes with the action of 

H ( m )  for all m E Z .  Note that these Heisenberg operators H ( m )  act irreducibly on each 

copy C[zl, zz:. . .] '8 Cq". Thus, by the Schur lemma. we see that  1, are scalars on these 

copies C[xl,  x2,. . .] @ Cq". Using the Virasoro commutator relations. a simple argument 

leads tha t  these scalars are all zero, and hence L, = 0. This completes the proof of the 

lemma. 

From Lemma 1, in order to understand the representations of L(Ao) for Vir. we only 

need to  study the representations of L(Ao) for Vir(H). (In general, the Vir(H)-module 

structure is relatively easy to  study.) 

To describe the Virasoro representations for L(Ao), we need a result of Kac's character 

formula. Let M ( h ,  I) be a highest weight Verrna module for the Virasoro algebra with h 

being its lowest energy and 1 its central charge. Then we know that  for 1 = 1. M ( h ,  I) is 

irreducible if and only if h is not m2/4 for some integer m; moreover: M ( m 2 / 4 ,  1 )  has a 

unique irreducible quotient L(m2/4 ,  1). Since all the Lo-eigenspaces of L(h,  1) are finite 

dimensional, we may define the z-dimension of L(h. I )  as 

with L ( h ,  l ) ,  the Lo-eigenspace with eigenvalue z .  With t,his, we state the Kac's character 

formula as 

where 

From the fact that  the Virasoro algebra 1'11- leaves each C [ x l .  . r ~ .  . . :+ Cq" invariant. 

we only need to understand the irreduciblr decomposition of C [ r l .  . r  2 .  . . .j :%: Cg" for the 

representation of Vir. For this purpose. olxerve from (2) that [L,,, X] = 0 for all vectors 
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VIRASORO ALGEBRA REPRESENTATIONS 617 

X E s12. Hence, if v is a highest weight vert,or of Vir, then X%J is also a highest wcight 

vector for I'ir with all X E s l z ,  k E Z>o. Define 

Then, the L I ~  algebra .d2 also acts on L ( A ~ ) ~ " + .  

Me have natnral candidates in ~ ( h o ) ~ " +  

Lemma 2. For each znteger cu, 1 8 q" E L ( A " ) ~ " +  

Proof. L,(1 8 qa) is a homogenous polynomial with principal deg~ee m2 - n for all n E Z. 

Notice that cu2 is the lowest principal degree for homogenous elements in C [ x l . x z . .  .] @ 

Cq". Hence, for n positive, we have L,(1 8 q") = 0. This completes the proof of the 

lemma. 

According to [TUY], the module 'H = L(Ao) admits a decomposition '?t = xC,,,Z R ( n ) .  

wherer H(71) := { t i  E 'H : Lou = nu) is a finite dimensional vector subspace. In our case. 

Z ( n )  is nothing else but the space of homogeneous polynomials of principal degree n (recall 

degz,  = i .  degqa = a 2 ) .  Hence the dimension of 'H(n) is c:$' p(n - j 2 )  where p(n) is 

the partition function. By (1). 'H(n) is slz-invariant. 

Notice that for each nonnegative a. by the realization theorem, a simple calculation 

shows that E kills l@qa.  Hence\ l@q0 actually is also a highest we~ght vector for the action 

of slz on 'H(n2). Therefore it generates a finite dimensional irreducible sin-submodlile hy 

integrability, with basis 

p F~ 
1 8 qas F(1 C3 q"), ?(I  @ q")! . . . , -(I 8 qa) ,  . . . . 

k !  

Since H(1  xq") = 2a (18qa ) ,  it follows that the above irreducible s12-modnle has  dimension 

2 a  + I ,  which we denote by V ( 2 a ) .  By (1) or (2) ,  all th r  vectors t ' z  := g(1 ;.? g o ) .  

k = 0.. . . . 2 a  are in L ( A ~ ) ~ " + .  These vectors can be written clown precisely. Howcvc~. 

it seems that an explicit expression for $(I  @ q") using thc realization tlicorrm ilirectlv 

is rather difficult t,o obtain. Instead. wc: use the scrcallcd fermionic ~.calization of L(AIi) 

([D.JKhl]. [ I r]  ) .  
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618 WENG AND YOU 

Here 1.. .)+ denotes the anti-commut,ator. Let CL be the Clifford algebra subject to the 

above relations, and I the left idcal of C1 generated by $!?, 71 < 0. i = 1 , 2  and 4/,;)*, n > 

0, z = 1 , 2 .  We set 3 := C1/I. Lct 10) be the elen~cnt 1 +I in F. It is known that F is a mod- 

ule of the affine Lie algebra 5, of infinite rank, decornposirig into a direct sum of irreducible 

submodules 3 ( ' ) ,  each of which corresporlds to a fundamental dominant weight ([D.JKM]). 
( 2 )  (1)- ( I ) *  (218 # ( 2 q 0 ,  The subspace 3(') has a h i s  ~j:)$,(:' . . . $ ~ ~ ) $ i ( ~ ~ ,  . . . Ij,- $3L . . . Qiu d'3u+, . . 

with s-t = L,il > . . . > z, > 0, > . . . > is > 0 , ~ 1  < . . . < j, 5 0. ~ ~ ; + 1  < . . . < lt 5 0. 

For our purpose. \ye consider 1 = 0. (This is the baszc module for a,). Not,e that 

where F$) is spanned by the monomials @!:)IJZ(~) . . . +Z(:)$i:)* . . . $::)* 10)) u-v = k .  z = 1,2 .  

It is well-known from the theory of solit,on equations that  each F:,:) can be identified with 

a polynomial algebra ~ [ z j ' ) ,  z t ) .  . . .]. For this, we need to recall the Schur polynomials: 

for a partition X : XI 2 Xz > . . . 2 A,, A, E Z>o, the Schur polynomials sx(x)  assoczated 

to X is defined by sx := det(sx,-,+,(x)), where s J ( z )  are given by the generating function 

C z o  s3 (x)tJ := e x p [ C Z 1  xjtJ] .  Wit,h this, our identification map, the so-called boson- 

jemzon correspondence, 

is given by o$)(@$)j~)) = 1 8  u r ,  where 

if n = 0. 

0), i f n < O .  

More generally, for u - v = n. i l  > . . . > z, > 0, j 1  < . . . < J, 5 0 

where the partition X is obtained by the following process: starting with thf, positive int,e- 

gers z l ,  Z Z , .  . . , i,, we add the sequence of consecutivr non-positive integers 0, -1. -2 . .  . .; 
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VIRASORO ALGEBRA REPRESENTATIONS 619 

Call this sequence as A. From A, by delet,i~ig the riori-positive integers ~ 1 . 3 2 .  . . . , l t , ,  we 

get a new sequence called k l ,  h-2,  k3 , .  . ., which is in decreasing ol-dcr. Ddinc. a srclurrice X 

by XI  := k3 - ( n  - 3)  for j = 1.2,s . .  . . . Then it is obvious that X is a partitlori. 

Nott that using the boson-fermion correspondence o = o( ')  3 crc2! .  we have 

Here q  := 5. This is known as the two-component constmctionof the basic n iodde for 8,. 

Then we can show that the si2-module L(Ao) in the homogeneous picturc (the raductzon 

procedure in the l~tterature) is 

and thus it is realized as a polynomial algebra 

where 2, = zj2' - z!" ([Y]). 

We are not interesting in describing this in detail. But we need the action of the oper- 

ator F on 1 @ qk .  With the above realization, one knows that the action of F corresponds 

to the left multiplication by the element CnEZ $?'$?'*. Now we are rrady to st,atr our 

first theorem. 

Theorem 1. Wzth the same notatzon as above. 

for k = 0 ,  1 , .  . . .2a where Sk(2=-k)(x) zs the Schur functzon correspondzrtij to the rectanglar 

partztzon k ( ' ( ~ - ~ )  

Proof. For n E Z>o ,  1 8 q'yiri the fermionic picture is 
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WENG AND YOU 

where the summation is taken on s l , .  . . , s k  E {n,n - 1 , .  . . , 1,0,  - I , .  . . , -n + 1) 

Observe that our polynomial depends only on z ,  = st2) - zjl) (not on 

y, := xtl)  + L!~)) ,  therefore it would not change if we specialize z l l )  to 0 and zt2) to x.  

Case 1. k < n. Then we see that the summand becomes 

By the explicit boson-fermion correspondence, o ~ ' ~ ( $ / : ) $ J ~ ~ ) .  . . +6:)qj!)+, . . . $,!jl)'(0)) is 

a polynomial in x!') with posztzve degree, unless s l  = -n+ 1. s2 = -n+2,. . . , sk = -n + k .  

Moreover, when s3 = -n + j .  j = 1 , .  . . , k ,  

(2)  (1)- *p*'2'* S ,  . . . $~;'$!f"$p*f~l . . . *-n+l . . . $ , ~ ) * I o )  

k ! ( 2 )  ( 2 )  (2) (2); (21' =(-I)  vn V,,-1 . . . $ I  ..?,b-n&klO). 

Therefore. under the speciallzat~on s!') to 0 and z!~) to z. the only term that survives 1s 

where A = {n - (n - k), n - 1 - (n - k) + 1,. . . , -n + k + 1 + n - 1) = k2n-k. 

Case 2. 2n  >_ k  > n. Observe that wc should have at least k  - n positive s3's as otherwise 

the number of non-positive s,'s is more than n,  they then must repeat. If s k  - ( k  - n )  > 0, 
( 1 )  ( 1 )  (1) (1) , ( I ) *  then O,-,($J,, $jsz . . . Gs, li'-,+, . . ,$il)*(0)) vanishes under the specialization, since it is 

a positive degree polynomial. Hence sk = k - n for a non-vanishing term. It follows 

that we must have exactly k - n positive S,'S for a non-vanishing term and sk = k - 

n, ~ k - ~  = k - n - 1 ; .  . . . sn+ l  = 1. Then the non-positive 5,'s must exhaust all the integels 

-n + 1, -n + 2 , .  . . , -1,O. Hence we only need to take caw of the term 

Again, by calculation. we find that the corresponding polynomial is ( - l )nksx (z )  s q 7 ' - ' .  

This compteles the proof of the theorem. 
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VIRASORO ALGEBRA REPRESENTATIONS 62 1 

Therefore, on each C [ x l ,  2 2 , .  . .] @ Cq", we are able to construct the highest weight 

vectors for Vir, namely, the polynomial s(0-,),+o(x) j:q" with /I 2 o 2 -d. Ewli of thcse 

vectors has energy p2 = q, Now by the Kac charactrr formula. rach ;l contributes an 

irreducible Vir-module L (~ ) ( / ? ' .  1) whose z-dimension is (assume [j > 0) 

Notice that  
,TO2 (l4-;2P+l ) - - zaZ 

B > l Q  4b)  

is exactly the z-dimension of C [ x l ,  xz, . . .] 63 Cqa. Therefore, we have the following 

Theorem 2. Wzth the same notatzon as above, the zrreduczble decomposztzon of L(Ao) 

under the Vzrasoro algebra Vir is described as follows: 

1) C [ z l ,  22 , .  . .] @ Cp" = L(")(P', 1)) where each L(")(/?', 1) is generated by the hzgh- 
4?lal 

est wezght vector s (o - , )~+o  (x) @ pa. Hence 

2) L(Ao) = V(2n) B L(n2: 1) (as a s12x Vzr-module) 
n>O 

Remark. We can describe the Vir-irreducible module L(")(n2, 1) alternatively. For 0 5 

k 5 fi. let vin) be the V(2k)-isotypic component for the action of sL2 in 'H(n) .  so that 

Then, we have. for 1 0 1  ( n 

L ( " ) ( ~ ~ ,  1) = C vLk) n ( c j x ]  x go) 
k > n z  

={f @qa  : R ( f @ q R ) = n ( n + l ) q " } ,  

where R = EF + FE + +Hz is the Casimir operator of 5L2  

From the representat~on theory of Kac-Moody algcbras we know that t h c ~ i l ~ s  n urrzque 

contravariant hermitian inner product on L(Ao). up to constant multiplis [GI For our 

realization, the inner protiiict is normalized so that / I  111' = 1 .  It 1s krio\v~l that this 

inner product saitisfies tlir following important relafior~: (I,,,.c.!,j = ( 1 .  I, , , i , ) .  For thc 
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622 WENG AND YOU 

applicat,ion to the conformal field theory. it is very important to find the norm of the  

highest vertors for thr Virasoro algc~1,l.a Vir, since thcu thc ilincr p r o d ~ ~ c t  for a11 pairs of 

vectors can bc computed by only lislng the commutator rflations ainong Lnls.  

Theorem 3. M)'zth the same nntnt~on a s  nbow, the Garlurld n o r m  of fhc h i g i ~ e s t  ~ u e ~ y h t  

vector (for Vzrj S ( ~ , - , , ~ . I + ~ ~ ,  (x)  @? (in is givcn by 

Proof The contlavariant property gives 

( H ( n ) u ,  v) = (u, H ( - n ) v ) .  

Since I/ 1 / /  = 1. by using t,he realization theorem, we have for f ( s ) .  y ( s )  E C [ x ] .  

In particular, as a formal power series in t and u. we have 

which shows for n E Z>o. 

l i ~ ~ 1 1 ~  = n + 1. (**I 

Lemma 3. 111 gqal/' = 1. 

Proof. If a > 0. we prove by induction. Not,ice that F(l 8 q) = sl(x) = X I .  11x111" '2. 

Then 

Assunle 111 88 qkll2 = 1, Thc11 since F(l @ q) = s l i i + ,  W q k .  notice tha t  tvc~ J~,I \Y a11 

"involutiorl" on C[z] .sA(. l . )  H . s x , ( . r )  which is a n  isoinrtry. wlicw A' is tho cwliji~gatv 

partition of A. it follows that 
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VIRASORO ALGEBRA REPRESENTATIONS 

But 
IlF(1 @ q k + l ) i l 2  = ( I  x qA.+'. E F ( ~  8 qk"))  

= ( 1  x q k + ' ,  ~ ( 1  ' ~ q ~ ' l ) )  = 2ik  f 1 ) l  :.: q k + l l l L  

Hence. 1 @: qk i l  11" 1. 

Fo1 rr < 0 we use the opeiator E Instead of F to completc. the p o o i  of o w  lenlrria 

To complete the  proof of our theorem, wr recall that  for n > 0. 1 ?i: q", F ( l  3 

q").  . . . . F2"(1  @ 9") form a I~asis of the s12-module C'(2o). WP have 111 x q"l12 = 1 

and a n  inductive argument leads 

1 
A-I 

=-(Fk- ' (1 9 9 " ) ~  F ' H F " ' ~ ~ ~  + q")) 
i=o  

the la5t two formulae follow from the fact that  F " ( 1  :r ( I " )  = f ( . r )  Z 9"-" and H( f (.L) @J. 

q"-n) = 2 ( 7 1  - a )  f (x) @ qr'-" for some polynomial f ( . r ) .  Thercforc.. by a n  induction 011 k. 

~lsirrg Theorem 1. we have 

This corripletes the  proof of the thtorcm. 

R~n lark .  The computation shows tha t  the i ~ ~ n c > r  ptotli~c-t t , i k c ~ i  mtc.~(, t  vwliic~s o n  t hc. 1;ittic.o 

span11c.d by Schur functions. For instance, 
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WENG AND YOU 

We guess tthaL this l a t t i c ~  is the lat tice introduced by Garland (;lssoc.iat,cd t c r  thc st;rnti;~rti 

Chevalley basis) ([GI). 

Next we consider another lrvel one niodule L(.I1) With the s a m ~  disruss~im CIS ~ L ~ O V P .  

we have 

Theorem 4. The zrredurible drcorrlposztzo,~~ of L ( A l )  u r d e r  the Vzrasoro nlgc.brn. Vzr. zs 

described as follo~n~s: 

I )  L, = L n ( H ) ,  so that c.ach C[xl, 2 2 . .  . .] Cq" zs znz~nnar~t  under Vzr 

B>lal  

Vir-module, and zs generated by  the highest weight vector w, where k = r3 - n 

( 2 0  - 1)2  
3) L(Al)  = V(2n - 1 )  $3 L(------ . 1) where V(2a - 1) zs the zrreduczble s12-module 

n> 1 
4 

CoroIlary. (Kac) As s12 x Var-module, we have the decomposition 

For level two modules (three of them),  we have the (homogeneous) Le~wwskv-Prin~c 

realization. Here the s ~ t r ~ a t i a r ~  is much more con~pllcated. In f a d .  unlike, t hc Il:vr4 <)nc  

case, where the highest wright vectors for Vir only occur in X ( n )  for ri n pcJr  ti,( 1 sclutire 

(resp. n = k(k  + 1)) for L(Ao)  (resp. for L(A1)). the highest weight vector!, f o ~  \ ' ~ r  occur 
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almost for every 71. Using the realization and the Kac character formula, we are able to 

find the multiplicity of the irreducible Vir modules in t,erms of cert,ain generat,ing funct,ions. 

Apart from that, we obtain many highest weight vectors. However. the slz-trick used in 

this paper fails to generate all the highest weight vectors in this case. In fact, for level 

one, VZr and s12 are the so-called commutzng paw. For inshnce, L ( A ~ ) ~ ' '  is the universal 

enveloping algebra of the Lie algebra linearly spanned by L(-2), L(-3) ,  . . . . However, for 

level two, this is not true. As a matter of fact. L ( A ~ ) " ' ~  is a sc-called W-algebra which 

is larger than the Virasoro algebra. The complete answer for the level t,wo modules may 

naturally come from a sort of 'super-Schur' polynomials, which involves both commuting 

and anti-commuting variables. 
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