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Standard Modules of Level 1 for szz
In Terms of

Virasoro Algebra Representations

Lin WENG and Yuching YOU
Department of Mathematics, National University of Singapore,
10 Kent Ridge Crescent, Singapore 119260
e-mail: matwengl@leonis.nus.sg

matyouy@leonis.nus.sg

It is well-known that for a level [ integrable irreducible highest weight module L(A)
of the affine Lie algebra ¢ = ¢ @ C((t)) + C - ¢ associated to a finite dimensional simple
Lie algebra g over the complex number field, we may introduce a set of Virasoro operators
{Ln}nez in the sense of Sugawara. The construction is as follows: let {72}9m9 be an
orthonormal basis with respect to the normalized Cartan-Killing form of g, (the inner

poduct of the highest long root is two,) then

dim g
L, = oS cuHmyt(n-m):.
2({] +l mEZ a=1
Here g* denotes the the dual Coxeter number of g and : - : denotes the normal ordering.

The linear span of {L,}.cz together with the one-dimensional central extension forms a
Lie algebra, which is usually called the Virasoro algebra (associated to L(A)). Denote this

Lie algebra by Vir. Then its central charge is ’qd%ﬁ

In this paper, we will give the irreducible decomposition of the level one integrable
highest weight modules of sl; associated to slo(C) for the action of the {associated) Vira-

soro algebra. In fact. using a realization of the modules, we will explicitly construct the

Copyright © 1998 by Marce! Dekker, Inc.
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614 WENG AND YOU

highest weight vectors for the Virasoro algebra. As a by-product, we obtain the norm of
these highest weight vectors for the inner product introduced by Garland [G]. We hope
that such results can be used in the study of the hermitian theory of vector bundles of

conformal blocks in conformal field theory [TUY].

From now on, we consider the affine Lie algebra sly associated to the simple Lie algebra

slp with standard basis

01 /(00 /10
E12.:E.:<0 0>.E21-—F'—<1 0>1H-'<0 A1>'

In this case, the dual Coxeter number ¢* is 2. For X € sls, let X (n) denote the element

X ®tn in 822.

Let L(A) be an integrable irreducible highest weight module of sly. If 1 is the level of
L(A), we define

1 . .
Ln(H) = 5 Z CH()H(n—1) .
i€Z
One checks that {L.{H)}nez together with the one-dimensional central extension also

form a Virasoro algebra, denoted by Vir(H), whose central charge is 1. That is. we have

n®—n
12

[Ln<H)a Lm(H)] = (n—~m)Lnm(H) +

bn.—m-

As a matter of fact, we find that to understand the action of Vir, it is convenient to use

Vir(H).

Remark. The operators f,n = L, ~ L,(H) together with the one-dimensional central

2((—1)
1

extension also form a Virasoro algebra (with central charge ), and they are called

the coset Virasoro operators.

For our purpose, we consider the case [ = 1, i.e., the level one modules. From the
representation theory of affine Lie algebras, there are only two irreducible integrable highest
weight sly-modules of level 1, namely L(Ag) and L(A;). More precisely, L(Ag) is the
induced module from the trivial module V4 of sy, while L(A;) is the induced module from
the irreducible module V() of sl with the highest weight A;, where A; denotes «/2,
the fundamental dominant weight for sly. Moreover, we have very precise realizations for
these two level one modules of 322. Indeed, there are several different wavs. In the so-called
bosonic picture, we have the principal realization and the homogeneous realization. In this

paper, we take the homogeneous realization.
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Theorem 0. ([LP], K], [Y]) For k = 0,1, L(A) = Clz1,22... | ® Clg, ¢!, and the Lie
algebra sly action is given by
ay _ 2%f®qa: ifn >0,
Hf @) = { (-n)z_nf®q% fn<0,

o 2af®qc"Y ikaO,
HO)/f®q ):{(2a—1)f®q", ifk=1,

(f@¢%) =fB¢",

Buala) @4 =" H-1) (S exol- E e,
En()(f © %) == A (- 1) exp(§ 0 ~ 27, expl) ) 2 ) 97
J J 7

where Eij(2) =) .z By @277

First, we consider the module L(Ag). In this case, one knows that the energy operator

(—d) = Lo acts as follows:
Lo(f ® %) = (deg(f) + o*)f ® ¢

if f is principally homogenous, where the gradration is given by degz; = i. We also define

the principal degree of f ® ¢ to be deg f + 2.
Lemma 1. With the same notation as above, L, = L,(H).

Proof. Recall that, by definition,

1
L.(H) = ZZ:H(m)H(n—m):.
i€Z
So, for a fixed a, all L,(H) leave each Clz;,z2,...] ® Cg* invariant. Moreover. it is

well-known that, for all m, n € Z,

[Lo(H), Hm)] = —mH{(n + m). (1)

Note that the original Virasoro operator L, by definition is just

Ln::é s (: E(z’)F(j):+:F(z)E(j):+%:H(i)H(j) >

1+3=n

So it is obvious from the realization theorem that L., leaves each copy C[zy, z2,...] = Cq®
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invariant as well. Furthermore,
[Ln, X(m)] = —mX (n + m) (2)

for all m, n € Z, and X € slz [TUY].

Define L, := L, — Lo(H). Then, by (1) and (2), L, commutes with the action of
H(m) for all m € Z. Note that these Heisenberg operators H(m) act irreducibly on each
copy Clzi, z3,...] ® C¢=. Thus, by the Schur lemma, we see that L, are scalars on these
copies Clzi, z2,...] ® Cq®. Using the Virasoro commutator relations, a simple argument
leads that these scalars are all zero, and hence L, = 0. This completes the proof of the

lemma.

From Lemma 1, in order to understand the representations of L{Aq) for Vir, we only
need to study the representations of L{Ag) for Vir(H). (In general, the Vir(H)-module

structure is relatively easy to study.)

To describe the Virasoro representations for L(Ag), we need a result of Kac's character
formula. Let M(h,l) be a highest weight Verma module for the Virasoro algebra with h
being its lowest energy and [ its central charge. Then we know that for | = 1, M(h,l) is
irreducible if and only if h is not m2/4 for some integer m; moreover, M{m?/4,1) has a
unique irreducible quotient L(m?/4,1). Since all the Lo-eigenspaces of L(k,l) are finite

dimensional, we may define the z-dimension of L(h,!) as
dim, L(h, 1) := 2" > dimL(h, );2"

with L(h,!); the Lo-eigenspace with eigenvalue i. With this, we state the Kac’s character

formula as
h +1
; "1 -zt
dim,L{m?/4,1) = ~-———~
Limt/a,1) = S
where
#(z) = [J(1-=")
n=1
From the fact that the Virasoro algebra Vir leaves each Clzy.vs. ...} Cq® invariant,
we only need to understand the irreducible decomposition of Clxy, xa....] 2 Cg® for the

representation of Vir. For this purpose, observe from (2) that [L,, X] = 0 for all vectors
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X € sly. Hence, if v is a highest weight vector of Vir, then X*u is also a highest weight

vector for Vir with all X € sly, k € Zg. Define
L(AO)Vir+ = {v: Lyv =0,¥Yn > 0}.
Then, the Lie algebra sl; also acts on L{Ag)Vir+,

We have natural candidates in L(Ag)Y"+.

Lemma 2. For each integer a, 1 ® ¢® € L{Ag)V"+.

Proof. Lp(1®¢%) is a homogenous polynomial with principal degiee a? —n for alln € Z.
Notice that a? is the lowest principal degree for homogenous elements in Clzy,z3,...] ®
Cq*. Hence, for n positive, we have L,(1 ® ¢*) = 0. This completes the proof of the

lemma.

According to [TUY], the module H = L(Ap) admits a decomposition H = 3 ., H(n),
wherer H(n) := {v € H : Lgv = nv} is a finite dimensional vector subspace. In our case,
‘H(n) is nothing else but the space of homogeneous polynomials of principal degree n (recall
degz; = 4. degq® = o?). Hence the dimension of H(n) is Zgﬁ] p(n — 72) where p(n) is

the partition function. By (1), H(n) is slo-invariant.

Notice that for each nonnegative «, by the realization theorem, a simple calculation
shows that F kills 1@q¢®. Hence, 1®¢® actually is also a highest weight vector for the action
of sly on H(a?). Therefore it generates a finite dimensional irreducible sly-submodule by
integrability, with basis

P2 Fk
124¢% FOQ&q™), —2~(1®q"), RN F(lxq“),
Since H(124%) = 2a(1®¢%), it follows that the above irreducible si3-module has dimension
2a + 1, which we denote by V(2a). By (1) or (2), all the vectors v{ := %(1 2 Y.
k =0,....20 are in L(Ag)V"+. These vectors can be written down precisely. However,
it seems that an explicit expression for %(l ® q%) using the realization theorem directly

is rather difficult to obtain. Instead. we use the so-called fermionic realization of L{Ag)

([DJKM]. [Y]).
Let. {u‘),(ll){ L/),(ll)', u’»f}. ’1,/,',(12>’}T,€Z be two sets of free fermions. subject to the relations

{UL'1<11)1 wﬁr{)}‘* - {L”,ff;)‘,’l;}f'{)*}{, = Ov {'11)7(11)' Q)(rrj,,)*h = bl,,/bnm-
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Here {-,-}; denotes the anti-commutator. Let Cl be the Clifford algebra subject to the

above relations, and 7 the left ideal of Cl generated by u’:ﬁf)

n<0i=12and ¢y n>
0,i=1,2. Weset F :=Cl/I. Let |0) be the element 14/ in F. It is known that F is a mod-
ule of the affine Lie algebra a  of infinite rank, decomposing into a direct sum of irreducible
submodules FU), each of which corresponds to a fundamental dominant weight ({(DJKM]).
The subspace FWU has a basis @fj)wg) . wml/)Z“H ...wff)w;:)‘ . (l w<2 '(2 10)

Jusr T
Withs#t:l,il>A..>iu>0,z‘u+l>...>15>0,]1<A..<jU§0,j1,.+;<...<]t§O.

For our purpose, we consider | = 0. (This is the basic module for a_ ). Note that

* 1= * (2)%
@Dy 0)

Ju+i

1), (1) (1
Yy Wy, Y 1/)1“+,~
—iw ,<1 1)* w(mw(z

Tutr T

/(z)w(z)* (2)'|0>

Jut1’

it follows that

FO = fooﬁ ®]:§?Zk
keZ

where f(k is spanned by the monomials wf: 1/)(1) : w(l)w(?* . wgi)’|0), u—v==ki=12
It is well-known from the theory of soliton equations that each .7-';_1) can be identified with

’),y:é”, ...]. For this, we need to recall the Schur polynomials:

a polynomial algebra C[:cg
for a partition A : Ay > Ap > ... > A, A € Zsg, the Schur polynomials sy(x) associated
to X is defined by sy := det(sy,_,+;(x)), where s;(z) are given by the generating function
Z;’C:O si{z)td = exp[Z;.C:I z;t7). With this, our identification map, the so-called boson-

fermion correspondence,
o FO 2 O 2k,

is given by a(l)(i’s)w)) =1Qu}, where
w0, ifn >0,
10y = { 10, ifn =0,
O w0y, ifn < 0.

More generally, foru —v=mn.i;>...>1, >0,j; <... <3, <0
ot (0wl w0 = (12 0 s

where the partition A is obtained by the following process: starting with the positive inte-

gers iy, iz,...,%,, we add the sequence of consecutive non-positive integers 0, —1. =2 .. ;
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Call this sequence as A. From A, by deleting the non-positive integers ji, ja,..., o, we
get a new sequence called ki, ko, k3, ..., which is in decreasing order. Define a sequence A

by Aji=k; —(n—j)forj=1,23,.... Then it is obvious that A is a partition.

Note that using the boson-fermion correspondence o = ¢! @ (2 we have
a: FO ~ g~ ZC[xi”,zé”,zQ”aé”,uA] & g~
keZ

Here g := —E This is known as the two-component construction of the basic module for a.

Then we can show that the sly-module L(Ag) in the homogeneous picture (the reduction

procedure in the litterature) is

0
L(AO) =~ {f(I(Uvr(Z)WQ) € B<O) : 6{1) + _'% = O,V] > 1}
Oz (9:5]

and thus it is realized as a polynomial algebra

Cler,@2...] @ Clag™)

where z; = sz) - 151) (IYD.

We are not interesting in describing this in detail. But we need the action of the oper-
ator F on 1®¢*. With the above realization, one knows that the action of F corresponds
to the left multiplication by the element - .., 1,!19) 1(11)*. Now we are ready to state our

first theorem.

Theorem 1. With the same notation as above,
Fk

@) = (1) spae-n(2) @ ¢

fork=0,1,...,2a where spu-x () is the Schur function corresponding to the rectanglar

partition k(2a=k)
Proof. For n € Z>g, 1 & ¢" in the fermionic picture is
‘ 2 2) (1)« (1)
L2 g =@y Py )

We have
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k_ 1).,.(2)» D20 g 2« .
k= Z wgl d)g]) ...1[1() () - Z ! 1)/§1) wgz)d]‘gf)

81.82,...5k €2 81 <. <sk

It follows that

F(k) 1®qn . . . .
FrO20) o 5 pop@ uDp@ e@u®, el o)

k!
51<. .. <8
where the summation is taken on sy,...,8; € {n,n—1,...,1,0,-1,...,—n+ 1}
{k} n
Observe that our polynomial _Ii‘__(;{_@q_) depends only on z; = z52) — xSl) (not on
Y = ) 4+ z(z)) therefore it would not change if we specialize mfl) to 0 and xﬁz) to z.

Case 1. k < n. Then we see that the summand becomes

* )= * *
=pByD L gDpOr et @ ® P10 e UL o FL

n

By the explicit boson-fermion correspondence, o(l) (wgi)lﬁg) wsk)d)(l,)l:_l . él)*lO)) is

(1)

a polynomial in z;”" with positive degree, unless 81 = —n+1,s5 = —n+2,...,sx = —n+k.

Moreover, when s; = -n+j,7=1,...,k,

(1)1/)(2)* wSk u}ﬁi)'wﬂ)wﬂ) .w(z)w(jz;l . wél)*,m
:(‘l)kt/}@ w(E)w(z)* w(2114kl0>

Therefore, under the specialization Iil) to 0 and 1752) to z, the only term that survives is
—~(n~k 2 2)* * n ke
(~1)ru; "9 @ (wmwn R (22+k10>> (—1)"sr(2) @ ¢

where A= {n—(n—k),n—1-(n—k)+1,...,—n+k+1+n—1} = k>~

Case 2. 2n > k > n. Observe that we should have at least k — n positive s;’s as otherwise
the number of non-positive s;'s is more than n, they then must repeat. If sy —(k—n) >0,
then a(” (wg 1,11§i) e ’(1) (_1,)1:1 o 'LD(()‘)*[O)) vanishes under the specialization, since it is
a positive degree polynomial. Hence sy = k — n for a non-vanishing term. It follows
that we must have exactly k — n positive s;’s for a non-vanishing term and s, = & —

n,8k-1 =k—n—1,...,8,;1 = 1. Then the non-positive s,’s must exhaust all the integers

—n+1,-n+2,...,~1,0. Hence we only need to take care of the term

<1) 27 (1 2)° no (2 (1)
w*n+l n+1 Uy Vo ¢f )1115) "'wl(cjnwk—nq)'f—?)q)—nlo)'

Again, by calculation, we find that the corresponding polynomial is (~1)"ksy(x) 5w g" "

This compteles the proof of the theorem.
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Therefore, on each Clzy,72,...] ® Cg®, we are able to construct the highest weight
vectors for Vir, namely, the polynomial s _q)e+s(2) 2¢” with 8 > o > — . Each of these
(28)°

q

vectors has energy 32 = . Now by the Kac character formula, cach 3 contributes an

irreducible Vir-module L{®(8%,1) whose z-dimension is (assume f# > 0)
zﬂz(l _ 226+1)
¢(z)
Notice that

sz(l — 7%+ zo°

2 oz 4z

B2l

is exactly the z-dimension of Clz1,z2,...] ® Cq*. Therefore, we have the following

Theorem 2. With the same notation as above, the irreducible decomposition of L{Ag)
under the Virasoro algebra Vir is described as follows:
1) Clzy, z2,... | ® Cq® = Z L2 ,1), where each LI®(2,1) is generated by the high-

B8zlal
est weight vector s(g_qje+a(T) ® ¢*. Hence

L(Ao) = Y Clzy,72,.. |8 Cq® = ZZB: Vir - (85 gjera(2) @ ¢%) .
« aeZ,B>|al

2} L(Ag) = Z V(2n) ® L(n®,1) (as a slyx Vir-module).
n>0
Remark. We can describe the Vir-irreducible module L{*)(n? 1) alternatively. For 0 <

k< \/n, let V™ be the V 2k)-isotypic component for the action of sly in H{n), so that
k

Hin) = Z Vk(n}.

o<k<(vAl
Then, we have, for o] < n,

LM% 1) = > Vi n(CX] 2 ¢?)

k>n?
=Hf®q¢": QA ®q¢") = n{n + 1)¢%},

where 0 = EF + FE + $H* is the Casimir operator of sl,.

From the representation theory of Kac-Moody algebras. we know that there is a unique
contravariant hermitian inner product on L{Ag). up to constant multiple {G}. For our
realization, the inner product is normalized so that [1|> = 1. It is known that this

inner product saitisfies the following important relation: (L,z,y) = («+.L .,,y). For the
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application to the conformal field theory, it is very important to find the norm of the
highest vectors for the Virasoro algebra Vir, since then the inner product for all pairs of

vectors can be computed by only using the commutator relations among L, ’s.

Theorem 3. With the same notation as above, the Garland norm of the highest weight

vector (for Vir) sig_qye+er (2) & ¢* is given by

; ; 3+
HS(ﬁ-a)UHa)(I) @ {IQHZ = HS(GAQ)(‘”“’)(I)HZ = <,3 - Z)

Proof. The contravariant property gives
(H{n)u,v) = (u, H(-n)v).

Since ||1|| = 1. by using the realization theorem, we have for f(z), g(z) € Clz].

(f(z),9(z)) = f(20)g(z)|z=0
where 8 := (0, %82, %63, ...y and
(1)@ g™ = |f (@) -1t e g

In particular, as a formal power series in t and u, we have
(oxpl3 2t exol 3 i} = expl30 2(e0)"] = i = Y4 1))
’ n n (1 - tu)z i=0

which shows for n € Zxo,

lsnll? =n + 1. (%)

Lemma 3. 1 ®¢%)2 = 1.

Proof. If a > 0, we prove by induction. Notice that F{1 ® q) = s1(z) = z;. ||z, ]]* = 2.
Then

(F1®q),F1®q) = (1@ q EF(1®4q)) = (1®q H(1®q) = 2|1 % ql".
Hence |1 ® g[> = 1.

Assume ||1 ® ¢5||2 = 1. Then since F{1 ® g) = sy2x+1 ® ¢". notice that we have an
“involution” on Clz].sx{x) — sy {x) which is an isometry, where A" is the conjugate

partition of A, it follows that
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(1 )2 = sy |2 12 gF2 = 26 + 2
But . o
[FL®¢"Hi® =(1x g™ EF(1eg™h)
:(1w§'<qk+1.H(1®qk“)) (/xfl Hl k+1”2
Hence, |1 & ¢5*1% = 1.

For o < 0, we use the operator E instead of F' to complete the proof of our lemma.

To complete the proof of our theorem, we recall that for @ > 0, 1 ® ¢, F(1 @
q®),. .., F?(1 ® ¢*) form a basis of the sly-module V{2a). We have |1 ® ¢*|]*> = 1

and

HLs g = (FF (1@ "), BFF 1@ ¢).
Using

k-1
— ZFzHFkAz~I
i=0

and an inductive argument leads

F* 1®q° N
H(—k.—l!!2 W(Fk H1®¢%), EF*(1 % ¢%)
1 k-1
= (F T @), ) FHF T L g™)
) i=0

k-1
1
:k_z (FFYa@¢™),2(n - k+ 1+ 1)F 12 ¢%)
=0
:%(2nk~k2+k)(F’c 1% g®), F= 11 % ™)),

the last two formulae follow from the fact that F*(1 & ¢") = f(z) ©¢""® and H{f(x) ®

¢" %) = 2(n —a)f(z) ® ¢" ¢ for some polynomial f(xr). Thereforc. by an induction on k,

using Theorem 1, we have

. F}C 156 x R 9
USA-ZQ—A(I)HZ = “(—]ﬁéi—l"“ = < (1>-

This completes the proof of the theorem.

Remark. The computation shows that the inner product takes integer values on the lattice

spanned by Schur functions. For instance,
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1, fn=02
(.s,n.sn):{Q ifn=1,

(); iftn > 3;

1Y

fsnall® =315 |snall* =60 — 6.

We guess that this lattice is the lattice introduced by Garland (associated to the standard

Chevalley basis) ([G]).

Next we consider another level one module L{A;). With the same discussion as above,

we have

Theorem 4. The irreducible decomposition of L(A}) under the Virasoro algebra Vir 1s

described as follows:

1) Ln = Lo(H), so that cach Clzy,za,.. ] @ Cqg® is invariant under Vir.

1, (28 - 1)? _
2) Clz1,22,...]®Cq™ = Z L(")(LLI——)-,I), each L(")(LZ—BTL—L?,I) is an irreducible
Azlal

k 8
Vir-module, and is generated by the highest weight vector Ei%jiq_l’ where k = 3~ o

2a ~ 1)?
(——6—1—4——)~, 1) where V(20 — 1) s the irreducible sly-module

3) L(A) = Y V(2a - 1)@ L

a2l

k a
of dimension 2q, linear spanned by {f—(‘gil} and
F*(194¢%)

Ei = (~l)(““)_ksk(zn-k.,l)(m)®q°‘k

Jork=0,1,...,2a~ 1.
4) The Garland norm of the highest weight vector (for Vir) si5_qys+e)(x) ® ¢7 15 given by

f$(5-ayam (7) @ ¢\ = llso-ayose (@) = (g J—r Z) .

Here o + (3 1s an odd integer.

Corollary. (Kac) As slox Vir-module, we have the decomposition

L{Ao) ® L(A1) = Y V(n) & L(n*/4,1).

n>0

For level two modules (three of them), we have the (homogeneous) Lepowsky-Prime
realization. Here the situation is much more complicated, In fact, unlike the level one
case, where the highest weight vectors for Vir only occur in H(n) for n a perlect square

(vesp. n = k(k + 1)) for L(Ap) (resp. for L(A1)}, the highest weight vectors for Vir occur
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almost for every n. Using the realization and the Kac character formula, we are able to
find the multiplicity of the irreducible Vir modules in terms of certain generating functions.
Apart from that, we obtain many highest weight vectors. However, the sly-trick used in
this paper fails to generate all the highest weight vectors in this case. In fact, for level
one, Vir and sl, are the so-called commuting pair. For instance, L{Ay)® is the universal
enveloping algebra of the Lie algebra linearly spanned by L(—2), L(-3),.... However, for
level two, this is not true. As a matter of fact, L(A¢)*" is a so-called W-algebra which
is larger than the Virasoro algebra. The complete answer for the level two modules may
naturally come from a sort of ‘super-Schur’ polynomials, which involves both commuting

and anti-commuting variables.

REFERENCES

[DIKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Tranformation groups for soliton
equations, in Proceeding of RIMS symposium (ed. Jimbo, Miwa), 39-120, World Sci.,
1983.

[G] Garland, H: The arithmetic theory of loop algebras, J. of Algebra 53 (1978) 480-551.

K] Kac, V.: Infinite dimensional Lie algebra, 3rd edition, Cambridge University Press,
1990

[LP] Lepowsky, J., Prime, M.: Structure of the standard modules for the affine Lie algebra
Agl) in the homogeneous picture, in Verter Operator in Math. and Phy., Publication

of RIMS, Vol. 3, Springer-Verlag, 1984.

[LP2] Lepowsky, J., Prime, M.: Standard modules for type one affine Lie algebras, Lecture
Notes in Math. Vol. 1052, pp. 194-251. Berlin-Heideberg-New York, Springer 1984

{TUY]} Tsuchia,A., Ueno,K., Yamada, Y.: On conformal field theory on universal family of
stable curves with gauge symmetries, Adv. Stud. Pure Math. 19 (1989), 495-595.

Y] You, Y.: Soliton equations and infinite dimensional Lie algebras, MIT Thesis, 1989

Received: February 1997

Revised: April 1997




