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L2-METRICS, PROJECTIVE FLATNESS AND FAMILIES
OF POLARIZED ABELIAN VARIETIES

WING-KEUNG TO AND LIN WENG

Abstract. We compute the curvature of the L2-metric on the direct image
of a family of Hermitian holomorphic vector bundles over a family of compact
Kähler manifolds. As an application, we show that the L2-metric on the direct
image of a family of ample line bundles over a family of abelian varieties and
equipped with a family of canonical Hermitian metrics is always projectively
flat. When the parameter space is a compact Kähler manifold, this leads to
the poly-stability of the direct image with respect to any Kähler form on the
parameter space.

§0. Introduction

It is well known that for a family π : A → S of principally polarized abelian
varieties, the theta bundles on the fibers of π form a line bundle Θ over A. From
the fact that the theta characters of level n, n ∈ Z+, satisfy a certain heat equation,
one knows that the direct image vector bundles π∗Θ⊗n admit projectively flat
connections such that the theta characters are parallel sections. Moreover, from
the fact that the theta characters form an orthonormal basis with respect to a
certain natural L2-pairing, one knows that the above projectively flat connections
are indeed Hermitian connections (cf. [APW, §5]).

As a generalization of the above, one considers in conformal field theory a family
of Riemann surfaces and an associated family π :M→ S of moduli spaces of stable
vector bundles over the Riemann surfaces. As before, the so-called generalized theta
bundles over the fibers of π form a line bundle Θ over M. An important result
in conformal field theory in [TUY], [H] and [APW] was to show that for n ∈ Z+,
π∗Θ⊗n admits a projectively flat connection, whose construction depends on the
fact that certain generalized heat equations, or KZ equations, hold for sections of
generalized theta bundles.

In another direction, instead of just considering the theta bundles, Welters [W],
following [M1], showed that for a family of polarized abelian varieties π : A → S
and any relatively ample line bundle L over A, π∗L always admits a projectively
flat connection. This was established from hypercohomological considerations in
[W], which led to certain generalized heat equations for sections of L (cf. also [H]).

However the projectively flat connections constructed in [H] and [W] are not
Hermitian connections in general. From the viewpoint of representation theory, a
vector bundle of rank r over S admits a projectively flat connection (resp. projec-
tively flat Hermitian connection) if and only if E arises from a representation of
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π1(S) into PGL(r,C) (resp. PU(r)). Thus a natural and important question that
arises is whether the direct image bundles in the above cases admit projectively flat
Hermitian connections.

In this article, we study the problem from a different approach. We consider
Hermitian metrics on direct image bundles arising from certain L2-pairings on the
sections of the original vector bundles. Our first main result is to give a computation
of the curvature tensor of such L2-metrics for a family of Hermitian holomorphic
vector bundles over a family of compact Kähler manifolds (cf. Theorem 1 in §2).
Our approach has been inspired by that of Schumacher [Sch] in his computation
of the curvature of the Weil-Petersson metric, which was defined similarly in terms
of certain L2-pairing. In particular, the technique of ‘horizontal’ lifting of vector
fields in [Sch] also plays an important part in our calculations. As in the case of
the Weil-Petersson metric, we also give an interpretation of our curvature formula
in terms of Kodaira-Spencer theory (cf. Proposition 2.3.2).

An interesting application of Theorem 1 is Welters’ case of a relatively ample line
bundle L over a family of abelian varieties π : A → S. Our second main result is to
show that the Hermitian connection of the L2-metric on π∗L associated to a family
of ‘canonical’ Hermitian metrics on L is indeed projectively flat (cf. Theorem 3 in
§2). Thus our result generalizes the result mentioned above for theta bundles over
families of principally polarized abelian varieties, and it improves Welters’ result
[W] in terms of representation of π1(S).

We sketch the proof of Theorem 3 briefly as follows. First, we reduce Theorem 3
to the case when the smooth (1, 1)-form on the total space of the family of abelian
varieties (which is flat on each fiber) is given as the first Chern form of a smooth
Hermitian metric on the relatively ample line bundle over the total space, so that
Corollary 2 applies. Then an important step in simplifying the curvature tensor of
the L2 metric is to show that the values of the above-mentioned (1,1)-form evaluated
at the horizontal lifting of tangent vectors from the base space are constant along
each fiber. The latter is achieved by comparing the (1,1)-form with another (1,1)-
form on the total space with the same values along the tangent spaces of the fibers
but with zero eigenspaces along the tangent spaces of the leaves of certain natural
smooth foliation on the total space. We remark that our original approach in
proving Theorem 3 consists of studying the classifying map from the families of
ample line bundles over abelian varieties to the associated universal Poincaré line
bundles over families of abelian varieties parametrized by Siegel modular varieties.
The present simpler and more direct approach is suggested by the referee.

This paper is organized as follows. In §1, we introduce some notations and list
our main results. In §2, we compute the curvature of the L2-metric. In §3, we treat
the case of a family of Hermitian holomorphic line bundles whose first Chern forms
give the Kähler metrics on the manifolds. In §4, we make some useful observations
on L2-metrics associated to families of polarized abelian varieties. The results in §4
are needed in §5, where we give the proof of Theorem 3 in full generality. Finally in
the Appendix (§6), we also give a description of the canonical Hermitian metrics in
the ‘local universal’ case of families of Poincaré line bundles over abelian varieties
parametrized by Siegel modular varieties.

The authors express their thanks to Professors A. Fujiki and Ngaiming Mok
for their discussions and enlightenment. The authors also thank the referee for his
clarifications and suggestions, which led to substantial improvements of this article.



L2-METRICS AND PROJECTIVE FLATNESS 2687

§1. Notation and statement of results

(1.1). Let π : X → S be a surjective holomorphic map between complex manifolds
X and S such that Xs := π−1(s) is an n-dimensional compact complex manifold for
each s ∈ S. Moreover, suppose that X admits a smooth (1,1)-form ωX ∈ A1,1(X )
such that the restriction ωs := ωX |Xs is a Kähler form on Xs for each s ∈ S. Then
such (π : X → S, ωX ) is called a family of compact Kähler manifolds parametrized
by S. With some slight abuse of notation, we will simply call ωX ∈ A1,1(X ) a family
of Kähler metrics for the family π : X → S. Observe that two different (1, 1)-forms
on X may lead to the same restrictions {ωs}s∈S . Let E be a holomorphic vector
bundle over X , and let h be a smooth Hermitian metric on E. Then for each s ∈ S,
the restriction (Es → Xs, hs) forms a Hermitian holomorphic vector bundle over
Xs, where Es = E|Xs and hs = h|Xs . Thus (E, h) can be understood as a family
of Hermitian holomorphic vector bundles over the family of complex manifolds
π : X → S. By a result of Grauert [G], the direct image sheaf π∗E is coherent
over S, and is thus locally free on the complement of a proper subvariety Z in S.
Moreover, changing Z if necessary, one may assume that π∗E is given by

(π∗E)s = H0(Xs, Es) for s ∈ S\Z.

For simplicity, we will also denote by π∗E its underlying holomorphic vector bundle
over S\Z. It is easy to see that h and ωX induce a smooth Hermitian metric, known
as the L2-metric, on π∗E over S\Z given by

(1.1.1) Hh,ωX (t, t′) :=
∫
Xs

〈t, t′〉ω
n
s

n!
for t, t′ ∈ H0(Xs, Es), s ∈ S\Z,

where 〈t, t′〉 denotes hs(t, t′). We will also denote by 〈 , 〉 the inner product on
Es-valued differential forms induced by hs and ωs.

Consider a family of compact Kähler manifolds (π : X → S, ωX ). The orthogonal
complement of Ker(π∗ : TX → TS) in TX with respect to ωX defines a smooth
‘horizontal’ vector subbundle THX ⊂ TX . For s ∈ S and a holomorphic tangent
vector u ∈ TsS, there exists a unique lifting of u to a smooth vector field vu ∈
A0(Xs, TX|Xs) such that π∗vu(z) = u and vu(z) ∈ THX for all z ∈ Xs. Such vu
is called the horizontal lifting of u (with respect to ωX ). Moreover one can easily
check that

(1.1.2) Au := ∂̄vu ∈ A0,1(Xs, TXs)

(cf. (2.1.2)), and its class [Au] ∈ H0,1(Xs, TXs) is the Kodaira-Spencer class of u
(cf. e.g. [FS], [Sch] and (2.3)).

We will denote by s = (si)1≤i≤m, where m = dimCS, the local holomorphic coor-
dinates for S, and we will denote z = (zα)1≤α≤n the local holomorphic coordinates
for the fibers Xs. Thus (z, s) = (z1, . . . , zn, s1, . . . , sm) gives local holomorphic
coordinates for Xs. For s ∈ S, a coordinate tangent vector ∂/∂si ∈ TsS, we simply
denote its horizontal lifting by

(1.1.3) vi := v∂/∂si and thus A∂/∂si = ∂̄vi.

Denote the components of A∂/∂si by

(1.1.4) A∂/∂si =: Aαiβ̄
∂

∂zα
⊗ dz̄β .
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Here we adopt the Einstein summation notation. Also for a Hermitian holomorphic
vector bundle (E , h) over (X , ωX ), we denote the curvature tensor of (E , h) by Ω ∈
A1,1(X ,End(E)). Also denote the smooth family of Kähler metrics associated to ωX
by g := {gs}s∈S. For s ∈ S, we also denote byGEs the Green’s operator on Es-valued
differential forms on Xs associated to the ∂̄-Laplacian � := ∂̄∂̄∗+ ∂̄∗∂̄ with respect
to hs and gs. Thus the Laplacian for functions is given by � = −gβ̄α ∂2/∂zα∂z̄β.
We will also adopt the semi-colon notation to denote covariant derivatives, so that
t;α := ∇∂/∂zα t for t ∈ H0(Xs, Es), etc.

With the above notations, we state our first main result in this paper as follows:

Theorem 1. Let (E → X , h) be a family of Hermitian holomorphic vector bundles
of rank r over a family of n-dimensional compact Kähler manifolds (π : X → S, ωX )
and parametrized by an m-dimensional compact complex manifold S. Suppose that
ωX is d-closed on X . Let Z ⊂ S be a proper analytic subvariety such that π∗E is
locally free over S\Z with (π∗E)s = H0(Xs, Es) for s ∈ S\Z. Then in terms of
local holomorphic coordinates s = (si)1≤i≤m of S, z = (zα)1≤α≤n of Xs and a local
holomorphic trivialization {ta}1≤a≤p of π∗E, where p := rank(π∗E), the curvature
tensor Θ ∈ A1,1(S\Z,End(π∗E)) of the associated L2-metric Hh,ωX on π∗E is given
by

Θab̄ij̄(s) =−
∫
Xs

〈GEs(Ωviᾱ(ta)dz̄α −Aγ
iβ̄
ta;γdz̄

β),Ωvj ᾱ(tb)dz̄α −Aγjβ̄tb;γdz̄
β〉ω

n
s

n!

+
∫
Xs

〈Ωviv̄j (ta), tb〉
ωns
n!

+
∫
Xs

�(gviv̄j )〈ta, tb〉
ωns
n!

(1.1.5)

for s ∈ S\Z. Here Θab̄ij̄ := Θ(ta, tb; ∂/∂si, ∂/∂sj) with ta, tb ∈ H0(Xs, Es).

Remark 1.1.1. (i) When h (and thus also Hh,ωX ) is multiplied by a smooth function
λ(s) on S, the second term of Θ in (1.1.5) is modified by −∂∂̄ logλ ·Hh,ωX (ta, tb),
while the first and the third terms remain unchanged.

(ii) We refer the reader to (2.3) for an interpretation of the first term of Θ in
(1.1.5) in terms of Kodaira-Spencer representatives.

(iii) Theorem 1 in the special case of a family of Hermitian-Einstein vector bun-
dles over a fixed compact Kähler manifold was treated earlier by the authors in
[TW], where the curvature of the L2 metric was further expressed in terms of har-
monic representatives of the Kodaira-Spencer class of the tangent vectors of the
base manifold.

(iv) For a family of compact Kähler-Einstein manifolds with constant non-zero
scalar curvature, one can always glue the Kähler forms (associated to the Kähler-
Einstein metrics) on the fibers appropriately to get a d-closed (1,1)-form on the
total space (cf. e.g. [Sch]). In particular, Theorem 1 applies to such families of
Kähler manifolds.

(1.2). Next we consider a family of Hermitian holomorphic line bundles (L → X , h)
over a family of n-dimensional compact Kähler manifolds (π : X → S, ωX ) such
that for some k ∈ R,

(1.2.1) c1(L, h) =
k

2π
ωX on X .
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Thus in particular, one has, for all s ∈ S,

(1.2.2) c1(Ls, hs) =
k

2π
ωs on Xs.

Then Theorem 1 gives rise to

Corollary 2. Let (π : X → S, ωX ) be as in Theorem 1 and let (L → X , h) be
a family of Hermitian holomorphic line bundles satisfying (1.2.1) for some k ∈
R. Let Z ⊂ S be a proper analytic subvariety such that π∗L is locally free over
S\Z with (π∗L)s = H0(Xs, Ls) for s ∈ S\Z. Then the curvature tensor Θ ∈
A1,1(S\Z,End(π∗L)) of the associated L2-metric Hh,ωX on π∗L is given by

Θab̄ij̄(s) =−
∫
Xs

〈GLs(A
γ

iβ̄
ta;γdz̄

β), Aγ
jβ̄
tb;γdz̄

β〉ω
n
s

n!

+
∫
Xs

(
kgviv̄j +�(gviv̄j )

)
〈ta, tb〉

ωns
n!

(1.2.3)

for s ∈ S\Z and ta, tb ∈ H0(Xs, Ls).

(1.3). To facilitate ensuing discussion, we recall that a connection D on a smooth
complex vector bundle F of rank r over a manifold M is said to be projectively
flat if there exists a complex 2-form α ∈ A2(M) such that the curvature form
R = D2 ∈ A2(M,End(F )) satisfies

(1.3.1) R = α · IdF ,

where IdF is the identity endomorphism on F . It is well known that F ad-
mits a projectively flat connection if and only if F arises from a representation
Φ : π1(M) → PGL(r,C). Here π1(M) denotes the fundamental group of M ,
PGL(r,C) := GL(r,C)/C∗ · Ir denotes the projective general linear group, and
Ir is the r × r identity matrix. Moreover, F admits a projectively flat Hermitian
connection if and only if F arises from a representation Φ : π1(M)→ PU(r), where
PU(r) := U(r)/U(1) · Ir denotes the projective unitary group (cf. e.g. [Ko2, pp. 7
and 14] for the above background materials).

Let A0 be an abelian variety, and let L0 be a holomorphic line bundle over A0.

Definition 1.3.1. A Hermitian metric h0 on L0 is said to be canonical if c1(L0, h0)
is invariant under translations of A0.

Remark 1.3.2. It is well known that a canonical Hermitian metric always exists on
L0 and it is unique up to a positive multiplicative constant. In fact, this follows from
the standard fact that a de Rham cohomology class of a compact complex torus is
represented uniquely by a translation-invariant form (see e.g. [GH, p. 302]).

Now we consider a (holomorphic) family of abelian varieties π : A → S parame-
trized by a complex manifold S, i.e., each fiber As := π−1(s) is an n-dimensional
abelian variety. Let L → A be a (holomorphic) family of ample line bundles over
the family π : A → S, i.e., L is a holomorphic line bundle over the total space A
such that Ls := L

∣∣
As

is an ample line bundle over As for each s ∈ S. (Such an L
is usually called a relatively ample line bundle.) Then it follows from the Kodaira
vanishing theorem that Hi(As, Ls) = 0 for each i > 0 and s ∈ S, and thus by
a result of Grauert [G], π∗L is locally free over S with (π∗L)s = H0(As, Ls) for
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each s ∈ S. Moreover, one can always construct a Hermitian metric ρ on L such
that ρs := ρ|Ls is a canonical Hermitian metric on Ls for all s ∈ S (this follows,
for example, from the argument in [Siu2, p. 17] or (6.4) and using a partition of
unity on S). With slight abuse of notation, such ρ will be called a smooth family
of canonical Hermitian metrics on the family of line bundles L → A. Also, it is
obvious that such ρ is unique up to a smooth positive function on S. A (smooth)
family of flat Kähler metrics ωA on the family π : A → S is simply a smooth
(1, 1)-form on the total space A such that ωs := ωA

∣∣
As

is a flat Kähler metric on
As for each s ∈ S. Our second main result is the following

Theorem 3. Let π : A → S be a family of abelian varieties parametrized by a
complex manifold S, and let L → A be a family of ample line bundles parametrized
by S.

(i) Then for any smooth family ρ of canonical Hermitian metrics on the family
L → A and any smooth family of flat Kähler metrics ωA on the family π : A → S,
the Hermitian connection of the associated L2-metric Hρ,ωA on π∗L is projectively
flat.

(ii) In particular, if the parameter space S is a compact Kähler manifold, then
π∗L is poly-stable with respect to any Kähler form on S.

Remark 1.3.3. (i) Welters [W] proved earlier that under the hypothesis of Theorem
3, π∗L admits a projectively flat connection, and hence π∗L arises from a represen-
tation of π1(S) into PGL(r,C), where r := rank(π∗L). However, the projectively
flat connection in [W] is not a Hermitian connection in general (cf. also [H]), and
thus Welters’ result does not lead to statement (i) or (ii) of Theorem 3. Theorem
3, in particular, implies that π∗L arises from a representation of π1(S) into PU(r).

(ii) Theorem 3 in the special case of the family of theta line bundles (or their
powers) over a family of principally polarized abelian varieties is well known and
follows from the heat equation and orthonormality of theta characters (cf. e.g.
[APW, §5]).

(iii) We remark that, unlike Theorem 1, the (1,1)-form ωA in Theorem 3(i) need
not be d-closed on A.

§2. Curvature of the L2
-metric

We are going to prove Theorem 1 in this section, and we will follow the notations
in (1.1) throughout §2.

(2.1). Let (π : X → S, ωX ) be a family of compact Kähler manifolds parametrized
by a complex manifold S, and write Xs := π−1(s) and ωs := ωX

∣∣
Xs

for each
s ∈ S. Let m = dimCS and n = dimCXs. We will use s = (si)1≤i≤m to denote
local holomorphic coordinates of S, which will be indexed by the letters i, j, k,
etc. Also we will use z = (zα)1≤α≤n to denote local holomorphic coordinates
of the fibers Xs, which will be indexed by the Greek letters α, β, γ, etc. Thus
(z, s) = (zα, si)1≤α≤n,1≤i≤m gives local holomorphic coordinates for X and we will
use capital letters I, J,K to index coordinates on X so that I can be i or α, etc. Also
we write ωX =

√
−1gIJ̄(z, s)dwI ∧ dw̄J , where w can be z or s. For a coordinate

tangent vector ∂/∂si ∈ TsS, s ∈ S, its horizontal lifting vi (with respect to ωX )
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defined in (1.1) is given by

(2.1.1) vi =
∂

∂si
− gβ̄αgiβ̄

∂

∂zα
at (z, s) ∈ X

(see [Sch, §1, equation (1.2)]). Here gβ̄α denotes the components of the inverse of
gαβ̄ (and not that of gIJ̄ , which may not be invertible). Then it is easy to see that
the associated tensor A∂/∂si defined in (1.1.3) is given locally by

(2.1.2) Aαiβ̄ = − ∂

∂z̄β
(gγ̄αgiγ̄).

We have the following simple lemma:

Lemma 2.1.1. (i) [vi, ∂
∂z̄α ] = −Aβiᾱ ∂

∂zβ .
(ii) For a smooth (n, n)-form η on X ,

∂

∂si

∫
Xs

η =
∫
Xs

Lvi(η)

and
∂

∂s̄i

∫
Xs

η =
∫
Xs

Lv̄i(η).

Moreover, if ωX is d-closed, then
(iii) [vi, v̄j ] = gγ̄α ∂

∂z̄γ (gviv̄j )
∂
∂zα − gβ̄γ

∂
∂zγ (gviv̄j )

∂
∂z̄β , and

(iv) Lvi(ωns ) = 0.
Here [ , ] denotes the Lie bracket of two vector fields, and Lvi denotes the Lie

derivative in the direction of vi, etc.

Proof. (i) follows immediately from (2.1.1) and (2.1.2). (ii), (iii) and (iv) can be
found in [Sch, Lemma 2.1], [Sch, Lemma 2.6] and [Sch, Lemma 2.2], respectively.
We remark that among the conditions assumed in [Sch], the proofs of [Sch, Lemma
2.6] and [Sch, Lemma 2.2] work under the mere condition that ωX is d-closed. �

(2.2). Now we give the proof of Theorem 1 as follows:

Proof of Theorem 1. Let (E → X , h) be a family of Hermitian holomorphic vector
bundles of rank r over (π : X → S, ωX ) as in Theorem 1, where dimCS = m and
dimCXs = n. Here and thereafter, Xs and ωs are as in (2.1). For simplicity, we
simply write H := Hh,ωX . Choose local holomorphic coordinates s = (s1, . . . , sm)
for S so that π∗E is locally free at s = 0 and of rank p. Choose a holomorphic triv-
ialization {t1, t2, . . . , tp} of π∗E over a coordinate neighborhood U of S containing
0 such that the L2-metric H on π∗E satisfies

(2.2.1)
∂Hab̄

∂si

∣∣
s=0

= 0 for 1 ≤ a, b ≤ p, 1 ≤ i ≤ m.

Here Hab̄ := H(ta, tb). In the sequel, covariant derivatives will be with respect to
the Hermitian connection on (E , h). For 1 ≤ i ≤ m, recall from (2.1) the horizontal
lifting vi of ∂/∂si with respect to ωX . With respect to the above trivialization, the
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curvature tensor Θ of (π∗E , H) at s = 0 is given by

Θab̄ij̄(0) =− ∂2Hab̄

∂si∂s̄j

∣∣
s=0

=− ∂2

∂si∂s̄j

∫
Xs

〈ta, tb〉
ωns
n!

∣∣
s=0

=− ∂

∂s̄j

∫
Xs

Lvi
(
〈ta, tb〉

ωns
n!
)∣∣
s=0

(by Lemma 2.1.1(ii))

=− ∂

∂s̄j

∫
Xs

Lvi
(
〈ta, tb〉

)ωns
n!

∣∣
s=0

(by Lemma 2.1.1(iv))

=− ∂

∂s̄j

∫
Xs

〈∇vita, tb〉
ωns
n!

∣∣
s=0

(by holomorphicity of tb)

=−
∫
Xs

Lv̄j
(
〈∇vita, tb〉

)ωns
n!

∣∣
s=0

(by Lemma 2.1.1(ii) and (iv) again)

=−
∫
Xs

〈∇v̄j∇vita, tb〉
ωns
n!

∣∣
s=0
−
∫
Xs

〈∇vi ta,∇vj tb〉
ωns
n!

∣∣
s=0

= : I1 + I2.

(2.2.2)

First we deal with the integral I2. Denote by HE0 the harmonic projection operator
on E0 with respect to the ∂̄-Laplacian. The Hodge decomposition theorem gives,
at s = 0,

(2.2.3) ∇vita = HE0(∇vita) +�GE0(∇vita),

where GE0 is as in (1.1). As in (2.2.2), it follows from (2.2.1) that we have

(2.2.4)
∫
X0

〈∇vita, tb〉
ωn0
n!

= 0 for 1 ≤ a, b ≤ p, 1 ≤ i ≤ m.

Since {tb}1≤b≤p is a basis of H0(X0, E0), and HE0(∇vita) ∈ H0(X0, E0), it follows
from (2.2.4) that

(2.2.5) HE0(∇vi ta) = 0 for 1 ≤ a ≤ p, 1 ≤ i ≤ m.

Combining (2.2.3) and (2.2.5), we have at s = 0,∫
X0

〈∇vita,∇vj tb〉
ωn0
n!

=
∫
X0

〈�GE0(∇vita),∇vj tb〉
ωn0
n!

=
∫
X0

〈GE0 ∂̄(∇vita), ∂̄(∇vj tb)〉
ωn0
n!

(since [GE0 , ∂̄] = 0, and ∂̄∗(∇vita) = 0 trivially).

(2.2.6)

Taking ∂̄ along the X0 direction, we have, from the Ricci identity,

∂̄(∇vita) =(∇ᾱ∇vita)dz̄α

=
(
∇vi∇ᾱta −∇[vi,∂/∂z̄α]ta − Ωviᾱ(ta)

)
dz̄α

=
(
0 +Aγiᾱ∇γta − Ωviᾱ(ta)

)
dz̄α

(by holomorphicity of ta and Lemma 2.1.1(i))

=− Ωviᾱ(ta)dz̄α +Aγ
iβ̄
ta;γdz̄

β

(2.2.7)
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using the semicolon notation. Combining (2.2.6) and (2.2.7), we have
(2.2.8)

I2 = −
∫
X0

〈GE0(−Ωviᾱ(ta)dz̄α +Aγ
iβ̄
ta;γdz̄

β),−Ωvj ᾱ(tb)dz̄α +Aγ
jβ̄
tb;γdz̄

β〉ω
n
0

n!
.

Next we consider the integral I1. From the Ricci identity, we have
∇v̄j∇vita =∇vi∇v̄j ta −∇[vi,v̄j ]ta − Ωviv̄j (ta)

=∇vi∇v̄j ta − gγ̄α
∂

∂z̄γ
(gviv̄j )∇αta + gβ̄γ

∂

∂zγ
(gviv̄j )∇β̄ta − Ωviv̄j (ta)

(by Lemma 2.1.1(iii))

=− gγ̄α ∂

∂z̄γ
(gviv̄j )∇αta − Ωviv̄j (ta)

(by holomorphicity of ta).

(2.2.9)

By (2.2.2) and (2.2.9), we have

I1 =
∫
X0

〈gγ̄α ∂

∂z̄γ
(gviv̄j )∇αta + Ωviv̄j (ta), tb〉

ωn0
n!

=
∫
X0

gγ̄α
∂

∂z̄γ
(gviv̄j )

∂

∂z̄α
〈ta, tb〉

ωn0
n!

+
∫
X0

〈Ωviv̄j (ta), tb〉
ωn0
n!

(by holomorphicity of tb)

=
∫
X0

〈∂̄(gviv̄j ), ∂̄(〈ta, tb〉)〉
ωn0
n!

+
∫
X0

〈Ωviv̄j (ta), tb〉
ωn0
n!

=
∫
X0

�(gviv̄j ) · 〈ta, tb〉
ωn0
n!

+
∫
X0

〈Ωviv̄j (ta), tb〉
ωn0
n!
,

(2.2.10)

where the last line follows from the definition � = ∂̄∂̄∗ + ∂̄∗∂̄ and the adjoint
property of ∂̄∗. Then (1.1.5) follows immediately from (2.2.2), (2.2.8) and (2.2.10),
and we have finished the proof of Theorem 1. �

(2.3). Notation as in (1.1). In this subsection, we are going to interpret the terms
Ωviβ̄dz̄

β ∈ A0,1(Xs,End(Es)) and Aα
iβ̄

∂
∂zα ⊗ dz̄β ∈ A0,1(Xs, Ts) which appear in

(1.1.5) in Theorem 1 in terms of Kodaira-Spencer theory.
Let (p : E → X , h) and (π : X → S, ωX ) be as in Theorem 1. Here p and ps

denote the projection maps. For each rank-r holomorphic vector bundle Es := E
∣∣
Xs

,
where Xs = p−1(s), we denote by Ps the associated principal GL(r,C)-bundle over
Xs. By abuse of notation, we also let ps : Ps → Xs denote the projection map.
The structure group GL(r,C) acts naturally on the tangent bundle TPs of Ps,
and we denote the quotient by Qs := TPs/GL(r,C). Then Qs is a holomorphic
bundle over Xs (with holomorphic structure induced from TPs) such that OXs(Qs)
is isomorphic to the sheaf of germs of GL(r,C)-invariant tangent vector fields on
Ps. Denote the associated quotient map by τs : TPs → Qs. It is easy to see
that the differential ps∗ : TPs → TXs factors through τs to a bundle epimorphism
qs : Qs → TXs, i.e., one has ps∗ = qs ◦ τs. By [A, Theorem 1 and Proposition 9],
there exists a short exact sequence of holomorphic vector bundles

(2.3.1) 0→ End(Es) i→ Qs
qs→ TXs → 0

over Xs, which is usually known as the Atiyah sequence associated to Es. Similarly,
for the vector bundle E over X , we have the associated principal GL(r,C)-bundle
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p : P → X , the quotient Q := TP/GL(r,C), the quotient map τ : TP → Q and
q : Q→ TX with p∗ = q ◦ τ , and the Atiyah sequence

(2.3.2) 0→ End(E) i→ Q
q→ TX → 0

over X . Of course, the restriction of (2.3.2) to Xs simply yields (2.3.1) for each s ∈
S. The Hermitian connection of (E , h) induces an associated principal connection
on P which is a gl(r,C)-valued (1,0)-form θ̃ on P invariant under GL(r,C). By
identifying the fibers of End(E) with gl(r,C), θ̃ descends to a homomorphism θ :
Q → End(E). Moreover θ ◦ i = IdE , which leads to a smooth splitting of (2.3.1)
(see [A] for the above discussion).

Also consider the following short exact sequence of vector bundles

(2.3.3) 0→ TX|S → TX → π∗TS → 0

over X . Here TX|S denotes the relative tangent bundle over X associated to the
family π : X → S. For each s ∈ S, we have the Kodaira-Spencer map ρs :
TsS → H1(Xs, TXs) associated to (2.3.3). Here we do not distinguish between a
holomorphic vector bundle and its sheaf of germs of holomorphic sections. From
(2.3.2) and (2.3.3), we may regard π∗TS as a quotient bundle of Q, and this leads
to the following short exact sequence of vector bundles

(2.3.4) 0→ QX|S → Q→ π∗TS → 0

over X , where QX|S ⊂ Q is the associated relative vector bundle. For each s ∈ S,
we similarly have the Kodaira-Spencer map ρ̂s : TsS → H1(Xs, Qs) associated to
(2.3.4) (cf. [FS, §4] for the case of line bundles). We also let Z1(Xs, TXs) (resp.
Z1(Xs, Qs)) denote the space of ∂̄−closed TXs (resp. Qs)-valued (0,1)-forms on
Xs. Denote by s = (si)1≤i≤m local holomorphic coordinates for S. We recall from
(1.1) the horizontal lifting vi of ∂/∂si with respect to ωX , and let A∂/∂si = ∂̄vi
be as in (1.1.3). Obviously, A∂/∂si ∈ Z1(Xs, TXs). It is well known that A∂/∂si
is a representative of the Kodaira-Spencer class of ρs(∂/∂si), i.e. the Dolbeault
cohomology class [A∂/∂si ] of A∂/∂si satisfies [A∂/∂si ] = ρs(∂/∂si) in H1(Xs, TXs)
via the Dolbeault isomorphism. Note however that A∂/∂si , in general, may not be
harmonic (see e.g. [Sch, §1]). Let ∂/∂si and vi be as above. One can further lift vi
uniquely to a smooth vector field ṽi on P such that

(2.3.5) p∗(ṽi) = vi and ṽi ∈ Ker(θ̃)

(cf. e.g. [KN, p. 65]). Since θ̃ is GL(r,C)-invariant, it is easy to see that ṽi is also
GL(r,C)-invariant and thus ṽi descends to a smooth section v̂i of Q. Define

(2.3.6) Â∂/∂si := ∂̄v̂i

along each fiber Xs. Then Â∂/∂si ∈ Z1(Xs, Qs) for s ∈ S. Using the argument in
[FS, Lemma 4.4] (which deals with the case of line bundles), one sees that Â∂/∂si is
a ∂̄-closed representative of the Kodaira-Spencer class ρ̂s(∂/∂si), i.e. the Dolbeault
cohomology class [Â∂/∂si ] of Â∂/∂si satisfies [Â∂/∂si ] = ρ̂s(∂/∂si) in H1(Xs, Qs)
via the Dolbeault isomorphism. Moreover, it follows easily from (2.3.5) and the
holomorphicity of ps∗ and τs that

(2.3.7) qs(Â∂/∂si ) = A∂/∂si for s ∈ S

(cf. also [FS, Lemma 4.6]). Next we consider θs(Â∂/∂si ) ∈ A0,1(Xs,End(Es)). Let
Ω ∈ A1,1(X ,End(E)) be as in (1.1). We have
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Lemma 2.3.1. For s ∈ S, θs(Â∂/∂si ) = Ωviᾱdz̄α ∈ A0,1(Xs,End(Es)).

Proof. Let ∂/∂z̄α be a local coordinate tangent vector field on X of type (0,1).

We lift ∂/∂z̄α to a GL(r,C)-invariant (0,1)-tangent vector field ∂̃/∂z̄α such that

p∗(∂̃/∂z̄α) = ∂/∂z̄α. From the structure equation of θ̃ (cf. e.g. [KN, pp. 77-78]),
we have

dθ̃(ṽi, ∂̃/∂z̄α) =− 1
2

[θ̃(ṽi), ∂̃/∂z̄α] + (p∗Ω)(ṽi, ∂̃/∂z̄α)

=(p∗Ω)(ṽi, ∂̃/∂z̄α) (by (2.3.5))

=Ω(p∗ṽi, p∗∂̃/∂z̄α)

=Ω(vi, ∂/∂z̄α)
=Ωviᾱ.

(2.3.8)

From consideration of type, we have θ̃(ṽi) = 0 and θ̃(ṽi(∂̃/∂z̄α)) = 0. Together
with (2.3.5), we have

dθ̃(ṽi, ∂̃/∂z̄α) =ṽi(θ̃(∂̃/∂z̄α))− ∂̃/∂z̄α(θ̃(ṽi))− θ̃([ṽi, ∂̃/∂z̄α])

=θ̃(∂̃/∂z̄α(ṽi))

=θ(∂/∂z̄α(v̂i)),

(2.3.9)

where the last equality follows from the descendence of θ̃, ∂̃/∂z̄α, ṽi to θ, ∂/∂z̄α, v̂i
respectively (as a result of their GL(r,C)-invariance). We finally have

θs(Â∂/∂si) =θs(∂/∂z̄α(v̂i)dz̄α) (by (2.3.6))

=θs(∂/∂z̄α(v̂i))dz̄α

=Ωviᾱdz̄
α (by (2.3.8) and (2.3.9)).

This finishes the proof of Lemma 2.3.1. �

For k, l ≥ 0, we also denote the extension of the Hermitian connection ∇
of (Es, hs) induced from the tensor product Ak,l(Xs, TXs) = Ak,l(Xs) ⊗A0,0(Xs)

A0,0(Xs, TXs) by the same symbol∇ : Ak,l(Xs, TXs)×A0,0(Xs, Es)→Ak,l(Xs, Es).
We summarize our discussion in this subsection in the following

Proposition 2.3.2. In terms of the ∂̄-closed representative Â∂/∂si of the Kodaira-
Spencer class ρ̂(∂/∂si) in H1(Xs, Qs), the curvature formula (1.1.5) of Theorem 1
can be re-written as follows:

Θab̄ij̄(s)

=−
∫
Xs

〈GEs
(
θs(Â∂/∂si )(ta)−∇qs(Â∂/∂si)ta

)
, θs(Â∂/∂sj )(tb)−∇qs(Â∂/∂sj )tb〉

ωns
n!

+
∫
Xs

〈Ωviv̄j (ta), tb〉
ωns
n!

+
∫
Xs

�(gviv̄j )〈ta, tb〉
ωns
n!
.

Proof. Proposition 2.3.2 follows immediately from (1.1.5), (2.3.7) and Lemma 2.3.1.
�
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§3. Proof of Corollary 2

(3.1). Notation as in (1.1) and (1.2). We deduce Corollary 2 from Theorem 1 as
follows:

Proof of Corollary 2. Let (L → X , h) and (π : X → S, ωX ) be as in Corollary 2, so
that (1.2.1) is satisfied for some k ∈ R. Denote by s = (si)1≤i≤m and z = (zα)1≤α≤n
the local holomorphic coordinates for S and the fibersXs, respectively. Then (1.2.1)
implies that ωX is d-closed, and thus Theorem 1 applies. By the construction in
(1.1) (or (2.1.1)), the horizontal lifting vi of a coordinate tangent vector field ∂/∂si

in S necessarily satisfies gviᾱ = 0. Together with (1.2.2), we have

(3.1.1) Ωviv̄j = kgviv̄j and Ωviᾱ = kgviᾱ = 0.

Then (1.2.3) follows immediately from (1.1.5) and (3.1.1), and we have finished the
proof of Corollary 2. �

§4. L2
-metrics and families of abelian varieties

(4.1). In this subsection, we make some simple observations on the L2-metrics on
direct image bundles associated to families of ample line bundles over families of
abelian varieties. These will be needed in the proof of Theorem 3 in §5.

Let π : A → S be a family of abelian varieties parametrized by a complex
manifold S, and let L → A be a family of ample line bundles as in Theorem
3. Recall that for any smooth family of Hermitian metrics ρ on the family of
holomorphic line bundles L → A and any smooth family of Kähler metrics ωA on
the family π : A → S, one has an associated L2-metric Hρ,ωA on π∗L as defined in
(1.1.1). For a holomorphic line bundle F over S and a Hermitian metric h on F , it
is easy to see that (L⊗π∗F, ρ⊗π∗h) forms a family of Hermitian holomorphic line
bundles. Thus one also has the associated L2-metric Hρ⊗π∗h,ωA on π∗(L ⊗ π∗F ).

Proposition 4.1.1. Let ωA and ω′A be two smooth families of flat Kähler metrics
on the family π : A → S, and let ρ and ρ′ be two smooth families of canonical
Hermitian metrics on the family of ample line bundles L → A (cf. (1.3)). Also let
(F, h) be a Hermitian holomorphic line bundle over S. Then the following state-
ments hold:

(i) (π∗(L ⊗ π∗F ), Hρ⊗π∗h,ωA) is projectively flat if and only if (π∗L, Hρ,ωA) is
projectively flat.

(ii) (π∗L, Hρ,ωA) is projectively flat if and only if (π∗L, Hρ′,ωA) is projectively
flat.

(iii) (π∗L, Hρ,ωA) is projectively flat if and only if (π∗L, Hρ,ω′A
) is projectively

flat.

Proof. For each s ∈ S, one has the isomorphism

H0(As, Ls)⊗ Fs ' H0(As, Ls ⊗ π∗Fs)

given by t ⊗ f 7→ t ⊗ π∗f for t ∈ H0(As, Ls) and f ∈ Fs. It is easy to verify
that under the above correspondence, we have the following isometry of Hermitian
vector bundles over S:

(4.1.1)
(
π∗(L ⊗ π∗F ), Hρ⊗π∗h,ωA

)
'
(
π∗L⊗ F,Hρ,ωA ⊗ h

)



L2-METRICS AND PROJECTIVE FLATNESS 2697

(the underlying vector bundle isomorphism is usually known as the projection for-
mula). Denote the curvature tensor of (π∗L, Hρ,ωA) and

(
π∗(L⊗π∗F ), Hρ⊗π∗h,ωA

)
by ΘHρ,ωA and ΘHρ⊗π∗h,ωA , respectively. Under the identification

End(π∗(L ⊗ π∗F )) ' End(π∗L)

induced by the isomorphism End(F ) ' OS , it follows from (4.1.1) that

(4.1.2) ΘHρ⊗π∗h,ωA = ΘHρ,ωA +
2π√
−1

c1(F, h) ⊗ Idπ∗L.

Then Proposition 4.1.1(i) follows from (4.1.2) and the definition in (1.3.1). To prove
Proposition 4.1.1(ii), we observe that canonical Hermitian metrics on holomorphic
line bundles over abelian varieties are unique up to a multiplicative constant. This
implies that ρ′ = eπ

∗λ · ρ for some smooth function λ on S. Regarding eλ as a
Hermitian metric on the trivial line bundle OS , one sees that Proposition 4.1.1(i)
(with (F, h) ' (OS , eλ)) readily implies Proposition 4.1.1(ii). To prove Proposition
4.1.1(iii), we observe that the volume forms associated to flat Kähler metrics on an
abelian variety are constant multiples of each other. This implies that Hρ,ω′A

= eµ ·
Hρ,ωA for some smooth function µ on S. Then a simple calculation similar to (4.1.2)
readily leads to Proposition 4.1.1(iii), and this finishes the proof of Proposition
4.1.1. �

(4.2). In this subsection, we are going to give a simplification of the formula (1.2.3)
in Corollary 2 under the hypothesis of Theorem 3 (cf. Proposition 4.2.4). This does
not lead directly to Theorem 3 yet, and the conclusion of Theorem 3 will only be
arrived in §5.

Throughout (4.2), we let π : A → S, L → A, ρ = {ρs}s∈S and ωA be as in
Theorem 3. Furthermore, we assume that

(4.2.1) c1(L, ρ) =
1

2π
ωA on A,

i.e. (1.2.1) is satisfied with k = 1. As in (4.1), we have the associated L2-metric
Hρ,ωA on π∗L. For s ∈ S and a coordinate tangent vector ∂/∂si ∈ TsS, we let
vi be the horizontal lifting of ∂/∂si with respect to ωA as in (1.1), and A∂/∂si =
Aα
iβ̄

∂
∂zα ⊗dz̄β ∈ A0,1(As, TAs) be the associated Kodaira-Spencer representative as

in (1.1.3) and (1.1.4). Denote also by g the metric tensor associated to ωA as in §1.
First we have

Lemma 4.2.1. For s ∈ S and ∂/∂si ∈ TsS,
(i) A∂/∂si is invariant under translations of As. In particular, A∂/∂si is parallel

with respect to ωs.
(ii) We have Aα

iβ̄
gαγ̄ = Aαiγ̄ gαβ̄ for 1 ≤ β, γ ≤ n.

Proof. Being a flat metric, each ωs is Kähler-Einstein. Then by [Sch, Proposition
1.1], A∂/∂si is a harmonic tensor (with respect to ωs). Then it follows from standard
facts on compact complex tori that A∂/∂si is necessarily invariant under translations
of As (cf. e.g. [GH, p. 302]), which, in turn, implies readily that A∂/∂si is parallel
with respect to ωs. This proves Lemma 4.2.1(i). Lemma 4.2.1(ii) follows from
the Kähler-Einstein condition of ωs, and it can also be found in [Sch, Proposition
1.1]. �
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For s ∈ S, ∂/∂si ∈ Ts(As) and t ∈ H0(As, Ls), we let ∇A∂/∂si t ∈ A
0,1(As, Ls)

be as interpreted in Proposition 2.3.2 (cf. also 2.3.6). In terms of local holomorphic
coordinates (zα)1≤α≤n on As, we have ∇A∂/∂si t = Aα

iβ̄
t;αdz̄

β (cf. (1.1.4)).

Lemma 4.2.2. On As, we have �(∇A
∂/∂si

t) = 2∇A
∂/∂si

t, i.e.,

�(Aαiβ̄t;αdz̄
β) = 2Aαiβ̄t;αdz̄

β.

Proof. By the construction of vi, we have gviᾱ(= g(vi, ∂/∂zα)) = 0. Together with
(4.2.1) and the identity (2.2.7) in the proof of Theorem 1, it follows that Aα

iβ̄
t;αdz̄

β

is ∂̄-exact, and thus ∂̄(Aα
iβ̄
t;αdz̄

β) = 0. Then

�(Aαiβ̄t;αdz̄
β)

=∂̄∂̄∗(Aαiβ̄t;αdz̄
β)

=∂̄
(
− gβ̄γ∇γ(Aαiβ̄t;α)

)
=∂̄(−gβ̄γAαiβ̄t;αγ) (since Aαiβ̄;γ = 0 by Lemma 4.2.1(i))

=− gβ̄γAαiβ̄t;αγδ̄dz̄
δ (since gβ̄γ ;δ̄ = 0, Aαiβ̄;δ̄ = 0 by Lemma 4.2.1(i))

=− gβ̄γAαiβ̄(t;αδ̄γ − gγδ̄t;α)dz̄δ

(by Ricci identity, (4.2.1) and flatness of ωs)

=− gβ̄γAαiβ̄(t;δ̄αγ − (gαδ̄t);γ − gγδ̄t;α)dz̄δ

(by Ricci identity and (4.2.1))

=− gβ̄γAαiβ̄(−gαδ̄t;γ − gγδ̄t;α)dz̄δ

(since t is holomorphic and gαδ̄;γ = 0)

=gβ̄γAαiβ̄gαδ̄t;γdz̄
δ +Aαiδ̄t;αdz̄

δ

=gβ̄γAαiδ̄gαβ̄t;γdz̄
δ +Aαiδ̄t;αdz̄

δ (by Lemma 4.2.1(ii))

=2Aαiδ̄t;αdz̄
δ.

Thus we have finished the proof of Lemma 4.2.2. �
Next we fix a Euclidean coordinate system (zα)1≤α≤n on As so that each ∂/∂zα

can be considered as a global translation-invariant vector field on As.

Lemma 4.2.3. For s ∈ S, ta, tb ∈ H0(As, Ls) and ∂/∂zα, ∂/∂zβ as above, there
exists a constant Ξαβ̄ depending only on ∂/∂zα and ∂/∂zβ such that∫

As

〈ta;α, tb;β〉
ωns
n!

= Ξαβ̄ ·Hρ,ωA(ta, tb).

Proof. Fix a Euclidean coordinate system (zα)1≤α≤n on As as above. Since ωs is
flat, we have

ωns = C ·
(√−1

2
)n · dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n on As,

where C is some positive constant. Observe that for 1 ≤ α ≤ n, dzα, dz̄α are global
1-forms on As. Then for ta, tb ∈ H0(As, Ls),

Φ := 〈ta;α, tb〉 · C ·
(√−1

2
)n · dz1 ∧ dz̄1 ∧ · · · ∧̂dzβ ∧ dz̄β · · · ∧ dzn ∧ dz̄n
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is a global (2n− 1)-form on As. Here ∧̂dzβ means that the factor ∧dzβ is omitted.
It is easy to see that

dΦ =
∂

∂z̄β
(
〈ta;α, tb〉

)
· ωns

=
(
〈ta;αβ̄ , tb〉+ 〈ta;α, tb;β〉

)
ωns

=
(
〈ta;β̄α − gαβ̄ta, tb〉+ 〈ta;α, tb;β〉

)
ωns

(by Ricci identity and (4.2.1))

=
(
− gαβ̄〈ta, tb〉+ 〈ta;α, tb;β〉

)
ωns

(by holomorphicity of ta).

Since ωs is flat, gαβ̄ is a (globally) constant function on As. Then by Stokes’
theorem, we have

∫
As
dΦ = 0, and thus∫
As

〈ta;α, tb;β〉
ωns
n!

= gαβ̄

∫
As

〈ta, tb〉
ωns
n!
,

which leads to Lemma 4.2.3 with the constant Ξαβ̄ = gαβ̄ . �

Now we summarize our discussion in (4.2) in the following

Proposition 4.2.4. Let π : A → S,L, ρ, ωA be as in Theorem 3. Suppose fur-
thermore that (4.2.1) is satisfied. Then the curvature Θ of the L2-metric Hρ,ωA on
π∗L is given by

Θab̄ij̄(s) = Cij̄ ·Hρ,ωA(ta, tb) +
∫
As

(
gviv̄j +�(gviv̄j )

)
〈ta, tb〉

ωns
n!

for s ∈ S and ta, tb ∈ H0(As, Ls), where Cij̄ is some constant depending on s,
∂/∂si and ∂/∂sj.

Proof. Let s ∈ S, ∂/∂si, ∂/∂sj ∈ TsS and ta, tb ∈ H0(As, Ls) be as above. As in
Lemma 4.2.3, we fix a Euclidean coordinate system (zα)1≤α≤n on As. By Lemma
4.2.2, ∇A

∂/∂si
ta = Aγiᾱta;γdz̄

α is an eigenvector of the ∂̄-Laplacian � on As corre-
sponding to the eigenvalue 2. Thus we have

(4.2.2) GLs(A
γ
iᾱta;γdz̄

α) =
1
2
Aγiᾱta;γdz̄

α,

where GLs is the Green’s operator on Ls. By Lemma 4.2.2(i) and as in Lemma
4.2.3, the functions Aα

iβ̄
, gαβ̄ and gβ̄α, 1 ≤ α, β ≤ n, are all constant on the entirety

of As. Then by (4.2.2), we have∫
As

〈GLs(A
γ
iᾱta;γdz̄

α), Aδjβ̄tb;δdz̄
β〉ω

n
s

n!

=
∫
As

〈1
2
·Aγiᾱta;γdz̄

α, Aδjβ̄tb;δdz̄
β〉ω

n
s

n!

=
1
2
· AγiᾱAδjβ̄g

ᾱβ

∫
As

〈ta;γ , tb;δ〉
ωns
n!

=
1
2
· AγiᾱAδjβ̄g

ᾱβΞγδ̄Hρ,ωA(ta, tb) (by Lemma 4.2.3)

=− Cij̄ ·Hρ,ωA(ta, tb),

(4.2.3)
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where Cij̄ := − 1
2 · A

γ
iᾱA

δ
jβ̄
gᾱβΞγδ̄ is easily seen to be a constant on the entirety of

As and depending only on ∂/∂si and ∂/∂sj. Here Ξγδ̄ is as in Lemma 4.2.3. Then
Proposition 4.2.4 follows immediately by combining Corollary 2 (with k = 1) and
(4.2.3). �

§5. Proof of Theorem 3

(5.1). In this subsection, we are going to deduce Theorem 3 from Corollary 2 under
the additional assumption (4.2.1) as embarked in §4. Theorem 3 in full generality
will be proved in (5.2). As remarked in §0, the approach taken in this section is
largely suggested by the referee.

First we describe a natural smooth foliation on any holomorphic family of n-
dimensional abelian varieties π : A → S as follows: Recall that each fiber As =
π−1(s) is of the form Cn/Λ(s) for some lattice Λ(s) of Cn. Moreover, over a
small open subset U of S, we may fix a choice of Λ(s) and a choice of generators
e1(s), · · · , e2n(s) of Λ(s), s ∈ U , such that each ei(s) varies holomorphically on
U , shrinking U if necessary. For simplicity, we simply denote the corresponding
holomorphic family of generators over U by e1, · · · , e2n. It is easy to see that one
has the following holomorphic isomorphism (as families over U) given by

(5.1.1) A
∣∣
U
∼= (U × Cn)/Z2n,

where Z2n is identified with the family of lattices generated by e1, · · · , e2n over U .
Next we define a foliation F(U × C2n) on U × C2n, whose leaves are of the form

(5.1.2) Fa = {(s, a1e1(s) + · · ·+ a2ne2n(s)) ∈ U × C2n
∣∣ s ∈ U},

where a = (a1, · · · , a2n) ∈ R2n. In other words, a leaf of the foliation is given by a
fixed real linear combination of e1, · · · , e2n over U . It is easy to see that the foliation
F(U × C2n) is smooth and invariant under the action of Z2n in (5.1.1). Moreover
it does not depend on the choice of the family of generators e1, · · · , e2n. Thus it
descends to a smooth foliation on A

∣∣
U

, which we denote by F(A
∣∣
U

). Moreover, one
can easily check that F(A

∣∣
U

) agrees with F(A
∣∣
V

) on A
∣∣
U∩V for any open subsets

U, V ⊂ S. It follows that one obtains a smooth foliation F(A) on A such that
F(A)

∣∣
A|U

= F (A|U ) for any open subset U ⊂ S. Moreover, one easily sees that
the leaves of F(A) are holomorphic, and F(A) is transversal and complementary
to the holomorphic distribution Ker(dπ) of vertical tangent vectors of the family
π : A → S. In particular, the restriction dπ

∣∣
Tp(F(A))

gives rise to an isomorphism
Tp(F(A)) ∼= Tπ(p)(S) at each p ∈ A. Here Tp(F(A)) denotes the tangent space of
the leaf of F(A) at p.

Lemma 5.1.1. Let π : A → S and F(A) be as above, and let ωA be a d-closed
(1, 1)-form on A such that the restriction ωs := ωA

∣∣
As

is a flat Kähler form on
As = π−1(s) for each s ∈ S. Then there exists a unique smooth non-negative
d-closed (1, 1)-form ν on A such that

(5.1.3) ν
∣∣
As

= ωs and ker(νp) = Tp(F(A))

for each s ∈ S and p ∈ A.

Proof. It is easy to see that the conditions in (5.1.3) define uniquely a non-negative
(1,1)-form ν on A. To see that ν is smooth and d-closed, we first fix a small con-
nected open subset U of S and a reference point o ∈ S. Shrinking U if necessary, we
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have an isomorphism (as families) of A
∣∣
U

with a holomorphic family of generators
e1, · · · , e2n of lattices in Cn as given in (5.1.1). Then for each s ∈ U , we consider
the real linear vector space isomorphism on Cn sending ei(o) to ei(s), i = 1, · · · , 2n,
which is easily seen to descend to a diffeomorphism κs : Ao → As which is an iso-
morphism with respect to the underlying real abelian Lie group structures on Ao
and As. In particular, κ∗sωs is a translation-invariant 2-form on Ao. Moreover, one
easily checks that κs varies smoothly with s, and thus one obtains a diffeomorphic
trivialization of the family π

∣∣
U

: A
∣∣
U
→ U given by κ : Ao × U → A

∣∣
U

satisfying
κ
∣∣
Ao×{s} = κs for all s ∈ U . Since ωA is d-closed, it follows from Stokes’ theorem

that κ∗sωs, s ∈ U , are all cohomologous to κ∗oωo = ωo on Ao (noting that κo = Id on
Ao). Together with the translation-invariance of κ∗sωs, it follows that for all s ∈ U ,

(5.1.4) κ∗sωs = ωo on Ao

(cf. Remark 1.3.2). Next one easily sees from the definition of κ and F(A) that
κ∗F(A) is a foliation on Ao×U whose leaves are of the form {z}×U for some fixed
z ∈ Ao. Together with (5.1.4) and the definition of ν, it follows readily that

(5.1.5) κ∗ν = p∗1ωo on Ao × U,
where p1 denotes the projection of Ao×U onto the first factor Ao. Since ωo is both
smooth and d-closed, it follows that κ∗ν is both smooth and d-closed, and thus ν is
also smooth and d-closed on A

∣∣
U

. Upon varying U , one sees that ν is smooth and
d-closed on A. �

Proposition 5.1.2. Let π : A → S and ωA be as in Lemma 5.1.1. Then for s ∈ S
and ∂/∂si, ∂/∂sj ∈ TsS,

(i) [vi, vj ] is a translation-invariant vector field on As, where vi, vj denote the
horizontal lifting of ∂/∂si, ∂/∂sj with respect to ωA respectively; and

(ii) gvivj := ωA(vi, vj) is a constant function on As.

Proof. As in (4.2), we will fix a Euclidean coordinate system (zα)1≤i≤n on As, so
that each ∂/∂zα can be regarded as a global translation-invariant vector field on
As. Let ν be the smooth d-closed (1,1)-form in Lemma 5.1.1, and let v′i, v

′
j be the

horizontal lifting of ∂/∂si, ∂/∂sj with respect to ν, respectively. Let

(5.1.6) wi = vi − v′i and wj = vj − v′j .
It is easy to see that wi, wj ∈ ker(dπ), and thus wi and wj restrict to smooth
vector fields on each fiber As. Since both ωA

∣∣
As

and ν
∣∣
As

are the same flat Kähler
metric ωs on As, it follows that A∂/∂si := ∂̄vi and A′∂/∂si := ∂̄v′i are harmonic
tensors with respect to ωs (cf. Lemma 4.2.1). On the other hand, one recalls from
(2.3) that both A∂/∂si and A′∂/∂si are representatives of the same Kodaira-Spencer
class of ρs(∂/∂si) via the Dolbeault isomorphism, where ρs : TsS → H1(As, TAs)
is the Kodaira-Spencer map associated to the family π : A → S. Therefore, one
has A∂/∂si = A′∂/∂si , and thus

(5.1.7) ∂̄wi = ∂̄vi − ∂̄v′i = A∂/∂si −A′∂/∂si = 0 on As.

Hence wi is a global holomorphic (and thus translation-invariant) vector field on
As, and so is wj . It follows that we may write

(5.1.8) wi = wαi
∂

∂zα
and wj = wαj

∂

∂zα
,
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where each wαi or wαj is a constant function on As. Since v′i is the horizontal lifting
of ∂/∂si with respect to ν, it follows that g′v′iw = 0 for all p ∈ As and w ∈ TpAs.
Here and henceforth, we denote g′v′iw = ν(v′i, w), etc. Together with the fact that
ν is a semi-positive (1,1)-form on A whose positive eigenspace at each p ∈ As is
given by TpAs, it follows readily that v′i(p) ∈ ker(νp) for each p ∈ As. Thus one
has g′

v′iv
′
j

≡ 0 on As. Together with the commutation relation in Lemma 2.1.1(iii),

it follows that

(5.1.9) [v′i, v′j ] ≡ 0 on As.

(We remark that (5.1.9) can also be obtained by using the diffeomorphic trivializa-
tion of the family π : A

∣∣
U
→ U over an open neighborhood U of s in S as given in

the proof of Lemma 5.1.1.) From (5.1.8), one also easily checks that

(5.1.10) [wi, wj ] ≡ 0 on As.

Write A′∂/∂si = A′α
iβ̄

∂
∂zα ⊗ dz̄β. Then by Lemma 4.2.1(i) (and as remarked above),

each A′α
iβ̄

is a constant function on As. Thus, by (5.1.6), we have, on As,

[vi, vj ] = [v′i + wi, v′j + wj ]

= 0 + [v′i, wj ] + [wi, v′j ] + 0 (by (5.1.9) and (5.1.10))

= −A′αiβ̄w
β
j

∂

∂zα
+A′α

jβ̄
wβi

∂

∂zα
(by Lemma 2.1.1(i)),

(5.1.11)

which readily implies Proposition 5.1.2(i), since A′α
iβ̄

, A′α
jβ̄

, wβi and wβj are all con-
stant functions on As. Next we proceed to prove Proposition 5.1.2(ii). Since ωA
is d-closed, it follows from Lemma 2.1.1(iii) (and upon taking inner product with
∂/∂zα) that for 1 ≤ α ≤ n,

(5.1.12) g[vi,vj ]α =
∂

∂z̄α
(
gvivj

)
on As.

From Proposition 5.1.2(i), one easily sees that g[vi,vj]α (and thus also ∂
∂z̄α (gvivj )) is

a constant function on As. Hence,

(5.1.13) �(gvivj ) = −gαβ ∂

∂zβ
( ∂

∂z̄α
(gvivj )

)
= 0 on As.

Thus gvivj is a constant function on As, and we have finished the proof of Propo-
sition 5.1.2(ii). �

Now we summarize our discussion in (4.2) and (5.1) in the following

Proposition 5.1.3. Let π : A → S, L → A, ρ, ωA be as in Theorem 3. Sup-
pose furthermore that (4.2.1) is satisfied. Then the L2-metric Hρ,ωA on π∗L is
projectively flat.

Proof. For s ∈ S, ∂/∂si and ∂/∂sj ∈ TsS, it follows from Proposition 5.1.2 that on
As, gviv̄j = κij̄ for some constant κij̄ . In particular, �(gviv̄j ) = 0 on As. Together
with Proposition 4.2.4, we have, for ta, tb ∈ H0(As, Ls), the curvature tensor Θ of
Hρ,ωA on π∗L is given by

Θab̄ij̄(s) = Cij̄ ·Hρ,ωA(ta, tb) +
∫
As

(κij̄ + 0)〈ta, tb〉
ωns
n!

= µij̄ ·Hρ,ωA(ta, tb),
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where Cij̄ is as in Proposition 4.2.4, and the constant µij̄ := Cij̄ +κij̄ depends only
on ∂/∂si and ∂/∂sj. Thus we have finished the proof of Proposition 5.1.3. �

(5.2). Finally we are ready to complete the proof of Theorem 3.

Proof of Theorem 3. First we are going to prove Theorem 3(i). Let π : A → S,
L → A, ρ and ωA be as in Theorem 3(i). As indicated in (1.3), one can always
construct a smooth family of canonical Hermitian metrics ρ′ on the family L → A.
Then ω′A := c1(L, ρ′) is a family of flat Kähler metrics on the family A → S such
that ρ′ and ω′A satisfy (4.2.1). Thus by Proposition 5.1.3, the L2-metric Hρ′,ω′A

on
π∗L is projectively flat. Together with Proposition 4.1.1(ii) and (iii), it follows that
Hρ,ωA on π∗L is also projectively flat over S, and this finishes the proof of Theorem
3(i).

Finally, we deduce Theorem 3(ii) as follows. As mentioned above, one can always
construct a smooth family of canonical Hermitian metrics ρ on the family L →
A and a smooth family of flat Kähler metrics ωA on the family π : A → S.
By Theorem 3(i), the Hermitian connection of the L2-metric Hρ,ωA on π∗L is
projectively flat, i.e., the curvature tensor Θ of Hρ,ωA satisfies Θ = α·Idπ∗L for some
smooth 2-form α on S. Then for any Kähler form µ on S, we have ΛΘ = λ(s)·Idπ∗L,
where Λ denotes the contraction with respect to µ and λ(s) is the smooth function
given by λ = Λα. Since S is compact, it is well known that the above identity
implies that Hρ,ωA is conformally equivalent to a Hermitian-Einstein metric (with
respect to µ) on π∗L (see e.g. [Siu2, p. 16]). Then by a result of Kobayashi [Ko1]
and Lübke [Lü], this implies that π∗L is poly-stable with respect to µ. This finishes
the proof of Theorem 3(ii), and thus we have completed the proof of Theorem 3. �

§6. Appendix: Siegel modular varieties

and their Poincaré line bundles

(6.1). In this appendix, we are going to briefly discuss the Poincaré line bundles
over families of abelian varieties parametrized by Siegel modular varieties, which
may be regarded as the universal objects associated to the families of line bundles
studied in Theorem 3. We will also explicitly describe their canonical metrics, and
indicate briefly how canonical Hermitian metrics on families of ample line bundles
over abelian varieties can be obtained via their classifying maps.

Denote the Siegel upper half plane by Hn := {τ ∈ Mn(C) : τ = τ t, Im(τ) >
0}, where Mn(C) is the set of n × n matrices with entries in C. Fix a type of
polarization δ := diag(d1, d2, . . . , dn) ∈ Mn(Z), where d1, d2, . . . , dn ∈ Z+ (with
di|di+1) are the elementary divisors. The symplectic group Sp(2n,R) acts as a
group of biholomorphisms on Hn via the following action:

(6.1.1) τ 7→ (Aτ +B)(Cτ +D)−1 =: τ ′ for
(
A B
C D

)
∈ Sp(2n,R).

Moreover, this action extends to an action of the semi-direct product Sp(2n,R).R2n

on Hn × Cn such that the action of ([A B
C D ] , [ αβ ]) ∈ Sp(2n,R) . R2n is given by

(6.1.2) (τ, z) 7→ (τ ′, [(Cτ + D)t]−1z + τ ′α+ β),
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where τ ′ is as in (6.1.1). Let Γ be a discrete torsion-free subgroup of Sp(2n,R).
Then XΓ := Hn/Γ is smooth, and one gets an associated analytic family of δ-
polarized abelian varieties given by

(6.1.3) π : AΓ := (Hn × Cn)/Γ . Z2n → XΓ.

In general, it is well known that the set of δ-polarized abelian varieties is in one-to-
one correspondence with Hn/Sp(2n,Z, δ) for some arithmetic subgroup Sp(2n,Z, δ)
⊂ Sp(2n,R), but Sp(2n,Z, δ) may not be torsion-free (cf. e.g. [MT, §1], [MFK],
[SD, pp. 69-73] for the above background materials). By [Ku, p. 82], there exists
the following Kähler form given by

(6.1.4) ω :=
√
−1∂∂̄[(ImZ)t( Im τ)−1(ImZ) + log det(Im τ)−1] on Hn × Cn,

which can easily be seen to be invariant under the Sp(2n,R) .R2n action in (6.1.2)
(cf. e.g. [MT, §1]). Thus ω descends to a Kähler form on XΓ, which we denote by
ωΓ. Write As := π−1(s) and ωs := ωΓ|As for s ∈ XΓ as in (1.3). Then it is easy to
see that each ωs is a flat Kähler metric on As.

Now suppose that LΓ is a holomorphic line bundle overAΓ and ρΓ is a Hermitian
metric on LΓ such that

(6.1.5) c1(LΓ, ρΓ) =
ωΓ

2π
.

Write Ls := LΓ|As and ρs := ρΓ|Ls for s ∈ XΓ. Then it follows easily from (6.1.5)
that each ρs is a canonical Hermitian metric on Ls.

Remark 6.1.1. It is proved in [Ku] (see also [Sa, pp. 203-208]) that when Γ ⊂
Sp(2n,R) is discrete and torsion-free, such an (LΓ, ρΓ) overXΓ and satisfying (6.1.5)
always exists. Here XΓ need not be compact. If XΓ is indeed compact, then as
concluded there, it follows that ωΓ is a Hodge metric.

(6.2). Let π : A → S be a family of abelian varieties parametrized by a complex
manifold S. For each s ∈ S and As = π−1(s), the set of isomorphism classes
of holomorphic line bundles with zero first Chern class is isomorphic to the dual
abelian variety Âs of As. It is well known that {Âs}s∈S also form an analytic
family of abelian varieties parametrized by S, which we denote by Â. Fix a type
of polarization δ of A, and let Âs(δ) denote the set of isomorphism classes of
holomorphic line bundles over As with first Chern class determined by δ. Then it is
also well known that Âs(δ) is isomorphic to Âs (as an algebraic variety), and thus
one also has a family π̂ : Â(δ)→ S (with Â(δ)

∣∣
π̂(s)

= Âs(δ) for each s ∈ S), which

is analytically isomorphic to Â. Consider the fibered product

A×S Â(δ) := {(x, y) ∈ A× Â(δ)
∣∣ π(x) = π̂(y)}.

It is easy to see that A×S Â(δ) is a smooth complex submanifold of A×Â(δ). We
will denote by p(1) : A ×S Â(δ) → A and p(2) : A ×S Â(δ) → Â(δ) the projection
maps onto the factors A and Â(δ), respectively. (Throughout this appendix, we
will simply denote by p(1) and p(2) the projection maps of any fibered products
onto the first and second factors, respectively, when no confusion arises.) The
projection maps π, π̂ induce the projection map π̄ : A ×S Â(δ) → S such that
π̄−1(s) = As × Âs(δ) for s ∈ S. For each s ∈ S, one has the associated Poincaré
line bundle Ps(δ) over As × Âs(δ) such that (i) for w ∈ Âs(δ), Ps(δ)|As×{w} is
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the line bundle over As represented by w; and (ii) Ps(δ)|{0}×Âs(δ) = OÂs(δ). Here,
condition (ii) ensures that Ps(δ) is uniquely defined.

Consider p(2) : A ×S Â(δ)→ Â(δ) as a family of abelian varieties parametrized
by Â(δ), and let ε : Â(δ) → A ×S Â(δ) denote the zero section. Then it is well
known that one can uniquely glue the Ps(δ)’s together to form a holomorphic line
bundle PS(δ) over A×S Â(δ) such that (i) PS(δ)

∣∣
π̄−1(s)

= Ps(δ) for s ∈ S; and (ii)

PS(δ)
∣∣
ε(Â(δ))

' OÂ(δ). PS(δ) will be called the Poincaré line bundle overA×S Â(δ).
Observe that we may consider PS(δ) as a family of ample line bundles parametrized
by Â(δ). We refer the reader to [MFK, Chapter 6] for the above background
materials.

(6.3). Now let Γ be a discrete torsion-free subgroup of Sp(2n,R). Fix a type of
polarization δ, and let π : AΓ → XΓ be the family of δ-polarized abelian varieties
as constructed in (6.1). Then it follows from (6.2) that we have an associated
family π̂ : ÂΓ(δ)→ XΓ and an associated Poincaré line bundle, denoted by PΓ(δ),
over the fibered product AΓ ×XΓ ÂΓ(δ). Also recall from Remark 6.1.1 that there
exists a Hermitian holomorphic line bundle (LΓ, ρΓ) over AΓ such that (6.1.5) is
satisfied. As for PΓ(δ), we denote by PΓ(0) the ‘usual’ universal Poincaré line
bundle over AΓ ×XΓ ÂΓ associated to line bundles over fibers of π : AΓ → XΓ

with zero first Chern class (cf. (6.2)). It is well known that the polarization δ

induces a morphism λδ : AΓ → ÂΓ satisfying the following properties: (i) one
has π̂ ◦ λδ = π, and for s ∈ XΓ, λδ

∣∣
As

: As → Âs is an isogeny; and (ii) if we

denote by Φδ : AΓ ×XΓ AΓ → AΓ ×XΓ ÂΓ the restriction of the product map
(IdAΓ , λδ) : AΓ × AΓ → AΓ × ÂΓ to AΓ ×XΓ ÂΓ, where IdAΓ is the identity map
on AΓ, then

(6.3.1) Φ∗δPΓ(0) = µ∗LΓ ⊗ (p(2))∗L−1
Γ ⊗ (p(1))∗L−1

Γ on AΓ ×XΓ AΓ

(cf. [MFK, Chapter 6, §2]). Here µ : AΓ ×XΓ AΓ → AΓ denotes the holomorphic
map given by the group law on each fiber of the projection map π̄ : AΓ ×XΓ AΓ →
XΓ, i.e., µ(z, w) = z + w for z, w ∈ π̄−1(s) = As × As, s ∈ XΓ. Since LΓ induces
the polarization δ on AΓ, it follows easily from (6.3.1) that under the identification
ÂΓ(δ) ∼= ÂΓ (cf. (6.2)), one has

(6.3.2) Φ∗δPΓ(δ) = µ∗LΓ ⊗ (p(2))∗L−1
Γ on AΓ ×XΓ AΓ.

Moreover, it is easy to see that hδ := µ∗ρΓ ⊗ (p(2))∗ρΓ
−1 is a smooth Hermitian

metric on Φ∗δPΓ(δ) such that hδ
∣∣
Lw

is a canonical Hermitian metric on Lw :=
Φ∗δPΓ(δ)

∣∣
(p(2))−1(w)

for each w ∈ AΓ. From (6.1.5), one easily sees that

(6.3.3) c1(Φ∗δPΓ(δ), hδ) = µ∗ωΓ − (p(2))∗ωΓ on AΓ ×XΓ AΓ.

It is easy to see that the universal cover of AΓ ×XΓ AΓ is given by

(6.3.4) Hn × Cn × Cn = {(τ, Z,W ) ∈ Cn2 × Cn × Cn
∣∣ τ ∈ Hn}.

Thus, the coordinates (τ, Z,W ) may also be regarded as local holomorphic coordi-
nates for AΓ ×XΓ AΓ. Using (6.1.4) and in terms of the coordinates (τ, Z,W ), one
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easily sees from (6.3.3) that c1(Φ∗δPΓ(δ), hδ) can be locally given as

c1(Φ∗δPΓ(δ), hδ) =
√
−1

2π
∂∂̄
[
(ImZ)t( Im τ)−1(ImZ) + (ImZ)t( Im τ)−1(ImW )

(6.3.5)

+ (ImW )t( Im τ)−1(ImZ)
]
.

(6.4). Let π : A → S be a family of abelian varieties parametrized by a complex
manifold S, and let L → A be a holomorphic line bundle over A such that Ls :=
L
∣∣
As

is an ample line bundle over As := π−1(s) for each s ∈ S. Then L determines
a fixed polarization type δ of A. From [MFK, Chapter 7], one knows that for each
so ∈ S and k ∈ Z+, one can always introduce a level k structure on A

∣∣
V

for some
open neighborhood V ⊂ S containing so. Moreover, for sufficiently large k and
upon shrinking V if necessary, one has the base change diagram

(6.4.1)
A
∣∣
V

Ξ→ AΓ ×XΓ AΓ
Φδ→ AΓ ×XΓ ÂΓ(δ)

π ↓ ↓ p(2) ↓ p(2)

V
i→ AΓ

λδ→ ÂΓ(δ)

for some torsion-free arithmetic subgroup Γ ⊂ Sp(2n,Z, δ), and such that

(6.4.2) λδ ◦ i(s) = [Ls] ∈ Â(δ) and Ls = (Φδ ◦ Ξ)∗PΓ(δ)
∣∣
As

for each s ∈ V . Here [Ls] denotes the point in Â(δ) corresponding to Ls, and λδ,
Φδ, PΓ(δ) are as in (6.3). In other words, the map i ◦ λδ is the classifying map
associated to L

∣∣
V

, and the map i is a lifting of i◦λδ to the finite cover AΓ of ÂΓ(δ).
Let hδ be as in (6.3). Then one easily sees from (6.3.3) that Ξ∗hδ is a smooth
Hermitian metric on L

∣∣
V

such that Ξ∗hδ
∣∣
Ls

is a canonical metric on Ls for each
s ∈ V . Finally we remark that one can easily use the above construction and a
partition of unity on S to construct a smooth Hermitian metric h on L such that
h
∣∣
Ls

is a canonical Hermitian metric on Ls for each s ∈ S.
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