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As a generalization of the Dedekind zeta function, Weng defined
the high rank zeta functions and proved that they have standard
properties of zeta functions, namely, meromorphic continuation,
functional equation, and having only two simple poles. The rank
one zeta function is the Dedekind zeta function. For the rank two
case, the Riemann hypothesis is proved for a general number field.
Recently, he defined more general new zeta function associated to
a pair of a semi-simple reductive algebraic group and its maximal
parabolic subgroup. As well as the high rank zeta function, the
new zeta function satisfies standard properties of zeta functions.
In this paper, we prove that the Riemann hypothesis for Weng’s
zeta function attached to the symplectic group of degree four.
This paper includes an appendix written by L. Weng, in which
he explains a general construction for zeta functions associated
to Sp(2n).
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1. Introduction

Let C be a nonsingular projective algebraic curve over a finite field Fq . The zeta function ζC (s) is
defined by the Euler product ζC (s) =∏

P∈C0
(1 − q−s deg(P ))−1, where C0 is the set of all closed points

of C . The theory of ζC (s) is one of the most beautiful and successful in Number theory. A lot of nice
theory was established by modeling on the theory of ζC (s). Recently, Lin Weng defined a class of
general zeta functions starting from the following formula of ζC (s):
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ζC (s) =
∑

[L]∈Pic(C)

qh0(L) − 1

q − 1
q−s deg(L), �(s) > 1, (1)

where Pic(C) is the moduli space of isomorphic classes [L] of the line bundle L on C , and h0(L)

is the dimension of the 0th cohomology H0(C, L) over Fq . First he generalized ζC (s) to the rank
r � 1 zeta function ζC,r(s) by replacing Pic(C) by the moduli space of isomorphic classes of semi-
stable vector bundles on C of rank r. The semi-stability (introduced by Mumford) is needed to get
a reasonable structure of the moduli space, and it is reflected to the standard properties of the zeta
function ζC,r(s).

On the other hand, for the number field case, Iwasawa’s interpretation of the Dedekind zeta func-
tion allows us to get an arithmetic analogue of (1) for the Dedekind zeta function. Let F be a number
field with discriminant �F , A×

F be the idele group of F and w F be the number of roots of unity in F .
We denote by ξF (s) the completed Dedekind zeta function of F . An idele a = (av )v ∈ A×

F defines an
Arakelov line bundle La on X F = Spec O F ∪ X F ,∞ , and every Arakelov line bundles are obtained by this
manner. (More precisely, the non-archimedean part of (av )v defines an invertible sheaf on Spec O F

which is nothing but a projective O F -module of rank one, and the archimedean part of (av )v defines
a Hermitian metric on X F ,∞ .) Moreover we have the topological group isomorphism A×

F /F ∗ � Pic(F ),
where Pic(F ) is the moduli space of isomorphic classes of Arakelov line bundles on X F . Throughout
this relation between ideles and Arakelov line bundles, Iwasawa’s interpretation gives

ξF (s) = w−1
F |�F | s

2

∫
Pic(F )

(
eh0(L) − 1

)
e−s deg(L) dμ(L), �(s) > 1, (2)

where deg(L) is the arithmetic degree of the Arakelov line bundle L and dμ is a certain natural
measure on Pic(F ). In (2), the definition of the arithmetic dimension of the cohomology h0(L) =
h0(X F , L) is naturally given along the line of Iwasawa’s interpretation (see [10, B.2.1], and also [1]), and
Tate’s Fourier analysis on AF gives the Riemann–Roch theorem as a consequence of the Pontryagin
duality and the Poisson summation formula. The Pontryagin duality is interpreted as the Serre duality
under suitable definition of h1, see [10, B.2.3.3, B.2.3.4], and also [11, Section 1.8].

Standing on the arithmetic–geometric formula (2) and Tate’s Fourier analysis on AF , Weng defined
the (completed) rank r zeta function ξF ,r(s) of F by

ξF ,r(s) = |�F | rs
2

∫
M F ,r

(
eh0(E) − 1

)
e−s deg(E) dμ(E), �(s) > 1, (3)

where M F ,r is the moduli space of isomorphic classes [E] of the rank r semi-stable Arakelov vector
bundle E on X F , and dμ is its associated Tamagawa measure, and deg(E) is the arithmetic degree
of E . The arithmetic analogue of h0 and h1 are defined as a natural extension of the line bundle
case having in mind Tate’s method ([10, B.2.3.4], see also [Ar1]). We have ξF ,1(s) = w F ξF (s), since
every Arakelov line bundles are semi-stable. Thanks to the semi-stability the right-hand side of (3)
converges absolutely for �(s) > 1. The arithmetic–geometric Riemann–Roch theorem is proved by
using the Fourier analysis on An

F following Tate [10, B.2.3.4]. As a consequence of the Serre duality and
the Riemann–Roch theorem, the rank r zeta function ξF ,r(s) is continued meromorphically to C with
only two simple poles at s = 0,1, and satisfies the standard functional equation ξF ,r(s) = ξF ,r(1 − s)
[10, B.2.4.2]. Hence the Riemann hypothesis for ξF ,r(s) is stated that all zeros of ξF ,r(s) lie on the
central line �(s) = 1/2.

Remarkable fact for ξF ,r(s) is that the Riemann hypothesis for the rank 2 zeta function ξF ,2(s) is
proved for all algebraic number fields F ([6,11], see also [2]). Moreover all zeros of ξQ,2(s) are simple
[6,4]. Now it is expected that the Riemann hypothesis holds for all r � 1 [12]. Note that the case
r = 1 is the Riemann hypothesis for the Dedekind zeta function. The study of high rank zeta functions
ξF ,r(s) lead us to more general zeta functions.
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In general, ξQ,r(s) is expressed as an integral of the Eisenstein series [12]. For example, the rank
two case is

ξQ,2(s) =
∫

MQ,2[1]
Ê(z, s)dμ(z), (4)

where MQ,2[1] � D0, DT = {z = x + iy | |x| � 1/2, 0 < y � exp(T ), |z| � 1} and

Ê(z, s) = ξ(2s)
∑

γ ∈P (Z)\SL(2,Z)

�(γ z)s (�(s) > 1
)
, P = B =

{(
1 ∗
0 1

)}
.

Recall the group theoretic description of the upper half plane

DT ↪→ H � SL(2,Z) \ SL(2,R)/SO(2),

and the fact that P is a maximal parabolic subgroup of SL(2). These lead us to a zeta function attached
to a pair (G, P ) of a semi-simple reductive algebraic group G and a maximal parabolic subgroup P of
G motivated by (4).

The first important point of our generalization is the relation between the geometric truncation
and the analytic truncation. In the rank two case, we define the analytic truncation ∧T Ê(z, s) by

∧T Ê(z, s) =
{

Ê(z, s), if y � exp(T ), z ∈ D∞,

Ê(z, s) − a0(y, s), if y > exp(T ), z ∈ D∞,

where a0(y, s) is the constant term of the Fourier expansion of Ê(z, s). Then we have

∫
DT

Ê(z, s)dμ(z) =
∫

SL(2,Z)\SL(2,R)/SO(2)

∧T Ê(z, s)dμ(z). (5)

Namely, the geometric truncation DT is equal to the analytic truncation ∧T in the rank two case.
Taking T = 0, we obtain the rank two zeta function ξQ,2(s). This kind of equality holds in widely
general situation if T is sufficiently regular (see A.2.2 of Appendix [13]).

To explain the second point of our generalization, we restrict the case as G = Sp(4) and F = Q for
the simplicity. See Appendix [13] for the detailed theory of Sp(2n), [9] for the zeta functions of the
exceptional group G2, and [14] for the general theory of zeta functions attached to the pair (G, P ) of
the reductive group G and its maximal parabolic subgroup P .

Let S2 be the Siegel upper half-space of degree 2, and let Γ2 = Sp(4,Z)/{±I4} be the Siegel
modular group of degree 2, where I4 is the identity matrix of size 4. Any Z ∈ S2 is written as
Z = X +√−1 Y with X, Y ∈ Sp(4,R) such that Y = �(Z) is positive definite. For Z ∈ S2 and �(s) � 0,
the Siegel–Maaß Eisenstein series is defined by

E2(Z , s) =
∑

( ∗ ∗
C D

)∈P2\Γ2

|Y |−s

‖C Z + D‖−2s

where P2 is the maximal parabolic subgroup {( ∗ ∗
0 ∗
)} ∩ Γ2 attached to the partition 2 = 1 + 1, |Y | =

det Y and ‖C Z + D‖ = |det(C Z + D)|. Let P0 be the upper triangular Borel subgroup in Sp(4), M0 be
the Levi component of P0, X(M0) be the group of characters of M0 defined over Q, �0 ⊂ a∗

0 be the
set of simple roots attached to P0, a0 = HomZ(X(M0),R) and a

+
0 = {T ∈ a0 | 〈α, T 〉 > 0, ∀α ∈ �0}.
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An element T ∈ a
+
0 is called sufficiently regular if 〈α, T 〉 > 0 is large enough for every α ∈ �0. For

sufficiently regular T ∈ a
+
0 , we define

Z T
Sp(4),Q(s) :=

∫
Γ2\S2

∧T E2(Z; s)dμ(Z), (6)

where ∧T is Arthur’s truncation operator with respect to T . Denote by F(T ) the compact subset of
Γ2 \ S2 whose characteristic function is given by ∧T 1. Then we have

Z T
Sp(4),Q(s) =

∫
Γ2\S2

∧T E2(Z; s)dμ(Z) =
∫

F(T )

E2(Z; s)dμ(Z) (7)

for every sufficiently regular T ∈ a
+
0 by Corollary 2.2.1 of Appendix [13, A.2.2, A.2.3]. Remind the

formula (4) of the high rank zeta function ξQ,r(s). Then we understand that Z T =0
Sp(4),Q

(s) is a natural
analogue of ξQ,r(s), if we can give a reasonable arithmetic or geometric meaning of the set F(0) [13,
A.2.7]. Here we have two problems:

(1) How to calculate the integral in (7)?
(2) Can we take T = 0 in (7)?

To attack these problems, we note the formula

E2(Z , s) = Res
z=s+ 1

2

E

(
1; z, s − 1

2
; Z

)
,

where E(ϕ; z1, z2; Z) is the Langlands–Eisenstein series associated to the Borel subgroup P0, (z1, z2) ∈
a∗

0 ⊗ C � C2 and a cuspidal automorphic form ϕ of level M0. The constant function 1 is cuspidal at
the level of M0. (See A.2.5 of Appendix [13] for the definition of E(ϕ; z1, z2; Z), and [9, Section 2], or
better, [12, Sections 2, 3] for the general theory of this one.) Hence we have

Z T
Sp(4),Q(s) =

∫
F(T )

Res
z=s+ 1

2

E

(
1; z, s − 1

2
; Z

)
dμ(Z). (8)

Now we assume that

(
) we can exchange the integration and the taking the residue in (8).

Then we have

Z T
Sp(4),Q(s) = Res

z=s+ 1
2

∫
F(T )

E

(
1; z, s − 1

2
; Z

)
dμ(Z)

= Res
z=s+ 1

2

∫
Γ2\S2

∧T E

(
1; z, s − 1

2
; Z

)
dμ(Z). (9)

The integral on the right-hand side is calculated explicitly in terms of the Weyl group and the Rie-
mann zeta function by the method of Jacquet, Lapid and Rogawski [3, Corollary 17]. Moreover, in such
explicit formula of Z T

Sp(4),Q
(s), we can take T = 0! (see A.2.6 of Appendix [13]).
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Unfortunately, assumption (
) is not allowed in general, even if G = SL(n) (n � 3). In other words,
we cannot define a direct analogue Z T =0

Sp(4),Q
(s) of ξQ,r(s) at present (more precisely, see A.2.7 of Ap-

pendix [13]). Here we turn the consideration. We define the new zeta function by using the right-hand
side of (9). This is the second point of the generalization mentioned above. We define the new zeta
function ξSp(4),Q(s) by

ξSp(4),Q(s) := ξ(2)ξ(s + 1)ξ(2s) ·
[

Res
z=s− 1

2

∫
Γ2\S2

∧T E

(
1; z, s − 3

2
; Z

)
dμ(Z)

]
T =0

. (10)

Here the operation T = 0 is justified via the explicit calculation of the integral by using [3, Corol-
lary 17] (see A.2.7 of Appendix [13]), the factor ξ(2)ξ(s + 1)ξ(2s) is introduced to clearance the
denominator of that explicit formula, and the shift s − 1

2 �→ s − 3
2 is introduced to normalize the

form of functional equation.
By a way similar to the above, the new zeta functions are defined for more general semi-simple re-

ductive algebraic group G defined over Q except for the part of taking residues. To specify the way of
taking residues we need the maximal parabolic subgroup P of G . Then the new zeta function ξ

G/P
Q

(s)

is defined for the pair (G, P ) ([14], see also [9]), and the above ξSp(4),Q(s) is nothing but ξ
Sp(4)/P2
Q

(s).

As well as the high rank zeta function, it is expected that the zeta functions ξ
G/P
Q

(s) satisfy several
standard properties of zeta functions, even if G �= SL(n),Sp(2n). In particular, it is conjectured that
ξ

G/P
Q

(s) has a standard functional equation, and the conjectural functional equation is proved for a
few concrete examples. This is in fact the next most important yet doable question in this direction.

For Sp(4), the zeta function ξSp(4),Q(s) is calculated explicitly as

ξSp(4),Q(s) = 1

s − 2
ξ(2) · ξ(s + 1)ξ(2s) − 1

s + 1
ξ(2) · ξ(s − 1)ξ(2s − 1)

− 1

2s − 2
· ξ(s + 1)ξ(2s) + 1

2s
· ξ(s − 1)ξ(2s − 1)

− 1

(2s − 2)(s + 1)
· ξ(s)ξ(2s) − 1

(2s)(s − 2)
· ξ(s)ξ(2s − 1), (11)

where ξ(s) = π−s/2Γ (s/2)ζ(s) is the completed Riemann zeta function (see A.3.1 of Appendix [13]).
By formula (11), the zeta function ξSp(4),Q(s) is continued meromorphically to C, and satisfies the
functional equation

ξSp(4),Q(s) = ξSp(4),Q(1 − s). (12)

All poles of ξSp(4),Q(s) are four simple poles s = 0,1 and s = −1,2. For the zeros of ξSp(4),Q(s), we
have the following significant result.

Theorem 1 (RH for Sp(4)/Q). All zeros of the zeta function ξSp(4),Q(s) lie on the line �(s) = 1/2.

The entire function

Z(s) := 4s2(s − 1)2 · (s + 1)(2s − 1)(s − 2) · ξSp(4),Q(s) (13)

is more useful than ξSp(4),Q(s) itself for the proof of Theorem 1. We have

Z(s) = (s − 1)(As − A + 1) · χ(s + 1)χ(2s) − (s − 2) · χ(s)χ(2s)

− s(As − 1) · χ(s − 1)χ(2s − 1) − (s + 1) · χ(s)χ(2s − 1), (14)
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where

A = 2ξ(2) − 1 = π/3 − 1 > 0, χ(s) = s(s − 1)ξ(s). (15)

Note that Z(s) has real zeros at s = 0,1 and s = 1/2, since s = 0,1 are simple poles of ξSp(4),Q(s) and
s = 1/2 is its regular point. Thus Theorem 1 is equivalent to the following.

Theorem 2. All zeros of the entire function Z(s) lie on the line �(s) = 1/2 except for two simple zeros at
s = 0,1.

Corollary 3. The Riemann zeta function is a factor of the difference of two entire functions which satisfy the
Riemann hypothesis. More precisely, we have

s(s − 1)ξ(s) · U (s) = V (s) − Z(s), (16)

where

U (s) = (s + 1)χ(2s − 1) − (s − 2)χ(2s),

V (s) = (s − 1)(As − A + 1)χ(s + 1)χ(2s) − s(As − 1)χ(s − 1)χ(2s − 1). (17)

To prove Theorem 2, we use two auxiliary functions f (s) and g(s) defined by

f (s) = (s − 1)(As − A + 1) · χ(s + 1) − (s − 2) · χ(s),

g(s) = f (s) · χ(2s). (18)

By definitions of f (s) and g(s), and (14), we have

Z(s) = g(s) − g(1 − s). (19)

Here we used the functional equation χ(s) = χ(1 − s) of the Riemann zeta function.
Roughly, the proof of Theorem 2 is divided into two steps. First, we prove that all zeros of f (s)

lie in a vertical strip σ0 < �(s) < 0 except for finitely many exceptional zeros (Section 2). Then we
obtain a nice product formula of f (s) by a variant of Lemma 3 in [8] (Lemma 5, it is proved in
Section 4). Second, by using the product formula of f (s), we prove that all zeros of Z(s) lie on the
line �(s) = 1/2 except for two simple zeros s = 0,1 (Section 3). In this process, we use the result of
Lagarias [5] concerning the explicit upper bound for the difference of the imaginary parts of the zeros
of the Riemann zeta function. In the final section (Section 5) we give the proof of Corollary 3.

Finally, we comment on high rank zeta functions ξQ,r(s) and new zeta functions ξSL(n),Q(s) :=
ξ

G/P
Q

(s) attached to (G, P ) = (SL(n), Pn−1,1). Roughly, ξQ,r(s) corresponds to (Res → ∫
)-ordered con-

struction, and new zeta function ξSL(n),Q(s) corresponds to (
∫ → Res)-ordered construction. Here

“(Res → ∫
)-ordered” means that we first take residues then take the integral, similarly, “(

∫ → Res)-
ordered” means that we first take the integral then take residues. We have ξQ,2(s) = ξSL(2),Q(s), since
we do not need taking residue. However, in general, there is a discrepancy between ξQ,r(s) and
ξSL(n),Q(s), because of the obstruction for the exchanging of

∫
and Res. For example, ξQ,3(s) has

only two singularities at s = 0,1, but ξSL(3),Q(s) has four singularities at s = 0,1/3,2/3,1. However,
we expect that the distribution of the zeros of ξSL(n),Q(s) is quite regular as well as ξQ,r(s). In fact, we
have the Riemann hypothesis for ξSL(2),Q(s) by ξQ,2(s) = ξSL(2),Q(s) and the result of [6], and the au-
thor proved the Riemann hypothesis for ξSL(3),Q(s) in [8]. Moreover the author checked the Riemann
hypothesis for ξSL(4),Q(s) and ξSL(5),Q(s) computationally. As observed in [8], the study of ξSL(3),Q(s)
gives an information for the Riemann zeta function. In addition, Corollary 3 gives a relation between
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ξSp(4),Q(s) and the Riemann zeta function. As these, the study of ξ
G/P
F (s) is not only interesting itself

but also suggestive for the study of the Dedekind zeta function.

2. First step for Theorem 2

The aim of this section is to prove the following proposition.

Proposition 4. Let f (s) be the function defined in (18). Then f (s) has the product formula

f (s) = f (0)eB ′s
(

1 − s

ρ0

)(
1 − s

ρ0

)
· Π(s) (B ′ � 0), (20)

where

Π(s) =
∏

β<1/2
0�=β∈R

(
1 − s

β

) ∏
β<1/2
γ >0

[(
1 − s

ρ

)(
1 − s

ρ

)]
(ρ = β + iγ ), (21)

where ρ0 is a complex zero of f (s) with �(ρ0) > 1/2, β is the real zeros of f (s) and ρ = β + iγ are other
zeros of f (s). The product converges absolutely on every compact subset of C if we take the product with the
bracket.

This is proved by checking that f (s) satisfies all conditions of Lemma 5 below.

Lemma 5. Let F (s) be an entire function of genus zero or one. Suppose that

(i) F (s) is real on the real axis,
(ii) there exists σ0 > 0 such that all zeros of F (s) lie in the vertical strip

σ0 < �(s) < 1/2 (22)

except for finitely many zeros,
(iii) the number of zeros of F (s) on the right half-plane �(s) � 1/2 is finite,
(iv) there exists C > 0 such that

N(T ) � C T log T as T → ∞, (23)

where N(T ) is the number of zeros of F (s) satisfying 0 � �(ρ) < T .
(v) F (1 − σ)/F (σ ) is positive for sufficiently large σ > 0, and

F (1 − σ)/F (σ ) → 0 as σ → ∞. (24)

Then F (s) has the product formula

F (s) = C smeB ′s ∏
0�=ρ∈R

(
1 − s

ρ

) ∏
�(ρ)>0

[(
1 − s

ρ

)(
1 − s

ρ̄

)]
(25)

with

B ′ � 0. (26)

The product on the right-hand side converges absolutely on every compact subset of C if we take the product
with the bracket.
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Remark 6. This lemma is a variant of Lemma 3 of [8]. Differently from Lemma 3 of [8], we allow F (s)
to have finitely many zeros in �(s) � 1/2. The most important part of this lemma is the nonnegativity
of B ′ .

We prove Lemma 5 in Section 4. For f (s) in (18), condition (i) is trivial. Under (ii), condition (iv) is
easily proved by using the well-known estimate |χ(s)| � exp(C |s| log |s|) and Jensen’s formula (see [8,
§4.1] for example). Therefore it remains to prove (ii), (iii) and (v) for f (s).

2.1. Proof of (v)

First we show that f (1 − σ)/ f (σ ) is positive for sufficiently large σ > 0. Using the functional
equation of χ(s), we have

f (1 − σ)

f (σ )
= σ(Aσ − 1) · χ(σ − 1) + (σ + 1) · χ(σ )

(σ − 1)(Aσ − A + 1) · χ(σ + 1) − (σ − 2) · χ(σ )
.

Clearly the numerator is positive for large σ > 0. By [6, pp. 109–110], we have |χ(2σ − 1)/χ(2σ)| < 1
for σ > 1/2. Replacing 2σ − 1 by σ

∣∣χ(σ )/χ(σ + 1)
∣∣< 1 (σ > 0). (27)

Hence the denominator is also positive for large σ > 0, since A = π/3 − 1 > 0. Now we prove (24).
We have

f (1 − σ)

f (σ )
= σ(Aσ − 1)

(σ − 1)(Aσ − A + 1)
· χ(σ − 1)

χ(σ + 1)
· 1 + g(σ )

1 − h(σ )

= (
1 + O

(
σ−1)) · χ(σ − 1)

χ(σ + 1)
· 1 + g(σ )

1 − h(σ )
,

where

g(σ ) = σ + 1

σ(Aσ − 1)
· χ(σ )

χ(σ − 1)
, h(σ ) = σ − 2

(σ − 1)(Aσ − A + 1)
· χ(σ )

χ(σ + 1)
.

We have

χ(σ − 1)

χ(σ + 1)
= (

1 + O
(
σ−1)) ξ(σ − 1)

ξ(σ + 1)
= (

1 + O
(
σ−1)) · π · Γ ((σ − 1)/2)ζ(σ − 1)

Γ ((σ + 1)/2)ζ(σ + 1)

= (
1 + O

(
σ−1)) · Γ ((σ − 1)/2)

Γ ((σ + 1)/2)
· O (1)

for large σ > 0. Using the Stirling formula

Γ (z) =
√

2π

z

(
z

e

)z(
1 + O

(|z|−1)) (|z| � 1, |arg z| < π − ε
)
,

we obtain

χ(σ − 1)

χ(σ + 1)
= O

(
σ−1) as σ → +∞. (28)

For g(σ ), we have
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g(σ ) = σ + 1

σ(Aσ − 1)
· (1 + O

(
σ−1)) · π−1/2 Γ (σ/2)ζ(σ )

Γ ((σ − 1)/2)ζ(σ − 1)

= σ + 1

σ(Aσ − 1)
· (1 + O

(
σ−1)) · Γ (σ/2)

Γ ((σ − 1)/2)
· O (1)

= σ + 1

σ(Aσ − 1)
· (1 + O

(
σ−1)) · O

(√
σ
)
.

Here we used the Stirling formula in the third equation. Thus

g(σ ) = O
(
σ−1/2) as σ → +∞. (29)

For h(σ ), by using (27), we have

h(σ ) = O
(
σ−1) as σ → +∞. (30)

From (28)–(30), we obtain

f (1 − σ)

f (σ )
= O

(
σ−1) as σ → +∞.

This shows that f (s) satisfies (v).

2.2. Proof of (ii) and (iii)

Lemma 7. There exists σ1 < 0 such that the function f (s) in (18) has no zero on the left half-plane �(s) < σ1 .

Proof. Assume that σ = �(s) < 0. We have

f (s) = (s − 1)(As − A + 1)χ(s + 1)
[
1 − R(s)

]
with

R(s) = s − 2

(s − 1)(As − A + 1)
· χ(s)

χ(s + 1)
.

The factor (s − 1)(As − A + 1)χ(s + 1) has no zero in the left half-plane �(s) < 1 − (1/A) � −20.187,
because of the Euler product of χ(s). Use the functional equation of χ(s),

R(s) = s − 2

(s − 1)(As − A + 1)

χ(1 − s)

χ(−s)
= s − 2

(s + 1)(As − A + 1)

ξ(1 − s)

ξ(−s)

= s − 2

(s + 1)(As − A + 1)

Γ ((1 − s)/2)√
π Γ (−s/2)

ζ(1 − s)

ζ(−s)
.

Therefore

∣∣R(s)
∣∣� 1√

π

∣∣∣∣ s − 2

(s + 1)(As − A + 1)

∣∣∣∣
∣∣∣∣Γ ((1 − s)/2)

Γ (−s/2)

∣∣∣∣ζ(−σ)ζ(1 − σ).

If σ = �(s) < 0, we have |arg(−s/2)| < π/2 and |arg(1− s)/2| < π/2. Hence we can apply the Stirling
formula for �(s) < 0. We obtain

∣∣∣∣Γ ((1 − s)/2)

Γ (−s/2)

∣∣∣∣= |s|1/2

√ ·
∣∣∣∣1 − 1

s

∣∣∣∣
−1

· 1 + O (|s|−1)

1 + O (|s|−1)
= O

(|s|1/2).

2
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On the other hand

ζ(−σ)ζ(1 − σ) → 1 (σ → −∞).

Therefore

∣∣R(s)
∣∣= 1√

2π
· |s|1/2

|(As − A + 1)|
(
1 + o(1)

)= 1

A
√

2π |s|
(
1 + o(1)

)
,

if σ = �(s) < 0, and |s|, |σ | are both large. This implies Lemma 7. �
Lemma 8. The entire function f (s) in (18) has only finitely many zeros on the right half-plane �(s) > 0. In
particular, the number of zeros of f (s) on �(s) � 1/2 is finite.

Proof. We have

f (s) = (s − 1)(As − A + 1)χ(s + 1)

[
1 − s − 2

(s − 1)(As − A + 1)
· χ(s)

χ(s + 1)

]
. (31)

By [6, pp. 109–110], we have |χ(2s − 1)/χ(2s)| < 1 for any �(s) > 1/2. Replacing 2s − 1 by s, we
obtain

∣∣∣∣ χ(s)

χ(s + 1)

∣∣∣∣< 1
(�(s) > 0

)
. (32)

Let D be the region

D :=
{

s ∈ C

∣∣∣�(s) � 0,

∣∣∣∣ s − 2

(s − 1)(As − A + 1)

∣∣∣∣� 1

}
.

Then f (s) �= 0 if s /∈ D and �(s) � 0, because of (31) and (32). The region D is bounded, since

∣∣∣∣ s − 2

(s − 1)(As − A + 1)

∣∣∣∣< 1

for large |s|. Hence the number of zeros of f (s) in �(s) � 0 is finite. �
Proof of (ii) and (iii). Lemmas 7 and 8 show that (ii) and (iii) hold for f (s). �
2.3. Proof of Proposition 4

By the results in Sections 2.1 and 2.2, we can apply Lemma 5 to f (s). On the other hand, we have
f (0) � 1.047 �= 0. Hence the proof of Proposition 4 is completed by the following lemma.

Lemma 9. The number of zeros of f (s) in �(s) � 1/2 is just two. They are nonreal zeros and conjugate each
other. The values of them are about s � 0.927 ± i · 3.20.

Remark 10. This lemma is used to simplify the proof of Theorem 2. However the explicit values
of exceptional zeros are not essential in the proof. We already know explicitly the region that f (s)
possibly have a zero. From this fact, to prove Theorem 2, it is sufficient that we know the explicit
number of zeros of f (s) in that region.
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Proof. The domain D ∩{�(s) � 1/2} is contained in the rectangle R = [1/2,2]×[−10,10], where D is
the region in the proof of Lemma 8. Because of the argument principle, the number of zeros of f (s)
in R is given by

1

2π i

∫
∂ R

f ′

f
(s)ds.

In particular, the value of this integral is an integer. Therefore we can check computationally that
the value of this integral is just two (for example Mathematica, Maple, PARI/GP, etc.). Hence we
conclude that f (s) has just two zeros in the rectangle R . By another computational way, we find the
approximated values of these two zeros are s � 0.927 ± i · 3.20. �
3. Second step for Theorem 2

Proof of Theorem 2. We have the following three assertions.

Proposition 11. Z(s) has no zero on the right half-plane �(s) � 20.

Proposition 12. Z(s) has no zero in the region 1/2 < σ < 20, |t| � 22.

Proposition 13. Z(s) has only one simple zero s = 1 in the region 1/2 < σ < 20, |t| � 22.

Then, as a consequence of these three results and the functional equation of Z(s), all zeros of Z(s)
lie on the line �(s) = 1/2 except for simple zeros s = 0,1/2,1. �

Among the above three assertions, the hardest part is in the proof of Proposition 12. To prove
Proposition 12, we use the results in the first step and a result of Lagarias [5] concerning the distri-
bution of the zeros of the Riemann zeta function.

3.1. Proof of Proposition 11

We have

Z(s) = (s − 1)(As − A + 1) · χ(s + 1)χ(2s)
(
1 − R1(s) − R2(s) − R3(s)

)
, (33)

where

R1(s) = (s − 2) · χ(s)

(s − 1)(As − A + 1) · χ(s + 1)
,

R2(s) = s(As − 1) · χ(s − 1)χ(2s − 1)

(s − 1)(As − A + 1) · χ(s + 1)χ(2s)
,

R3(s) = (s + 1) · χ(s)χ(2s − 1)

(s − 1)(As − A + 1) · χ(s + 1)χ(2s)
. (34)

For each Ri(s) (i = 1,2,3), we have

∣∣R1(s)
∣∣= ∣∣∣∣ s − 2

(s + 1)(As − A + 1)

√
π Γ (s/2)

Γ ((s + 1)/2)

ζ(s)

ζ(s + 1)

∣∣∣∣
� π1/2

∣∣∣∣ s − 2

(s + 1)(As − A + 1)

∣∣∣∣
∣∣∣∣ Γ (s/2)

Γ ((s + 1)/2)

∣∣∣∣ζ(σ )ζ(σ + 1), (35)



562 M. Suzuki / Journal of Number Theory 129 (2009) 551–579
∣∣R2(s)
∣∣= π3/2

∣∣∣∣ (s − 1)(s − 2)(As − 1)

s(s + 1)(As − A + 1)

Γ ((s − 1)/2)Γ (s − 1/2)

Γ ((s + 1)/2)Γ (s)

ζ(s − 1)ζ(2s − 1)

ζ(s + 1)ζ(2s)

∣∣∣∣
� 2π3/2

∣∣∣∣ (s − 2)(As − 1)

s(s + 1)(As − A + 1)

∣∣∣∣
∣∣∣∣Γ (s − 1/2)

Γ (s)

∣∣∣∣ζ(σ + 1)ζ(σ − 1)ζ(2σ)ζ(2σ − 1), (36)

and

∣∣R3(s)
∣∣= π

∣∣∣∣ s − 1

s(As − A + 1)

Γ (s/2)Γ (s − 1/2)

Γ ((s + 1)/2)Γ (s)

ζ(s)ζ(2s − 1)

ζ(s + 1)ζ(2s)

∣∣∣∣
� π

∣∣∣∣ s − 1

s(As − A + 1)

∣∣∣∣
∣∣∣∣Γ (s − 1/2)

Γ (s)

∣∣∣∣ζ(σ + 1)ζ(σ )ζ(2σ)ζ(2σ − 1). (37)

Using the Stirling formula, we obtain∣∣R1(s)
∣∣= O

(|s|−1/2), ∣∣R2(s)
∣∣= (|s|−3/2), ∣∣R3(s)

∣∣= (|s|−1) (38)

as |s| → ∞ on the right half-plane. Therefore Z(s) �= 0 for some right half-plane �(s) � σ2. Using the
monotone decreasing property of ζ(σ ) as σ → +∞ and the effective version of Stirling’s formula [7]

Γ (s) =
(

2π

s

) 1
2
(

s

e

)s{
1 + Θ

(
1

8|s|
)} (�(s) > 1

)
, (39)

where the notation f = Θ(g) means | f | � g , we have∣∣R1(s)
∣∣� 0.5,

∣∣R2(s)
∣∣� 0.1,

∣∣R3(s)
∣∣� 0.3 (40)

for �(s) � 20 (in fact, these bounds already hold for �(s) � 10). These estimates imply Z(s) �= 0
for �(s) � 20 by (33), since (s − 1)(As − A + 1) · χ(s + 1)χ(2s) has no zero in the right half-plane
�(s) � 20.

3.2. Proof of Proposition 12

Let ρ0 = β0 + iγ0 (γ0 > 0) be the zero of f (s) in Lemma 9. By Proposition 4 we have

f (s) = f (0)eB ′s
(

1 − s

ρ0

)(
1 − s

ρ0

)
· Π(s) (B ′ � 0), (41)

where

Π(s) =
∏

β<1/2
0�=β∈R

(
1 − s

β

) ∏
ρ=β+iγ

β<1/2, γ >0

[(
1 − s

ρ

)(
1 − s

ρ

)]
(ρ = β + iγ ). (42)

Have in mind that all zeros of Π(s) lie in σ0 < �(s) < 1/2 for some σ0 by Lemmas 8 and 9. By
definition (18) of g(s),

Z(s) = g(s) ·
(

1 − g(1 − s)

g(s)

) (
g(s) = f (s) · χ(2s)

)
. (43)

On the other hand, by (41),

∣∣∣∣ g(1 − s)

g(s)

∣∣∣∣= eB ′(1−2σ) ·
∣∣∣∣Π(1 − s)

Π(s)

∣∣∣∣ ·
∣∣∣∣ s − 1 + ρ0

s − ρ
· s − 1 + ρ0

s − ρ

∣∣∣∣ ·
∣∣∣∣χ(2s − 1)

χ(2s)

∣∣∣∣. (44)

0 0
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Because B ′ � 0 by Lemma 5,

eB ′(1−2σ) � 1
(�(s) > 1/2

)
. (45)

For the ratio of Π(s) in (44), we have

∣∣∣∣Π(1 − s)

Π(s)

∣∣∣∣= ∏
ρ=β+iγ

β<1/2, γ >0

(∣∣∣∣1 − s − ρ

s − ρ

∣∣∣∣ ·
∣∣∣∣1 − s − ρ

s − ρ

∣∣∣∣
)

< 1
(�(s) > 1/2

)
, (46)

by term-by-term argument as in [6] by using β < 1/2 and

∣∣∣∣1 − s − ρ

s − ρ

∣∣∣∣
2

= 1 − (2σ − 1)(1 − 2β)

(σ − β)2 + (t − γ )2
,

where ρ = β + iγ is a zero of f (s). It remains to give an estimate for

r(s) :=
∣∣∣∣ s − 1 + ρ0

s − ρ0
· s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣χ(2s − 1)

χ(2s)

∣∣∣∣. (47)

To evaluate r(s), we use the following lemma essentially.

Lemma 14. (See [5].) For any real t with |t| � 12 there exist at least two distinct zeros ρ = β + iγ of ξ(s) such
that 0 < β � 1/2 and

|t − γ | � 10.1. (48)

Proof. Suppose t � 25. Then there exist at least two distinct zeros ρ = β + iγ of ξ(s) satisfying
0 < β � 1/2 and |t − γ | < 10.1 by applying Lemma 5 in [8] to t + 5.1 and t − 5.1 (Lemma 5 in [8]
is essentially Lemma 3.5 of [5]). For 12 � t < 25, estimate (48) also holds for two zeros because ξ(s)
has zeros at s = ±14.13,±21.02,±25.01. �

Using Lemma 14 we show the following.

Lemma 15. Let ρ0 = β0 + iγ0 � 0.927 + i · 3.20 be the zero of f (s) in Lemma 9. Let s = σ + it with 1/2 <

σ � 20 and t � 22. Then there exist at least two distinct zeros ρ = β + iγ of ξ(s) such that 0 < β � 1/2,
|t − γ | � 10.1,

∣∣∣∣ s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣< 1 (49)

and

∣∣∣∣ s − 1 + ρ0

s − ρ0

∣∣∣∣ ·
∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣< 1. (50)

Proof. By squaring (49) and (50) we have

(σ + β0 − 1)2 + (t ± γ0)
2

(σ − β )2 + (t ± γ )2
· (2σ + β − 2)2 + (t − γ )2

(2σ − β)2 + (t − γ )2
< 1. (51)
0 0
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To prove Lemma 15 it is sufficient that (51) holds for 0 < β � 1/2, |t − γ | < 10.1, 1/2 < σ � 20 and
t � 22, because of Lemma 14. To establish (51) in that conditions it suffices to show that

(σ + β0 − 1)2 + (t ± γ0)
2

(σ − β0)2 + (t ± γ0)2
· (2σ − 3

2 )2 + 102

(2σ − 1
2 )2 + 102

< 1 (52)

by a similar reason in the later half of §4.3 in [8]. This inequality is equivalent to

(2σ − 1)
(
8(t ± γ0)

2 − P (σ )
)
> 0, (53)

where P (σ ) = 8(4β0 − 3)σ 2 − 8(4β0 − 3)σ − 8β2
0 + 818β0 − 409. Using the value β0 � 0.927 we

find that P (σ ) < 2580 for 1/2 < σ < 20. On the other hand, using the value γ0 � 3.20 we find
that 8(t ± γ0)

2 > 2590 for t � 22 since |t ± γ0| = t ± γ0 > 18 for t � 22. Hence (53) holds, and it
implies (51). �

Lemma 15 and Z(s) = Z(s) imply

∣∣r(s)
∣∣< 1 for 1/2 < σ � 20, |t| � 22 (54)

by taking two distinct zeros of ξ(s) in this region, since we have the inequality

∣∣∣∣2s − 1 − (1 − ρ)

2s − ρ

∣∣∣∣< 1
(�(s) > 1/2

)
, (55)

for other terms in r(s), where ρ is a zero of ξ(s) (0 < �(ρ) < 1). Estimates (45), (46) and (54) show
that

∣∣∣∣ g(1 − s)

g(s)

∣∣∣∣< 1 (56)

for 1/2 < σ � 20, |t| � 22. By (43) this estimate implies Proposition 12, since g(s) has no zero in
1/2 < σ � 20, |t| � 22 by Lemmas 8 and 9.

3.3. Proof of Proposition 13

Because the region 1/2 < σ � 20, |t| � 22 is finite, we can check Proposition 13 by using the
computer as in the proof of Lemma 9.

4. Proof of Lemma 5

We prove the lemma only if F (s) has genus one, since if F (s) has genus zero it is easily proved
by a way similar to the case of genus one. The genus one assumption is equivalent to the Hadamard
product factorization

F (s) = e A+Bssm
∏
ρ

(
1 − s

ρ

)
exp(s/ρ) (m ∈ Z�0) (57)

converges absolutely and uniformly on every compact subsets of C. It is also equivalent to
∑

ρ |ρ|−2 <

∞. Assumption (i) implies the symmetry of the set of zeros under the conjugation ρ �→ ρ . It follows
that the set of zeros ρ = β + iγ , counted with multiplicity, is partitioned into blocks B(ρ) comprising
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{ρ,ρ} if γ > 0 and {ρ} if β �= 0 and γ = 0. Each block is labeled with the unique zero in it having
γ � 0. Using assumption (ii), we show

F (s) = sme A+B ′s ∏
B(ρ)

( ∏
ρ∈B(ρ)

(
1 − s

ρ

))
(58)

where the outer product on the right-hand side converges absolutely and uniformly on every compact
subsets of C. This assertion holds because the block convergence factors exp(c(B(ρ))s) are given by
c(B(ρ)) = 2β|ρ|−2 for γ > 0. Assumption (ii) implies |β − 1/2| < σ0. Hence

∑
B(ρ)

∣∣c(B(ρ)
)∣∣� ∑

0�=ρ: real

|ρ|−1 + (2σ0 + 1)
∑
ρ

|ρ|−2 < ∞.

Thus the convergence factors exp(c(B(ρ))s) can be pulled out of the product. Hence we have (58)
with

B ′ = B +
∑
B(ρ)

c
(

B(ρ)
)
. (59)

Using assumptions (iii)–(v) we show

B ′ � 0. (60)

By (24) in assumption (v) we have

R � log

(
F (1 − σ)

F (σ )

)
→ −∞ as σ → +∞. (61)

Using (58) we have

F (1 − σ)

F (σ )
= eB ′(1−2σ)

(
σ − 1

σ

)m ∏
ρ=β∈R

σ − 1 + β

σ − β

∏
ρ=β+iγ

γ >0

(σ − 1 + β)2 + γ 2

(σ − β)2 + γ 2
.

Thus

log

(
F (1 − σ)

F (σ )

)
= B ′(1 − 2σ) + m log

(
1 − 1

σ

)
+

∑
ρ=β∈R

log

(
1 − 1 − 2β

σ − β

)

+
∑

ρ=β+iγ
γ >0

log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)
. (62)

Note that

log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)
< 0 for σ > 1/2 (63)

if β < 1/2, and

log

(
1 − 1

σ

)
, log

(
1 − 1 − 2β

σ − β

)
, log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)
→ 0 as σ → +∞



566 M. Suzuki / Journal of Number Theory 129 (2009) 551–579
for any fixed ρ = β + iγ . By assumption (iii), (63) holds except for finitely many zeros. Hence if we
suppose B ′ < 0, (61) and (62) imply

∣∣∣∣ ∑
ρ=β+iγ

γ >0

log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)∣∣∣∣� 2|B ′|σ (64)

for large σ > 1/2, because the number of real zeros is also finite by assumptions (ii) and (iii). On the
other hand, for sufficiently large σ > 1/2, we have

∣∣∣∣ ∑
ρ=β+iγ

γ >0

log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)∣∣∣∣ �
∣∣∣∣ ∑
ρ=β+iγ

γ >0

log

(
1 − (1 − 2σ0)(2σ − 1)

(σ − 1/2)2 + γ 2

)∣∣∣∣

� (2σ − 1)
∑

ρ=β+iγ
γ >0

1

(σ − 1/2)2 + γ 2
.

The sum on the right-hand side is written as the Stieltjes integral

∞∫
γ0

dN(t)

(σ − 1/2)2 + t2
.

Using (23) in (iv) we have

∞∫
γ0

dN(t)

(σ − 1/2)2 + t2
�

∞∫
γ0

(log t)dt

(σ − 1/2)2 + t2
� log(σ + γ0)

σ − 1/2
.

Hence we obtain

∣∣∣∣ ∑
ρ=β+iγ

γ >0

log

(
1 − (1 − 2β)(2σ − 1)

(σ − β)2 + γ 2

)∣∣∣∣� log(σ + γ0) (65)

for sufficiently large σ > 1/2. This contradicts (64). Thus (60) holds.

5. Proof of Corollary 3

By Theorem 2, it remains to show that all zeros of V (s) in (16) lie on the line �(s) = 1/2.
Taking v(s) = (s − 1)(As − A + 1)χ(s + 1) and using the functional equation of χ(s), we have
V (s) = v(s)χ(2s) − v(1 − s)χ(2s − 1). All zeros of v(s) lie in the strip 1 − (1/A) < �(s) < 0 ex-
cept for the simple zero s = 1. Then we find that all zeros of V (s) lie on the line �(s) = 1/2 by a way
similar to Section 2 replacing ρ0 by 1.
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Appendix: Zeta functions for Sp(2n)Sp(2n)Sp(2n) ✩

Lin Weng a,b

a Graduate School of Mathematics, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
b Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Padur PO, Siruseri 603103, India

A.1. Introduction

Associated to a number field F is the genuine high rank zeta function ξF ,r(s) for every fixed
r ∈ Z>0. Being natural generalizations of (completed) Dedekind zeta functions, these functions satisfy
canonical properties for zetas as well. Namely, they admit meromorphic continuations to the whole
complex s-plane, satisfy the functional equation ξF ,r(1 − s) = ξF ,r(s) and have only two singularities,
all simple poles, at s = 0, 1. Moreover, it is known that all zeros of ξF ,2(s) lie on the central line
Re(s) = 1

2 . (We in fact now expect that the Riemann Hypothesis holds for all ξF ,r(s).)
Recall that ξF ,r(s) is defined by

ξF ,r(s) := (|�F |) rs
2

∫
M F ,r

(
eh0(F ,Λ) − 1

) · (e−s)deg(Λ)
dμ(Λ), Re(s) > 1

where �F denotes the discriminant of F , M F ,r the moduli space of semi-stable O F -lattices of rank r
(here O F denotes the ring of integers), h0(F ,Λ) and deg(Λ) denote the 0th geo-arithmetic cohomol-
ogy and the arithmetic degree of the lattice Λ, and dμ(Λ) a certain naturally associated Tamagawa
type measure on M F ,r . (For details, see [W0,W1,W3] for basic theory, and [LS,W2,S], see also [H], for
the Riemann Hypothesis arguments.)

Algebraic groups associated to O F -lattices are general linear group GL and special linear group SL.
A natural question then is whether principal lattices associated to other reductive groups G and

✩ Partially supported by JSPS.
E-mail address: weng@math.kyushu-u.ac.jp.

mailto:weng@math.kyushu-u.ac.jp
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their associated zeta functions can be introduced and studied. In this paper we start with symplectic
group Sp. In contrasting with a geo-arithmetic method used for high rank zetas, the one adopted in
this paper is rather analytic. And to avoid further complication, we here only work out the full details
for Sp(4) over Q, even a general framework for Sp over F is outlined. As a concrete result, we obtain
a precise formula for the zeta function ξSp(4),Q(s) associated to Sp(4) over Q, by studying a certain
Siegel–Eisenstein period.

The newly obtained zeta ξSp(4),Q(s) for Sp(4) over Q proves to be canonical as well. For example,
ξSp(4),Q(s) can be meromorphically extended to the whole complex s-plane, satisfies the standard
functional equation

ξSp(4),Q(1 − s) = ξSp(4),Q(s)

and admits only four singularities, all simple poles, at s = −1,0,1,2. Most importantly, ξSp(4),Q(s)
satisfies the RH, a result due to Suzuki [S2]:

All zeros of ξSp(4),Q(s) lie on the central line Re(s) = 1/2.

A.2. Periods for Sp(2n)

A.2.1. Siegel–Maaß Eisenstein series
Let G = Sp(2n) with G(R) = Sp(2n,R) the symplectic group of degree n over R. Denote by S := Sn

the so-called Siegel upper half-space of size n, and for any Z ∈ S, write Z = X + √−1Y according
to its real and imaginary parts, so that Y = Im Z > 0 and Zt = Z is symmetric. Moreover, for any
M = ( A B

C D

) ∈ Sp(2n,R), as usual, set M〈Z〉 := (A Z + B) · (C Z + D)−1 and write Y (M) := Im M〈Z〉.

This defines a natural transitive action of Sp(2n,R) on Sn . Note that the stabilizer of
√−1En

is simply SO(2n,R) ∩ Sp(2n,R), consequently, we obtain the following well-known identification
Sp(2n,R)/SO(2n,R) ∩ Sp(2n,R) � Sn .

Introduce the Siegel modular group Γn := {diag(±1,±1, . . . ,±1)} \ Sp(n,Z). Let Pn := {( ∗ ∗
0 ∗
) ∈ Γ

}
be a subgroup of Γ (associated to a certain standard maximal parabolic subgroup).

Fix Z ∈ Sp(2n,R), define then the associated Siegel–Maaß Eisenstein series, or the same, the
Siegel–Epstein zeta function by

En(Z; s) :=
∑

γ ∈Pn\Γn

|Y |−s

‖C Z + D‖−2s
.

A.2.2. Arthur’s analytic truncation and Eisenstein period
As usual, for symplectic group G = Sp(2n), and for a parabolic group P with Levi decomposition

P = MN with M the Levi and N the nilpotent, denote by a0 (resp. aP ) the space of characters as-
sociated to the Borel (resp. to P ). Denote by �0 the corresponding collection of simple roots. By
definition, an element T ∈ a0 is said to be sufficiently regular and denoted by T � 0 if 〈α, T 〉 � 0
are large enough for all α ∈ �0. Fix such a T . Let φ : Γ \ Sn → C be a smooth function. We de-
fine Arthur’s analytic truncation ∧T φ (for φ with respect to the parameter T ) to be the function on
Sp(2n,Z) \ Sp(2n,R) given by

(∧T φ
)
(Z) :=

∑
P : standard

(−1)rank(P )
∑

δ∈P (Z)\Sp(2n,Z)

φP (δg) · τ̂P
(

H P (δg) − T
)
,

where φP denotes the constant term of φ along with the standard parabolic subgroup P , τ̂P is the
characteristic function of the so-called positive cone in aP , and H P (Z) := logM mP (Z) is an element
in aP . (For unknown notation, all standard, see e.g., [Ar1,Ar2,JLR], and/or [We-1,W3].)

Fundamental properties of Arthur’s truncation may be summarized in the following:

Theorem 2.2.1. ([Ar1,Ar2], see also [OW].) For a sufficiently positive T in a0, we have
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(1) ∧T φ is rapidly decreasing, if φ is an automorphic form on G(Z) \ Sn,
(2) ∧T ◦ ∧T = ∧T ,
(3) ∧T is self-adjoint,
(4) ∧T 1 is a characteristic function of a compact subset of G(Z) \ Sn.

Denote by F(T ) the compact subset of G(Z) \ Sn whose characteristic function is given by ∧T 1
in (4).

Corollary 2.2.1. ([W1,W3], see also [KW].) Let T � 0 be a fixed element in a0. For an automorphic form φ on
G(Z) \ Sn,

∫
G(Z)\Sn

∧T φ(g)dg =
∫

F(T )

φ(g)dg.

Proof. By (1),
∫

G(Z)\Sn
∧T φ(g)dg is well defined. Moreover,

∫
G(Z)\Sn

∧T φ(g)dg

=
∫

G(Z)\Sn

1(g) · (∧T ◦ ∧T )φ(g)dg
(
by (2) above

)

=
∫

G(Z)\Sn

∧T 1(g) · ∧T φ(g)dg
(
by (3) above since ∧T φ(g) is rapidly decreasing

)

=
∫

G(Z)\Sn

(∧T ◦ ∧T )1(g) · φ(g)dg

(
by (3) again since φ is of moderate growth and ∧T 1 is compactly supported

)
=

∫
G(Z)\Sn

∧T 1(g) · φ(g)dg
(
by (2) again

)

=
∫

F(T )

φ(g)dg
(
by (4)

)
. �

A.2.3. Siegel–Maaß-period: an analog of high rank zeta
Motivated by our study on the high rank zeta associated to SL(n) in [W1,W3], we define the Siegel–

Maaß-period for Sp(n) over Q, a special kind of the so-called Eisenstein period, by

Z T
Sp(2n),Q(s) :=

∫
Γ \Sn

∧T En(Z; s)dμ(Z).

This is then a function on s depending also on the parameter T . By Corollary 2.2.1,

Z T
Sp(2n),Q(s) =

∫
F(T )

En(Z; s)dμ(Z).

Thus the study of Z T
Sp(2n),Q

(s) may be carried out from that for the Siegel–Maaß series En(Z; s).
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A.2.4. Siegel–Eisenstein series
In general, it is very difficult, most of the time, quite impossible, to calculate Eisenstein periods. How-

ever, if the original automorphic form from which the Eisenstein series in use is defined is cuspidal,
then an advanced version of Rankin–Selberg method can be applied to evaluate them. Motivated by
this, we in this subsection explain a method due to Diehl to realize the Siegel–Maaß series, which
may be viewed as an Eisenstein series associated to the constant function one on a certain maximal
parabolic, as the residue of the so-called Siegel–Eisenstein series associated to the constant function
one on the Borel.

As usual, corresponding to the partition n = r + 1 + 1 + · · · + 1, introduce the standard parabolic

subgroup Pr := {( A ∗
0 B

) ∈ Γ
}

, where A =
⎛
⎜⎝

Ht

1 0

∗
. . .

1

⎞
⎟⎠, B =

⎛
⎜⎝

H−1

1 ∗

0
. . .

1

⎞
⎟⎠ with H = H(r), |H| = 1. Ac-

cordingly, define the associated Siegel–Eisenstein series by

Er(Z; sr, . . . , sn) :=
∑

γ ∈Pr\Γ

n∏
v=r

∣∣Y (γ )v
∣∣−sv

.

Here for a matrix A = (aij)
n
i, j=1, denote by Av the matrix Av := (aij)

v
i, j=1, 1 � v � n.

It is known that such Siegel–Eisenstein series are naturally related to the Siegel zeta functions as-
sociated to the standard parabolic subgroup Qr of SL(n). More precisely, let R := {diag(±1, . . . ,±1)} \
SL(n,Z) and Qr the standard parabolic subgroup associated to the partition n = r +1+1+· · ·+1 con-

sisting of matrices in SL(n,Z) of the form

⎛
⎜⎝

H
1 ∗

0
. . .

1

⎞
⎟⎠ with H = H(r), |H| = 1. Define the associated

Siegel zeta functions by

ξ∗
r (Y ; sr, . . . , sn−1) :=

∑
N∈Qr\R

n−1∏
v=r

∣∣Y [N]v
∣∣−sv

for all 1 � r � n − 1. Then, we have

Lemma 2.4.1. (See [D].) With the same notation as above,

(i) Er(Z; sr, . . . , sn) =
∑

γ ∈B\Γ

∣∣Y (γ )
∣∣−sn · ξ∗

r

(
Y (γ ); sr, . . . , sn−1

);
(ii) There exists a constant c depending only on r such that

Ressr= r+1
2

(
ξ∗

r (Y ; sr, . . . , sn−1)
)= cr · ξ∗

r+1

(
Y ; sr+1 + r

2
, sr+2, . . . , sn−1

)
.

Consequently, we have, up to constant factors,

Ressr+1+ r
2 = (r+1)+1

2
Ressr= r+1

2
ξ∗

r (Y ; sr, . . . , sn−1) = Ressr+1+ r
2 = (r+1)+1

2
ξ∗

r+1

(
Y ; sr+1 + r

2
, . . . , sn−1

)

= ξ∗
r+2

(
Y ; sr+2 + r + 1

2
, . . . , sn−1

)
.
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Thus, by taking r = 1 and repeating this process, we obtain the following

Ressn−1=1 · · ·Ress2=1Ress1=1
(
ξ∗

1 (Y ; s1, s2, . . . , sn−1)
)= |Y |− n−1

2

up to a constant factor. In particular, we get the following

Lemma 2.4.2. Up to a constant factor,

Ressn−1=1 · · ·Ress2=1Ress1=1
(

Er(Z; sr, . . . , sn)
)= En

(
Z; sn + n − 1

2

)
.

Proof. Indeed, up to constant factors,

Ressn−1=1 · · ·Ress2=1Ress1=1 Er(Z; sr, . . . , sn)

=
∑

γ ∈B\Γ

∣∣Y (γ )
∣∣−sn · Ressn−1=1 · · ·Ress2=1Ress1=1ξ

∗
r

(
Y (γ ); sr, . . . , sn−1

)

=
∑

γ ∈B\Γ

∣∣Y (γ )
∣∣−sn · ∣∣Y (γ )

∣∣− n−1
2 = En

(
Z; sn + n − 1

2

)
. �

A.2.5. Relation with Langlands’ Eisenstein series
To facilitate further discussions, we next write classical Siegel–Eisenstein series in terms of Lang-

lands’ language [L].
Let λ = (z1, z2, . . . , zn) ∈ a0, then for Z = X + √−1Y ∈ S, set

aλ(Z) =
n∏

v=1

a−zv
v with av = |Y v |/|Y v−1|

and the Langlands–Eisenstein series associated to the constant function one on the Borel is defined
by

E(1;λ; Z) :=
∑

δ∈B(Z)\Γ
aλ(δZ).

As such, then the so-called power function

p−s(Y ) :=
n∏

μ=1

|Yμ|−sμ

is given by

n∏
μ=1

|Yμ|−sμ = p−s(Y ) = aλ(Y ) =
n∏

v=1

a−zv
v

= |Y1|−z1+z2 |Y2|−z2+23 · · · |Yn−1|−zn−1+zn |Yn|−zn .
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This then gives the following relations among zi ’s and s j ’s:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 = z1 − z2,

s2 = z2 − z3,

. . .

sn−1 = zn−1 − zn,

sn = zn.

Consequently, by Lemma 2.4.2, we have the following

Lemma 2.5.1. With the same notation as above,

(i) E(1; z1, z2, . . . , zn; Z) = E1(Z; s1, s2, . . . , sn);
(ii) up to a suitable constant factor,

En

(
Z , zn + n − 1

2

)
= Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1

(
E(1; z1, z2, . . . , zn; Z)

)
.

In particular, in the case n = 2, i.e, for Sp(4), we have

Resz1−z2=1
(

E(1; z1, z2; Z)
)= E2

(
Z , z2 + 1

2

)
.

A.2.6. Advanced Rankin–Selberg & Zagier method
The advantage of using E(1; z1, z2, . . . , zn; Z) instead of directly using En(Z , s) is that the Eisen-

stein periods for E(1; z1, z2, . . . , zn; Z) can be evaluated. Indeed, if ϕ is an automorphic form of
P ′ = M ′N ′-level, where P ′ is a standard parabolic subgroup of a reductive group G , then we can
form the associated Eisenstein series

E(ϕ;λ; g) :=
∑

δ∈P ′(Z)\G(Z)

mP ′ (δg)λ+ρ · ϕ(δg), λ ∈ C P ′ .

Theorem 2.6.1. (See [JLR, Corollary 17].) Let P = MN be a minimal parabolic subgroup and let ϕ be a P -level
cusp form. Let E(ϕ;λ; g) be the Eisenstein series associated to ϕ. Then

∫
G(Z)\G(R)

∧T E(g,ϕ,λ)dg

is equal to

v
∑

w∈W

e〈wλ−ρ,T 〉∏
α∈�0

〈wλ − ρ,α∨〉
∫

M(Z)\M(R)1×K

M(w, λ)ϕ(mk)dm dk,

where v = Vol({∑α∈�0
aαα∨: 0 � aα < 1}), W denotes the Weyl group and M(w, λ) denotes the so-called

intertwining operator.

This is an advanced version of Rankin–Selberg & Zagier methods [Z,W0].
In particular, we have the following
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Corollary 2.6.1. With the same notation as above, up to a constant factor,

∫
Sp(2n,Z)\S

(∧T E(1; z1, z2, . . . , zn; M)
)

dμ(M) =
∑

w∈W

e〈wλ−ρ,T 〉∏
α∈�0

〈wλ − ρ,α∨〉 ·
∏

α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

.

Proof. In fact, by the Gindikin–Karpelevich formula, we have

M(w, λ) =
∏

α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

.

Here ξ(s) is the completed Riemann zeta function with the usual Γ -factors, namely, ξ(s) =
π− s

2 Γ ( s
2 )ζ(s), where ζ(s) is the Riemann zeta function. �

A.2.7. Periods for Sp(2n) over Q

Recall that the Siegel–Maaß-period Z T
Sp(2n),Q

(s), an analog of high rank zeta for Sp(2n), is equal to

∫
F(T )

En(Z; s)dμ(Z).

Thus to evaluate the Siegel–Maaß-period Z T
Sp(2n),Q(s), it suffices to evaluate the integration

∫
F(T )

Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1
(

E(1; z1, z2, . . . , zn; Z)
)

dμ(Z).

Consequently, if we were able to freely make an interchange between

(i) the operation of taking integration
∫
F(T )

and
(ii) the operation of taking residues Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1,

it would be sufficient for us to evaluate

Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1

( ∫
F(T )

E(1; z1, z2, . . . , zn; Z)dμ(Z)

)
,

or better, to evaluate the expression

Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1

( ∑
w∈W

e〈wλ−ρ,T 〉∏
α∈�0

〈wλ − ρ,α∨〉 ·
∏

α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

)

since by Corollary 2.2.1,

∫
F(T )

E(1; z1, z2, . . . , zn; Z)dμ(Z) =
∫

Sp(2n,Z)\Sn

ΛT E(1; z1, z2, . . . , zn; Z)dμ(Z).

Unfortunately, this interchange of orders of two operations is not allowed in general. As examples,
one can observe this by working on SL(n) and by comparing the poles for the resulting expressions.
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On the other hand, even with the existence of such discrepancies, the function

Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1

( ∑
w∈W

e〈wλ−ρ,T 〉∏
α∈�0

〈wλ − ρ,α∨〉 ·
∏

α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

)

proves to be extremely natural and nice. To see this, and to make the discussion simpler, let now
concentrate to the case when T = 0.

Definition.

(1) The period ωSp(2n),Q(λ) associated to Sp(2n) over Q is defined by

ωSp(2n),Q(λ) :=
∑

w∈W

(
1∏

α∈�0
〈wλ − ρ,α∨〉 ·

∏
α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

)
.

(2) The period Z Sp(2n)

Q
(zn) associated to Sp(2n) over Q is defined by

Z Sp(2n)

Q
(zn) := Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1

×
( ∑

w∈W

(
1∏

α∈�0
〈wλ − ρ,α∨〉 ·

∏
α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

))
.

Remarks.

(1) Recall that in the original discussions in Sections A.2.2, A.2.3 and A.2.6, T was assumed to be
sufficiently positive, for the reason of Corollary 2.2.1. However, with the use of the above concrete
expression, T can be chosen to be any element in a0.

(2) For high rank zetas, i.e., in the case where the corresponding algebraic group is SL(n), the cor-
responding F(T ) makes sense also for T = 0. Indeed, F(0) coincides with the moduli space of
semi-stable lattices of volume one and rank n. Consequently, the corresponding period after
putting T = 0 gives essentially the high rank zeta ξQ,r(s) there. So to obtain an analogue of high
rank zeta for Sp(2n) geo-arithmetically, we need to understand F(0) geo-arithmetically.

A.3. Zetas for Sp(2n)

A.3.1. Zeta for Sp(4)

Now we focus on the case G = Sp(4). Then �0 = {e1 − e2,2e2}. There are 4 positive roots
{e1 ± e2,2e1,2e2} and the Weyl group consists of 8 Weyl elements

{
1, (12), c1, c2, (12)c1, (12)c2, (12)c1c2, c1c2

}
,
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where (12) is the lower indices change and ci ’s are sign changes. Also ρ = 2e1 + e2. Consequently, we
have the following table for the Weyl action on positive roots:

e1 − e2 2e2 | e1 + e2 2e1

1 e1 − e2 2e2 | e1 + e2 2e1

(12) e2 − e1 2e1 | e1 + e2 2e2

c1 −e1 − e2 2e2 | −e1 + e2 −2e1

c2 e1 + e2 −2e2 | e1 − e2 2e1

(12)c1 −e1 − e2 2e1 | e1 − e2 2e2

(12)c2 e1 + e2 −2e1 | e2 − e1 2e2

(12)c1c2 e1 − e2 −2e1 | −e1 − e2 −2e2

c1c2 e2 − e1 −2e2 | −e1 − e2 2e1

So to calculate the part 1
〈λ,w−1α1〉−1

· 1
(〈λ,w−1α2〉−1

, we need to use the left half

e1 − e2 2e2

1 = 1−1 e1 − e2 2e2

(12) = (12)−1 e2 − e1 2e1

c1 = c−1
1 −e1 − e2 2e2

c2 = c−1
2 e1 + e2 −2e2

(12)c1 = ((12)c2)
−1 −e1 − e2 2e1

(12)c2 = ((12)c1)
−1 e1 + e2 −2e1

(12)c1c2 e1 − e2 −2e1

c1c2 e2 − e1 −2e2

and to calculate the zeta part
∏

α>0,wα<0
ξ(〈λ,α∨〉)

ξ(〈λ,α∨〉+1)
, we need to use the following table:

e1 − e2 2e2 | e1 + e2 2e1

1 × × | × ×
(12) 0 × | × ×
c1 0 × | 0 0

c2 × 0 | × ×
(12)c1 0 × | × 0

(12)c2 × 0 | 0 ×
(12)c1c2 × 0 | 0 0

c1c2 0 0 | 0 0

where ‘×’ means the corresponding positive root will not contribute and ‘0’ means the corresponding
positive root will contribute as it changes to a negative root under the corresponding Weyl action.
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From all this, by a routine but direct calculation, which we decide to omit, we obtain the following
table

1
〈λ,w−1α1〉−1

· 1
〈λ,w−1α2〉−1

| ∏
α>0,wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉+1)

1 1
(z1−z2−1)

1
(z2−1)

| 1

(12) 1
(z2−z1−1)

1
(z1−1)

| ξ(z1−z2)
ξ(z1−z2+1)

c1
1

(−z1−z2−1)
1

(z2−1)
| ξ(z1−z2)

ξ(z1−z2+1)
· ξ(z1+z2)

ξ(z1+z2+1)
· ξ(z1)

ξ(z1+1)

c2
1

(z1+z2−1)
1

(−z2−1)
| ξ(z2)

ξ(z2+1)

(12)c1
1

(z1+z2−1)
1

(−z1−1)
| ξ(z1−z2)

ξ(z1−z2+1)
· ξ(z1)

ξ(z1+1)

(12)c2
1

(−z1−z2−1)
1

(z1−1)
| ξ(z1+z2)

ξ(z1+z2+1)
· ξ(z2)

ξ(z2+1)

(12)c1c2
1

(z1−z2−1)
1

(−z1−1)
| ξ(z2)

ξ(z2+1)
· ξ(z1+z2)

ξ(z1+z2+1)
· ξ(z1)

ξ(z1+1)

c1c2
1

(−z1+z2−1)
1

(−z2−1)
| ξ(z1−z2)

ξ(z1−z2+1)
· ξ(z2)

ξ(z2+1)
· ξ(z1+z2)

ξ(z1+z2+1)
· ξ(z1)

ξ(z1+1)
.

As such, by taking the residue along the singular line z1 − z2 = 1 and setting z1 = b + 1, z2 = b, we
get, for the product

1

〈λ, w−1α1〉 − 1
· 1

〈λ, w−1α2〉 − 1
·

∏
α>0,wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

,

the following table of contributions

1 1
b−1

(12) 1
−2

1
b

1
ξ(2)

c1
1

−2b−2
1

b−1
1

ξ(2)
ξ(2b+1)
2b+2)

ξ(b+1)
ξ(b+2)

c2 0

(12)c1
1

2b
1

−b−2
1

ξ(2)
ξ(b+1)
ξ(b+2)

(12)c2 0

(12)c1c2
1

−b−2
ξ(b)

ξ(b+1)
ξ(2b+1)
ξ(2b+2)

ξ(b+1)
ξ(b+2)

c1c2
1

−2
1

−b−1
1

ξ(2)
ξ(b)

ξ(b+1)
ξ(2b+1)
ξ(2b+2)

ξ(b+1)
ξ(b+2)

This then leads to the following explicit expression of the period Z Sp(4)

Q
:

Z Sp(4)

Q
(b) = 1

b − 1
+ 1

−2

1

b

1

ξ(2)
+ 1

−2b − 2

1

b − 1

1

ξ(2)

ξ(2b + 1)

2b + 2)

ξ(b + 1)

ξ(b + 2)

+ 1

2b

1

−b − 2

1

ξ(2)

ξ(b + 1)

ξ(b + 2)
+ 1

−b − 2

ξ(b)

ξ(b + 1)

ξ(2b + 1)

ξ(2b + 2)

ξ(b + 1)

ξ(b + 2)

+ 1

−2

1

−b − 1

1

ξ(2)

ξ(b)

ξ(b + 1)

ξ(2b + 1)

ξ(2b + 2)

ξ(b + 1)

ξ(b + 2)
.

Now multiplying the period Z Sp(4)

Q
(b) with the factor ξ(b+2) ·ξ(2b+2), for the purpose of clearing

up the xi function factors appeared in the denominators, and with the factor ξ(2) for the purpose of
clearing up the xi special values appeared in the denominators, we then obtain the following function

ξo
Sp(4),Q(s) := (

ξ(2) · ξ(s + 2)ξ(2s + 2)
) · Z Sp(4)

Q
(s).
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Consequently,

ξo
Sp(4),Q(b) = 1

b − 1
ξ(2) · ξ(b + 2)ξ(2b + 2) − 1

b + 2
ξ(2) · ξ(b)ξ(2b + 1)

− 1

2b
· ξ(b + 2)ξ(2b + 2) + 1

2(b + 1)
· ξ(b)ξ(2b + 1)

− 1

(2b)(b + 2)
· ξ(b + 1)ξ(2b + 2) + 1

(−2b − 2)(b − 1)
· ξ(2b + 1)ξ(b + 1),

and ξo
Sp(4),Q(b) satisfies the following functional equation

ξo
Sp(4),Q(−b − 1) = ξo

Sp(4),Q(b).

Definition and Proposition. Define the zeta function ξSp(4),Q(s) for Sp(4) over Q by

ξSp(4),Q(s) := ξo
Sp(4),Q(s − 1).

Then

(1) The zeta function ξSp(4),Q(s) is given by

ξSp(4),Q(s) = 1

s − 2
ξ(2) · ξ(s + 1)ξ(2s) − 1

s + 1
ξ(2) · ξ(s − 1)ξ(2s − 1)

− 1

2s − 2
· ξ(s + 1)ξ(2s) + 1

2s
· ξ(s − 1)ξ(2s − 1)

− 1

(2s − 2)(s + 1)
· ξ(s)ξ(2s) − 1

(2s)(s − 2)
· ξ(s)ξ(2s − 1).

(2) It satisfies the standard functional equation

ξSp(4),Q(1 − s) = ξSp(4),Q(s).

(3) There are only four singularities, all simple poles, at s = −1,0,1,2 and their residue at s = 2
coincides with the volume of the compact domain F(0), that is,

Ress=2ξSp(4),Q(s) = ξ(2)ξ(4) − 1

4
ξ(2) − 1

3
ξ(2) + 1

4
.

Remark. The formula for the volume is arranged in the form to reflect the fact that F(0) is obtained
from the total fundamental domain F(∞) whose volume is given by ξ(2)ξ(4), a result due to Siegel,
by subtracting two cuspidal neighborhoods corresponding to two maximal parabolic subgroups whose
volumes are 1

4 ξ(2) and 1
3 ξ(2) respectively and adding a cuspidal neighborhood corresponding to Borel

subgroups whose volume is simple 1
4 . For related results, please refer to [KW].

Furthermore, we have the following result of M. Suzuki [S2]:

Riemann Hypothesis for ξSp(4),Q(s)ξSp(4),Q(s)ξSp(4),Q(s). All zeros of ξSp(4),Q(s) lie on the central line Re(s) = 1
2 .
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A.3.2. Zetas for Sp(2n)

Recall that we have introduced the associated period Z Sp(2n)

Q
(zn) for Sp(2n) over Q by

Z Sp(2n)

Q
(zn) := Reszn−1−zn=1 · · ·Resz2−z3=1Resz1−z2=1

×
( ∑

w∈W

1∏
α∈�0

〈wλ − ρ,α∨〉 ·
∏

α>0, wα<0

ξ(〈λ,α∨〉)
ξ(〈λ,α∨〉 + 1)

)
.

Clearly, there are minimal integers I , J , constants ai , bi , i = 1,2, . . . , I , and c j, j = 1,2, . . . , J , such

that after multiplying the factor
∏I

i=1 ξ(ai zn + bi) ·∏ J
j=1 ξ(c j), the resulting function

ξo
Sp(2n),Q(zn) :=

(
I∏

i=1

ξ(ai zn + bi) ·
J∏

j=1

ξ(c j)

)
· Z Sp(2n)

Q
(zn)

admits only finitely many poles and there are no special ξ-values appeared in the denominators.

Conjecture (Functional equation). There exists a constant cn such that

ξo
Sp(2n),Q(cn − s) = ξo

Sp(2n),Q(s).

Definition. The zeta function ξSp(2n),Q(s) of Sp(2n) over Q is defined by

ξSp(2n),Q(s) := ξo
Sp(2n),Q

(
s + cn − 1

2

)
.

Remark. This in fact is a special case of a more general construction. For details, please see [W4].

As a direct consequence of the above conjecture, ξSp(2n),Q(s) satisfies the following functional equa-
tion

ξSp(2n),Q(1 − s) = ξSp(2n),Q(s).

With such a normalization, we then expect the following generalized RH for our zetas ξSp(2n),Q(s).

The Riemann HypothesisSp(2n),QSp(2n),QSp(2n),Q. All zeros of ξSp(2n),Q(s) lie on the line Re(s) = 1
2 .
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