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Abstract.

Introduction

Theory of zeta functions plays a central role in arithmetic. In this paper, we
use a new approach to study them. More precisely, we first reveal an intrinsic
relation between higher rank zeta functions and Epstein zeta functions, and
expose a fundamental relation between stability of lattices and distances of
the corresponding modular points to cusps. Applying to rank two, we then
explicitly express the associated zeta functions in terms of Dedekind zetas.
Based on such an expression, finally, we show that all zeros of rank two zetas
are entirely sitting on the critical line whose real part equals to 1

2
.

As such, this work is built up on classics of number theory. Many fine
pieces of algebraic and analytic number theory are beautifully unified under
our zetas:

1) New Geo-Arithmetic cohomology for lattices over number fields, by fur-
ther developing Tate’s fundamental work, known as Tate’s Thesis;

2) A definition of new zeta functions for number fields, as a natural gen-
eralization (and hence offering a natural framework) for the classical
Dedekind zeta functions;

3) A relation between our zeta and Epstein type zeta functions, via the well-
known Mellin transformation;

4) A classification of lattices first according to their volumes and unit twists,
in connection with an intrinsic relation between GLn and SLn over a
number field K using Dirichlet’s Unit Theorem; and hence a relation
between the space of isometry classes of rank two lattices over ring of
integers and the upper half space model;
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5) A construction of a fundamental domain for the action of special auto-
morphism group of rank two lattices on the associated upper half space
using normalized Siegel type distances to cusps, by generalizing Siegel’s
construction for totally real fields;

6) An intrinsic relation between stability of lattices and distances to cusps,
i.e., a lattice is semi-stable if and only if its distances to all cusps are at
least one, by deepening an algebraic result of T. Hayashi;

7) A Fourier expansion for Epstein zeta function, along with the classical
line;

8) An explicit expression of rank two zeta in terms of the associated
Dedekind zeta function, as an application of Rankin-Selberg & Zagier
method;

9) An analogue of the Riemann Hypothesis for rank two zetas, based on a
result of M. Suzuki and J. Lagarias.

1. High rank zeta functions and Eisenstein series

1.1 Projective OK-modules

Let K be an algebraic number field with OK its integer ring. An OK-module
M is called projective if there exists an OK-module N such that M ⊕ N is
free. We have

(i) For an exact sequence 0 →M0 →M1 →M → 0, M1 �M0 ⊕M .
(ii) All fractional OK-ideals are projective; and

(iii) Rank 1 projective OK -submodules inK are simply fractional OK-ideals.

Thus, by finiteness of the ideal class group of K , up to isomorphism, there
are only finitely many rank 1 projective OK -modules in K . Choose integral
OK -ideals ai, i = 1, . . . , h with h = h(K), the class number of K , such that

(a) Any rank 1 projective OK -module is isomorphic to one of the ai; while
(b) None of the ai and aj are isomorphic to each other if i �= j, i, j =

1, . . . , h.

Fix a choice of ai, 1 ≤ i ≤ h satisfying (a) and (b) above and use a as a
running symbol for them.

Clearly for a fractional ideal a, Pa := Pr;a := Or−1
K ⊕ a is a rank r

projective OK-module. Conversely, we have

Proposition. (See e.g. [8]).

(1) For fractional ideals a and b, Pr;a � Pr;b iff a � b;
(2) For any projective OK -module P , there exists a fractional ideal a such

that P � Pa.
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In this paper, we use the natural inclusion of fractional ideals inK to embed
Pr;a into Kr, and write an element in Kr as a column vector.

Lemma. For an OK-isomorphism A : Pr;a → Pr;b induced from A ∈
GL(r, F ), b � (detA) ·a. In particular, if a, b are integral, (i) detA ∈ UK ,
the group of units of K; (ii) a = b; and (iii) A ∈ AutOK

(Pr;a).

1.2 Semi-stable OK -lattices

Let σ be an Archimedean place of K , and Kσ its σ-completion. Then Kσ

equals to either R or C. Accordingly, we call σ real or complex and write
σ : R or σ : C.

By definition, an OK -lattice Λ consists of (1) a projective OK-module
P = P (Λ) of finite rank; and (2) an inner product on the vector space
Vσ := P ⊗OK

Kσ for each of the Archmidean place σ ofK . Set V = P⊗Z R
so that V =

∏
σ∈S∞ Vσ, where S∞ denotes the collection of all Archimedean

places, since as a Z-module, an OK-ideal is of rank n = r1 + 2r2. Here
n = [K : Q], r1 (resp. r2) denotes the number of real (resp. complex) places.

Let P be a rank r projective OK-module. Denote by GL(P ) :=
AutOK

(P ). Let Λ̃ := Λ̃(P ) be the space of (OK -)lattices Λ whose underly-
ing OK-module is P . For σ ∈ S∞, let Λ̃σ be the space of inner products on
Vσ; if a basis is chosen for Vσ as a real or a complex vector space accordingly,
Λ̃σ may be realized as an open set of a real or complex vector space. (See 1.3
below.) We have Λ̃ =

∏
σ∈S∞ Λ̃σ from which we obtain a natural topology

on Λ̃.
Given Λ ∈ Λ̃ and u,w ∈ Vσ, let 〈u,w〉Λ,σ or 〈u,w〉ρΛ(σ) denote the

value of the inner product on the vectors u and w associated to the lattice
Λ. As such, if A ∈ GL(P ), we may define a new lattice A · Λ in Λ̃ by
〈u,w〉A·Λ,σ := 〈A−1 · u,A−1 · w〉Λ,σ. Clearly, the map v 
→ Av gives an
isometry Λ ∼= A·Λ of the lattices. Conversely, suppose thatA : Λ1

∼= Λ2 is an
isometry of OK-lattices, each of which is in Λ̃. Then, A defines an element,
also denoted by A, of GL(P ). Clearly Λ2

∼= A · Λ1. Therefore, the orbit set
GL(P )\Λ̃(P ) can be regarded as the set of isometry classes of OK-lattices
whose underlying OK -modules are all isomorphic to the fixed P .

Also if T ∈ R>0, then from Λ, we can produce a new OK-lattice called
Λ[T ] by multiplying each of the inner products on Λ, or better, on Λσ for
σ ∈ S∞, by T 2. Let then Λ = Λ(P ) be the quotient of Λ̃ by the equivalence
relation Λ ∼ Λ[T ]. As such, Λ admits a natural topological structure as well.
Furthermore, as it becomes clear later, the construction of Λ from Λ̃ plays
a key role when we want to get the compactness statement for our moduli
spaces.
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Let Λ be an OK-lattice with underlying OK-module P . Then via restriction
of inner products, any submodule P1 ⊂ P can be made into an OK-lattice.
Call the resulting OK -lattice Λ1 := Λ ∩ P1 and write Λ1 ⊂ Λ. If moreover,
P/P1 is projective, we say that Λ1 is a sublattice of Λ. Via orthogonal projec-
tions, we can give P/P1 an OK-lattice structure, the quotient lattice Λ/Λ1 of
Λ by Λ1.

Restriction of scalars makes an OK -lattice into a Z-lattice. Recall that V =
Λ ⊗Z R =

∏
σ∈S∞ Vσ. Define an inner product on the real vector space V

by 〈u,w〉∞ :=
∑

σ:R〈uσ, wσ〉σ +
∑

σ:C Re 〈uσ, wσ〉σ. Let ResK/QΛ be the
Z-lattice obtained by equipped P , regarding as a Z-module, with this inner
product (at the unique infinite place ∞ of Q).

We let rk(Λ) denote the OK-module rank of P (or of Λ) and let dim(Λ)
denote the rank of P as Z-module. Define the Lebesgue volume of Λ, denoted
by VolLeb(Λ), to be the (co)volume of the lattice ResK/QΛ inside its inner
product space V .

Example. Take P = OK and for each place σ, let {1} be an orthonormal
basis of Vσ = Kσ. This makes OK into an OK-lattice OK = (OK ,1) in a
natural way and VolLeb(OK) = 2−r2 ·

√
∆F , where ∆F denotes the absolute

value of the discriminant of K .

More generally, take P = a an fractional idea of K and equip the same
inner product as above on Vσ. Then a becomes an OK -lattice a = (a,1) in a
natural way with rk(a) = 1, and VolLeb(a) = 2−r2 · (N(a) ·

√
∆K), where

N(a) denotes the norm of a.
Due to the appearence of the factor 2−r2 , we also define the canon-

ical volume of Λ, denoted by Volcan(Λ) or simply by Vol(Λ), to be
2r2rk(Λ)VolLeb(Λ). So in particular, Vol(a) = N(a)·

√
∆K ,with Vol(OK) =√

∆K as its special case.
The canonical measure has an advantage theoretically.

Arakelov-Riemann-Roch Formula: For an OK-lattice Λ of rank r,

− log(Vol(Λ)) = deg(Λ) − r

2
log ∆K .

(For the reader who does not know the definition of Arakelov degree, he or
she may simply take this relation as a definition.)

Definition. An OK lattice Λ is called semi-stable (resp. stable) if for any
proper sublattice Λ1 of Λ, Vol(Λ1)rk(Λ) ≥ (resp. >)Vol(Λ)Vol(Λ1).

The last inequality is equivalent to VolLeb(Λ1)rk(Λ) ≥ VolLeb(Λ)Vol(Λ1).
So it does not matter which volume, the canonical one or the Lebesgue one,
we use.

Remark. Even we introduce the stability for lattices independently, many
others, notably Stuhler, introduced the stability earlier. (See e.g. [Gr], [St].)
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1.3 Space of OK -lattices via special linear groups

Via the Minkowski embedding K ↪→ Rr1 × Cr2 , we obtain a natural embed-
ding for P : P := O(r−1)

K ⊕ a ↪→ K(r) ↪→ (Rr1 ×Cr2)r ∼= (Rr)r1 × (Cr)r2 ,
which is simply the space V = Λ⊗ZR above. Thus, our lattice Λ then is deter-
mined by a metric structure on V =

∏
σ∈S∞ Vσ, or better, on (Rr)r1×(Cr)r2 .

Hence, we need to determine all metrized structures on (Rr)r1 × (Cr)r2 .
For this, let us start with each component Rr (resp. Cr).

(i) For any g ∈ GL(r,R) (resp. g ∈ GL(r,C)), there is an associated
metric structure ρ(g) or simply g on Rr (resp. on Cr) given by the matrix
g · gt (resp. g · gt). More precisely, for x, y ∈ Rr (resp. Cr) 〈x, y〉g :=
〈x, y〉ρ(g) := x · (ggt) · yt = (xg) · (yg)t;

(ii) Two matrices g and g′ in GL(r,R) (resp. in GL(r,C)) correspond to the
same metrized structure on Rr (resp. Cr) iff there isA ∈ GL(r,R) (resp.
GL(r,C)) s.t. g′ = g · A and A · At = Er (resp. A · At = Er). That is
to say, g and g′ differ from each other by a matrix A from the orthogonal
group O(r) (resp. from the unitary group U(r)).

Therefore, metrized structures on (Rr)r1 × (Cr)r2 are parametrized by the
space

(GL(r,R)/O(r))r1 × (GL(r,C)/U(r))r2 .

Next we will shift from the general linear group GL to the special lin-
ear group SL. We start with a local discussion on OK-lattice structures. For
complex places τ , clearly, by fixing a branch of the n-th root, we get natural
identifications

GL(r,C) → SL(r,C) × C∗ → SL(r,C) × S1 × R∗
+

g 
→
(

1
r
√

det g
g,det g

)

→

(
1

r
√

det g
g, det g

| det g| , |det g|
)

and U(r) → SU(r) × S1, U 
→ ( 1
r√detU

U,detU), where SL (resp. SU )

denotes the special linear group (resp. the special unitary group) and S1

denotes the unit circle {z ∈ C : |z| = 1} in C∗. Consequently, we obtain
GL(r,C)/U(r) ∼= (SL(r,C)/SU(r)) × R∗

+.

For real places σ, one might try to use the same approach for C above. But
r
√

det g is not always well-defined in the reals. Accordingly, we modify our
approach by using the subgroups GL+(r,R) := {g ∈ GL(r,R) : det g >
0} and O+(r) := {A ∈ O(r,R) : det g > 0}. Clearly, (i) O+(r) = SO(r),
the special orthogonal group consisting of these A’s in O(r) whose deter-
minants are exactly 1; (ii) GL(r,R)/O(r) ∼= GL+(r,R)/SO(r); and
(iii) There is an identification GL+(r,R) → SL(r,R) × R∗

+, g 
→
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(
1

r
√

det g
g,det g

)
. Consequently, we have GL(r,R)/O(r) ∼= (SL(r,R)/

SO(r)) × R∗
+.

Hence, metrized structures on V =
∏

σ∈S∞ Vσ � (Rr)r1 × (Cr)r2 are
parametrized by the space ((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2)×
(R∗

+)r1+r2 . Furthermore, when we really work with OK-lattice structures on
P , i.e., with the space Λ = Λ(P ), from the above parametrized space of
metric structures on V =

∏
σ∈S∞ Vσ, we need to further factor out GL(P ),

i.e., the automorphism group AutOK
(O(r−1)

K ⊕ a) of O(r−1)
K ⊕ a as OK-

modules.
As such, naturally, now we want (a) to study the structure of the group

AutOK
(O(r−1)

K ⊕ a) in terms of SL and units; and (b) to see how this group
acts on the space of metrized structures

((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ) × (R∗
+)r1+r2 .

View AutOK
(O(r−1)

K ⊕ a) as a subgroup of GL(r,K). Easily, for an
element A = (aij) ∈ AutOK

(O(r−1)
K ⊕ a), detA ∈ UK . Moreover

AutOK
(O(r−1)

K ⊕ a) = GL(r,O(r−1)
K ⊕ a)

:=

{
(aij) ∈ GL(r,K) :

arr&aij ∈ OK ,

air ∈ a, arj ∈ a−1,
i, j = 1, . . . , r − 1;

det(aij) ∈ UK

}
.

In other words,

AutOK
(O(r−1)

K ⊕ a)

=

A ∈ GL(r,K) ∩


a

OK

...

a

a−1 . . . a−1 OK

 : detA ∈ UK

 .

To go further, we still need to see how AutOK
(O(r−1)

K ⊕ a) decomposes
with respect to the shift fromGL to SL adopted in the discussion on metrized
structures. For this purpose, we first introduce the subgroup Aut+OK

(O(r−1)
K ⊕

a) of AutOK
(O(r−1)

K ⊕ a) consisting of these elements whose local determi-
nants at real places are all positive. Clearly, diag(−1, 1, . . . , 1) is an element
of O(r), which is supposed to be factored out in our final discussion. Note
also thatGL(r,R)/O(r) � GL+(r,R)/O+(r) andO+(r) = SO(r). Con-
sequenly, we obtain a natural identification of quotient spaces between

AutOK
(O(r−1)

K ⊕ a)\((GL(r,R)/O(r))r1 × (GL(r,C)/U(r))r2 )
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and

Aut+OK
(O(r−1)

K ⊕ a)\((GL+(r,R)/O+(r))r1 × (GL(r,C)/U(r))r2 ).

As such, to shift further to the special linear group SL, we need Dirichlet’s
Unit Theorem, i.e., finiteness of the group of units. Locally,

GL(r,R)/O(r) →GL+(r,R)/SO(r)

→(SL(r,R)/SO(r)) × (R∗
+ · diag(1, . . . , 1))

� (SL(r,R)/SO(r)) × R∗
+

via

[A] 
→ [A+] 
→
(

1
r
√

detA+
A+,diag( r

√
detA+, . . . ,

r
√

detA+)
)


→
(

1
r
√

detA+
A+,

r
√

detA+

)
for real places, and

GL(r,C)/U(r) →(SL(r,C) × C)/(SU(r) × S1)

→(SL(r,C)/SU(r)) × (R∗
+ · diag(1, . . . , 1))

�
(
SL(r,C)/SU(r)) × R∗

+

via

[A] 
→ [A] 
→
(

1
r
√

detA
A,diag( r

√
detA, . . . , r

√
detA)

)

→

(
1

r
√

detA
A,

r
√

detA
)
,

for complex places. Ideally, we want to have corresponding identifications for
elements in AutOK

(O(r−1)
K ⊕a). However, this cannot be achieved in general,

since the r-th roots of a unit in K lie only in a finite extension of K .
Recall that for a unit ε ∈ UK , (a) diag(ε, . . . , ε) ∈ AutOK

(O(r−1)
K ⊕ a);

and (b) det diag(ε, . . . , ε) = εr ∈ U r
F := {εr : ε ∈ UK}. So to begin with,

note that to pass from GL to SL over K , we need to use the intermediate
subgroup GL+. Consequently, we introduce a subgroup U+

K of UK by setting

U+
K := {ε ∈ UK : εσ > 0,∀σ real}

so as to get a well-controlled subgroup U r,+
K := U+

K ∩U r
K . Indeed, by Dirich-

let’s Unit Theorem, the quotient group U+
K/(U

+
K ∩ U r

K) is finite.
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With this said, next we useU+
K∩U r

K to decompose the group AutOK
(O(r−1)

K ⊕
a). Thus, choose elements u1, . . . , uµ(r,F ) ∈ U+

K such that {[u1], . . . , [uµ(r,F )]}
gives a completed representatives of the finite quotient groupU+

K/(U
+
K∩U r

K),
where µ(r,K) denotes the cardinality of the group U+

K/(U
+
K ∩ U r

K). Set
SL(O(r−1)

K ⊕ a) := SL(r,K) ∩GL(O(r−1)
K ⊕ a) as well.

Lemma. There exist elements A1, . . . , Aµ(r,K) in GL+(O(r−1)
K ⊕ a) such

that

(i) detAi = ui, i = 1, . . . , µ(r,K);
(ii) A1, . . . , Aµ(r,K) consist of a completed representatives of the quotient

Aut+OK
(O(r−1)

K ⊕ a) by SL(O(r−1)
K ⊕ a) × (U r,+

K · diag(1, . . . , 1)).

That is to say, for automorphism groups,

(a) Aut+OK
(O(r−1)

K ⊕ a) is naturally identified with the disjoint union

∪µ(r,K)
i=1 Ai · (SL(O(r−1)

K ⊕ a) × (U r,+
K · diag(1, . . . , 1)));

(b) The OK -lattice structures Λ(P ) on the projective OK -module P =
O(r−1)

K ⊕ a are parametrized by the disjoint union

∪µ(r,K)
i=1 Ai\((SL(O(r−1)

K ⊕ a)\((SL(r,R)/SO(r))r1

× (SL(r,C)/SU(r))r2 ))

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2)).

Proof. This is a direct consequence of (1) For all ε ∈ U+
K , diag(ε, . . . , ε) ∈

Aut+OK
(O(r−1)

K ⊕ a) and its determinant belongs to U+
K ∩ U r

K ; and (2) For

A ∈ Aut+
OK

(O(r−1)
K ⊕ a), by definition, detA ∈ U+

K .
Therefore, to understand the space of OK -lattice structures, beyond the

spaces SL(r,R)/SO(r) and SL(r,C)/SU(r), we need to further study

(i) the quotient space |U r
K ∩ U+

K |\(R∗
+)r1+r2 ; and more importantly,

(ii) the (modular) space

SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ).

Now denote by M̃K,r(a) the moduli space of rank r semi-stable OK-

lattices with underlying projective module O(r−1)
K ⊕ a. For our own conve-

nience, for a set X of (isometry classes of) lattices, denote by Xss the subset
of X consisting of lattices which are semi-stable. �



A rank two zeta and its zeros 9

Proposition. There is a natural identification between the moduli space
M̃K,r(a) of rank r semi-stable OK-lattices on the projective module

O(r−1)
K ⊕ a and the disjoint union of (the ss part of) the quotient spaces

∪µ(r,K)
i=1 Ai\((SL(O(r−1)

K ⊕ a)\((SL(r,R)/SO(r))r1

× (SL(r,C)/SU(r))r2 ))ss

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2)).

Proof. By definition and the previous lemma,

M̃K,r(a) ∼= [∪µ(r,K)
i=1 Ai\((SL(O(r−1)

K ⊕ a)\((SL(r,R)/SO(r))r1

× (SL(r,C)/SU(r))r2 ))

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2))]ss.

Moreover, by definition, we can interchange the subindex ss with the disjoint
union symbol. With this said, it is sufficient to show that

[Ai\(SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ))

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2))]ss

=Ai\((SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ))ss

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2)).

Clearly, an action of an automorphism of a lattice does not change the semi-
stability. Hence we need to check whether

[(SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ))

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2)]ss

=[SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2)]ss

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2).

This is simple since a lattice Λ is semi-stable if and only if its [T ]-
modifications Λ[T ] are semi-stable for all T > 0. �

1.4 Structure of moduli space: action of OK -units

To further understand the structure of moduli space of semi-stable OK-
lattices, let us consider the quotient space |U r

K ∩ U+
K |\(R∗

+)r1+r2 .
We start with U r

K ∩U+
K . Clearly, U2

K ⊂ U+
K . On the other hand, by Dirich-

let’s Unit Theorem, up to a finite torsion subgroup consisting of the roots of
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unity in K , the image |UK | of UK (under the natural logarithm map) is a Z-
lattice of rank r1 + r2 − 1 in Rr1+r2 . As such, the image |U r

K | of U r
K corre-

sponds simply to the sublattice r|UK |, i.e., the one consists of all elements in
the lattice |UK | which are r-times of elements in |UK |. Consequenly, U+

K as
well as U+

K ∩ U r
K are all finite index subgroups of UK .

Next, let us look at the quotient |U r
K ∩ U+

K |\(R∗
+)r1+r2 . For this, we adopt

Neukirch’s [19] presentation.
Let X be a finite G(C|R)-set, i.e., a finite set with an involution τ 
→

τ̄ ,∀τ ∈ X , and let n = #X . Consider the n-dimensional C-algebra C :=∏
τ∈X C of all tuples z := (zτ )τ∈X , zτ ∈ C, with componentwise addition

and multiplication. Set involutions z 
→ z̄ ∈ C (resp. z 
→ z∗, resp., z 
→ ∗z)
as follows; for z = (zτ ) ∈ C, the element z̄ ∈ C (resp. z∗ ∈ C, resp.
∗z ∈ C) is defined to be the element of C having the following components:
(z̄)τ = z̄τ̄ , (resp. z∗τ = zτ̄ , resp. ∗zτ = zτ ). Clearly, z̄ = ∗z∗. As such,
the invariant subset R := [

∏
τ∈X C]+ := {z ∈ C : z = z̄} forms an n-

dimensional commutative R-algebra, and C = R ⊗R C. For example, for a
number field K of degree n with X = Hom(K,C), R coincides with the
Minkowski space KR := K ⊗Q R.

For the additive, resp. multiplicative group C, resp. C∗, we have the homo-
morphism Tr : C → C, z 
→

∑
τ zτ , resp. N : C∗ → C∗, z 
→

∏
τ zτ . Fur-

thermore, we have on C the hermitian scalar product 〈x, y〉 :=
∑

τ xτyτ =
Tr(x · ∗y) which is invariant under conjugation, i.e., 〈x, y〉 = 〈x̄, ȳ〉. Thus,
by restricting it to R, we get a scalar product 〈·, ·〉, i.e., an Euclidean metric,
on the R-vector space R.

In R, consider the subspace R± := {x ∈ R : x = x∗} = [
∏

τ R]+.
Clearly, for x = (xτ ) ∈ R±, its components satisfy xτ̄ = xτ ∈ R. For our
convenience, for δ ∈ R, we simply write x > δ to signify that xτ > σ for all
τ . With this, then we introduce the multiplicative group R∗

+ := {x ∈ R± :
x > 0} = [

∏
τ R∗

+]+. Clearly, R∗
+ consists of the tuples x = (xτ) of positive

real numbers xτ such that xτ̄ = xτ , and admits two homomorphisms: | | :
R∗ → R∗

+, x = (xτ ) 
→ |x| = (|xτ |), and log : R∗
+ → R±, x = (xτ ) 
→

log x = (log xτ). For example, when X = Hom(K,C), R∗
+ = Rr1+r2

>0 is
exactly the (unit) factor appeared in our description of the moduli space of
semi-stable lattices above. Moreover, the G(C|R)-set X = Hom(K,C) then
corresponds to the Minkowski space KR = R = [

∏
τ C]+, in which the

field K may be naturally embedded. In particular, N((a)) = |NK/Q(a)| =
|N(a)|, where N denotes the norm on R∗.

Now let p = {τ, τ̄} be a conjugation class in X . We call p real or complex
according to #p = 1 or 2. Accordingly, R∗

+ =
∏

p R∗
+p with R∗

+p = R∗
+

when p is real and R∗
+p = (R∗

+ × R∗
+)+ = {(y, y) : y ∈ R∗

+}. Further,
define isomorphisms R∗

+p � R∗
+ by y 
→ y resp. (y, y) 
→ y2 for p real resp.

complex, so as to obtain a natural isomorphism α : R∗
+ �

∏
p R∗

+.
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With this, by dy
y

the Haar measure on R∗
+, we mean that one corresponding

to the product measure
∏

p
dt
t

, where dt
t

is the usual Haar measure on R∗
+. We

call the Haar measure thus defined the canonical measure on R∗
+. Under the

logarithm map log : R∗
+ → R±, it is mapped to the Haar measure dx on R±

which under the isomorphism R± =
∏

p R±p →
∏

p R (componentwisely
given by xp 
→ xp resp. (xp, xp) 
→ 2xp for p real resp. complex) corresponds
to the standard Lebesgue measure on

∏
p R.

Obviously, for a unit ε in UK , its K/Q-norm gives ±1 (in Q). Hence, the
image |UK | of the unit group UK under the map | | : R∗ → R∗

+ is contained
in the norm-one hypersurface S := {x ∈ R∗

+ : N(x) = 1}. Write every
y ∈ R∗

+ in the form y = xt
1
n , where x = y

N(y)
1
n
, t = N(y). We then obtain

a direct decomposition R∗
+ = S × R∗

+. Let d∗x be the unique Haar measure
on the mulitplicative group S such that the canonical Haar measure dy

y
on R∗

+

becomes the product measure dy
y

= d∗x× dt
t
.

The logarithm map log takes S to the trace-zero space H := {x ∈ R± :
Tr(x) = 0} and the group |UK | is taken to a full (Z-)latice G = GK in H
(Dirichlet’s Unit Theorem). We claim that the group |U+

K | of U+
K is also a full

lattice G+ = G+
K in H. Indeed, it is clear that |U2

K | ⊂ |U+
K | ⊂ |UK |. But

|U2
K | = 2|UK | is a finite index subgroup of |UK |. Thus, [G : G+] is finite, and

being a subgroup of G, a full rank lattice, of finite index, G+ has to be a full
rank lattice. Similarly, one sees that the image G+

K,r of the group |U r
K ∩ U+

K |
is a full rank lattice in H as well.

Choose now F+
K,r to be the preimage of an arbitrary fundamental

parallelopiped D+
K,r of the lattice G+

K,r in H, then the fundamental
domain F+

K,r cuts up the norm-one hypersurface S into the disjoint union
S = ∪η∈U+

F
ηrF+

r,K .

Lemma. The fundamental domain F+
r,K of U r

K ∩U+
K in S has the following

volume with respect to d∗x: Vol(F+
r,K) = rr1+r2−1R+

K where R+
K is the

narrow regulator of K .

Proof. Since I := {t ∈ R∗
+ : 1 ≤ t ≤ e} has measure 1 with respect to dt

t
,

the quantity Vol(F+
r,K) is also the volume of F+

r,K×I with respect to d∗x× dt
t

,
i.e., the volume of α(F+

r,K × I) with respect to dy
y

. The composition ψ of

the isomorphisms R∗
+

log→ R±
φ→

∏
p|∞ R = Rr1+r2 transforms dy

y
into the

Lebesgue measure of Rr1+r2 , Vol(F+
r,K) = VolRr1+r2 ((ψ ◦ α)(F+

r,K × I)).
Let us compute the image (ψ ◦ α)(F+

r,K × I). Let 1 := (1, 1, . . . , 1) ∈ S.
Then we find (ψ ◦ α)(F+

r,K × I) = e · log t1/n = 1
n
e log t with the vector

e = (ep1 , . . . , epr1+r2
) ∈ Rr1+r2 , epi

= 1 or 2 depending whether pi is real
or complex. By definition of F+

r,K , we also have (ψ ◦ α)(F+
r,K × {1}) =
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rΦ+
K where Φ+

K denotes the fundamental parallelopiped of the totally positive
unit lattice G+

K in the trace-zero space H. This gives (ψ ◦ α)(F+
r,K × I) =

rΦ+
K × [0, 1

n
]e, the parallelopiped spanned by the vectors e1, . . . , er1+r2−1,

1
n
e

if e1, . . . , er1+r2−1 span the fundamental domain Φ+
K . Its volume is 1

n
rr1+r2−1

times the absolute value of the determinant

det

 e1,1 . . . er1+r2−1,1 ep1

. . . . . . . . . . . .

e1,r1+r2 . . . er1+r2−1,r1+r2 epr1+r2−1

 .

Adding the first r1 + r2 − 1 lines to the last one, all entries of the last line
becomes 0 except the last one, which is

∑
i epi

= n. By defintion, the absolute
value of the determinant of the matrix above these zeros is equal to the narrow
regulator R+

K . Thus we get Vol(F+
r,K) = rr1+r2−1R+

K . This completes the
proof. �

In summary, for (unit) factor |U r
K ∩ U+

K |
∖(

R∗
+

)r1+r2 , its structure may be
understood via natural decomposition ((U r

K∩U+
K)\S)×R∗

+,with S the norm-
one hypersurface S := {x ∈ R∗

+ : N(x) = 1}; together with a disjoint
union S = ∪η∈U+

F
ηrF+

r,K , where F+
r,K denotes a ‘fundamental parallogram’

of U r
K ∩ U+

K in S with rr1+r2−1R+
K as its volume.

1.5 High rank zeta functions for number fields

Let K be an algebraic number field (of finite degree n) with ∆K the absolute
value of its discriminant and OK the integer ring. For a fixed positive integer
r ∈ N, denote by MF,r the moduli space of semi-stable OK -lattices of rank r.
Denote by dµ the natural associated (Tamagawa type) measure (induced from
that onGL). For each Λ ∈ MK,r, define the associated 0-th geo-arithmetical
cohomology h0(K,Λ) by

h0(K,Λ) := log

(∑
x∈Λ

exp

(
−π

∑
σ:R

‖xσ‖2
ρσ

− 2π
∑
σ:C

‖xσ‖2
ρσ

))

where x = (xσ)σ∈S∞ and (ρσ)σ∈S∞ denote the σ-component of the metric
ρ = ρΛ determinet by the lattice Λ with S∞ a collection of inequivalent
Archimedean places of K . (See e.g. [9], [3] and [28, 29].) And following [28,
29], we introduce the following

Definition. Define the rank r zeta function ξK,r(s) of number field K by

ξK,r(s) :=
∫

Λ∈MK,r

(eh0(K,Λ)−1) · (e−s)− log Vol(Λ) dµ(Λ), �(s) > 1.
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By the Arakelov–Riemann–Roch Formula, one can write the rank r zeta
function in the following form which fits more for practical purpose

ξK,r(s) :=
(
∆

r
2
K

)s

·
∫

Λ∈MK,r

(eh0(K,Λ)−1)·(e−s)deg(Λ) dµ(Λ), �(s) > 1.

In [28, 29], we, for an OK-lattice Λ, construct two geo-arithmetical coho-
mology groups

H0(K,Λ) := Λ, and H1(K,Λ) := V (Λ)/Λ

where V (Λ) denotes V :=
∏

σ∈S∞ Vσ for Vσ := Λ ⊗OK
Kσ equipped with

the canonical measures. In such a way, both H0(K,Λ) and H1(K,Λ) are
topological groups. More precisely, H0 is discrete, whileH1 is compact. As a
direct consequence, then the corresponding geo-arithmetical counts for these
locally compact groups can be done by using Fourier analysis on them so as to
naturally get not only the above h0 but also a new h1 in a very natural way for
lattices. Moreover, fundamental results corresponding to the Serre duality and
Riemann–Roch Theorem hold for these newly defined hi, i = 0, 1 as well. To
state them more clearly, as usual, introduce the dualizing lattice KK of K as
the dual of the so-called different lattice DK of K . (Here by the different lat-
tice DK , we mean the rank one OK -lattice whose underlying module is given
by the different dK of K and whose metric is induced from the canonical one
via the natural embedding dK ↪→ KR, the Minkowski space.) Also as usual,
denote the (Arakelov) dual lattice of Λ by Λ∨. Then we have the following

(1) (Serre Duality = Pontragin Duality)

(a) (Topologically) ̂H1(K,Λ) ∼= H0(K,KK ⊗ Λ∨), where ̂ denotes
the Pontragin dual of a topological group;

(b) (Analytically) h1(K,Λ) = h0(K,KK ⊗ Λ∨);

(2) (Riemann–Roch Theorem) h0(K,Λ) − h1(K,Λ) =: χ(K,Λ) =
deg(Λ) − r

2
log ∆K.

Remarks.

(1) While H0 and H1 together with h0 and h1 are quite similar to those for
function fields via an adelic approach (see e.g., [4], [13], [20] or [27]),
two major differences should be noticed: (a) For number fields, H0 is
discrete and H1 is compact, while for function fields, both H0 and H1

are linearly compact, i.e., are finite dimensional vector spaces over the
base field; (b) For number fields, hi are defined using Fourier analysis,
say, a weight of Gauss distribution is attached to each element of H0 in
defining h0. But for function fields, hi are defined using a much simpler
count. Say, when the base fields are finite, the counts are carried out by
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a direct counting process, i.e., every element in H i is counted with the
naive weight 1.

(2) It is remarkable to see that the analogue of Serre Duality has a certain
topological counterpart via Pontragin Duality for topological groups and
an analytic counterpart via the Plancherel Formula, a special kind of
Fourier Inversion Formula.

(3) The Riemann–Roch Theorem is a direct consequence of the Serre Dual-
ity and the Poisson Summation Formula. So the above constructions and
results are almost in Tate’s Thesis, but not quite yet there.

(4) A two dimensional analogue of such a theory seems to be very much in
demanding – Such a two dimensional theory is closely related with the
Riemann Hypothesis via an intersection approach proposed in [28].

(5) The reader may learn how to appreciate the treatment here for H i’s and
hi’s by consulting Weil’s Basic Number Theory and Neukirch’s Algebraic
Number Theory. For the first one, mainly due to the lack of the construc-
tion above, Weil, unlike in the rest of his book, treated zeta functions for
number fields separately from that for function fields, while for the sec-
ond, Neukirch introduced a different type of hi for which no duality is
satisfied.

With all this well-prepared cohomology theory, standard yet fundamen-
tal properties for high rank zeta functions can be easily deduced. It works
exactly as that for Artin zeta functions for curves over finite fields, as
done by H. L. Schmid. Indeed, it is now a standard procedure to deduce
the meromorphic continuation from the Riemann–Roch, to establish the
functional equation from the Serre Duality and to locate the singulari-
ties from both Riemann–Roch and Serre Duality. (For details, please see
Moreno [18] and/or Weil [27] and/or [28, 29].) That is to say, we have the
following

Fact

(I) (Meromorphic Continuation) The rank r zeta function ξK,r(s) is well-
defined when �(s) > 1 and admits a meromorphic continuation, denoted
also by ξK,r(s), to the whole complex s-plane;

(II) (Functional Equation) ξK,r(1 − s) = ξK,r(s);
(III) (Singularities & Residues) ξK,r(s) has only two singularities, all are sim-

ple poles, at s = 0, 1, with the same residues Vol
(
MK,r

([
∆

r
2
K

]))
,

where MK,r

([
∆

r
2
K

])
denotes the moduli space of rank r semi-stable

OK -lattices whose volumes are fixed to be ∆
r
2
K .



A rank two zeta and its zeros 15

Remarks.

(1) Due to the fact that the volumes of lattices are fixed, the semi-stable
condition implies that the first Minkowski successive minimums of the
lattices involved admit a natural lower bound away from 0 (depend-
ing only on r). Hence by the standard reduction theory, see e.g.,

Borel [1, 2], MK,r

([
∆

r
2
K

])
is compact. Consequently, the volume

Vol
(
MK,r

([
∆

r
2
K

]))
appeared above does make sense.

(2) The Tamagawa type of volume Vol
(
MK,r

([
∆

r
2
K

]))
is a new intrinsic

non-abelian invariant for the number field K .

1.6 High rank zeta functions and Epstein zeta functions

Recall that we can choose integral OK-ideals a1 = OK , a2, . . . , ah such that
the ideal class group CL(K) is given by {[a1], . . . , [ah]}, and that any rank
r projective OK-module P is isomorphic to Pai

for a certain i, 1 ≤ i ≤ h.
Here, Pa := Pr,a := O(r−1)

K ⊕ a for a fractional OK -ideal a. (Quite often,
we use a as a running symbol for a1, a2, . . . , ah.) Consequently, MK,r =
∪h

i=1M̃K,r(ai) with M̃K,r(ai) =: (Λ̃(Pai
))ss, the part of Λ̃(Pai

) consisting
of only semi-stable OK-lattices.

As such, introduce a partial high rank zeta function ξ̃K,r;a(s) by setting

ξ̃K,r;a(s) :=
∫
�MK,r(a)

(eh0(K,Λ) −1) · (e−s)− log Vol(Λ)dµ(Λ), �(s) > 1.

Consequently, ξ̃K,r;a(s) =
∑µ(r,K)

j=1 ξK,r;a;Aj
(s) where

ξK,r;a;Aj
(s) :=

∫
Λ∈MK,r;Aj

(a)

(eh0(K,Λ)−1)·(e−s)− log Vol(Λ)dµ(Λ), �(s)>1

with MK,r;Aj
(a) the component of the moduli space of semi-stable OK-

lattices whose points corresponding to these in

[Ai\((SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ))

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2))]ss

= Ai\((SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1

× (SL(r,C)/SU(r))r2 ))ss × (|U r
K ∩ U+

K |\(R∗
+)r1+r2)).

under the natural identification above. Moreover, since Ai is simply an auto-
morphism, its action does not change the total volumes as well as the h0 of
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the lattices. We then introduce the (genuine) partial zeta function ξK,r;a(s) by
setting

ξK,r;a(s) :=
∫
MK,r(a)

(eh0(K,Λ) − 1) · (e−s)− log Vol(Λ)dµ(Λ), �(s) > 1

where MK,r(a) denotes the part of the moduli space of semi-stable OK-
lattices whose points corresponding to these in

((SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ))ss

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2)).

Consequently we then obtain the following

Proposition. ξK,r;a;Aj
(s) = ξK,r;a(s),∀j = 1, . . . , µ(r,K). In particular,

ξK,r(s) = µ(r,K) ·
h∑

i=1

ξK,r;ai
(s).

This been said, to further understand the structure of our zeta func-
tion ξK,r(s), we next investigate how the integrand (eh0(K,Λ) − 1) ·
(e−s)− log Vol(Λ)dµ(Λ) behaves over the space

((SL(O(r−1)
K ⊕ a)\((SL(r,R)/SO(r))r1 × (SL(r,C)/SU(r))r2 ))ss

× (|U r
K ∩ U+

K |\(R∗
+)r1+r2)).

By definition, eh0(K,Λ) − 1 =
∑

x∈Λ\{0} exp(−π
∑

σ:R ‖xσ‖ρσ
−

2π
∑

σ:C ‖xσ‖ρσ
). Also, in terms of the embedding z ∈ Λ = O(r−1)

K ⊕ a ↪→
K(r) ↪→ (Rr1 ×Cr2)r � (Rr)r1 ×(Cr)r2 , z maps to the corresponding point
(zσ) and ‖zσ‖ρσ

= ‖gσzσ‖, where the metric ρσ is defined by gσ · gt
σ for cer-

tain gσ ∈ GL(r,R) when σ is real, and by gσ · ḡt
σ for certain gσ ∈ GL(r,C)

when σ is complex.
Recall that ‖gσzσ‖ is O(r) resp. U(r) invariant when σ is real resp.

complex. Similarly, Vol(Λ) is invariant. Consequently, (eh0(K,Λ) − 1) ·
(e−s)− log Vol(Λ) is well-defined over (GL(r,R)/O(r))r1 × (GL(r,C)/
U(r))r2 .

To go further, we next study how (eh0(K,Λ) − 1) · (e−s)− log Vol(Λ) changes
when we apply the operation Λ 
→ Λ[t] for t > 0. Clearly, in terms of each
local component, ρσ 
→ tσρσ with tσ ∈ R∗

+, we have ‖xσ‖2
tσρσ

= t2σ ·‖xσ‖2
ρσ

.

Hence (eh0(K,Λ[t]) − 1) changes to
∑

x∈Λ\{0} exp
(
− π

∑
σ:R ‖xσ‖ρσ

· t
r
2
σ −

2π
∑

σ:C ‖xσ‖ρσ
· t

r
2
σ

)
, while Vol(Λ[t]) decomposes to Vol(Λ) ·

∏
σ∈S∞ trσ
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for t = (tσ). On the other hand, by changing the volume in such a way, dµ(Λ)
becomes

∏
σ∈S∞

dtσ

tσ
· dµ1(Λ1), where dµ1(Λ1) denotes the corresponding

volume form on the space of semi-stable lattices corresponding to the points
in

MF,r;a

[
N(a) · ∆

r
2
K

]
:= (SL(O(r−1)

K ⊕ a)\((SL(r,R)/SO(r))r1

× (SL(r,C)/SU(r))r2 ))ss,

due to the fact Vol(O(r−1)
K ⊕ a) = ∆

r−1
2

K ·
(
N(a) · ∆

1
2
K

)
= N(a) · ∆

r
2
K.

(As we are going to identify the moduli space of lattices with its realization in
terms of SL, from now on we make no distinction between them.) Moreover,
note that the OK-units have their (total rational) norm 1, hence OK-units do
not really change the total volume of the lattice. All in all, then we get for
�(s) > 1,

ξF,r;a(s) =
(
N(a) · ∆

r
2
K

)s

·
∫

R
r1+r2
>0

trs
σ

∏
σ∈S∞

dtσ
tσ

×
∫

Λ∈MF,r;a

�
N(a)·∆

r
2
K

�
∑

x∈(Λ\{0})/U+
r,F

× exp

(
−π

∑
σ:R

‖xσ‖ρσ
· t r

2
σ − 2π

∑
σ:C

‖xσ‖ρσ
· t r

2
σ

)
dµ1(Λ).

Therefore, by applying the Mellin transform and using
∫ ∞
0
e−AtB

ts dt
t

= 1
B
·

A− s
B · Γ

(
s
B

)
, we obtain that

ξF,r;a(s) =
(
N(a) · ∆

r
2
K

)s

·
∫

Λ∈MF,r;a

�
N(a)·∆

r
2
K

�
∑

x∈(Λ\{0})/U+
r,F

×
(∏

σ:R

(r
2
· (π‖xσ‖ρσ

)−
rs
2 Γ

(rs
2

))

× ·
∏
σ:C

(r
2
· (2π‖xσ‖ρσ

)−
rs
2 Γ(rs)

))
dµ1(Λ)

=
(r

2

)r1+r2

·
(
π− rs

2 Γ
(rs

2

))r1

· ((2π)−rsΓ(rs))r2
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×
(
N(a) · ∆

r
2
K

)s

·
∫

Λ∈MF,r;a

�
N(a)·∆

r
2
K

�

×

 ∑
x∈(Λ\{0})/U+

r,F

1
‖x‖rs

Λ

 dµ(Λ), �(s) > 1.

Accordingly, for �(s) > 1, define the completed Epstein zeta function
ÊK,r;a(s) by

ÊK,r;a(s) :=
(
π− rs

2 Γ
(rs

2

))r1

· ((2π)−rsΓ(rs))r2

·

(N(a) · ∆
r
2
K

)s

·
∑

x∈(Λ\{0})/U+
r,F

1
‖x‖rs

Λ

 .
All in all, what we have just said exposes the following

Fact

(IV) (Decomposition) The rank r zeta funtion of K admits a natural decom-
position ξK,r(s) = µ(r,K) ·

∑h

i=1 ξK,r;ai
(s);

(V) (High Rank Zeta = Integration of Epstein Zeta) The partial rank r zeta
function ξF,r;a(s) of K associated to a is given by an integration of a
completed Epstein type zeta function:

ξF,r;a(s) =
(r

2

)r1+r2

·
∫
MF,r;a

�
N(a)·∆

r
2
K

� ÊK,r;a(s) dµ, �(s) > 1.

Remark. The relation between high rank zeta and Epstein zeta was first
established for Q in our ‘Analytic truncation and Rankin-Selberg versus alge-
braic truncation and non-abelian zeta’, Algebraic Number Theory and Related
Topics, RIMS Kokyuroku, No. 1324 (2003). Furthermore, in [28, 29], we
develop a general theory of non-abelian L-functions for global fields, using
Langlands’ theory of Eisenstein series.

2. Rank two OK-lattices: stability & distance to cusps

2.1 Upper half space model

2.1.1 Upper half plane

The upper half plane H in complex plane C is defined to be H := {z =
x + iy ∈ C, x ∈ R, y ∈ R∗

+}. On H, the natural hyperbolic metric is given
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by the line element ds2 := dx2+dy2

y2 with the volume form dµ := dx∧dy
y2 , and

the Laplace-Beltrami operator ∆ := y2
(

∂2

∂x2 + ∂2

∂y2

)
.

The natural action on H of the group SL(2,R) of real 2× 2 metrices with
determinant one is given by:

M z :=
az + b

cz + d
, ∀M =

(
a b
c d

)
∈ SL(2,R), z ∈ H.

Easily, if Mz := x∗ + iy∗ with x∗, y∗ ∈ R, then

x∗ =
(ax+ b)(cx+ d) + acy2

(cx+ d)2 + c2y2
, y∗ =

y

(cx+ d)2 + c2y2
> 0.

In particular, y∗ depends only on z and the second row of M .
As said, H admits the real line R as its boundary. Consequently, to com-

pactify it, we add on it the real projective line P1(R) with ∞ =
[

1

0

]
. Nat-

urally, the above action of SL(2,R) also extends to P1(R) via
(

a b

c d

)[ x
y

]
=[ ax+by

cx+dy

]
.

Back to H itself. The stablizer of i = (0, 1) ∈ H with respect to the
action of SL(2,R) on H is equal to SO(2) := {A ∈ O(2) : detA =
1}. Since the action of SL(2,R) on H is transitive, we can identify the
quotient SL(2,R)/SO(2) with H given by the quotient map induced from
SL(2,R) → H, g 
→ g · i.

2.1.2 Upper half Space

The upper half space H is given by

H := C×]0,∞[ = {(z, r) : z = x+ iy ∈ C, r ∈ R∗
+}

= {(x, y, r) : x, y ∈ R, r ∈ R∗
+}.

Thinking of H as a subset of Hamilton’s quaternions with 1, i, j, k the stan-
dard R-basis of the quaternions, we may write points P in H as P = (z, r) =
(x, y, r) = z + rj where z = x+ iy, j = (0, 0, 1).

We equip H with the hyperbolic metric coming from the line element
ds2 := dx2+dy2+dr2

r2 with volume form dµ := dx∧dy∧dr
r3 and Laplace-Beltrami

operator ∆ := r2
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂r2

)
− r ∂

∂r
.

The natural action of SL(2,C) on H and on its boundary P1(C) may
be described as follows: We represent an element of P1(C) by

[ x

y

]
where

x, y ∈ C with (x, y) �= (0, 0). Then the action of the matrix M =
(

a b

c d

)
∈

SL(2,C) on P1(C) is defined to be[
x
y

]

→

(
a b
c d

)[
x
y

]
:=

[
ax+ by
cx+ dy

]
.
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Moreover, if we represent points P ∈ H as quaternions whose fourth compo-
nent equals zero, then the action of M on H is defined to be P 
→ M P :=
(aP + b)(cP + d)−1, where the inverse on the right is taken in the skew field
of quaternions. Indeed, if we setM(z+rj) = z∗+r∗j with z∗ ∈ C, r∗ ∈ R,
then an obvious computation shows that

z∗ :=
(az + b)(c̄z̄ + d̄) + ac̄r2

|cz + d|2 + |c|2r2
, r∗ :=

r

|cz + d|2 + |c|2r2
=

r

‖cP + d‖2
.

In particular, r∗ depends only on P and the second row of M . Moreover
r∗ > 0, so M(z + rj) ∈ H as well. (Here we have set P = z + rj and used
‖cP + d‖ to denote the Euclidean norm of the vector cP + d ∈ R4, which is
indeed also the square root of the norm of cP + d in the quaternions.)

Furthermore, with this action, the stablizer of j = (0, 0, 1) ∈ H in
SL(2,C) is equal to SU(2) := {A ∈ U(2) : detA = 1}. Since
the action of SL(2,C) on H is transitive, we obtain also a natural iden-
tification H � SL(2,C)/SU(2) via the quotient map induced from
SL(2,C) → H, g 
→ g · j.

2.1.3 Rank two OK -lattices: upper half space model

With above, by identifying H with SL(2,R)/SO(2) and H with SL(2,C)/
SU(2), we conclude that

MK,2;a[N(a) · ∆K] � (SL(OK ⊕ a)\(Hr1 × Hr2))ss,

where as before ss means the subset consisting of points corresponding to
rank two semi-stable OK -lattices in SL(OK ⊕ a)\((SL(2,R)/SO(2))r1 ×
(SL(2,C)/SU(2))r2 ).

Put this in a more concrete term, if the metric on OK ⊕ a is given by matri-
ces g = (gσ)σ∈S∞ with gσ ∈ SL(2,Kσ), then the corresponding points on
the right hand side is g(ImJ) with ImJ := (i(r1), j(r2)), i.e., the point given
by (gστσ)σ∈S∞ where τσ = iσ := (0, 1) if σ is real and τσ = jσ := (0, 0, 1)
if σ is complex. As before, SL(OK ⊕ a) denotes elements in GL(OK ⊕ a)
with determinant 1: if

(
a b
c d

)
∈ SL(OK ⊕ a), then ad − bc = 1 and a, d ∈

OK , b ∈ a, and c ∈ a−1.

2.2 Cusps

Now the working site is the space SL(OK ⊕ a)\(Hr1 × Hr2) with H the
upper half plane, H the upper half space, and SL(OK ⊕ a) the special auto-

morphism group defined by
{
A ∈

( OK a

a−1 OK

)
: detA = 1

}
. Here the action

of SL(OK ⊕ a) is via the action of SL(2,K) on Hr1 ×Hr2 . More precisely,
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K2 admits natural embeddings K2 ↪→ (Rr1 × Cr2)2 � (R2)r1 × (C2)r2 so
that OK ⊕ a naturally embeds into (R2)r1 × (C2)r2 as a rank two OK-lattice.
As such, SL(OK ⊕ a) acts on the image of OK ⊕ a in (R2)r1 × (C2)r2

as automorphisms. Our task here is to understand the cusps of this action of
SL(OK ⊕ a) on Hr1 × Hr2 . For this, we go as follows.

First, the space Hr1 × Hr2 admits a natural boundary Rr1 × Cr2 , in which
the fieldK is imbedded via Archmidean places in S∞:K ↪→ Rr1×Cr2 . Con-
sequently, P1(K) ↪→ P1(R)r1 ×P1(C)r2 with

[
1
0

]
:= ∞ 
→ (∞(r1),∞(r2)).

As usual, via fractional linear transformations, SL(2,R) acts on P1(R),
and SL(2,C) acts on P1(C), hence so does SL(2,K) on P1(K) ↪→
P1(R)r1 ×P1(C)r2 . Being a discrete subgroup of SL(2,R)r1 ×SL(2,C)r2 ,
for the action of SL(OK ⊕ a) on P1(K), we call the corresponding orbits (of
SL(OK ⊕ a) on P1(K)) the cusps. Very often we also call representatives
cusps.

As before, we would like to study cusps by transforming ζ ∈ P1(K) to
∞, and hence want to assume without loss of generality that ζ = ∞ in our
discussion. For this becoming possible, it is then supposed that we are able to
find, for ζ :=

[ α

β

]
∈ P1(K) an element M := Mζ :=

( α α∗

β β∗
)
∈ SL(2,K),

since then it is clear that
( α α∗

β β∗
)
·
[

1
0

]
=

[ α

β

]
, that is, M · ∞ = ζ . This is

clearly possible, because if we set c := OK · α+ OK · β to be the fractional
ideal generated byα and β, then 1 ∈ OK = c·c−1 = αc−1+βc−1. Therefore,
there exist α∗, β∗ ∈ c−1 ⊂ K such that αβ∗ − α∗β = 1.

Theorem . (Cusp and Ideal Class Correspondence) There is a natural
bijection between the ideal class group CL(K) of K and the cusps CΓ of
Γ = SL(OK ⊕ a) acting on Hr1 × Hr2 given by CΓ → CL(K),

[ α

β

]

→

[OK α+ aβ].

This type of results are rooted back to Maaβ. But we here give a proof
using a method of Siegel, while we reminder the reader that our case at hand
is much more complicated.

Choose fixed integral OK -ideals a1, . . . , ah representing the ideal class
group CL(K). We want to show that the elements of P1(K) are divided
into h equivalence classes by the action of γ =

(
a b

c d

)
∈ SL(OK ⊕ a) on

P =
[ p

s

]
∈ P1(K) defined by γ ·P =

[ ap+bs

cp+ds

]
. Let also P =

[ p
s

]
be a fixed

point in P1(K) with p, s ∈ K . Define π(P ) to be the ideal class associated
to the fractiona ideal OK · p+ a · s.

Claim.

(1) π : P1(K) → CL(K) is well-defined.
(2) π factors through the orbit space SL(OK ⊕ a)\P1(K).
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Proof.

(1) Indeed, if P =
[ p1

s1

]
=

[ p2

s2

]
, then, as ideal classes,

[OK · p1 + a · s1] =
[
s2

s1

(OK · p1 + a · s1)
]

=
[
OK · s2 ·

p1

s1

+ a · s2

]
= [OK · p2 + a · s2].

Here, we use [ ] to denote an ideal class.
(2) For γ =

(
a b
c d

)
∈ SL(OK ⊕ a), π(γ ·P ) = π

([
ap+bs
cp+ds

])
= [OK · (ap+

bs) + a · (cp + ds)]. But, by definition, a, d ∈ OK , b ∈ a, c ∈ a−1.
Hence,

OK · (ap+ bs) + a · (cp + ds) = (ap) · OK + (bs) · OK + (cp) · a
+ (ds) · a ⊂ p · OK + s · a

+ p · (a−1 · a) + s · a

= p · OK + s · a.

On the other hand, the inverse inclusion holds as well because the deter-
minant of γ is one. Therefore, π(γ ·P ) = [OK ·(ap+bs)+a·(cp+ds)] =
[OK · p+ a · s]. Done.

�

Consequently, we get a well-defined map

Π : SL(OK ⊕ a)\P1(K) → CL(K),
[
p

s

]

→ [OK · p+ a · s].

We want to show that Π is a bijection.
Clearly the surjectity is a direct consequence of the following

Lemma. For any two fractional OK-ideals a, b, there exist elements α, β ∈
K such that OK · α+ a · β = b.

Proof. Recall the following �

Chinese Reminder Theorem. Let pj for j = 1, . . . , s denote distinct prime
ideals of OK , and let ej for j = 1, . . . , s be positive integers. Then the map
given by the product of the quotient maps f : OK →

∏s

j=1 OK/p
ej

j yields an
isomorphism of rings OK/

∏s

j=1 p
ej

j �
∏s

j=1 OK/p
ej

j .
In terms of congruence, this means that given xj ∈ OK for j = 1, . . . , s,

there exists x ∈ OK such that x ≡ xj mod p
ej

j ; and moreover, this uniquely
determines the class of x mod

∏s

j=1 p
ej

j .
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With this in mind, let us go back to the proof of the lemma. We can and
hence now assume that both a and b are integral.(First we may assume that b
is an integral OK -ideal. Indeed, there exist b ∈ K and an integral OK-ideal b′

such that b = b ·b′. Therefore, if there exist α′, β′ such that OK ·α′+a ·β′ =
b′, then b = b ·b′ = b · (OK ·α′ + a ·β′) = OK · (bα′)+ a · (bβ′). That is to
say, α = bα′ and β = bβ′ will do the job. Then we may further assume that
a is integral. Indeed, there exists an a ∈ K∗ such that a · a = a′ is integral.
Thus if there exist α′, β′ ∈ K such that OK · α′ + a′ · β′ = b. Then

b = OK · α′ + a′ · β′ = OK · α′ + a′ · (a · a−1)β′

= OK · α′ + (a′ · a) · (a−1β′) = OK · α′ + a · (a−1β′).

That is to say, this time, α = α′ and β = a−1β′ do the job.)
We want to find α, β ∈ K such that OK · α + a · β = b. (Clearly, if

done, then α, β cannot be both zero at the same time, hence define a point[ α

β

]
∈ P1(K). Furthermore, we get Π

([ α

β

])
= b as desired.)

Choose now β ∈ a−1b\{0} so that a · β ⊂ a · a−1b ⊂ OK · b = b. There-
fore, by the unique factorization theorem of integral OF -ideals into product
of prime ideals, we can assume that b =

∏l

i=1 pni

i ⊃ a · β =
∏l

i=1 pmi

i

with mi ≥ ni ≥ 0, 1 ≤ i ≤ l. Now choose bi ∈ pni

i

/
pni+1

i for all

i = 1, . . . , l. By the Chinese Reminder Theorem above, there exists an ele-
ment α ∈ OK such that α ≡ bi mod pni+1

i . Since, in terms of local orders at
pi, νpi

(α) = νpi
(b) for each i, we know that α ∈ b. Thus OK ·α+a ·β ⊂ b.

On the other hand, if p is a prime ideal of OK which does not lie in the
set {p1, . . . , pl}, then 0 = νp(β) = νp(b). Thus we have shown that for all
primes p of OK , νp(OK ·α+ a ·β) = inf{νp(OK ·α), νp(a · β)} = νp(b).
Therefore, OK · α + a · β = b. This completes the proof of the lemma and
hence the theorem.

Remarks.

(1) Taking a = OK , we in particular see that any fractional OK-ideal is
generated by at most two elements, a simple beautiful fact that should
be included in all standard textbooks on Algebraic Number Theory. The
reader may find it in [8], whose proof we followed in our discussion
above.

(2) We would like to reminder the reader that during this process of studying
high rank zeta functions for number fields, all basic facts, not only the
finiteness results on ideal class group and units, but the Chinese Reminder
Theorem are used.

With this being done, we are left with the injectivity of Π. For this, we use
the trick of Siegel, following the presentation of Terras [25].
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Take ζ1 :=
[ p1

s1

]
and ζ2 :=

[ p2

s2

]
in P1(K) with pi, si in OK . Then

by the discussion just above the theorem, there exist M1 :=
( p1 p∗

1
s1 s∗

1

)
and

M2 :=
( p2 p∗

2
s2 s∗

2

)
in SL(2,K) such that M1 · ∞ = ζ1, M2 · ∞ = ζ2. Conse-

quently, (M1 ·M−1
2 )ζ2 = ζ1. In other words,

[
p1
s1

]
=

(
M1 ·M−1

2

)
·
[

p2
s2

]
.

Thus by the fact that pi, si are all OK-integers, easily, we have M1 ·M−1
2 ∈

GL(2,OK ⊕ a) by writing down all the entries explicitly. Clearly, by defini-
tion, M1 ·M−1

2 ∈ SL(2,K) as well. HenceM1 ·M−1
2 ∈ GL(2,OK ⊕ a)∩

SL(2,K) = SL(2,OK ⊕ a). This completes the proof.
In summary, what we have just established is the following bijection

Π : SL(2,OK ⊕ a)\P1(K) � CL(K),
[
α

β

]

→ [OKα+ aβ := b].

One checks also that the inverse map Π−1 is given as follows: For b, choose
αb, βb ∈ K such that OK · αb + a · βb = b; With this, then Π−1([b]) is
simply the class of the point

[ αb

βb

]
in SL(2,OK⊕a)\P1(K). Moreover, there

always exists M[
α

β

] :=
( α α∗

β β∗
)
∈ SL(2,K) such that M[

α

β

] · ∞ =
[ α

β

]
.

2.3 Stablizer groups of cusps

Recall that under the Cusp-Ideal Class Correspondence, there are exactly h
inequivalence cusps ηi, i = 1, 2, . . . , h. Moreover, if we write the cusp ηi =[ αi

βi

]
for suitable αi, βi ∈ K , then the associated ideal class is exactly the one

for the fractional ideal OKαi +aβi =: bi. Denote the stablizer group of ηi by

Γηi
:= {γ ∈ SL(OK ⊕ a) : γηi = ηi}, i = 1, 2, . . . , h.

Quite often, we use η as a running symbol for ηi.
We want to see the structure of Γη. As usual, we first shift η to ∞. So

choose A =
( α α∗

β β∗
)
∈ SL(2,K). Clearly A · ∞ = A

[
1
0

]
=

[
α
β

]
. Conse-

quently, Γη = A · Γ∞ · A−1.
Next, we further pin down the choice of α∗ and β∗ appeared in A. For this,

we use a trick which according to Elstrodt roots back to Hurwitz.

Lemma. Let α, β ∈ K such that OKα+ aβ = b �= {0}. Then there exist
α∗, β∗ ∈ K such that (1)

( α α∗

β β∗
)
∈ SL(2,K); and (2) OKβ

∗ + a−1α∗ =
b−1.

Proof. Note that 1 ∈ OK = b·b−1 = (OKα+aβ)·b−1 = b−1·α+(ab−1)·β.
As such, we can choose β∗ ∈ b−1, α∗ ∈ ab−1 such that αβ∗ − βα∗ = 1.
This gives (1). As for (2), it suffices to show that (OKβ

∗ + a−1α∗) · (OKα+
aβ) = OK .One inclusion is clear. Indeed, by our construction, 1 ∈ (OKβ

∗+
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a−1α∗) · (OKα + aβ), so (OKβ
∗ + a−1α∗) · (OKα + aβ) ⊃ OK . As for

the inclusion in the other direction, we go as follows: Clearly,

(OKβ
∗ + a−1α∗) · (OKα+ aβ) = OK · (β∗α) + a−1 · (α∗α)

+ (aa−1) · (α∗β) + a · (ββ∗).

But, by definition, b = OKα+ aβ, so α ∈ b, β ∈ a−1b. This, together with
β∗ ∈ b−1, α∗ ∈ ab−1, then gives

(OKβ
∗ + a−1α∗) · (OKα+ aβ) ⊂ OK · (b−1 · b) + a−1 · ((ab−1) · b)

+ (aa−1) · ((ab−1) · (a−1b)) + a · ((a−1b)b−1) = OK .

Consequently, we have the following structure of the stablizer Γη; �

Corollary. A−1ΓηA =
{( u z

0 u−1

)
: u ∈ UK , z ∈ ab−2

}
. In particular, the

associated ‘lattice’ for the cusp η is given by the fractional ideal ab−2.

Proof. All elements in A−1 · Γη · A fix ∞, so are given by upper triangle
matrices. With this observation, let us now show that z ∈ ab−2. This is easy.
Indeed, by definition,A−1 ·Γη ·A consists of elements in the form

( β∗ −α∗

−β α

)
·(

a b

c d

)
·
( α α∗

β β∗
)

=:
( a11 a12

a21 a22

)
with a21 = 0 and a12 = (a−d)α∗β∗−c(α∗)2+

b(β∗)2. Recall that α ∈ b, β ∈ a−1b and β∗ ∈ b−1, α∗ ∈ ab−1, and that
for

(
a b

c d

)
∈ SL(OK ⊕ a), a, d ∈ OK , b ∈ a, c ∈ a−1, easily we have

z = a12 ⊂ OK ·((ab−1)·b−1)+a−1 ·(ab−1)2+a·(b−1)2 = ab−2 as desired.
To complete the proof, we still need to show that u is a unit. This may be

done as follows. Assume, as we can, that η =
[ α

β

]
with α, β ∈ OK . Note

that for γ =
(

a b

c d

)
∈ SL(OK ⊕ a) such that γ ·

[ α

β

]
=

[ α

β

]
, we have

(aα + bβ) · β = (cα + dβ) · α. Here a, d ∈ OK , b ∈ a, c ∈ a−1, and
α ∈ b, β ∈ a−1b with b = OKα+aβ. Thus note that now the ideal generated
by (aα+ bβ)β = (cα+ dβ)α is included in a−1b2. Dividing by it, we have

(aα+ bβ)
b

=
(α)
b

and
(cα + dβ)

a−1b
=

(β)
a−1b

. (*)

But
( α α∗

β β∗
)( u z

0 u−1

)
=

(
a b

c d

)( α α∗

β β∗
)
, so

( uα ∗
uβ ∗

)
=

( aα+bβ ∗
cα+dβ ∗

)
. Therefore,

(uα) = (aα+ bβ), and (uβ) = (cα+ dβ). (**)

Clearly, from (*) and (**), as integral ideals (uα) = (α), (uβ) = (β). So
u ∈ UK as desired. �

Set now Γ′
η :=

{
A
(

1 z

0 1

)
A−1 : z ∈ ab−2

}
. Then Γη = Γ′

η ×{
A
( u 0

0 u−1

)
A−1 : u ∈ UK

}
. Note that also componentwisely,

( u 0

0 u−1

)
z =
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uz
u−1 = u2z. So, in practice, what we really get is the following decomposition
Γη = Γ′

η × U2
K with

U2
K �

{
A ·

(
u 0
0 u−1

)
·A−1 : u ∈ UK

}
�

{
A

(
1 0
0 u2

)
A−1 : u ∈ UK

}
.

Now we are ready to proceed a construction of a fundamental domain for
the action of Γη ⊂ SL(OK⊕a) on Hr1×Hr2 . This is based on a construction
of a fundamental domain for the action of Γ∞ on Hr1 ×Hr2 . More precisely,
with an element A =

( α α∗

β β∗
)
∈ SL(2,K) used above, i) A · ∞ =

[ α

β

]
; and

ii) The isotropy group of η in A−1SL(OK ⊕ a)A is generated by translations
τ 
→ τ + z with z ∈ ab−2 and by dilations τ 
→ uτ where u runs through the
group U2

K .
Consider then the map

ImJ:

Hr1 × Hr2 → Rr1+r2
>0 ,

τ :=(z1, . . . , zr1 ;P1, . . . , Pr2) 
→ (�(z1), . . . ,�(zr1);J(P1), . . . , J(Pr2)),

where if z = x + iy ∈ H resp. P = z + rj ∈ H, we set �(z) = y resp.
J(P ) = r. It induces a map (A−1·Γη·A)\(Hr1×Hr2) → U2

K\Rr1+r2
>0 ,which

exhibits (A−1 ·Γη ·A)\(Hr1 ×Hr2) as a torus bundle over U2
K\Rr1+r2

>0 with
fiber the n = r1 +2r2 dimensional torus (Rr1 ×Cr2)/ab−2. Having factored
out the action of the translations, we only have to construct a fundamental
domain for the action of U2

K on Rr1+r2
>0 . This is essentially the same as in 1.4.

We look first at the action of U2
K on the norm-one hypersurface S := {y ∈

Rr1+r2
>0 : N(y) = 1}. By taking logarithms, it is transformed bijectively into

a trace-zero hyperplane which is isomorphic to the space Rr1+r2−1

S
log→ Rr1+r2−1 :=

{
(a1, . . . ar1+r2) ∈ Rr1+r2 :

∑
ai = 0

}
,

y 
→ (log y1, . . . , log yr1+r2),

where the action of U2
K on S is carried out over an action on Rr1+r2−1 by

translations: ai 
→ ai + log ε(i). By Dirichlet’s Unit Theorem, the logarithm
transforms U2

K into a lattice in Rr1+r2−1. The exponential map transforms a
fundamental domain, e.g., a fundamental parallelopiped, for this action back
into a fundamental domain SU2

K
for the action of U2

K on S. The cone over
SU2

K
, that is, R>0 · SU2

K
⊂ Rr1+r2

>0 , is a fundamental domain for the action
of U2

K on Rr1+r2
>0 . If we denote by T a fundamental domain for the action of

the translations by elements of ab−2 on Rr1 × Cr2 , and set

ReZ (z1, . . . , zr1 ;P1, . . . , Pr2) :=(�(z1), . . . ,�(zr1);Z(P1), . . . , Z(Pr2))
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with �(z) := x resp. Z(P ) := z if z = x+ iy ∈ H resp. P = z + rj ∈ H,
then what we have just said proves the following

Theorem . The set E := {τ ∈ Hr1 × Hr2 : ReZ (τ) ∈ T , ImJ (τ) ∈
R>0 ·SU2

K
} is a fundamental domain for the action ofA−1ΓηA on Hr1×Hr2 .

For later use, we also set Fη := A−1
η ·E.

2.4 Fundamental domain

Guided by Siegel’s discussion on totally real fields [21], we are now ready to
construct fundamental domains for general number fields.

So we are dealing with rank two OK -lattices whose underlying projective
modules P are all given by the same P = Pa := OK ⊕a for a fixed fractional
OK -ideal a. This then leads to the space SL(OK ⊕ a)\(Hr1 × Hr2).

To facilitate ensuring discussion, recall that for τ = (z1, . . . , zr1 ;P1, . . . ,
Pr2)∈Hr1×Hr2 , we set ImJ(τ) :=(�(z1), . . . ,�(zr1), J(P1), . . . , J(Pr2))
∈ Rr1+r2 where �(z) = y resp. J(P ) = v for z = x + iy ∈ H resp.
P = z + vj ∈ H. For our own convenience, we now set

N(τ) := N(ImJ(τ)) =
r1∏

i=1

�(zi)·
r2∏

j=1

J(Pj)2 = (y1·. . .·yr1)·(v1·. . .·vr2)
2.

Then by an obvious computation, we have, for all γ =
(

a b

c d

)
∈ SL(2,K),

N(ImJ(γ · τ)) =
N(ImJ(τ))

‖N(cτ + d)‖2
. (*)

In particular, only the second row of γ appears.
As the first step to construct a fundamental domain, we need to have a gen-

eralization of Siegel’s ‘distance to cusps’. Recall that for a cusp η =
[ α

β

]
∈

P1(K), by the Cusp-Ideal Class Correspondence, we have a natural corre-
sponding ideal class associated to the fractional ideal b := OK · α + a · β.
Moreover, by assuming that α, β appeared above are all contained in OK , as
we may, we know that the corresponding stabilizer group Γη can be described
by A−1 · Γη · A =

{
γ =

( u z

0 u−1

)
∈ Γ : u ∈ UK , z ∈ ab−2

}
, where

A ∈ SL(2,K) satisfying A∞ = η which may be further chosen in the form
A =

( α α∗

β β∗
)
∈ SL(2,K) so that OKβ

∗ + a−1α∗ = b−1.
Now define the reciprocal distance µ(η, τ) from a point τ = (z1, . . . , zr1 ;

P1, . . . , Pr2) in Hr1 × Hr2 to the cusp η =
[ α

β

]
in P1(K) by
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µ(η, τ)

:= N(a−1 · (OKα+ aβ)2) · �(z1) . . .�(zr1) · J(P1)2 . . . J(Pr2)2∏r1

i=1 |(−β(i)zi + α(i))|2∏r2

j=1 ‖(−β(j)Pj + α(j))‖2

=
1

N(ab−2)
· N(ImJ(τ))
‖N(−βτ + α)‖2

.

This is well-defined: if η =
[ α

β

]
=

[ α′

β′
]

in P1(K), there exists λ ∈ K∗ such

that α′ = λ · α, β′ = λ · β. Therefore, µ(η, τ) in terms of
[ α′

β′
]

is given by
1

N(ab′−2)
· N(ImJ(τ))

‖N(−β′τ+α′)‖2 where b′ = OKα
′+aβ′ = (λ) ·b. Hence, µ(η, τ) in

terms of
[ α′

β′
]

becomes N(λ)2

N(ab−2)
· N(ImJ(τ))

N(λ)2·‖N(−βτ+α)‖2 = 1
N(ab−2)

· N(ImJ(τ))

‖N(−βτ+α)‖2 ,

which is nothing but µ(η, τ) in terms of
[ α

β

]
. We are done.

As such, our definition is clearly a generalization and more importantly
a normalization of Siegel’s distance to cusps. In particular, this definition is
enviromentally free.

Lemma 1. µ is invariant under the action of SL(OK ⊕ a).

Proof. By the well-defined argument above, we may simply assume that for
a cusp η, α, β are fixed. Then the proof is based on the following observation.
For the cusp η =

[ α

β

]
∈ P1(K), we may choose Aη =

(
α α∗

β β∗
)
∈ SL(2,K)

such that A∞ = η. (Surely, Aη is not unique, however this does not matter.)

Clearly, A−1
η =

( β∗ −α∗

−β α

)
. Therefore, by defintion,

µ(η, τ) =
1

N(ab−2)
·N(ImJ(A−1

η (τ))). (**)

Note that even Aη is not unique, as said above, with a fixed τ , from (*),
N(ImJ(A−1

η (τ))) depends only on the second row of A−1
η , which is simply

(−β, α), uniquely determined by the cusp η.
With (**), the proof may be completed easily as follows. First, let us

consider the factor N(ab−2). Clearly, with the change from η to γη for
γ ∈ SL(OK ⊕ a), the fractional ideal ab−2 does not really change, so
this factor remains unchanged. Therefore, it suffices to consider the second
factor N(ImJ(A−1

η (τ))). By an easy calculation, Aγη = γAη. Conse-
quently, A−1

γη (γτ) = (γAη)−1(γτ) = A−1
η γ−1(γη) = A−1

η (γ−1γη) =
A−1

η (η). �

Lemma 2. There exists a positive constant C depending only on K and
a such that if µ(η, τ) > C and µ(η′, τ) > C for τ ∈ Hr1 × Hr2 and
η, η′ ∈ P1(K), then η = η′.
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Proof. Set µ(η, τ) = 1
N(ab−2)

· 1
∆(η,τ)

. Since N(a−1b) ≥ N(a−1), it suffices
to show that there exists a positive constant c depending only on K such that
if ∆(η, τ) < c and ∆(η′, τ) < c for τ ∈ Hr1 × Hr2 and η, η′ ∈ P1(K),
then η = η′.

By the Cusp-Ideal Class correspondence and the invariance property just
proved, we can write η =

[ α

β

]
, η′ =

[ α′

β′
]

with OK -integers α, β, α′, β′ such
that b := OKα+aβ and b′ := OKα

′ +aβ′ have norm less than a constantC
depending only on K . For every (r1 + r2)-tuple (t1, . . . , tr1+r2) of non-zero
real numbers, by Dirichlet’s Unit Theorem, there exists a unit ε ∈ K such
that |tiε(i)| ≤ c · |N(t)| 1

r1+r2 where N(t) :=
∏r1

i=1 ti ·
∏r1+r2

j=r1+1 t
2
j with c a

constant depending only onK . Hence, after multiplying α and β by a suitable
uint, we have

max{�(zi)−1| − β(i)zi + α(i)|, J(Pj)−2‖ − β(j)Pj + α(j)‖2}

≤ c · ∆(η, τ)−
1

r1+r2 · C 2
r1+r2 ≤ c · T− 1

r1+r2 · C 2
r1+r2 .

This gives

max{ | − β(i)�(zi) + α(i)| · �(zi)−1/2, ‖ − β(j)Z(Pj) + α(j)‖ · J(Pj)−1}

≤ c1/2 · T− 1
2(r1+r2) · C 1

r1+r2

and max{ |β(i)| ·�(zi)1/2, ‖β(j)‖ ·J(Pj)} ≤ c1/2 ·T− 1
2(r1+r2) ·C 1

r1+r2 . For
α′ and β′, we obtain similar inequalities. But now, for real places

α(i)(β′)(i) − β(i)(α′)(i) = (−β(i)�(zi) + α(i))�(zi)−1/2 · (β′)(i)�(zi)1/2

− (−(β′)(i)�(zi) + (α)(i))�(zi)−1/2

× ·β(i)�(zi)1/2,

while for complex places,

α(j)(β′)(j) − β(j)(α′)(j) = (−β(j)Z(Pj) + α(j))J(Pj) · (β′)(j)J(Pj)

− (−(β′)(j)Z(Pj) + (α′)(j))J(Pj) · β(j)J(Pj).

ConsequentlyN(αβ′−βα′) ≤ (2c)r1+r2 ·T−1 ·C2. So if T > (2c)r1+r2 ·C2,
the norm of the algebraic integer αβ′ − βα′ has absolute value less than 1,
that is, αβ′ − βα′ = 0. This implies that η = η′ as desired. �

More correctly, we should consider 1
µ(η,τ)1/2 as the ‘distance’ of τ to the

cusp η. For example, if η = ∞, the distance is just 1
N(τ)1/2 · 1

N(a)1/2 , since by

definition, µ(∞, τ) = N(OK·1+a·0)2N(τ)

|N(−0τ+1)|2 = N(τ).
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Lemma 3. There exists a positive real number T := T (K) depending only
on K such that for τ ∈ Hr1 × Hr2 , there exists a cusp η such that µ(η, τ) >
T .

Proof. Since N(a−1b2) ≥ N(a−1), and there are finitely many inequivalent
cusps, it is sufficient to find a solution of α, β in OK satisfying the inequality

|N(−βτ + α)|2 ·N(ImJ(τ))−1 ≤ T−1.

Consider the inequalities

| − β(i)�(zi)+α(i)| · �(zi)−1/2≤ci, |β(i)| · �(zi)1/2 ≤ di, i = 1, . . . , r1

‖ − β(j)Z(Pj)+α(j)‖ · J(Pj)−1≤cj, ‖β(j)‖ · J(Pj) ≤ dj, j = 1, . . . , r2,

which we may write, using a Z-basis ω1, . . . , ωr1+r2 of OK as a system of
r1 + 2r2 linear inequalities (by changing the last r2 to the 2r2 inequalities
involving only real numbers with respect to complex conjugations). Accord-
ing to a theorem of Minkowski, we can find a solution α =

∑
aiωi, β =∑

biωi with ai, bi ∈ Z provided that (
∏
ci ·

∏
d2

j) is no less than the
absolute of the determinant of this system. Clearly, this absolute value is sim-
ply |ω(k)

i |2 = ∆K , the (absolute value of) discriminant of K . So we can

take ci = dj = ∆
1

r1+2r2
K , and hence T = 2r2 · ∆K. This completes the

proof. �

Now for the cusp η =
[ α

β

]
∈ P1(K), we define the ‘sphere of influence’

of η by

Fη := {τ ∈ Hr1 × Hr2 : µ(η, τ) ≥ µ(η′, τ),∀η′ ∈ P1(K)}.

Lemma 4. The action of SL(OK ⊕ a) in the interior F 0
η of Fη reduces to

that of the isotropy group Γη of η, i.e., if τ and γτ both belong to F 0
η , then

γτ = τ.

Proof. We have
µ(γ−1η, τ) ≤ µ(η, τ)

‖ ‖
µ(η, γτ) ≥ µ(γη, γτ)

for τ, γτ ∈ F o
η , and the inequal-

ities are strict if γη �= η.
Consequently, the boundary of Fη consists of pieces of ‘generalized iso-

metric circles’ given by equalities µ(η, τ) = µ(η′, τ) with η′ �= η. �

Using above discussion, we arrive at decomposing the orbit space
SL(OK ⊕ a)\(Hr1 × Hr2) into h pieces glued in some way along pants of
their boundary.
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Theorem . Let iη : Γη\Fη ↪→ SL(OK ⊕ a)\(Hr1 × Hr2) be the natural
map. Then

SL(OK ⊕ a)\(Hr1 × Hr2) = ∪ηiη(Γη\Fη),

where the union is taken over a set of h cusps representing the ideal classes
of K . Each piece corresponds to an ideal class of K .

Note that the action of Γη on Hr1 × Hr2 is free. Consequently, all fixed
points of SL(OK ⊕ a) on Hr1 × Hr2 lie on the boundaries of Fη .

Further, we may give a more precise description of the fundamen-
tal domain, based on our understanding of the fundamental domains for
stabilizer groups of cusps. To state it, denote by η1, . . . , ηh inequiv-
alent cusps for the action of SL(OK ⊕ a) on Hr1 × Hr2 . Choose
Aηi

∈ SL(2,K) such that Aηi
∞ = ηi, i = 1, 2, . . . , h. Write S for

the norm-one hypersurface S := {y ∈ Rr1+r2
>0 : N(y) = 1}, and

SU2
K

for the action of U2
K on S. Denote by T a fundamental domain for

the action of the translations by elements of ab−2 on Rr1 × Cr2 , and
E := {τ ∈ Hr1 × Hr2 : ReZ (τ) ∈ T , ImJ (τ) ∈ R>0 · SU2

K
} for a funda-

mental domain for the action of A−1
η ΓηAη on Hr1 × Hr2 . Easily, we know

that the intersections of E with iη(Fη) are connected. Consequently, we have
the following

Theorem′ .

(1) The set A−1
η E ∩ Fη is a fundamental domain for the action of Γη on Fη

which we call Dη;
(2) There exist α1, . . . , αh ∈ SL(OK ⊕ a) such that ∪h

i=1α(Dηi
) is con-

nected and hence a fundamental domain for SL(OK ⊕ a).

We may present this concrete discussion on fundamental domains in a more
theoretical manner. For this, we first introduce a natural geometric truncation
for the fundamental domain. So define a compact manifold with boundary

ST := SL(OK ⊕ a)\{τ ∈ Hr1 × Hr2 : µ(η, τ) ≤ T ∀η ∈ CSL(OK⊕a)},

where CSL(OK⊕a) denotes the collections of cusps, and T is so large that
for all cusps η, W (η, T ) := {τ ∈ Hr1 × Hr2 : µ(η, τ) ≤ T} is con-
tained in Fη , so disjoint for different classes η and η′. Clearly, then the bound-
ary ∂ST consists of h component manifold iη(Γη\∂W (η, T )) of dimension
2r1 + 3r2 − 1. Moreover, let Σ :=

{
(t1, . . . , tr1 ; s1, . . . , sr2) ∈ Rr1+r2

>0 :∏r1

i=1 ti
∏r2

i=1 s
2
j = 1

}
act on Rr1 × Cr2 by component-wise multiplication.

The semi-direct product E = (Rr1 × Cr2) × Σ acts on Hr1 × Hr2 by

((ui, vj), (ti, sj)) · (τ = (zi;Pj)) := (λizi + ui; sjPj + vj).
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The boundary ∂W (∞, T ) is a partial homogeneous space for this semi-direct
product. We view A−1

η ΓηAη\∂W (∞, Y ) as the quotient of E by the discrete
subgroupA−1

η ΓηAη. It is a r1+2r2-torus bundle over U2
K\Σ with fiber Rr1×

Cr2 modulo the translations in A−1
η ΓηAη. The manifold with boundary ST

is homotopically equivalent to SL(OK ⊕ a)\
(
Hr1 × Hr2

)
. (See e.g. [?].)

Consequently, we have

SL(OK ⊕ a)\(Hr1 × Hr2) = ST ∪∂ST
(∂ST × [0,∞)),

i.e., SL(OK ⊕ a)\(Hr1 × Hr2) is topologically a manifold with h ‘ends’ of
the form T r1+2r2-bundle over T r1+r2−a × [0,∞).

With all this, we may end our long discussion on the fundamental domain
for the action of SL(OK ⊕ a) on Hr1 × Hr2 . The essentials are, of course,
that a fundamental domain may be given as SY ∪F1(Y1)∪ . . .∪Fh(Yh) with
Fi(Yi) = Ai · F̃i(Yi) and

F̃i(Yi) := {τ ∈ Hr1 × Hr2 : ReZ(τ) ∈ Σ, ImJ(τ) ∈ R>T · SU2
K
}.

Moreover, all Fi(Yi)’s are disjoint from each other when Yi are sufficiently
large.

2.5 Stability

2.5.1 Upper half plane

So we are working with rank two Z-lattice of volume 1. The space, i.e., the
moduli space of all such lattices, is simply SL(2,Z)\SL(2,R)/SO(2), or
better, SL(2,Z)\H. For it, we have a well-known fundamental domain D
whose closure is given by D :=

{
z ∈ H : |z| ≥ 1, |x| ≤ 1

2

}
. Our question

then is:

What are the points in D corresponding to isometric classes of rank 2 semi-
stable lattices of volume 1?

The answer is given by classical reduction theory. For any rank two Z-
lattice Λ of volume 1 in R2 (equipped with the standard Euclideal metric), fix
x ∈ Λ\{0} such that its length gives the first Minkowski successive minimum
λ1 = λ1(Λ) of Λ. Then via rotation when necessary, we may assume that x =
(λ1, 0). Furthermore, classical reduction theory tells us that 1

λ1
Λ is simply the

lattice of the volume λ−2
1 =: y0 generated by the vectors (1, 0) and ω := x0+

iy0 ∈ D. In particular, with one generator (1, 0) being fixed, all lattices are
parametrized by only one vector, i.e., the (other) generator ω = x0+iy0 ∈ D.
Consequently, our problem now becomes:
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What are the points ω ∈ D whose corresponding lattices, i.e., those generated
by (1, 0) and ω, are semi-stable?

To answer this, set DT := {z ∈ D : y = �(z) ≤ T}. Then by the
above discussion, up to points on the boundary, the points in DT are in one-
to-one corresponding with rank two Z-lattices (in R2) of volume one whose
first Minkowski successive minimums λ1 satisfying λ−2

1 ≤ T , since λ−2
1 =

y0 ≤ T . Write this condition in a better form, we have λ1(Λ) ≥ T−1/2, or
equivalently, deg(Λ) ≤ 1

2
log T . Then what we have just siad may be restated

in a more theoretical form as the following
Fact (VI)Q (Grometric Truncation=Algebraic Truncation) Up to a sub-
set of measure zero, there is a natural one-to-one and onto morphism

M≤ 1
2 log T

Q,2 [1] � DT , where M≤ 1
2 log T

Q,2 [1] denotes the moduli space of rank
two Z-lattices Λ of volume 1 whose sublattices of rank 1 all have degrees
≤ 1

2
log T . In particular,

M≤0
Q,2[1] = MQ,2[1] � D1.

2.5.2 Rank two OK -lattices: level two

We start with our discussion by citing a result of Tsukasa Hayashi [11].
Let Λ be a rank two OK-lattice of volume N(a) · ∆K with underlying

projective module OK ⊕ a. Recall that, by definition, Λ is semi-stable if
for any rank one OK -sublattice Λ1 of Λ, equipped with the induced metric,
Vol(Λ1)2 ≥ N(a)∆K . To understand this condition, let us first understand
the structure of rank one OK -sublattices Λ1 of Λ.

By the discussion in §1.1, any rank one OK-submodule of Λ has the form
c ·

( x

y

)
where c is a fractional OK-ideal and c ·

( x

y

)
∈ OK ⊕ a. Set b =

OKx+ a−1y. Since c · x ∈ OK , c y ∈ a, we have

b · c ⊂ (OKx+ a−1y) · c = c · x+ a−1(c · y) ⊂ OK + a−1 · a = OK .

Therefore, c ⊂ b−1. This then proves (1) of the following

Proposition. ([11]).

(1) Any rank one sublattice of Λ = (OK ⊕a, ρΛ) is contained in b−1
( x

y

)
∩Λ

where
( x

y

)
∈ K2\

{(
0

0

)}
and b = OKx+ a−1y;

(2) Λ is semi-stable if and only if∏
σ∈S∞

∥∥∥∥(xσ

yσ

)∥∥∥∥2

Λσ

≥ N(ab2) = N(OKx+ a−1y) ·N(OKy + ax),

× ∀
(
x

y

)
∈ K2

∖{(
0
0

)}
.
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Proof. From (1), it suffices to check the semi-stable condition for all
rank one sublattices Λ1 induced from the submodules b−1

( x

y

)
, where( x

y

)
∈ K2\

{(
0

0

)
with b := OKx + a−1y. Now, by Arakelov–Riemann–

Roch, Vol(Λ1) = N(c) · ∆1/2
K ·

∏
σ

∥∥( xσ

yσ

)∥∥
Λσ
. Therefore, the semi-stable

condition becomes
(
(N(b−1)∆1/2

K ) ·
∏

σ∈S∞

∥∥( xσ

yσ

)∥∥)2 ≥ N(a) ·∆K . That
is to say,∏

σ∈S∞

∥∥∥∥(xσ

yσ

)∥∥∥∥2

Λσ

≥ N(ab2) = N(a(OKx+ a−1y) · b)

= N((OKy + ax)b)

= N(ax+ OKy) ·N(OKx+ a−1y).

�

2.5.3 Stability and distance to cusps

In this subsection, we expose an intrinsic relation in Geometric Arithmetic,
which connects stability and distance to cusps in a very beautiful way.

Assume that Λ = (OK ⊕ a, ρΛ) is semi-stable. Then for any non-zero
element (x, y) ∈ K ⊕K , set b0 := OKx+ a−1y so that x ∈ b0, y = ab0.
Thus b−1

0 x ⊂ OK and b−1
0 y ⊂ a and b−1

0 (x, y) ⊂ (b−1
0 x, b−1

0 y) ⊂ OK ⊕ a.
Moreover, if P1 is a projective OK-submodule of rank 1 in OK ⊕ a, then
P1 = c(x, y) with c a fractional ideal and (x, y) ∈ K ⊕K\{(0, 0)}. Since
cx ⊂ OK and cy ⊂ a, we have

c · b0 = OK · cx+ a−1 · cy ⊂ OK · OK + a−1 · a = OK .

Hence c ⊂ b−1
0 . Consequently, P1 = c(x, y) ⊂ b−1

0 (x, y). Therefore,

(i) b−1
0 (x, y) is a projective OK-submodule of rank 1 in OK ⊕ a; and

(ii) Any projective OK-submodule of rank 1 in OK ⊕ a is contained in
b−1

0 (x, y).

Thus, the semi-stability condition becomes (Vol(b−1
0 (x, y), ρΛ))2 ≥

Vol(OK ⊕ a, ρΛ). That is,
(
N(b0)−2 · (∆

1
2
K)2

)
· ‖(x, y)‖2

ρΛ
≥ N(a) ·∆2× 1

2
K

or better
‖(x, y)‖2

ρΛ
≥ N(ab2

0). (*)

On the other hand, for gΛ =
(

a b

c d

)
such that ρΛ = ρ(gΛ),

‖(x, y)‖2
ρΛ

= ‖(x, y)gΛ‖2 =
∏

σ∈S∞

||aσxσ + cσyσ|2 + |bσxσ + dσyσ|2|Nσ

= N

((∗ ∗
x y

)(
a b

c d

)
ImJ

)−1

, (**)
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whereNσ = 1 resp. 2 if σ is real resp. complex, and ImJ := (i, . . . , i, j, . . . , j)
∈ Hr1 × Hr2 with i =

√
−1 ∈ H and j = (0, 0, 1) ∈ H. (Recall that we

have set N(τ) := N(ImJ(τ)).) Indeed,(∗ ∗
x y

)(
a b

c d

)
ImJ =

(
∗ ∗

ax+ cy bx+ dy

)
ImJ

=
(( ∗ ∗

aσ1xσ1 + cσ1yσ1 bσ1xσ1 + dσ1yσ1

)
i, . . . ,

×
( ∗ ∗
aσr1

xσr1
+ cσr1

yσr1
bσr1

xσr1
+ dσr1

yσr1

)
i,

×
( ∗ ∗
aτ1xτ1 + cτ1yτ1 bτ1xτ1 + dτ1yτ1

)
j, . . . ,

×
( ∗ ∗
aτr2

xτr2
+ cτr2

yτr2
bτr2

xτr2
+ dτr2

yτr2

)
j

)
× ∈ Hr1 × Hr2 ,

where σ1, . . . , σr1 (resp. τ1, . . . , τr2) denote real places (resp. complex
places) in S∞. From here, to get (**), we use the following obvious calcula-
tions:

(a) For reals, if M =
(

A B
C D

)
∈ SL(2,R), for z = X + Y i ∈ H with

X,Y ∈ R, set M(X + iY ) = X∗ + Y ∗i with X∗, Y ∗ ∈ R. Then
Y ∗ := Y

(CX+D)2+C2Y 2 . In particular, when applied to the local factor for
real σ in (**), we have C = aσxσ + cσyσ, D = bσxσ + dσyσ and
X = 0, Y = 1. Therefore, the corresponding Y ∗ is simply

1
((aσxσ + bσyσ) · 0 + (bσxσ + dσyσ))2 + (aσxσ + cσyσ)2 · 12

=
1

(bσxσ + dσyσ)2 + (aσxσ + cσyσ)2
;

(b) For complexes, if M =
(

A B

C D

)
∈ SL(2,C), for P = Z + V j ∈ H with

Z ∈ C, V ∈ R, set M(Z + V j) = Z∗ + V ∗i with Z∗ ∈ C, V ∗ ∈ R.
Then

V ∗ :=
V

|CZ +D|2 + |C|2V 2
=

V

‖CP +D‖2
.

In particular, when applied to the local factor for complex τ in (**), we
haveC = aτxτ+cτyτ , D = bτxτ+dτyτ andZ = 0, V = 1. Therefore,
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the corresponding (V ∗)2 is simply(
1

|(aτxτ + cτyτ) · 0 + (bτxτ + dτyτ)|2 + |aτxτ + cτyτ |2 · 12

)2

=
(

1
|bτxτ + dτyτ |2 + |aτxτ + cτyτ |2

)2

.

Consequently, the relation (**), together with (*), implies

(iii) The lattice Λ = (OK ⊕ a, ρΛ(g)) with g :=
(

a b

c d

)
is semi-stable if and

only if for any non-zero (x, y) ∈ K⊕K ,N
(( ∗ ∗

x y

)(
a b

c d

)
ImJ

)
·N(ab2

0) ≤
1, where b0 := OKx+ a−1y.

But, by definition, for the lattice Λ = (OK ⊕ a, ρ(gΛ)), the corre-
sponding point τΛ ∈ Hr1 × Hr2 is given by gΛ(ImJ). Hence, we have
the following equivalent

(iii′) The lattice Λ =
(
OK ⊕ a, ρΛ(g)

)
is semi-stable if and only if for any

non-zero (x, y) ∈ K ⊕ K , N
(( ∗ ∗

x y

)
τΛ

)
· N(ab2

0) ≤ 1, where b0 :=

OKx+ a−1y.
Set now x = −β and y = α. Then b0 = OKβ + a−1α. In particular,

β ∈ b0 and α ∈ ab0. So if we define b := ab0. Then α ∈ b, β ∈ a−1b,
and

OKα+ aβ ⊂ b = ab0 = a · (OKβ + a−1α) ⊂ OK · aβ + a−1 · aα

= aβ + OKα.

Therefore, b = OKα + aβ, and ab2
0 = a · (a−1b)2 = a−1b2. Con-

sequently, the semi-stability condition (iii′) becomes for any cusp η =[ α

β

]
∈ P1(K),

µ(η, τΛ) = N

(( ∗ ∗
−β α

)
τΛ

)
·N(a−1b2) ≤ 1.

Or better, in terms of distance to cusp,

d(η, τΛ) :=
1

µ(η, τΛ)
≥ 1.

In this way, we arrive at the following fundamental result, which exposes
a beautiful intrinsic relation between stability and the distance to cusps.

Fact (VII) The lattice Λ is semi-stable if and only if the distances of corre-
sponding point τΛ ∈ Hr1 × Hr2 to all cusps are all bigger or equal to 1.
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Remark. One can never overestimate the importance of this relation. Being
stable, lattices should be away from cusps. More generally, while the stability
condition is defined in terms of sublattices, the relation above transforms these
volumes inequalities in terms of distances to cusps. In a more theoretical term
for higher rank lattices, the essence of this fact is that, sublattices and cusps,
as two different aspects of parabolic subgroups, are naturally corresponding
to each other: stability conditions for various sublattices are naturally related
with these for generalized distances to all cusps.

2.5.4 Moduli space of rank two semi-stable OK-lattices

For a rank two OK-lattice Λ, denote by τΛ ∈ Hr1 × Hr2 the corresponding
point. Then, from the Fact in the previous subsection, Λ is semi-stable if and
only if for all cusps η, d(η, τΛ) := 1

µ(η,τΛ)
are bigger than or equal to 1. This

then leads to the consideration of the following truncation of the fundamental
domain D of SL(OK ⊕ a)\(Hr1 ×Hr2): For T ≥ 1, denote by DT := {τ ∈
D : d(η, τΛ) ≥ T−1, ∀cusp η}.

DT may be precisely described in terms of D and certain neighborhood of
cusps.

Lemma. For a cusp η, denote by Xη(T ) := {τ ∈ Hr1 × Hr2 : d(η, τ) <
T−1}. Then for T ≥ 1, Xη1(T ) ∩Xη2(T ) �= ∅ ⇔ η1 = η2.

Proof. One direction is clear. Hence, it suffices to show that if τ ∈ Hr1 ×Hr2

satisfies d(τ, η1) < 1 and d(τ, η2) < 1, then η1 = η2. For this, let η1 =[ α1

β1

]
, η2 =

[ α2

β2

]
and b1 = OKα1 + aβ1, b2 = OKα2 + aβ2. Clearly,

N

(( ∗ ∗
−β1 α1

)
τ

)
·N(a−1b2

1)

= N

(( ∗ ∗
−β1 α1

)
·
((

α2 α∗
2

β2 β∗
2

)
·
(
β∗

2 −α∗
2

−β2 α2

))
· τ

)
·N(a−1b2

1)

= N

((( ∗ ∗
−β1 α1

)
·
(
α2 α∗

2

β2 β∗
2

))
·
( ∗ ∗
−β2 α2

)
τ

)
·N(a−1b2

1)

= N

((∗ ∗
c d

)
·
( ∗ ∗
−β2 α2

)
τ

)
·N(a−1b2

1)

=
N

(( ∗ ∗
−β2 α2

)
τ

)
∥∥∥∥c · ( ∗ ∗

−β2 α2

)
τ + d

∥∥∥∥2 ·N(a−1b2
1),

where c = α1β2 − β1α2.
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We want to show that c = 0, since then η1 = η2. Thus to continue, let us
recall that we have the following conditions ready to use:

N

(( ∗ ∗
−β1 α1

)
τ

)
·N(a−1b2

1) > 1, N
(( ∗ ∗

−β2 α2

)
τ

)
·N(a−1b2

2) > 1.

As such, set τ ′ =
( ∗ ∗
−β2 α2

)
τ , then what we need to show becomes the

following �

Lemma′ . Assume that (i) N(τ ′) ·N(a−1b2
2) > 1, (ii) N(τ ′) ·N(a−1b2

1) >
‖cτ ′ + d‖2, and (iii) c = α1β2 − β1α2 with α1, β1, α2, β2 ∈ OK . Then
c = 0.

Proof. First note that α1 ∈ b1, β1 ∈ a−1b1 and α2 ∈ b2, β2 ∈ a−1b2, we
have c ∈ a−1b1b2. Thus

N(c) ≥ N(a−1b1b2). (*)

�

Sublemma’. ‖cτ ′ + d‖2 ≥ N(c)2 ·N(τ ′)2.

Proof. Indeed, if suffices to prove this inequality locally. This is however an
obvious calculation. Say for real σ, by definition,

∥∥cσzσ + dσ

∥∥2
= (cσxσ +

dσ)2 + c2σy
2
σ ≥ c2σy

2
σ, done. (We leave the complex case to the reader.)

Thus by (ii), we have N(τ ′) · N(a−1b2
1) > N(c)2 · N(τ ′)2. That is to

say, N(a−1b2
1) > N(c)2 ·N(τ ′). Consequently, by (i), we have N(a−1b2

1) ·
N(a−1b2

2) > N(c)2, or better N(a−1b1b2) > N(c), contradicting to (*).
�

All in all, then we have exposed the following
Fact (VI)K . There is a natural identification between

(a) the moduli space of rank two semi-stable OK -lattices of volumeN(a)∆K

with underlying projective module OK ⊕ a; and
(b) the truncated compact domain D1 consisting of points in the fundamental

domain D whose distances to all cusps are bigger than 1.

In other words, the truncated compact domain D1 is obtained from the

fundamental domain D of SL(OK ⊕ a)\
(
Hr1 × Hr2

)
by delecting the

disjoint open neighborhoods ∪ ∪h
i=1 Fi(1) associated to inequivalent cusps

η1, η2, . . . , ηh, where Fi(T ) denotes the neighborhood of ηi consisting of
τ ∈ D whose distance to ηi is strictly less than T−1.

For later use, we set also DT := D\ ∪ ∪h
i=1Fi(T ), T ≥ 1.
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3. Epstein zeta function and its Fourier expansion

3.1 Epstein zeta function and Eisenstein series

We start with a relation between Epstein zeta function and Eisenstein series
on Hr1 × Hr2 .

Motivated by our study on high rank zeta functions for number fields in
Chapter 1, for a fixed integer r ≥ 1 and a fractional ideal a of a number field
K , let us define the Epstein type zeta function Êr,a;Λ(s) associated to an OK-

lattice Λ with underlying projective module Pa = O(r−1)
K ⊕ a to be

Êr,a;Λ(s) :=
(
π− rs

2 Γ
(rs

2

))r1

(2π−rsΓ(rs))r2 · (N(a)∆
r
2
K)s

·
∑

x∈O(r−1)
K ⊕a/U+

K,r ,x �=(0,...,0)

1
‖x‖rs

Λ

where U+
K,r := {εr : ε ∈ UK , ε

r ∈ U+
K} = U+

K ∩ U r
K . For example, note

that in the case r = 2, U+
K,2 = U2

K , we have

Ê2,a;Λ(s) := (π−sΓ(s))r1(2π−2sΓ(2s))r2 · (N(a)∆K)s

·
∑

x∈OK⊕a/U2
K ,x �=(0,0)

1
‖x‖2s

Λ

.

From now on, we will concentrate on this rank 2 case.
We want to relate the rank 2 Epstein zeta function defined in terms of lat-

tices to an Eisenstein series defined over Hr1 × Hr2 . This is based on the fol-
lowing simple but key observation, which serves as a bridge between lattices
model and the upper half space model. (See also our discussion on stability
and distance to cusps in Ch 2 above.)

Recall that, for any non-zero vector (x, y) ∈ OK ⊕ a, the lattice norm of
(x, y) associated with the lattice Λ = (OK ⊕ a, ρΛ(g)) where g =

(
a b

c d

)
is

given by

‖(x, y)‖2
Λ =

∥∥∥∥(x, y)
(
a b
c d

)∥∥∥∥2

=
∏
σ:R

((aσxσ + cσyσ)2 + (bσxσ + dσyσ)2)

·
∏
τ :C

(|aτxτ + cτyτ |2 + |bτxτ + dτyτ |2)2

=
(

N(gΛ(ImJ))
‖x · gΛ(ImJ) + y‖2

)−1

,
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where, by ImJ, we mean the point ImJ := (

r1−times︷ ︸︸ ︷
i, . . . , i,

r2−times︷ ︸︸ ︷
j, . . . , j) ∈ Hr1×Hr2 .

(Recall that we have set N(τ) := N(ImJ(τ)).) Here for X ∈ K , we set
‖X‖ := N(X) :=

∏
σ:R |Xσ| ·

∏
τ :C |Xτ |2. Also change the action of units

to the one induced from the diagonal action. Then,

Ê2,a;Λ(s) := (π−sΓ(s))r1(2π−2sΓ(2s))r2 · (N(a)∆K)s

·
∑

(x,y)∈OK⊕a/UK ,(x,y) �=(0,0)

(
N(ImJ(τΛ))
‖x · τΛ + y‖2

)s

.

Set then for �(s) > 1,

Ê2,a(τ, s) :=(π−sΓ(s))r1(2π−2sΓ(2s))r2 · (N(a)∆K)s

·
∑

(x,y)∈OK⊕a/UK ,(x,y) �=(0,0)

(
N(ImJ(τΛ))
‖x · τ + y‖2

)s

.

Then we have just completed the proof of the following

Lemma. For a rank two OK-lattice Λ = (OK ⊕ a, ρΛ), denote by τΛ the
corresponding point in the moduli space SL(OK ⊕ a)\(Hr1 × Hr2). Then
Ê2,a;Λ(s) = Ê2,a(τΛ, s).

3.2 Fourier expansions

For simplicity, introduce the standard Eisenstein series by setting

E2,a(τ, s) :=
∑

(x,y)∈OK⊕a/UK ,(x,y) �=(0,0)

(
N(ImJ(τ))
‖x · τ + y‖2

)s

, �(s) > 1.

Then the completed one becomes

Ê2,a(τ, s) = (π−sΓ(s))r1(2π−2sΓ(2s))r2 · (N(a)∆K)s ·E2,a(τ, s). (∗)

Following the classics, see e.g., [7], with suitable generalizations, we in this
subsection give an explicit expression of Fourier expansion for the Eisenstein
series.

As before, for the cusp η =
[ α

β

]
, choose a (normalized) matrix A =( α α∗

β β∗
)
∈ SL(2, F ) such that if b = OKα+ aβ, then OKβ

∗ + aα∗ = b−1.

Clearly, A∞ = η, and moreover, A−1Γ′
ηA =

{(
1 ω
0 1

)
: ω ∈ ab−2

}
. Since

Ê2,a(τ, s), and hence E2,a(τ, s), is SL(OK ⊕ a)-invariant, E2,a(τ, s) is
Γ′

η ⊂ SL(OK ⊕ a)-invariant. Therfeore E2,a(Aτ, s) is ab−2-invariant, that
is, E2,a(Aτ, s) is invariant under parallel transforms by elements of ab−2.
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As a direct consequence, we have the Fourier expansion E2,a(Aτ, s) =∑
ω′∈(ab−2)∨ aω′ (ImJ(τ), s) · e2πi〈ω′,ReZ(τ)〉, where (ab−2)∨ denotes the

dual lattice of ab−2. Thus, if we use Q to denote a fundamental parallolgram
of ab−2 in Rr1 × Cr2 , then

aω′(ImJ(τ), s) :=
1

Vol(ab−2)

∑
(c,d)∈(OK⊕a)A/UK ,(c,d) �=(0,0)

×
∫

Q

(
N(ImJ(τ))
‖cτ + d‖2

)s

cdote−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ

·
∏
τ :C

dxτdyτ .

(As such, we are using in fact the standard Lebesgue measure, rather than the
canonical one. So the notation may cause a bit confusion. However, since the
canonical metric and the Lebesgue one differ by a constant factor depending
only on the field K , we, up to such a constant factor, may ignore the actual
difference: As can be seen in §4 below, even this makes results in this section
not as explicit as possible, it serves our purpose of understanding rank two
zetas quite well.)

Now, let us compute the Fourier coefficients in more details. For this, we
break the summation about aω′ into two cases according to whether c = 0 or
not.

1) Case when c = 0. Then the contribution becomes

1
Vol(ab−2)

∑
(0,d)∈(OK⊕a)A/UK ,d �=0

∫
Q

(
N(ImJ(τ))

‖d‖2

)s

· e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ

=
1

Vol(ab−2)

∑
(0,d)∈(OK⊕a)A/UK ,d �=0

(
N(ImJ(τ))

‖d‖2

)s

×
∫

Q

e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ .

So according to whether ω′ = 0 or not, this case may further be classified
into two subcases.
1. a) Subcase when ω′ �= 0. Then,

∫
Q
e−2πi〈ω′,ReZ(τ)〉 ∏

σ:R dxσ ·∏
τ :C dxτdyτ = 0.
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1. b) Subcase when ω′ = 0. Then
∫

Q

∏
σ:R dxσ ·

∏
τ :C dxτdyτ =

Vol(ab−2). Accordingly,

a0(ImJ(τ), s) =
∑

(0,d)∈(OK⊕a)A/UK ,d �=0

(
N(ImJ(τ))

‖d‖2

)s

=

 ∑
(0,d)∈(OK⊕a)A/UK ,d �=0

N(d)−2s

 ·N(ImJ(τ))s.

To go further, let us look at the summation
∑

(0,d)∈(OK⊕a)A/UK ,d �=0

N(d)−2s more carefully.
By definition, (OK ⊕ a)A = (OK ⊕ a)

( α α∗

β β∗
)

with
( α α∗

β β∗
)

∈
SL(2, F ) such that if b = OKα+ aβ, then OKβ

∗ + aα∗ = b−1.

Claim. (OK ⊕ a)A/UK = (OKα + aβ,OKα
∗ + αβ∗)/UK = (b ⊕

ab−1)/UK .
Indeed, by defintion OKα+ aβ = b. So it suffices to prove that OKα

∗ +
aβ∗ = ab−1. Clearly α∗ ∈ ab−1, β∗ ∈ b−1 (as already used several times),
so OKα

∗ + αβ∗ ⊂ ab−1. On the other hand, as showed before b−1 =
OKβ

∗ + a−1β∗ so ab−1 = a · (OKβ
∗ + a−1β∗) ⊂ aβ∗ + OKα

∗.
As such, then the corresponding summation in the coeffcient a0 becomes

the one over (ab−1\{0})/UK . Now we use the following

Lemma. For a fractional OK ideal a, denote by R the ideal class associ-
ated with a−1.

(1) There is a natural bijection

(a\{0})/UK → {b ∈ [a−1] = R : b integral OK − ideal}
a 
→ b := aa−1 .

(2) ζ(R, s) :=
∑

b∈R:b integral OK−idealN(b)−s = N(a)s ·
(∑

a∈(a\{0})/UK

N(a)−s
)
.

Proof. All are standard. For example, (1) may be found in [19], while (2) is a
direct consequence of (1).

Therefore, we arrive at the following �

Proposition. For the subcases at hand, the corresponding Fourier coef-
ficient is given by a0(ImJ(τ), s) = (N(a−1b)2s · ζ([a−1b], 2s))·
N(ImJ(τ))s.
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2) Case when c �= 0. In this case,

aω′(ImJ(τ), s) :=
1

Vol(ab−2)

∑
(c,d)∈(OK⊕a)A/UK ,c �=0

×
∫

Q

(
N(ImJ(τ))
‖cτ + d‖2

)s

· e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ

·
∏
τ :C

dxτdyτ .

To compute this, consider the coset of A−1Γ′
ηA among

( ∗ ∗
c d

)
.

Claim. For (c, d) ∈ (OK ⊕ a)A/UK , c �= 0 and ω ∈ ab−2, we have
(c, cω + d) ∈ (OK ⊕ a)A/UK , c �= 0.

It suffices to deal the component of d and cω+d. Note that A =
( α α∗

β β∗
)
∈

SL(2, F ) with α ∈ b, β ∈ a−1b, α∗ ∈ ab−1, β∗ ∈ b−1, we have

c ∈ OK · b + a · a−1b = b and d ∈ OK · ab−1 + a · b−1 = a b−1.

So, we should show that with c ∈ b, d ∈ a b−1 and ω ∈ ab−2, we have
cω + d ∈ a b−1. But this is clear since cω + d ∈ b · ab−2 + a b−1 = a b−1.
Done.

Now since
( ∗ ∗

c d

)(
1 ω

0 1

)
=

( ∗ ∗
c cω+d

)
with (c, d) ∈ (OK ⊕a)A/UK , c �= 0

and ω ∈ ab−2. Consequently, if we let R to be a system of representatives
of

( ∗ ∗
c d

)
modulo the right action of A−1Γ′

ηA, or better, to be a system of
representatives of (c, d) modulo the relation (c, d) ∼ (c, cω+d) with (c, d) ∈
(OK ⊕ a)A/UK , c �= 0 and ω ∈ ab−2, then for the case at hand, note that
for τ ∈ Hr1 × Hr2 , ImJ(τ + ω) = ImJ(τ), we have

aω′(ImJ(τ), s)

=
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

∫
ω∈ab−2

∫
Q

(
N(ImJ(τ))

‖c(τ + ω) + d‖2

)s

· e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ

=
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

∫
Rr1×Cr2

(
N(ImJ(τ))
‖cτ + d‖2

)s

· e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ
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=
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

1
N(c)2s

∫
Rr1×Cr2

(
N(ImJ(τ))
‖τ + d

c
‖2

)s

· e−2πi〈ω′,ReZ(τ)+ d
c − d

c 〉
∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ

=
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

e2πi〈ω′, d
c 〉

N(c)2s

∫
Rr1×Cr2

(
N(ImJ(τ))

‖τ‖2

)s

· e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ

2.a) Subcase when ω′ = 0. Then

a0(ImJ(τ), s) =
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

1
N(c)2s

·
∫

Rr1×Cr2

(
N(ImJ(τ))

‖τ‖2

)s ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ .

So according to whether σ : R or τ : C, we have to compute the following
integrations:

2.a.i) For reals,

∫
R

(
y

x2 + y2

)s

dx =
1
ys

∫
R

 1(
x
y

)2

+ 1


s

d
x

y
· y = y1−s

∫
R

dt

(1 + t2)s

= y1−s · π 1
2
Γ
(
s− 1

2

)
Γ(s)

;

2.a.ii) For complexes,

∫
C

(
r

|z|2 + r2

)2s

dx dy = r2−2s

∫
C

dx dy

(1 + |z|2)2s
= r2−2s · π

2s − 1
;
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2.b) Subcase when ω′ �= 0. Then

aω′(ImJ(τ), s) =
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

e−2πi〈ω′, d
c 〉

N(c)2s

×
∫

Rr1×Cr2

(
N(ImJ(τ))

‖τ‖2

)s

· e−2πi〈ω′,ReZ(τ)〉 ∏
σ:R

dxσ ·
∏
τ :C

dxτdyτ .

So according to whether σ : R or τ : C, we have to compute the following
integrations:
2.b.i) For reals,∫

R

(
y

x2 + y2

)s

e−2πi|ω′|·xdx =
1
ys

∫
R

(
1

(x
y
)2 + 1

)s

e−2πi|ω′|· x
y yd

x

y
· y

= y1−s

∫
R

1
(1 + t2)s

e−2πi|ω′|ytdt = y1−s·

×
(

2πs|ω′|s− 1
2 · ys− 1

2 · 1
Γ(s)

·Ks− 1
2
(2π|ω′|y)

)
= 2πs|ω′|s− 1

2 · y 1
2 · 1

Γ(s)
·Ks− 1

2
(2π|ω′|y);

2.b.ii) For complexes,∫
C

(
r

|z|2 + r2

)2s

e−2πi|ω′|·xdx dy

=
∫

R2

(
r

x2 + y2 + r2

)2s

e−2πi|ω′|·xdx dy

=
∫

R2

(
1(

x
r

)2
+

(
y
r

)2
+ 1

)2s

r−2se−2πi|ω′|· x
r ·rd

x

r
d
y

r
· r2

= r2−2s

∫
R2

e−2πi|ω′|·x·r

(x2 + y2 + 1)2s
dx dy

= r2−2s

∫
R

∫
R

dy

(y2 + x2 + 1)2s
· e−2πi|ω′|rxdy dx
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= r2−2s

∫
R


∫

R

1((
y√

x2+1

)2

+ 1
)2s d

y√
x2 + 1

·
√
x2 + 1 · 1

(x2 + 1)2s


· e−2πi|ω′|rxdx

= r2−2s

∫
R

(∫
R

dt

(1 + t2)2s

)
· e−2πi|ω′|rx

(x2 + 1)2s− 1
2
dx

= r2−2s ·
(
π

1
2 ·

Γ
(
2s− 1

2

)
Γ(2s)

)
·
∫

R

e−2πi|ω′|rx

(x2 + 1)2s− 1
2
dx

= r2−2s ·
(
π

1
2 ·

Γ
(
2s− 1

2

)
Γ(2s)

)

·
(

2π2s− 1
2 |ω′|2s−1r(2s−1) 1

Γ
(
2s− 1

2

)K2s−1(2π|ω′|r)
)

=
2π2s|ω′|2s−1

Γ(2s)
rK2s−1(2π|ω′|r)

by using the calculation for reals. Or more directly,∫
C

(
r

|z|2 + r2

)2s

e−2πi|ω′|·xdx dy

= r−2s

∫
C

 1(
|z|
r

)2

+ 1


2s

de−2πi|ω′|·x
r ·r x
r
· rdy

r
· r

= r2−2s

∫
C

1
(1 + |z|2)2s

e−2πi|ω′|·x·r · dx dy

= r2−2s · 2π2s|ω′|2s−1

Γ(2s)
r2s−1K2s−1(2π|ω′|r)

=
2π2s|ω′|2s−1

Γ(2s)
rK2s−1(2π|ω′|r).

All in all, we have then obtain the following
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Theorem . With the same notation as above, we have the following Fourier
expansion for the Eisenstein series

E2,a(Aτ, s) = ζ([a−1b], 2s) ·N(ab−1)−2s ·N(ImJ(τ))s

+
1

Vol(ab−2)

∑( ∗ ∗
c cω+d

)
∈R

1
N(c)2s

·
(
π

1
2

)r1

·
(

Γ
(
s− 1

2

)
Γ(s)

)r1

·
(

π

2s− 1

)r2

·N(ImJ(τ))1−s

+
1

Vol(ab−2)

∑( ∗ ∗
c d

)
∈R

e2πi〈ω′, d
c 〉

N(c)2s
·N(ImJ(τ))

1
2 ·N(ω′)s− 1

2

×
(

2πs

Γ(s)

)r1 ∏
σ:R

Ks− 1
2
(2π|ω′|σyσ) ·

(
2π2s|ω′|2s−1

Γ(2s)

)r2

·
∏
τ :C

K2s−1(2π|ω′|τrτ).

4. Explicit formula for rank two zetas: Rankin-Selberg &

Zagier method

4.1 The rank two zeta function for Q

Recall that if we set DT := {x ∈ D : y = �(z) ≤ T}, the points in DT

are in one-to-one corresponding to rank two Z-lattices (in R2) of volume one
whose first Minkowski successive minimums λ1 satisfying λ1(Λ) ≥ T−1/2.

Thus if we set M≤ 1
2 log T

Q,2 [1] be the moduli space of rank two Z-lattices Λ of
volume 1 (over Q) whose sublattices of rank one have degree ≤ 1

2
log T , then

up to a measure zero subset, there is a natural one-to-one and onto morphism

M≤ 1
2 log T

Q,2 [1] � DT . In particular, the corresponding moduli space of semi-

stable lattices is given by M≤0
Q,2[1] = MQ,2[1] � D1. Moreover, motivated

by our definition of zeta functions, we introduce a (generalized) rank two zeta
function ξT

Q,2(s) by setting

ξT
Q,2(s) :=

∫
DT

Ê(z, s)
dx ∧ dy
y2

, �(s) > 1.
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Fact (VIII)Q For the generalized zeta function ξT
Q,2(s),

ξT
Q,2(s) =

ξ(2s)
s− 1

· T s−1 − ξ(2s− 1)
s

· T−s.

In particular, the rank two zeta function ξQ,2(s) is given by

ξQ,2(s) =
ξ(2s)
s− 1

− ξ(2s − 1)
s

, �(s) > 1.

Proof. This is a direct consequence of [32]. Indeed, it is well known that the
Fourier expansion of Ê(z, s) is given by

Ê(z, s) = ξ(2s)ys + ξ(2s − 1)y1−s + non − constant term.

Hence we have

ξT
Q,2(s) =

∫ T

0

(ξ(2s)ys)
dy

y2
−

∫ ∞

T

(ξ(2s − 1)y1−s)
dy

y2

=
ξ(2s)
s− 1

· T s−1 − ξ(2s− 1)
s

· T−s.

�

Remarks.

(1) Even though originally T ≥ 1, we may extend it as a function of complex
variable T in terms of the right hand side. Denote this resulting function
also by ξT

Q,2(s): for �(s) > 1, if T is real and T ≥ 1, then ξT
Q,2(s) is the

integration of Ê(z, s) over the domain DT . Based on this, even when T
is real and 0 < T ≤ 1, we have a geometric interpretation for ξT

Q,2(s):
it is simply (

∫
D1,T

−
∫

D−1,T
)Ê(z, s) · dx∧dy

y2 , where D1,T := D ∩
{
z =

x + iy : y ≤ T, |x| ≤ 1
2

}
and D−1,T := {z ∈ H : |z| ≤ 1} ∩ {z =

x+ iy : y ≥ T, |x| ≤ 1
2
};

(2) By taking the residue at s = 1, (Ress=1Ê(z, s)) · Vol(D1) = ξ(2) −
Ress=1ξ(2s − 1);

(3) We see, in particular, for half positive integers n ≥ 3
2
,

((n− 1)n) · ξQ,2(n) = n · ξ(2n) − (n− 1) · ξ(2n− 1).

So special values of the Riemann zeta at two successive integers are
related naturally via the special values of rank two zeta function. This
clearly is a fact which should be taken seriously. In particular, in view of
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Remark (1) above, we suggest the reader to see what happens for small
n’s by writting out rank two zeta in terms of the integrations for the terms
defining Eisenstein series. With this, it is very likely that the reader is con-
vinced that, when talking about specail values of ξ(s) at odd integers, it
is better to distinguish the values at 4Z>0 − 1 from these at 4Z>0 + 1.

4.2 Rankin-Selberg & Zagier method

In this section, T ≥ 1 is assumed to be a positive real number.
Now let us compute the integration

∫∫∫
DT
Ê2,a(τ, s)dµ(τ). Here DT is

the compact part obtained from the fundamental domain D for SL(OK ⊕
a)\(Hr1 × Hr2) by cutting off the cusp neighbouhoods defined by the con-
ditions that the distance to cusps is less than T−1. (Recall that, as such, D1

is simply the part corresponding to semi-stable lattices.) We use the Rankin-
Selberg & Zagier method, but in its simplest form as a generalization of the
one stated in the previous section.

For doing so, let us first consider the integration
∫∫∫

DT
(∆K Ê2,a(τ, s))

dµ(τ) where ∆K :=
∑

σ:R ∆σ +
∑

τ :C ∆τ with ∆σ := y2
σ

(
∂2

∂x2
σ

+ ∂2

∂y2
σ

)
and

∆τ := r2
τ

(
∂2

∂x2
τ

+ ∂2

∂y2
τ

+ ∂2

∂r2
τ

)
− r ∂

∂rτ
. (For the time being, by an abuse of

notation, we use ∆K to denote the hyperbolic Laplace operator for the space
Hr1 ×Hr2 , not the absolute value of the discriminant ofK which accordingly
is changed to DK .)

Note that ∆σ(ys
σ) = s(s − 1) · ys

σ, while ∆τ(r2s
τ ) = 2s(2s − 2) · r2s

τ by
the SL-invariance of the metrics, we conclude hence that

∆K(Ê2,a(τ, s)) = (r1 · (s(s− 1)) + r2 · (2s(2s − 2)))

· Ê2,a(τ, s), �(s) > 1.

Hence
∫∫∫

DT
Ê2,a(τ, s) dµ(τ) = r1+4r2

s(s−1)

∫∫∫
DT

∆KÊ2,a(τ, s) dµ(τ).
On the other hand, using Stokes’ Formula, we have∫∫∫

DT

∆KÊ2,a(τ, s)dµ(τ)

=
∫∫∫

DT

(∆KÊ2,a(τ, s)) · 1dµ(τ) −
∫∫∫

DT

Ê2,a(τ, s) · (∆K1) dµ(τ)

=
∫∫∫

DT

((∆KÊ2,a(τ, s)) · 1 − Ê2,a(τ, s) · (∆K1)) dµ(τ)
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=
∫∫

∂D(T )

(
∂Ê2,a(τ, s)

∂ν
· 1 − Ê2,a(τ, s) ·

∂1
∂ν

)
dµ

=
∫∫

∂D(T )

∂Ê2,a(τ, s)
∂ν

dµ

with ∂
∂ν

the outer normal derivative and dµ the volume element of the bound-
ary ∂DT .

To calculate this latest integration, we start with a trick initially used by
Siegel to make the following change of variables at cusps. (See e.g., [6].)

Two directions have to be studied: the ReZ direction for xσ resp. zτ =
xτ + iyτ , and the ImJ directions for yσ resp. for rτ =: vτ when σ is real resp.
τ is complex. As used in the discussion for fundamental domains, the change
with respect to the ReZ direction is simpler, while the change with respect to
the ImJ direction is a bit complicated.

Indeed, for the ImJ direction, recall that here all components are positive.
In particular, (yσ1 , . . . , yσr1

, vτ1 , . . . , vτr2
) ∈ Rr1+r2

+ resulting from the ImJ
direction of a point (z1, . . . , zr1 , P1, . . . , Pr2) in Hr1 × Hr2 admits a natural
norm

N(yσ1 , . . . , yσr1
, vτ1 , . . . , vτr2

) = (yσ1 · . . . · yσr1
) · (vτ1 · . . . · vτr2

)2

=
∏
σ: R

yσ ·
∏
τ : C

v2
τ .

As such, the key here is that we need to find a variable change for the ImJ
directions so that

(a) the outer normal direction will be seen more clearly; and
(b) the fundamental domain for the stablizer group of cusps can be written in

a very simple way.

Our generalized version of Siegel’s change of variables in the discussion
of fundamental domains does exactly this. It is carried out by replacing
the original variables yσ1 , . . . , yσr1

, vτ1 , . . . , vτr2
with the new variables

Y0, Y1, . . . , Yr1+r2−1. To give a precise definition, let ε1, . . . , εr1+r2−1 be
a generator of the unit group UK (modulo the torsion). Then by Dirichlet’s

Unit Theorem, the matrix

(
1 log |ε(1)

1 | ··· log |ε(1)
r1+r2−1|

··· ··· ··· ···
1 log |ε(r1+r2)

1 | ··· log |ε(r1+r2)
r1+r2−1|

)
is invertible. Set

(e(i)j )r1+r2−1,r1+r2
i=0,j=1 be its inverse. Then by definition and an obvious calcula-

tion,
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i) the entries of the first row is given by e(0)j = 1
r1+r2

, j = 1, 2, . . . , r1+r2;

ii)
∑r1+r2

j=1 e
(i)
j = 0, i = 1, . . . , r1 + r2 − 1; and

iii)
∑r1+r2

j=1 e
(i)
j log |ε(j)k | = δik, i, k = 1, . . . , r1 + r2 − 1.

In particular, (e(i)j ) =


1

r1+r2
1

r1+r2
··· 1

r1+r2

e
(1)
1 e

(1)
2 ··· e

(1)
r1+r2

··· ··· ··· ···
e
(r1+r2−1)
1 e

(r1+r2−1)
2 ··· e

(r1+r2−1)
r1+r2

 .

With this, make a change of variables by

Y0 := N(yσ1 , . . . , yσr1
, vτ1 , . . . , vτr2

) =
∏
σ:R

yσ ·
∏
τ :C

v2
τ ,

Y1 :=
1
2

(
r1∑

i=1

e
(1)
i log yσi

+
r2∑

j=1

e
(1)
r1+j log v2

τj

)

· · · · · · · · · · · ·

Yr1+r2−1 :=
1
2

(
r1∑

i=1

e(r1+r2−1)
i log yσi

+
r2∑

j=1

e(r1+r2−1)
r1+j log 0v2

τj

)
Consequently, by inverting these relations, we have

yσi
= Y

1
r1+r2

0

r1+r2−1∏
q=1

|ε(i)q |2Yq , i = 1, . . . , r1,

v2
τj

= Y
1

r1+r2
0

r1+r2−1∏
q=1

(|ε(r1+j)
q |2Yq)2, j = 1, . . . , r2.

Further, by taking the fact that Nτ = 2 for complex places τ , for later use,
we set

tj := v2
j = Y

1
r1+r2

0

r1+r2−1∏
q=1

(|ε(r1+j)
q |2)2Yq , j = 1, . . . , r2.

After this change of variables, from the precise construction of the funda-
mental domain for the action of Γη in SL(OK ⊕ a) on Hr1 × Hr2 in 2.4,
it now becomes clear that this fundamental domain for the action of Γη on
Hr1 × Hr2 is simply given by

0 < Y0 <∞, −1
2
≤ Y1, . . . , Yr1+r2−1 ≤ 1

2
,

(xσ1 , . . . , xσr1
; zτ1 , . . . , zτr2

) ∈ Fη(ab−2),



52 Lin Weng

with Fη(ab−2) a fundamental parallelopiped associated with ab−2 in Rr1 ×
Cr2 .

To go further, we need to know the precise change of the volume forms in
accordance with the above change of variables. So we must compute some
of the Riemannian geometric invariants in terms of these coordinates at the
cusps. Clearly the hyperbolic metric onHr1×Hr2 is given by g =

( gImJ 0

0 gReZ

)
with the matrics for the ImJ and ReZ directions being given by

gImJ = gReZ = diag

(
1
y2

1

, . . . ,
1
y2

r1

,

(
1
v2
1

)2

, . . .

(
1
v2

r2

)2
)
.

(Here we remind the reader that the twist resulting from Nτ = 2 for com-
plex places τ is entered in the discussion: In the above matrix we used

(
1
v2

j

)2

instead of a simple 1
v2

j
.)

First for the ReZ directions, there is no changes here. Hence the ReZ part
of the matrix for the metric remains the same. As for the ImJ directions, from
above, the metric in the ImJ directions is given by

(gij) := gImJ = diag

(
1
y2

1

, . . . ,
1
y2

r1

,

(
1
v2
1

)2

, . . .

(
1
v2

r2

)2
)
.

Recall that, in general, to find the matrix (g̃ij) obtained from (gij) by the
change of variables, we need to calculate the partial derivatives so as to get
g̃ij from g̃ij =

∑
α,β

∂xα

∂x̃i
∂xβ

∂x̃j gαβ. (Here, in terms of gij and g̃ij , the variables
are assumed to be renumbered as x1, x2, . . . , xr1+r2 and x̃1, x̃2, . . . , x̃r1+r2

respectively.)
More precisely, by an obvious calculation,

∂yσi

∂Y0

=
1

(r1 + r2)Y0

yσi
, i = 1, . . . , r1,

∂yσi

∂Yq

= 2 log |ε(i)q | · yσi
, i = 1, . . . , r1, q = 1, . . . , r1 + r2 − 1

∂tτj

∂Y0

=
1

(r1 + r2)Y0

tτj
, j = 1, . . . , r2,

∂tτj

∂Yq

= 2 log |ε(j)q |2 · tτj
, j = 1, . . . , r2, q = 1, . . . , r1 + r2 − 1.

Thus by the formula g̃ij =
∑

α,β
∂xα

∂x̃i
∂xβ

∂x̃j gαβ for the change of variables and
the symmetry of the matric matrix, we are led to calculate the following three
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types of products of matrices:

X0 · diag

(
1
y2

1

, . . . ,
1
y2

r1

,

(
1
v2
1

)2

, . . .

(
1
v2

r2

)2
)

·Xt
0,

X0 · diag

(
1
y2

1

, . . . ,
1
y2

r1

,

(
1
v2
1

)2

, . . .

(
1
v2

r2

)2
)

·Xt
q,

Xp · diag

(
1
y2

1

, . . . ,
1
y2

r1

,

(
1
v2
1

)2

, . . .

(
1
v2

r2

)2
)

·Xt
q

where X0 :=
( yσ1

(r1+r2)Y0
, . . . ,

yσr1
(r1+r2)Y0

,
tτ1

(r1+r2)Y0
, . . . ,

tτr2
(r1+r2)Y0

)
and

Xp = (2 log |ε(1)p | · yσ1 , . . . , 2 log |ε(r1)
p | · yσr1

, 2 log |ε(r1+1)
p |2

· v2
τ1
, . . . , 2 log |ε(r1+r2)

p |2 · v2
τr2

),

for p, q = 1, 2, . . . , r1 + r2 − 1.
Hence, g̃11 = 1

(r1+r2)Y 2
0
, g̃1j = g̃j1 = 0, j = 2, . . . , r1 + r2, since∑r1

i=1 log |ε(i)p |+
∑r2

j=1 log |ε(r1+j)
p |2 = 0; while, for i, j = 1, . . . , r1+r2−1,

g̃(i+1)(j+1) = 4
r1∑

p=1

log |ε(p)
i | log |ε(p)

j | + 4
r1+r2∑

p=r1+1

log |ε(p)
i |2 log |ε(p)

j |2.

As for the new volume element, we use det(g̃ij) = 4r1+r2−1

(r1+r2)Y 2
0
R2, where

R is the regulator of K , i.e., R := det (log ‖ε(p)
q ‖)r1+r2−1

p,q=1 . (See e.g. [19].)
Thus, by taking also account of ReZ direction, we have

dω =

(√
det(g̃ij) ·

1
Y 2

0

)
dY0 dY1 · · · dYr1+r2−1

∏
σ:R

dxσ

∏
τ :C

dzτ

=
2r1+r2−1

√
r1 + r2

R
dY0

Y 2
0

dY1 · · · dYr1+r2−1

∏
σ:R

dxσ

∏
τ :C

dzτ .

Clearly, the boundary ∂DT of DT consists of

1) (the corresponding parts of) the boundary of the fundamental domain of
D; and

2) the hyperplane of D defined by the condition Y0 = T ′ := N(ab−2) · T .
(Please note that the factor N(ab−2) is added in 2). This is because in

the definition of DT , what we used is the distance to cusp, not simply Y0.)
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Consequently, if we set dµ to be the volume element of this hypersur-
face, then

dµ =
1√
g̃11

dω
∣∣∣
Y0=T ′

=
√
r1 + r2
T ′ 2r1+r2−1R · dY1 · · · dYr1+r2−1

∏
σ:R

dxσ

∏
τ :C

dzτ .

Also if ν is the unit normal to the hypesurface, since
〈

∂
∂Y0

, ∂
∂Y0

〉
=

g̃11
∣∣
Y0=T ′ = (r1 + r2)T ′2, we have ν =

(
1√

r1+r2T ′ , 0, . . . , 0
)
.

Thus the outer normal derivative of a function f is given by ∂f
∂ν

=(
1√

r1+r2T ′ , 0, . . . , 0
)
· grad f =

√
r1 + r2 · T ′ ∂f

∂Y0
.

Now by (the fact that the group SL(OK ⊕ a) is finitely generated
and) the concrete construction of our fundamental domain, we see that
the boundary ∂DT consists of finitely many of surfaces which are either
parts of horospheres or parts Xi(T ) of planes cut out by Y0 = T ′

i , where
T ′

i = N(ab−2
i ) · T (with bi the fractional ideal associated to the cusp ηi).

Moreover, besides the hyperplanes associated with Y0 = T ′, the set of
horospheres appeared on the boundary is divided into the sets of equivalent
pairs for which the integral of the outer normal derivative along one surface
in a pair is equal to the integral of the inner normal derivative along the other
surface in the pair. (Say, in terms of Yp≥1, they are given by Yp = ± 1

2
in

pairs.) As such, we further conclude that∫∫∫
DT

Ê2,a(τ, s)dµ(τ) =
1

r1 + 4r2
1

s(s− 1)

∫∫∫
DT

∆KÊ2,a(τ, s)dµ(τ)

=
∫∫

∂DT

∂Ê2,a(τ, s)
∂ν

dµ

=
1

r1 + 4r2
1

s(s− 1)

h∑
i=1

∫∫
Xi(T )

∂Ê2,a(τ, s)
∂ν

ds,

where Xi(T ) denotes the part of the boundary of DT coming from
the pull back of the intersection of the hypersurface Y0 = T ′

i with
Fηi

, i = 1, 2, . . . , h. (Here we used the fact that for T ≥ 1, Xi(T ) are
disjoint from each other. See e.g., the Lemma in 2.5.4.)

Thus far, we are ready to use Fourier expansion to do the final calculation.
Note that the average for e2πit (together with its derivative) over an interval
of length 1 is zero. Hence, in the above integration for Ê over DT , we are
in fact left with only the constant terms of the Fourier expansion for Ê(s).
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Consequently, with T ′
i = N(ab−2

i ) ·T , then, up to constant factors depending
only on K ,∫∫∫

DT

Ê2,a(τ, s)dµ(τ)

=
1

r1 + 4r2
1

s(s− 1)

∫∫∫
DT

∆KÊ2,a(τ, s)dµ(τ)

=
1

r1 + 4r2
1

s(s− 1)

h∑
i=1

∫∫
Xi(T )

∂

∂ν
(A0iY

s
0 +B0iY

1−s
0 )dµ

=
1

r1 + 4r2
1

s(s− 1)

h∑
i=1

∫∫
Xi(T )

√
r1 + r2

· T ′
i

∂

∂Y0

(A0iY
s
0 +B0iY

1−s
0 )

·
√
r1 + r2
T ′

i

2r1+r2−1R · dY1 . . . dYr1+r2−1 ·
∏
σ:R

dxσ ·
∏
τ :C

dzτ

=
r1 + r2
r1 + 4r2

1
s(s− 1)

· 2r1+r2−1R

·
h∑

i=1

∫∫
Xi(T )

(sA0iY0
s−1 − (s− 1)B0iY0

−s)

× dY1 . . . dYr1+r2−1 ·
∏
σ:R

dxσ ·
∏
τ :C

dzτ

=
r1 + r2
r1 + 4r2

1
s(s− 1)

2r1+r2−1R ·
h∑

i=1

(sA0iT
′
i
s−1 − (s− 1)B0iT

′
i
−s)

·
∫∫

Xi(T )

dY1 . . . dYr1+r2−1 ·
∏
σ:R

dxσ ·
∏
τ :C

dzτ

=
r1 + r2
r1 + 4r2

2r1+r2−1R ·D
1
2
K

h∑
i=1

N(ab−2
i )

·
(
A0i

s− 1
· T ′

i
s−1 − B0i

s
T ′

i
−s

)
,
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due to the fact that the lattice corresponding to the cusp ηi = αi

βi
is given by

ab−2
i with bi = OKαi + aβi and Yp ∈

[
− 1

2
, 1

2

]
. Thus with the precisely

formula we have for A0i(s) and the functional equation with the change s↔
1 − s, we finally obtain the following

Theorem . Up to a constant factor depending only on K ,∫∫∫
DT

Ê2,a(τ, s)dµ(τ) =
ξK(2s)
s− 1

· T s−1 − ξK(2 − 2s)
s

· T−s.

Proof. By functional equation, we only need to calculate the coefficient of
T s−1

s−1
. Note that, by Theorem in 3.3.2, the partial constant term A0,i for the

completed Ê2,a(τ, s) is given by ((π−sΓ(s))r1(2π−2sΓ(2s))r2(N(a)∆K)s)·
ζ([a−1bi], 2s) ·N(ab−1

i )−2s. Hence, up to a constant factor depending only
onK , the coefficient of T s−1

s−1
in the integration

∫∫∫
DT
Ê2,a(τ, s)dµ(τ) is sim-

ply the summation
∑h

i=1 ofN(ab−2
i )A0,i timing with the factorN(ab−2

i )s−1

resulting from the discrepency between T and T ′
i . That is to say, up to a con-

stant factor depending only on K , the coefficient of T s−1

s−1
is nothing but

h∑
i=1

(π−sΓ(s))r1(2π−2sΓ(2s))r2(N(a)∆K)s

· ζ([a−1bi], 2s)N(ab−1
i )−2s ·N(ab−2

i ) ·N(ab−2
i )s−1

= ∆s
K · (π−sΓ(s))r1(2π−2sΓ(2s))r2

h∑
i=1

ζ([a−1bi], 2s)

= ∆s
K · (π−sΓ(s))r1(2π−2sΓ(2s))r2ζK(2s) = ξK(2s),

since
∑h

i=1 ζ([a
−1bi], 2s) = ζK(2s), resulting from the facts that

(i) the h ideal classes [a−1bi] for fixed a run over all elements of the class
group of K;

(ii) the total Dedekind zeta function decomposes into a summation of partial
zeta functions associated to ideal classes.

�

Consequently, we have the following

Fact (VIII) Up to a constant factor depending only on K , the rank two non-
abelian zeta function ξK,2(s) is given by

ξK,2(s) =
ξK(2s)
s− 1

− ξK(2s − 1)
s

�(s) > 1.
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Proof. This is because, by Fact VI in 2.5, we have the moduli space of rank
two semi-stable lattices of volume N(a)∆K with underlying projective mod-
ule OK ⊕ a is given by D1. But from the Theorem above, up to a constant
factor depending only on K ,∫∫∫

D1

Ê2,a(τ, s)dµ(τ) =
ξK(2s)
s− 1

− ξK(2 − 2s)
s

.

That is, up to a constant factor depending only on K , ξK,2;a(s) = ξK(2s)

s−1
−

ξK(2−2s)

s
. Therefore, by Fact IV, up to a constant factor depending only onK ,

ξK,2(s) =
ξK(2s)
s− 1

− ξK(2 − 2s)
s

. �

5. Zeros of rank two zetas for number fields

5.1 Zeros of rank two zeta of Q

Following what was happened in history, let me first start with Masatoshi
Suzuki’s weak result [23] and then give Jeff Lagarias’ unconditional result
[Lag] and/or [15]. Meanwhile, for an independent parallel work, please go to
Haseo Ki’s paper [14].

Theorem . If the Riemann Hypothesis for the Riemann zeta function holds,
then all zeros of ξQ,2(s) lie on the critical line �(s) = 1

2
.

5.1.1 Proof

Let F (z) = −Z
(

1
2

+ 2iz
)

with Z(s) = s(1 − s)ξ(s).

Proposition. (Suzuki)

(1) F
(
z + i

4

)
− F

(
z − i

4

)
= iz(1 + 4z2) ξQ,2

(
1
2

+ iz
)
.

(2) Assume the RH, then all zeros of F
(
z + i

4

)
− F

(
z − i

4

)
are real.

In particular, then the RH implies that ξQ,2

(
1
2

+ zi
)

admits only real
zeros.

Proof.

(1) Simple calculation. Indeed,

F

(
z +

i

4

)
= −Z

(
1
2

+ 2i
(
i

4
+ z

))

= −Z
(

1
2
− 1

2
+ 2iz

)
= −Z(2iz).
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So F
(
z − i

4

)
= −Z

(
1 + 2iz

)
and

F

(
z +

i

4

)
− F

(
z − i

4

)
= (1 + 2iz)(−2iz)ξ(1 + 2iz) − 2iz(1 − 2iz)ξ(2iz)

= 2iz(1 − 2iz)(1 + 2iz) ·
(
ξ(1 + 2iz)
2iz − 1

− ξ(2iz)
1 + 2iz

)

= iz(1 + 4z2) ·
(
ξ
(
2
(

1
2

+ iz
))(

1
2

+ iz
)
− 1

−
ξ
(
2
(

1
2

+ iz
)
− 1

)
1
2

+ iz

)

= iz(1 + 4z2) ξQ,2

(
1
2

+ iz

)
.

(2) Clearly, F (z) is an entire function of order 1, so there are constants A, B
such that

F (z) = eA+Bz ·
∏

ρ:F (ρ)=0

(
1 − z

ρ

)
· exp

(
z

ρ

)
.

Note that essentially, ρ are zeros of the completed Riemann zeta but trans-
formed from z to 1

2
+ 2iz. Hence, by the RH, all ρ are real.

�

Moreover, since F (z) = −Z
(

1
2

+ 2iz
)

with Z(s) = s(1 − s) ξ(s), we
have for x ∈ R,

F (x) = −Z(1/2 + 2ix) = −Z(1/2 + 2ix) = −Z
(

1
2
− 2ix

)
which by functional equation is simply −Z

(
1 −

(
1
2
− 2ix

))
= −Z

(
1
2

+
2ix

)
= F (x). That is to say, for x ∈ R, F (x) takes only real values. Hence,

A and B are both real.
Now let z0 = x0 + iy0 be a zero of F

(
z + i

4

)
− F

(
z − i

4

)
= iz(1 +

4z2) ξQ,2

(
1
2

+ iz
)
. Then z0 = 0 and/or z0 is a zero of ξQ,2

(
1
2

+ iz
)

since
ξQ,2

(
1
2

+ iz
)

admits simple poles at z = ± 1
2
i.

In any case, F
(
z0 + i

4

)
= F

(
z0 − i

4

)
. By taking absolute values on both

sides, ∣∣∣∣eA+B(z0+
i
4) ·

∏(
1 −

z0 + i
4

ρ

)
· exp

(
z0 + i

4

ρ

)∣∣∣∣
=

∣∣∣∣eA+B(z0− i
4 ) ·

∏(
1 −

z0 − i
4

ρ

)
· exp

(
z0 − i

4

ρ

)∣∣∣∣ .
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Since B ∈ R and ρn ∈ R (which is obtained by the RH as said above), we

hence get 1 =
∏∞

n=1

(x0−ρn)2+

(
y0− 1

4

)2

(x0−ρn)2+

(
y0+

1
4

)2 . Thus if y0 > 0, then the right hand

side is < 1, while if y0 < 0, then the right hand side is > 1. Contradiction.
This leads then y0 = 0, hence completes the proof.

With this in mind, note that in the proof above, the RH was used to ensure
that ρ are real, which have the effect that then in the calculation for the expo-

nential factor exp
( z0+

i
4

ρ

)
, the ratio

∣∣ exp

(
z0+ i

4
ρ

)∣∣∣∣ exp

(
z0− i

4
ρ

)∣∣ gives us the exact value 1.

That is to say, this factor of ratio of exp’s does not contribute.

However, one does not need such an argument from the very beginning to

eliminate the factors exp
(z0± i

4
ρ

)
. In fact, this is the improvement of Lagarias,

who gets his own unconditional result totally independently, as a part of his
understanding of de Branges’s work. The trick is very simple: Use the func-
tional equation. So instead of working on individual ρn in the product, we
may equally use the functional equation to pair ρ and 1 − ρ for the zeros
of the completed Riemann zeta function, or even to group ρ, 1 − ρ, ρ and
1 − ρ together. Consequently, the exponential factor appeared inside the infi-
nite product may be totally omitted. That is to say, from the very beginning,
we may simply assume that the Hadamard product involved takes the form
F (z) = eA+Bz ·

∏′
ρ:F (ρ)=0

(
1 − z

ρ

)
where

∏′ means that ρ’s are paired or
grouped as above. Form here, it is an easy exercise to deduce the following
result of (Suzuki and) Lagarias.

Fact (IX)Q All zeros of ξQ,2(s) lie on the line �(s) = 1
2
.

Proof. Alternatively, as above, we have∣∣∣∣eA+B(z0+
i
4) ·

∏(
1 −

z0 + i
4

ρ

)
· exp

(
z0 + i

4

ρ

)∣∣∣∣
=

∣∣∣∣eA+B(z0− i
4 ) ·

∏(
1 −

z0 − i
4

ρ

)
· exp

(
z0 − i

4

ρ

)∣∣∣∣ .
Since B ∈ R, so if we can take care of the factors exp

(z0+ i
4

ρ

)
and

exp
( z0− i

4
ρ

)
in a nice way, we are done. For this, as said above, let us

group ρ, ρ̄, 1 − ρ, 1 − ρ̄ together, we see that 1
ρ

+ 1
ρ̄

= 2�(ρ)

|ρ|2 and
1

1−ρ
+ 1

1−ρ̄
= 2−2�(ρ)

|1−ρ|2 are all reals, hence, the same prove as above
works. �
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5.1.2 A simple generalization

The above method works for the functions ξT
Q,2(s) as well, provided that T ≥

1. Indeed, first, recall that we have the precise relation ξT
Q,2(s) = ξ(2s)

s−1
·T s−1−

ξ(2s−1)

s
· T−s. Consequently, F

(
z + i

4

)
· T− 1

2−iz − F
(
z − i

4

)
· T− 1

2+iz =
iz(1 + 4z2) ξT

Q,2

(
1
2

+ zi
)
. Therefore, using the same proof, we arrive at the

relation∣∣∣∣eA+B(z0+ i
4) ·

∏(
1 −

z0 + i
4

ρ

)
· exp

(
z0 + i

4

ρ

)∣∣∣∣ · ∣∣T−iz− 1
2
∣∣

=
∣∣∣∣eA+B

(
z0− i

4

)
·
∏(

1 −
z0 − i

4

ρ

)
· exp

(
z0 − i

4

ρ

)∣∣∣∣ · ∣∣T iz− 1
2
∣∣.

That is to say, 1 =
∏∞

n=1

(x0−ρn)2+(y0− 1
4 )2

(x0−ρn)2+(y0+
1
4 )2

· T−y0

T y0 . Or equivalently, T 2y0 =∏∞
n=1

(x0−ρn)2+(y0− 1
4 )2

(x0−ρn)2+(y0+
1
4 )2
.

Thus with T ≥ 1, we have

(i) if y0 > 0, the left hand side is > 1, while the right hand side is < 1,
contradiction; while

(ii) if y0 < 0, the left hand side is < 1, while the right hand side is > 1,
contradiction. That is to say, we obtain the following

Fact (IX′)Q For T ≥ 1, all zeros of ξT
Q,2(s) lie on the critical line �(s) = 1

2
.

5.2 Zeros of rank two zetas for number fields

Fact (IX) All zeros of rank two zeta functions for number fields are on the
critical line �(s) = 1

2
.

Proof. This is a direct consequence of the following two facts:
First, we know that, by the Rankin-Selberg & Zagier method, up to a con-

stant factor depending only on K , ξK,2(s) = ξK(2s)

s−1
− ξK(2s−1)

s
. Secondly,

s(s−1)·ξK(s) is an entire function of order one [16]. Consequently, the proof
in the previous section on the zeros works here as well, by a simple change
from the Riemann ξ for the field of rationals Q to the Dedekind ξK for the
number field K . �
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