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ADMISSIBLE HERMITIAN METRICS ON FAMILIES OF
LINE BUNDLES OVER CERTAIN DEGENERATING

RIEMANN SURFACES

Wing-Keung To and Lin Weng

We show that a family of line bundles of degree zero over a
plumbing family of Riemann surfaces with a separating (resp.
non-separating) node p admits a nice (resp. almost nice) fam-
ily of flat p-singular Hermitian metrics. As a consequence, we
give necessary and sufficient conditions for a family of line
bundles over such families of Riemann surfaces to admit an
(almost) nice family of p-singular Hermitian metrics which
are admissible with respect to the canonical/hyperbolic (1,1)-
forms on the Riemann surfaces.

1. Introduction.

Let L = {Lt} be a family of holomorphic line bundles over a degenerat-
ing family of Riemann surfaces M = {Mt}. We are interested in finding
necessary and sufficient conditions for {Lt} to admit a family of Hermitian
metrics (or equivalently a Hermitian metric on L) satisfying certain curva-
ture conditions.

A degenerating family of Riemann surfaces {Mt} is obtained by shrink-
ing non-trivial closed loops of compact Riemann surfaces to form a noded
Riemann surface M . This corresponds to a path in the moduli space Mq

of compact Riemann surfaces of genus q leading to boundary points in its
Deligne-Mumford compactification Mq. When there is only a single node,
we have essentially two cases, depending on whether the node separates M .
An important subclass of degenerating Riemann surfaces with a single node
is obtained by means of plumbing (cf. [Wo1] and (2.1)). Throughout this
article, we will restrict our considerations to such plumbing families of Rie-
mann surfaces. Also we assume q ≥ 2, and that M is stable, or equivalently,
its smooth part M0 := M\{node} admits the hyperbolic metric of constant
sectional curvature −1.

This work is motivated by earlier works on the asymptotic behaviors of the
hyperbolic metrics and the canonical metrics as well as those of their Green’s
functions on degenerating Riemann surfaces (cf. [F], [H], [Ji], [JW], [We],
[Wo2]). In particular, Wolpert [Wo2] showed that the hyperbolic metrics
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glue together to form a continuous and good Hermitian metric on the vertical
line bundle (induced by the tangent bundles of the fibers) over the universal
curve Cq over Mq. A notable feature is that this metric is not smooth along
the noded Riemann surfaces, and it is mildly singular at the nodes.

In this article, we consider line bundles over Riemann surfaces in general.
Our first main result is to give necessary and sufficient conditions for a family
of line bundles of degree 0 over a plumbing family of Riemann surfaces to
admit a nice/(almost nice) family of flat p-singular Hermitian metrics (cf.
Theorem 1 in §2 for the precise statements and the additional necessary
conditions in the separating node case; cf. also (2.2) for the definition of
‘niceness’ and ‘almost niceness’). As applications of Theorem 1, we also
give necessary and sufficient conditions for a family of line bundles over a
plumbing family of Riemann surfaces to admit a nice/(almost nice) family
of Hermitian metrics which are admissible with respect to the hyperbolic
(resp. canonical) (1,1)-forms (cf. Theorem 2 and Theorem 3).

We sketch our approach in proving Theorem 1 as follows. First we con-
struct a family of ‘almost flat’ Hermitian metrics using the flat Hermitian
metric on the line bundle over the noded fiber. Then it is modified to a flat
family by using the hyperbolic Green’s operators. We remark that this ap-
proach is similar to [Wo2] in spirit, and it depends crucially on the initially
constructed family of metrics being sufficiently close to a flat one. There
are small but subtle differences in the construction and estimates involved
in the two cases of a non-separating/separating node, and we treat the two
cases separately in §3 and §4 respectively. The proofs of Theorem 2 and
Theorem 3 depend on Theorem 1 as well as results of Wolpert [Wo2] on
the continuity and goodness of the family of hyperbolic metrics and those
of Wentworth [We] on Arakelov Green’s functions respectively.

The authors would like to take the opportunity to express their sincere
thanks to the referee whose suggestions and clarifications lead to the article
in its present form.

2. Notation and statements of results.

2.1. Throughout this article, we consider plumbing families of compact
Riemann surfaces of fixed genus q ≥ 2 degenerating into a stable singular
Riemann surface M with a single separating or non-separating node p. First
we recall the plumbing construction of a degenerating family of Riemann
surfaces starting from M in both cases as follows (cf. e.g., [F], [Wo2]).

In the non-separating node case, the normalization M̃ of M is a compact
Riemann surface of genus q − 1. In the separating node case, M̃ consists of
a disjoint union of two compact Riemann surfaces M1, M2 of genus q1, q2
respectively such that q1 + q2 = q. The stable condition on M implies that
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q1, q2 ≥ 1. In both cases, the node p corresponds to two points p1, p2 in M̃
(with pk in Mk, k = 1, 2, in the separating node case) so that M0 := M\{p}
can be identified with M̃\{p1, p2}. Denote the unit disc in C by ∆. In
both cases and for k = 1, 2, fix a coordinate function zk : Uk → ∆ such
that zk(pk) = 0, where Uk is an open coordinate neighborhood of pk in M̃
(and thus in the separating node case, Uk ⊂ Mk, k = 1, 2). Also for each
t ∈ ∆, let St := {(z1, z2) ∈ ∆2 | z1z2 = t}. Then for each t ∈ ∆, remove
the discs |zk| < |t| from M̃ and glue the remaining parts of M̃ with St via
the identification z1 ∼ (z1, t/z1) and z2 ∼ (t/z2, z2). The resulting surfaces
{Mt}t∈∆ form an analytic family π : M → ∆ withM0 = M , where π denotes
the holomorphic projection map. It is easy to see that for t �= 0, each Mt is a
compact Riemann surface of genus q. We remark that for fixed t ∈ ∆∗, one
may adjust the sizes of the removed discs and the plumbing collar z1z2 = t in
the plumbing process without changing Mt. Also, away from the plumbing
collars, the resulting family may be described as the Cartesian product of
an open subset of M \ {p} and ∆, shrinking ∆ if necessary. The restriction
of ker(dπ) to M\{p} forms a holomorphic line bundle T over M\{p} such
that T ∣∣

Mt
= TMt for t ∈ ∆∗ and T ∣∣

M0 = TM0. Note that T extends

uniquely to a holomorphic line bundle T̃ over M known as the vertical line
bundle.

2.2. Let R be a smooth compact Riemann surface or a noded Riemann
surface with a node p, and let L be a holomorphic line bundle over R. We
define a p-singular Hermitian metric h on L to be simply a C∞ Hermitian
metric on L

∣∣
R0 , where R0 := R\{p} is the smooth part of R (thus in the

case when R is smooth, i.e., when p is absent, such an h is simply a smooth
Hermitian metric on L). Now let µ be a smooth (1,1)-form on R0. In both
the smooth and noded cases, a p-singular Hermitian metric h on L is said
to be µ-admissible if its first Chern form satisfies c1(L, h) = deg(L) · µ on
R0, where deg(L) denotes the degree of L over R. We remark that when R
is a noded Riemann surface, deg(L) is simply the sum of the degrees of f∗L
over all the components of R̃, where f : R̃ → R is the normalization of R.
Observe also that µ is necessarily normalized (i.e.,

∫
R µ = 1) in the smooth

case (but not necessarily so in the noded case). Also h is said to be flat if
c1(L, h) ≡ 0 on R0.

Next we recall the definition of ‘good’ Hermitian metrics introduced by
Mumford [M] in the special case of line bundles over complex manifolds. Let
X be an n-dimensional complex manifold with an open subset X such that
X − X is a divisor with normal crossings. Consider coordinate polydiscs
U = ∆n ⊂ X such that U ∩ X = (∆∗)k × ∆n−k for some 1 ≤ k ≤ n,
and denote by ωU∩X the product metric on U ∩X induced by the Poincaré
metric ds2 = (|dz|/(|z| log |z|))2 on each ∆∗ and the Euclidean metric on
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each ∆. Now let L be a holomorphic line bundle over X and let L be the
restriction of L to X. A smooth Hermitian metric h on L is said to be
good on X if there exists a finite set of coordinate polydiscs {Uα} covering
an open neighborhood of X − X in X such that for each Uα = ∆n, there
exists a non-vanishing holomorphic section v ∈ Γ(Uα, L

∣∣
Uα

) such that on
Uα ∩X = (∆∗)k ×∆n−k,

(i) |hvv̄|, 1/|hvv̄| ≤ C1

( k∑
i=1

log |zi|
)2m

for some C1 > 0, m ≥ 1, and

(ii) ∂ log h(v, v) and ∂∂ log h(v, v) have Poincaré growth on Uα − Uα ∩X,
i.e., there exist constants C2, C3 > 0 such that

|∂t1 log hvv̄|2 ≤ C2ωUα∩X(t1, t1) and

|∂t2∂t3 log hvv̄|2 ≤ C3ωUα∩X(t2, t2)ωUα∩X(t3, t3)

for all t1, t2, t3 ∈ Tx(Uα ∩X), x ∈ Uα ∩X.

One easily sees that the above definition does not depend on the choice of
local coordinate functions and local trivializations of L on each Uα. More-
over, it is known that given (L, h), there exists at most one extension L of
L to X for which h is good (cf. [M, §1]).

Let M = {Mt}t∈∆ be a plumbing family of Riemann surfaces degenerat-
ing to a singular Riemann surface M with a separating or non-separating
node p as described in (2.1). Also let L = {Lt}t∈∆ be a holomorphic fam-
ily of line bundles over {Mt}t∈∆, i.e., L is a holomorphic line bundle over
M and Lt = L∣∣

Mt
for t ∈ ∆. Now let {µt}t∈∆ be a family of p-singular

(1, 1)-forms on {Mt}t∈∆, i.e., each µt (resp. µ0) is a (1,1)-form on Mt (resp.
M0 = M\{p}) for t ∈ ∆∗ (resp. t = 0), and they form a continuous section
of T ∗ ⊗ T ∗ over M\{p}, where T is as in (2.1).

Definition 2.2.1. h = {ht}t∈∆ (with ht = h
∣∣
Lt

for t ∈ ∆) is said to be a
nice family of {µt}t∈∆-admissible (resp. flat) p-singular Hermitian metrics
on L{Lt}t∈∆ if the following conditions hold:

(i) for each t ∈ ∆, ht is a µt-admissible (resp. flat) p-singular Hermitian
metric on Lt;

(ii) h is continuous on M\{p}, and the restriction h∗ of h to L∣∣∗M, where
M∗ := M−M0, is smooth on M∗; and

(iii) the Hermitian metric h∗ on L∣∣∗M is good on M.
If {ht}t∈∆ satisfies only conditions (i) and (ii) above, then we say that
{ht}t∈∆ is an almost nice family of {µt}t∈∆-admissible (resp. flat) p-singular
Hermitian metrics on {Lt}t∈∆.

Remark 2.2.2. It is well-known that for a family of line bundles = L =
{Lt}t∈∆ over M = {Mt}t∈∆ as above, deg(Lt) remains the same for all t ∈
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∆. In fact, this can easily be proved by first fixing a smooth Hermitian metric
h on L over the manifold M, letting ht = h

∣∣
Lt

for all t ∈ ∆, and then using
the dominated convergence theorem to show that limt→0

∫
Mt

c1(Lt, ht) =∫
M0\{p} c1(L0, h0) = deg(L0) (here the last equality holds since (f∗L0, f

∗h0)

is a smooth Hermitian metric over M̃ , where f : M̃ → M denotes the
normalization).

Remark 2.2.3. Let {Mt}t∈∆, {µt}t∈∆ be as above, and let L = {Lt}t∈∆,
L′ = {L′

t}t∈∆ be two holomorphic families of line bundles over {Mt}t∈∆.
Then one easily checks that the following statements hold:
(i) If both L = {Lt}t∈∆ and L′ = {L′

t}t∈∆ admit nice (or almost nice)
families of {µt}t∈∆-admissible (or flat) p-singular Hermitian metrics h =
{ht}t∈∆ and h′ = {h′t}t∈∆ respectively, then so does L ⊗ L′ = {Lt ⊗ L′

t}t∈∆
(given by h⊗ h′ = {ht ⊗ h′t}t∈∆).
(ii) If L⊗m = {L⊗m

t }t∈∆ admits a nice (or almost nice) family of {µt}t∈∆-
admissible (or flat) p-singular Hermitian metrics h = {ht}t∈∆ for some

nonzero integerm, then so does L itself (given by h′(s, s)=
(
h(s⊗m, s⊗m)

) 1
m ).

Remark 2.2.4. As an example, it follows from a result of Wolpert [Wo2,
Theorem 5.8] that the hyperbolic metrics on {Mt}t∈∆ glue together to
form a nice family of {ω̂hyp,t}t∈∆-admissible p-singular Hermitian metrics
on the family of line bundles defined by T̃ (cf. (2.4) for the definition of
{ω̂hyp,t}t∈∆).

2.3. For a plumbing family of degenerating Riemann surfaces {Mt}t∈∆ with
singular fiber M with a node at p, we recall from (2.1) the normalization
f : M̃ → M with points p1, p2 ∈ M̃ corresponding to p (and recall also
that M̃ = M1 � M2 with Mk of genus qk and pk ∈ Mk, k = 1, 2, in the
separating node case). Also in the separating node case, for a family of
line bundles L = {Lt}t∈∆ of degree d over {Mt}t∈∆ (cf. Remark 2.2.2),
we denote L0,k := f∗L0

∣∣
Mk

and denote dk := deg(L0,k), k = 1, 2 (and thus
d1 + d2 = d). Our first main result in this paper is the following:

Theorem 1. Let M = {Mt}t∈∆ be a plumbing family of compact Riemann
surfaces of genus q ≥ 2 degenerating to a stable Riemann surface M with a
single separating or non-separating node p as described in (2.1). Suppose L =
{Lt}t∈∆ is a holomorphic family of line bundles of degree 0 over {Mt}t∈∆.
Then the following statements hold:
(i) In the case of a non-separating node, {Lt}t∈∆ always admits an almost
nice family of flat p-singular Hermitian metrics h = {ht}t∈∆ such that f∗h0
extends across p1, p2 to a smooth flat Hermitian metric on f∗L0 over M̃ .
(ii) In the case of a separating node, {Lt}t∈∆ admits a nice family of flat
p-singular Hermitian metrics h = {ht}t∈∆ such that f∗h0 extends to smooth
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flat Hermitian metrics on L0,1 over M1 and L0,2 over M2 if and only if
d1 = d2 = 0.

Remark 2.3.1. In both cases, it is easy to see that such {ht}t∈∆ is unique
up to a positive continuous multiplicative function on ∆ which is smooth on
∆∗.

Remark 2.3.2. In the case of a non-separating node, we do not know
whether the almost nice family of flat p-singular Hermitian metrics h =
{ht}t∈∆ constructed in Theorem 1(i) is actually nice or not. In the case
of a separating node in Theorem 1(ii), an important fact which allows us
to prove the goodness of h is that we can construct flat Hermitian metrics
on L0,1 and L0,2 agreeing at p (cf. §4). Such an ingredient is lacking in
Theorem 1(i) (cf. Remark 4.2.11).

2.4. Let M = {Mt}t∈∆, M0 = M\{p}, be as in (2.1). The stable con-
dition on M implies that each irreducible component of M\{p} admits
the complete hyperbolic metric of constant sectional curvature -1, which
will be collectively denoted by ds2hyp,0 on M0. For t �= 0, we denote the
hyperbolic metric on Mt by ds2hyp,t. Their associated (1,1)-forms (resp.
normalized (1,1)-forms) will be denoted by ωhyp,t (resp. ω̂hyp,t), so that
ωhyp,t = 4π(q − 1)ω̂hyp,t for t ∈ ∆. By a result of Wolpert [Wo2, Theo-
rem 5.8], {ds2hyp,t}t∈∆ (and thus also {ωhyp,t}t∈∆ and {ω̂hyp,t}t∈∆) forms a
p-singular family on {Mt}t∈∆. We have:

Theorem 2. Let M = {Mt}t∈∆ be as in Theorem 1, and let L = {Lt}t∈∆
be a holomorphic family of line bundles of degree d over {Mt}t∈∆. Then the
following statements hold:
(i) In the case of a non-separating node, {Lt}t∈∆ always admits an al-
most nice family of {ω̂hyp,t}t∈∆-admissible p-singular Hermitian metrics h =
{ht}t∈∆ such that the Hermitian metric f∗h0 on f∗L0

∣∣
M̃\{p1,p2} is good on

M̃ .
(ii) In the case of a separating node, {Lt}t∈∆ admits a nice family of
{ω̂hyp,t}t∈∆-admissible p-singular Hermitian metrics h = {ht}t∈∆ if and only
if d1/(2q1 − 1) = d2/(2q2 − 1). Here d1, d2, q1, q2 are as in (2.3).

Remark 2.4.1. (i) One easily checks that the condition d1/(2q1 − 1) =
d2/(2q2−1) is satisfied by the vertical line bundle T̃ in (2.1). In this regard,
Theorem 2 generalizes in part Wolpert’s result [Wo2, Theorem 5.8] (cf. also
Remark 2.2.4).

(ii) As exemplified by {ds2hyp,t}t∈∆ on T , the Hermitian metrics in Theorem
2 is singular at the node p in general.
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2.5. On a smooth compact Riemann surface R of genus q ≥ 1, the canonical
(1,1)-form is given by ωcan(R) =

√−1
q

∑q
i=1 φi ∧ φ̄i, where {φ1, φ2, . . . , φq} is

an orthonormal basis of holomorphic 1-forms on R with respect to the inner
product 〈φ, φ′〉 =

√−1
∫
R φ∧ φ̄′. It is easy to see that ωcan(R) is normalized

and does not depend on the choice of the orthonormal basis. Let M =
{Mt}t∈∆, M0 = M\{p}, be as in (2.1). It is known that the canonical (1,1)-
forms form a p-singular family {ωcan,t}t∈∆ on {Mt}t∈∆ as follows: ωcan,t =
ωcan(Mt) for t ∈ ∆∗; in the non-separating node case, ωcan,0 on M0(=
M̃\{p1, p2}) is given by q−1

q ωcan(M̃)
∣∣
M0 ; and in the separating node case,

ωcan,0 on M0(= M1\{p1} �M2\{p2}) is given by qk
q ωcan(Mk)

∣∣
Mk\{pk}, k =

1, 2, where M̃ , M1,M2, q, p1, p2, q1, q2 are as in (2.1) (see Proposition 6.1.1
and Proposition 6.2.1 for more details). We have:

Theorem 3. Let M = {Mt}t∈∆ be as in Theorem 1, and let L = {Lt}t∈∆
be a holomorphic family of line bundles of degree d over {Mt}t∈∆. Then the
following statements hold:
(i) In the case of a non-separating node, {Lt}t∈∆ always admits an almost
nice family of {ωcan,t}t∈∆-admissible p-singular Hermitian metrics.
(ii) In the case of a separating node, {Lt}t∈∆ admits an almost nice family of
{ωcan,t}t∈∆-admissible p-singular Hermitian metrics if and only if d1/q1 =
d2/q2. Here d1, d2, q1, q2 are as in (2.3).

Remark 2.5.1. In the non-separating node case, ωcan,0 is not normalized,
and this is reflected by the fact the Hermitian metric on L0 over M0 is highly
singular at the node p.

3. Family of flat p-singular Hermitian metrics in the
non-separating node case.

3.1. In §3, we are going to prove Theorem 1(i). As a preparation, we first
describe in this subsection a procedure for the glueing of two Hermitian
metrics on a holomorphic line bundle over an annulus. This procedure is
known as ‘grafting’ in the case of Hermitian metrics on the tangent bundle
of the annulus in [Wo2].

First we fix a smooth function η : (0, 1) → R such that

η(s) =

{
0, if 0 < s < 1

4 ,

1, if 3
4 < s < 1, and

(3.1.1)

0 ≤ η(s) ≤ 1 for all 0 < s < 1.

Given two real numbers ao, bo > 0, we consider the Euclidean region

T (ao) := {ξ = a+ ib ∈ C | 0 < a < ao}(3.1.2)
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under the action of Z given by ξ → ξ + inbo, n ∈ Z. The quotient space is
an annulus which we denote by A(ao; bo). Now let L be a holomorphic line
bundle over A(ao; bo), and let h1, h2 be two smooth Hermitian metrics on
L. Then we construct a new smooth Hermitian metric h̃ = h̃(η, h1, h2) on
L given by

h̃(e, e) := h1(e, e)η(a/ao)h2(e, e)1−η(a/ao)(3.1.3)

for any [ξ] ∈ A(ao; bo) (with ξ = a+ ib, 0 < a < ao) and e ∈ L[ξ]. It is easy
to see that h̃ is well-defined on A(ao; bo) (i.e., the definition does not depend
on the choice of ξ for [ξ]). Following [Wo2], we call h̃ the grafting of h1 and
h2 on A(ao; bo) relative to η.

To state our next proposition, we need to make some more definitions.
Let T (ao), A(ao; bo), L, h1, h2, h̃ be as above. We = consider the Euclidean
region

T ′(ao) :=
{
ξ = a+ ib ∈ C

∣∣∣ ao
8
< a <

7ao
8

}
⊂ T (ao),(3.1.4)

and let A′(ao; bo) be the sub-annulus of A(ao; bo) corresponding to the subset
T ′(ao) of T (ao). Since h1 and h2 are two Hermitian metrics on the same
line bundle L, log(h1/h2) is a well-defined smooth real-valued function on
A(ao; bo). Then we define

Φ(h1, h2) := sup
[ξ]∈A′(ao;bo)

∣∣∣∣log(h1h2
)

([ξ])
∣∣∣∣ .(3.1.5)

Next we define a smooth function associated to h̃ given by

ψh̃ :=
2πc1(L, h̃)

(i/2)dξ ∧ dξ
on A(ao; bo).(3.1.6)

Here, in terms of the Euclidean coordinate ξ on T (ao), (i/2)dξ ∧ dξ denotes
also the flat (1, 1)-form on A(ao; bo) descended from the Euclidean (1,1)-form
on T (ao). We remark also that ratio of (1,1)-forms makes sense here since
A(ao; bo) is a 1-dimensional complex manifold.

In the case of the grafting of two flat Hermitian metrics, we have:

Proposition 3.1.1. Let η be as in (3.1.1). Then there exists a constant
C = C(η) > 0 such that for any flat Hermitian metrics h1, h2 on any
holomorphic line bundle L over A(ao; bo), the grafting h̃ = h̃(η, h1, h2) of h1
and h2 on A(ao; bo) relative to η satisfies∫

A(ao;bo)
|ψh̃|2

i

2
dξ ∧ dξ ≤ C · (Φ(h1, h2))2 · bo

a3o
,(3.1.7)

where Φ(h1, h2) and ψh̃ are as in (3.1.5) and (3.1.6) respectively.
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Proof. Given ao, bo > 0, one easily sees that

ξ = a+ ib, 0 < a < ao, 0 ≤ b < bo,(3.1.8)

gives a parametrization of A(ao; bo). By assumption on the flatness of h1, h2,
we have

c1(L, h1) = c1(L, h2) = 0 on A(ao; bo).(3.1.9)

This implies that log(h1/h2) is a harmonic function on A(ao; bo) (cf. (3.1.5)).
Together with (3.1.3), it is easy to check that

2πc1(L, h̃) = −√−1
(
(∂ξ∂ξ̄η(a/ao)) · log(h1/h2)(3.1.10)

+ ∂ξη(a/ao) · ∂ξ̄ log(h1/h2)
+ ∂ξ̄η(a/ao) · ∂ξ log(h1/h2)

)
dξ ∧ dξ̄.

Here we denote ∂ξη := ∂η/∂ξ, etc. By the chain rule, one has

∂ξη

(
a

ao

)
= ∂ξ̄η

(
a

ao

)
=

1
2ao

η′
(
a

ao

)
, and ∂ξ∂ξ̄η

(
a

ao

)
=

1
4a2o

η′′
(
a

ao

)
.

(3.1.11)

As in (3.1.4), we define

T ′′(ao) :=
{
ξ = a+ ib ∈ C

∣∣∣ ao
4
< a <

3ao
4

}
⊂ T (ao),(3.1.12)

and let A′′(ao; bo) denote the sub-annulus of A(ao; bo) corresponding to
T ′′(ao) (so that T ′′(ao) ⊂⊂ T ′(ao) ⊂⊂ T (ao), and A′′(ao; bo) ⊂⊂ A′(ao; bo)
⊂⊂ A(ao; bo)). From (3.1.1), (3.1.10), (3.1.11) and (3.1.12), one sees that
supp(2πc1(L, h̃)) ⊂ A′′(ao; bo) and hence supp(ψh̃) ⊂ A′′(ao; bo). By lifting
the function log(h1/h2) via the covering map from T (ao) to A(ao; bo), we
get a harmonic function on T (ao), which we denote by the same symbol.
Now for any point ξ ∈ T ′′(ao), one easily checks that the circle C(ξ; ao/8)
centered at ξ and with radius ao/8 lies inside T ′(ao). By differentiating
(with respect to ξ and ξ̄) the Poisson integral formula for log(h1/h2) over
C(ξ; ao/8), one easily sees from (3.1.5) that∣∣∣∣∂ξ log(h1h2

)∣∣∣∣ , ∣∣∣∣∂ξ̄ log(h1h2
)∣∣∣∣ ≤ 16

ao
Φ(h1, h2)(3.1.13)

on T ′′(ao), and hence same estimate also holds on A′′(ao; bo). Combining
(3.1.5), (3.1.6), (3.1.10), (3.1.11) and (3.1.13), one sees that there exists a
constant C1 = C1(η) > 0 such that

|ψh̃(ξ)| ≤
C1

a2o
Φ(h1, h2) for all ξ ∈ A′′(ao; bo).(3.1.14)
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Since supp(ψh̃) ⊂ A′′(ao; bo), we have, with C1 as in (3.1.14),∫
A(ao;bo)

|ψh̃(ξ)|2
i

2
dξ ∧ dξ̄(3.1.15)

=
∫
A′′(ao;bo)

|ψh̃(ξ)|2
i

2
dξ ∧ dξ̄

≤
∫ bo

0

∫ 3ao/4

ao/4

∣∣∣∣C1

a2o
Φ(h1, h2)

∣∣∣∣2 dadb (by (3.1.12), (3.1.14))

= C2
1 · (Φ(h1, h2))2 · bo

2a3o
,

which leads to (3.1.7) (with C = C2
1/2(> 0) depending only on η). Thus we

have finished the proof of Proposition 3.1.1. �

3.2. Throughout the rest of §3, unless otherwise stated, we let M =
{Mt}t∈∆ be a plumbing family of compact Riemann surfaces of genus q ≥ 2
degenerating to a stable Riemann surface M with a non-separating node p
as in (2.1). Also we let L = {Lt}t∈∆ be a holomorphic family of line bundles
of degree 0 over {Mt}t∈∆ as in Theorem 1(i).

First we recall from (2.1) the normalization f : M̃ → M with points
p1, p2 ∈ M̃ corresponding to p, the coordinate functions zk : Uk → ∆,
k = 1, 2, with Uk ⊂ M̃ , and the coordinate neighborhood U1×U2 � ∆2 of p
in M such that Mt ∩ ∆2 = {(z1, z2) ∈ ∆2

∣∣ z1z2 = t} for t ∈ ∆. Fix a small
number δ > 0. We define, for t ∈ ∆∗,

It : =
{
(z1, t/z1) ∈ ∆2

∣∣ |t| 12+2δ < |z1| < |t| 12−2δ
}

(3.2.1)

=
{
(t/z2, z2) ∈ ∆2

∣∣ |t| 12+2δ < |z2| < |t| 12−2δ
}
⊂ Mt.

Let t0 := 1
41−4δ , and let π : M → ∆ be as in (2.1). We fix an open subset of

M given by

N0 := M\ �k=1,2

{
|zk| ≤ 1

2

}
.(3.2.2)

From the description in (2.1), one easily sees that there is an associated open
subset N := N0 ×∆(to) ⊂ M such that π

∣∣
N

is given by the projection onto
the second factor. Here ∆(to) := {t ∈ ∆

∣∣ |t| < to}. We denote

Nt := N0 × {t} ⊂ Mt for t ∈ ∆(to).(3.2.3)

It is easy to check that It ∩Nt = ∅ for any t ∈ ∆∗(to) := ∆(to) \ {0}. Also
we define the following open subsets of M given by

I := ∪t∈∆∗(to)It, V := U1 × U2 ∩ π−1(∆(to)).(3.2.4)
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First we have:

Lemma 3.2.1. The line bundles L∣∣
V

and L∣∣
N

are holomorphically trivial.

Proof. Since U1×U2 is Stein and contractible, it follows from the Oka prin-
ciple that L∣∣

U1×U2
is holomorphically trivial, and thus so is its restriction

L∣∣
V
. By construction, we have N � N0 × ∆(to). Moreover the projection

map onto the first factor is a deformation retract from N onto N0, which
induces an isomorphism between H1(N, C∗) and H1(N0, C∗), where C∗ de-
notes the sheaf of germs of non-vanishing continuous functions. Under this
isomorphism, the class [L∣∣

N
] corresponds to [L∣∣

N0
]. Being a line bundle over

an open Riemann surface, L∣∣
N0

is holomorphically (and thus topologically)
trivial. Hence L∣∣

N
is also topologically trivial. Since N is Stein, it follows

from the Oka principle that L∣∣
N

is holomorphically trivial.

Lemma 3.2.2. Notation as in Theorem 1(i). There exists a real-analytic
flat Hermitian metric h0 on L0

∣∣
M\{p} such that f∗h0 extends across p1, p2

to a real-analytic flat Hermitian metric on f∗L0 over M̃ .

Proof. By Remark 2.2.2, we have deg(f∗L0) = 0 on M̃ , and thus there
exists a flat Hermitian metric h̃0 on f∗L0 over M̃ , which is easily seen to be
real-analytic from the equation c1(f∗L0, h̃0) = 0. Then Lemma 3.2.2 follows
readily by identifying L0

∣∣
M\{p} with f∗L0

∣∣
M̃\{p1,p2} and letting h0 to be the

restriction of h̃0 to L0

∣∣
M\{p}.

Next for |t| < t0, we define four open subsets of Mt given by

V1,t :=
{
(z1, t/z1) ∈ ∆2

∣∣ |t| 12+2δ < |z1| < 1
}
,

V2,t :=
{
(t/z2, z2) ∈ ∆2

∣∣ |t| 12+2δ < |z2| < 1
}
,

R1,t :=
{
(z1, t/z1) ∈ ∆2

∣∣ 1
2
< |z1| < 1

}
,

R2,t :=
{
(t/z2, z2) ∈ ∆2

∣∣ 1
2
< |z2| < 1

}
.

Also we let

Vk := ∪|t|<t0Vk,t, Rk := ∪|t|<t0Rk,t, k = 1, 2,(3.2.5)

which are easily seen to be open subsets of M. Moreover, one = easily sees
from (3.2.1), (3.2.3), (3.2.5) that for 0 < |t| < t0,

V1,t ∪ V2,t ∪Nt = Mt, V1,t ∩ V2,t = It, and Vk,t ∩Nt = Rk,t, k = 1, 2.
(3.2.6)
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With notations as in (3.1), one easily checks that for 0 < |t| < t0, the
multivalent map

(z1, t/z1) ∈ It → ξ =
log z1
| log |t|| −

1
2

+ 2δ ∈ T (4δ)(3.2.7)

descends to a biholomorphism between It and the annulus A(4δ; 2π/| log |t||).
Similarly, for 0 < |t| < t0 and k = 1, 2, the multivalent map

(z1, z2) ∈ Rk,t (with z1z2 = t) → ξk = log zk + log 2 ∈ T (log 2)(3.2.8)

descends to a biholomorphism between Rk,t and A(log 2; 2π). From now on,
we will fix non-vanishing holomorphic sections

eV ∈ Γ(V,L∣∣
V
) and eN ∈ Γ(N,L∣∣

N
),(3.2.9)

which provide holomorphic trivializations of L∣∣
V

and L∣∣
N

respectively (cf.
Lemma 3.2.1). Also we fix a flat Hermitian metric h0 on L0

∣∣
M\{p} as given in

Lemma 3.2.2. Next we consider three smooth Hermitian metrics (L∣∣
V
, hV,k),

k = 1, 2, and (L∣∣
N
, hN ) given by

hV,1(eV , eV )(z) : = h0(eV , eV )(z1, 0) for z = (z1, z2) ∈ V,(3.2.10)

hV,2(eV , eV )(z) : = h0(eV , eV )(0, z2) for z = (z1, z2) ∈ V,

hN (eN , eN )(z, t) : = h0(eN , eN )(z, 0) for (z, t) ∈ N = N0 ×∆(to)

respectively (cf. (3.2)). For k = 1, 2, since Vk ⊂ V (cf. 3.2.5), we obtain a
smooth Hermitian metric (L∣∣

Vk
, hVk

) given by

hVk
:= hV,k

∣∣
Vk
.(3.2.11)

Then we obtain smooth families of Hermitian metrics {(Lt
∣∣
Vk,t

, hVk,t
)}|t|<t0 ,

k = 1, 2, and {(Lt
∣∣
Nt
, hNt)}|t|<t0 given by

hVk,t
:= hVk

∣∣
Vk,t

, k = 1, 2, and hNt := hN
∣∣
Nt

(3.2.12)

for |t| < t0. For each 0 < |t| < t0, the Hermitian metrics hV1,t , hV2,t , hNt may
not agree on the overlaps It, R1,t, R2,t (cf. (3.2.7)). Let η be as in (3.1.1). By
grafting hV1,t , hV2,t on It (∼= A(4δ; 2π/| log |t||) as given in (3.2.8)) relative to
η and grafting hVk,t

, hNt on Rk,t (∼= A(log 2; 2π) as given in (3.2.9)) relative
to η, k = 1, 2 (cf. (3.1)), we obtain a smooth Hermitian metric h̃t on Lt.
At t = 0, we let h̃0 := h0 on L0

∣∣
M\{p}. Then we consider the family of

p-singular Hermitian metrics h̃ = {h̃t}|t|<t0 on {Lt}|t|<t0 with h̃
∣∣
Lt

= h̃t for
|t| < t0. We have

Proposition 3.2.3. h̃ is a smooth Hermitian metric on L∣∣M∩π−1{|t|<t0}\{p}.
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Proof. Obviously h̃ is equal to hV1 , hV2 , hN on V1\(I ∪ R1), V2\(I ∪ R2),
N\(R1 ∪ R2) respectively. Also one easily checks from (3.1.3) and (3.2.8)
that for z = (z1, z2) ∈ I,

(3.2.13) h̃(z) = hV1(z)
η((log |z1|/ log |t|−(1/2)+2δ)/4δ)

· hV2(z)
1−η((log |z1|/ log |t|−(1/2)+2δ)/4δ).

Similarly one easily checks from (3.1.3) and (3.2.9) that for k = 1, 2 and
z = (z1, z2) ∈ Rk,

h̃(z) = hN (z)η((log |zk|+log 2)/ log 2) · hVk
(z)1−η((log |zk|+log 2)/ log 2).(3.2.14)

At t = 0, one also sees from (3.2.11) that hV1 , hV2 , hN are all equal to
h0 on V1,0, V2,0, N0 respectively. Together with (3.2.13), (3.2.14) and the
smoothness of hV1 , hV2 , hN , the smoothness of h̃ follows immediately. Thus
we have finished the proof of Proposition 3.2.3.

Finally we extend h̃ arbitrarily (across {Mt}|t|≥t0) to a smooth Hermitian
metric on L∣∣M\{p}, and we denote the extension by the same symbol. Thus

we get a family of p-singular Hermitian metrics {h̃t}t∈∆ on {Lt}t∈∆, where
h̃t := h̃

∣∣
Lt

for all t ∈ ∆.

3.3. Notation as in (3.2). We are going to obtain some estimates which
will be needed to prove Theorem 1(i). Recall from (2.1) the coordinate
neighborhood ∆2 of p in M such that Mt ∩ ∆2 = {(z1, z2) ∈ ∆2

∣∣ z1z2 = t}
for t ∈ ∆. For 0 < ro < 1, define ∆2(ro) := {(z1, z2) ∈ ∆2 | |z1|, |z2| < ro}.
Let ds2hyp,t, ωhyp,t be as in (2.4). First we recall the following result of
Wolpert:

Proposition 3.3.1 ([Wo2, Expansion 4.2]). There exist constants C1, C2

> 0 such that for all t ∈ ∆∗ and k = 1, 2, we have, on Mt ∩∆2(34),

C1

(
π

log |t|csc
π log |zk|
log |t|

|dzk|
|zk|

)2

≤ ds2hyp,t ≤ C2

(
π

log |t|csc
π log |zk|
log |t|

|dzk|
|zk|

)2

.

Remark. Proposition 3.3.1 also holds in the case of a separating node.

For t ∈ ∆∗, we define the smooth function given by

φt :=
2πc1(Lt, h̃t)

= ωhyp,t
on Mt,(3.3.1)

where h̃t is as in (3.2) (cf. (3.1.6)). Let It be as in (3.2.1). We have:

Proposition 3.3.2.
∫
It

φ2
tωhyp,t = O

(
1∣∣ log |t|∣∣

)
as t → 0.
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Proof. First we recall from (3.2.8) the biholomorphism It ∼= A(4δ;
2π/| log |t||) for t ∈ ∆∗. By (3.2.1), (3.2.8) and Proposition 3.3.1, one easily
checks that there exist constants C3, C4 > 0 such that for t ∈ ∆∗,

C3
i

2
dξ ∧ dξ̄ ≤ ωhyp,t ≤ C4

i

2
dξ ∧ dξ̄ on It,(3.3.2)

where ξ is as in (3.2.8). Let t0, δ, V, I, V1,t, V2,t be as in (3.2), and let h0 be as
in Lemma 3.2.2. Recall from (3.2) that on It, h̃t is obtained by grafting hV1,t

and hV2,t relative to η, where η is as in (3.1.1). From (3.2.1) and (3.2.4),
one sees that |z1|, |z2| ≤ |t0| 12−2δ < 1 for all z = (z1, z2) ∈ I. Together with
(3.2.11) and the extension property of h0 as given in Lemma 3.2.2, one sees
that there exist constants C5, C6 > 0 such that for k = 1, 2,

C5 ≤ |hV,k(eV , eV )(z)| ≤ C6 for all z ∈ I,(3.3.3)

where eV is as in (3.2.10). Together with (3.2.12), (3.2.13) and using the
notation in (3.1.5), it follows that there exists a constant C7 > 0 such that
for 0 < |t| < t0, one has

Φ(hV1,t , hV2,t) ≤ C7(3.3.4)

with respect to the annulus It ∼== A(4δ; 2π/| log |t||). With ψh̃t
as defined

in (3.1.6), one sees from (3.3.1) and (3.3.2) that

ψh̃t
(ξ) ≥ C3 · φt(ξ) for ξ ∈ It, 0 < |t| < t0.(3.3.5)

From (3.2.11), (3.2.13) and the flatness of h0, it follows that for 0 < |t| < t0,
hV1,t and hV2,t are also flat Hermitian metrics. Let C = C(η) > 0 be as in
Proposition 3.1.1. Then we have

∫
It

φ2
tωhyp,t ≤ C4

C2
3

∫
It

φ2
t

i

2
dξ ∧ dξ̄ (by (3.3.2), (3.3.5))

(3.3.6)

≤ C4

C2
3

· C · C2
7 · 1

(4δ)3
· 2π
| log |t|| (by Proposition 3.1.1, (3.3.4))

= O

(
1∣∣ log |t|∣∣

)
as t → 0.

Thus we have finished the proof of Proposition 3.3.2.

Next for |t| < t0 and k = 1, 2, we let Rk,t be as in (3.2.5), and let Rk be
as in (3.2.6). We have:

Proposition 3.3.3. For k = 1, 2,
∫
Rk,t

φ2
tωhyp,t = O(|t|2) as t → 0.
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Proof. First we recall from (3.2.9) the biholomorphism Rk,t ∼= A(log 2; 2π)
for t ∈ ∆∗. By (3.2.1), (3.2.9) and Proposition 3.3.1, one easily checks that
there exist constants C3, C4 > 0 such that for t ∈ ∆∗,

C3
i

2
dξk ∧ dξ̄k ≤ ωhyp,t ≤ C4

i

2
dξk ∧ dξ̄k on Rk,t,(3.3.7)

where ξk is as in (3.2.9). Let t0, N,Nt, Vk, Vk,t, k = 1, 2, be as in (3.2),
and let h0 be as in Lemma 3.2.2. Recall from (3.2) that on Rk,t, h̃t is
obtained by grafting hNt and hVk,t

relative to η, where η is as in (3.1.1).
As in Lemma 3.2.1, L∣∣

Rk
, k = 1, 2, are holomorphically trivial, and we fix

non-vanishing holomorphic sections ek ∈ Γ(Rk,L
∣∣
Rk

), k = 1, 2. Let eN , eV
be as in (3.2.10), and for k = 1, 2, we let fk(z), gk(z) be the non-vanishing
holomorphic functions on Rk satisfying

eV (z) = fk(z)ek(z) and eN (z) = gk(z)ek(z) for z ∈ Rk.(3.3.8)

For simplicity, we denote [zk, ·] to be (z1, ·) or (·, z2) according as k = 1
or k = 2. Then for k = 1, 2, |t| < t0 and z = [zk, t/zk] ∈ Rk,t (with
1
2 < |zk| < 1), one has

hN,t
hVk,t

(z) =
hN (ek, ek)(z)
hV,k(ek, ek)(z)

(cf. (3.2.12) and (3.2.13))(3.3.9)

=
hN (eN , eN )(z)
hV,k(eV , eV )(z)

· |fk(z)|
2

|gk(z)|2 (by (3.3.8))

=
h0(eN , eN )[zk, 0]
h0(eV , eV )[zk, 0]

· |fk(z)|
2

|gk(z)|2 (by (3.2.11))

=
|gk[zk, 0]|2
|fk[zk, 0]|2 · |fk[zk, t/zk]|

2

|gk[zk, t/zk]|2 (by (3.3.8)).

Using the Cauchy integral formula and shrinking t0 if necessary, one easily
checks that for any 0 < ε < 1

2 , there exists a constant C5 = C5(ε) > 0 such
that for k = 1, 2, 0 < |t| < t0 and 1

2 + ε < |zk| < 1− ε, one has

1− C5|t| ≤ |fk[zk, t/zk]|2
|fk[zk, 0]|2 ,

|gk[zk, t/zk]|2
|gk[zk, 0]|2 ≤ 1 + C5|t|.(3.3.10)

Using the notation in (3.1.5), it follows that there exists a constant C6 > 0
such that for k = 1, 2 and 0 < |t| < t0, one has

Φ(hNt , hVk,t
) ≤ C6|t|(3.3.11)

with respect to the annulus Rk,t ∼= A(log 2; 2π). With ψh̃t
as defined in

(3.1.6), one sees from (3.3.1) and (3.3.7) that

ψh̃t
(ξk) ≥ C3 · φt(ξk) for ξk ∈ Rk,t, 0 < |t| < t0.(3.3.12)
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As in Proposition 3.3.2, since hVk,t
and hNt are flat Hermitian metrics (cf.

(3.2.11), (3.2.13)), we have, with = C = C(η) > 0 as in Proposition 3.1.1,∫
Rk,t

φ2
tωhyp,t ≤ C4

C2
3

∫
Rk,t

φ2
t

i

2
dξk ∧ dξ̄k (by (3.3.7), (3.3.12))(3.3.13)

≤ C4

C2
3

· C · C2
6 |t|2 ·

2π
(log 2)3

(by Proposition 3.1.1)

= O(|t|2) as t → 0.

Thus we have finished the proof of Proposition 3.3.3.

For t ∈ ∆, we denote by ‖ ‖2 the L2-norm on Mt with respect to ωhyp,t.

Proposition 3.3.4. ‖φt‖22 = O

(
1

| log |t||
)

as t → 0.

Proof. From the construction of h̃t, it is easy to check that for 0 < |t| < t0,
c1(Lt, h̃t) = 0 on Mt\(It � R1,t � R2,t). Then by Proposition 3.3.2 and
Proposition 3.3.3, we have∫

Mt

φ2
tωhyp,t =

∫
It

φ2
tωhyp,t +

∫
R1,t

φ2
tωhyp,t +

∫
R2,t

φ2
tωhyp,t(3.3.14)

= O

(
1

| log |t||
)

+O(|t|2) +O(|t|2)

= O

(
1

| log |t||
)

as t → 0.

Thus we have finished the proof of Proposition 3.3.4.

3.4. Before we go on, we give a lemma which will be needed in subsequent
discussion.

Lemma 3.4.1. Let X be a smooth compact Riemann surface of genus q ≥ 2
and endowed with the hyperbolic metric, and let v ∈ C∞(X). Then there
exist constants C1, C2 > 0 (which do not depend on X or v) such that the
following statements hold:

(i) For any x ∈ X and any real number r satisfying 0 < r ≤ ρx, where ρx
denotes the injectivity radius at x, we have

|v(x)| ≤ C1

tanh r

√∫
B(x,r)

|v|2ωhyp + C2 sinh r

√∫
B(x,r)

|∆v|2ωhyp.

Here B(x, r) denotes the geodesic ball centered at x and of radius r,
ωhyp denotes the hyperbolic volume form of X, and ∆ denotes the
hyperbolic Laplacian.
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(ii) In particular, we have

sup
x∈X

|v(x)| ≤ C1

4π(q − 1) tanh ρX

∣∣∣∣∫
X
vωhyp

∣∣∣∣
+
(

C1

λ1,X tanh ρX
+ C2 sinh ρX

)
‖∆v‖2.

Here ρX denotes the injectivity radius of X, and λ1,X denotes the first
non-zero eigenvalue of X.

Proof. Write ∆(R) := {z ∈ C
∣∣ |z| < R} for R > 0 (so that ∆(1) = ∆).

The universal cover of (X,ωhyp) is (∆, idz ∧ dz/(1 − |z|2)2). Denote the
hyperbolic distance on ∆ by d(·, ·). It is well-known that |z| = tanh(d(0, z))
for z ∈ ∆. For any x ∈ X and 0 < r ≤ ρx, we may identify B(x, r) with
∆(tanh ρt) via the covering map from ∆ to X sending the origin to x. In
terms of such identification, we have

∂z∂z̄v = − 1
(1− |z|2)2∆v on ∆(tanh r).(3.4.1)

Next we make a change of variable given by z′ := z/(tanh ρt), and denote
v′(z′) := v(z), so that v′ ∈ C∞(∆). Using Nash-Moser iteration technique
(cf. e.g., [GT, Theorem 8.24] and observe that the left hand side of the
trivial equation ∂z∂z̄v = ∂z∂z̄v is of constant coefficients, which implies that
the conditions in (8.5) and (8.6) of [GT] are satisfied), one deduces that
there exist constants C1, C2 > 0 such that

|v(0)| = |v′(0)|

(3.4.2)

≤ C1

√∫
∆
|v′(z′)|2 i

2
dz′ ∧ dz̄′ + c2

√∫
∆
|∂z′∂z̄′v′(z′)|2 i2dz

′ ∧ dz̄′

≤ C1

tanh r

√∫
∆(tanh r)

|v(z)|2 i
2
dz ∧ dz̄

+ C2 tanh r

√∫
∆(tanh r)

|∂z∂z̄v(z)|2 i2dz ∧ dz̄

≤ C1

tanh r

√∫
∆(tanh r)

|v(z)|2ωhyp + C2 sinh r

√∫
∆(tanh r)

|∆v|2ωhyp,

where the last inequality follows from the inequality that i
2dz ∧ dz̄ ≤ ωhyp

on ∆, (3.4.1) and the fact that
1

1− |z|2 < cosh2 r for |z| < tanh r. This
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finishes the proof of Lemma 3.4.1(i). To prove Lemma 3.4.1(ii), we recall
from standard spectral theory for elliptic operators that

‖v‖22 ≤
(

1
4π(q − 1)

∫
X
vωhyp

)2

+
1

λ2
1,X

‖∆v‖22, and thus(3.4.3)

‖v‖2 ≤ 1
4π(q − 1)

∣∣∣∣∫
X
vωhyp

∣∣∣∣+ 1
λ1,X

‖∆v‖2.

Then by letting r = ρX in Lemma 3.4.1(i), we have, at any x ∈ X,

|v(x)| ≤ C1

tanh ρX
‖v‖2 + C2 sinh ρX‖∆v‖2(3.4.4)

≤ C1

4π(q − 1) tanh ρX

∣∣∣∣∫
X
vωhyp

∣∣∣∣
+
(

C1

λ1,X tanh ρX
+ C2 sinh ρX

)
‖∆v‖2 (by (3.4.3)),

which easily leads to Lemma 3.4.1(ii). Thus we have finished the proof of
Lemma 3.4.1.

3.5. Notation as in (3.1) to (3.3). Let {Mt}t∈∆ be as in Theorem 1(i). For
t ∈ ∆∗, we denote by λ1,t the first non-zero eigenvalue of the Laplacian ∆t

with respect to ds2hyp,t on Mt. We shall need the following:

Lemma 3.5.1. Let {Mt}t∈∆ be as in Theorem 1(i) with a non-separating
node p. Then there exists a constant α > 0 such that λ1,t ≥ α for all t ∈ ∆∗.

Proof. The above lemma is well-known and follows from results of [SWY]
and [H] (see e.g., [Ji, Corollary 3.4]).

For t ∈ ∆∗, we define the smooth function

ut := Gtφt on Mt,(3.5.1)

where φt is as in (3.3.1), and Gt is the Green’s operator with respect to
ds2hyp,t on Mt, i.e., ut is the (unique) smooth function on Mt satisfying

∆tut = φt, and
∫
Mt

ut ωhyp,t = 0(3.5.2)

(cf. e.g., [GH, p. 84] for the definition of the Green’s operator).

Proposition 3.5.2. Let {Mt}t∈∆ be as in Theorem 1(i) with a non-sepa-
rating node p, and let ut be as in (3.5.1). Then for any continuous section
{zt}t∈∆ ∈ {Mt}t∈∆ with zt ∈ Mt and z0 �= p, we have ut(zt) → 0 as t → 0.
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Proof. Since each Lt is of degree 0, it follows from (3.3.1) that
∫
Mt

φtωhyp,t

= 0 for t ∈ ∆∗. = Together with (3.5.2), it follows from standard properties
of Green’s operator that

‖ut‖2 ≤ 1
λ1,t

‖φt‖2 for t ∈ ∆∗.(3.5.3)

Since z0 �= p, it is easy to see that there exist constants = ρ1, ρ2 > 0 such
that ρ1 ≤ ρzt ≤ ρ2 for all = t ∈ ∆∗, where ρzt denotes the injectivity radius
of zt in Mt. Then by Lemma 3.4.1(i) and (3.5.2), we have

|ut(zt)| ≤ C1

tanh ρ1
‖vt‖2 + C2 sinh ρ2‖φt‖2

(3.5.4)

≤
(

C1

α tanh ρ1
+ C2 sinh ρ2

)
‖φt‖2 (by Lemma 3.5.1 and (3.5.3))

→ 0 as t → 0 (by Proposition 3.3.4).

Here C1, C2 are as in Lemma 3.4.1, and α is as in Lemma 3.5.1. Thus we
have finished the proof of Proposition 3.5.2.

Next we define a family of p-singular Hermitian metrics = h = {ht}t∈∆
on {Lt}t∈∆ by letting

ht := e−ut h̃t for t ∈ ∆∗,(3.5.5)

and letting h0 be as given in Lemma 3.2.2. We are ready to give the proof
of Theorem 1(i) as follows.

Proof of Theorem 1(i). Let M = {Mt}t∈∆ (with a non-separating node
p ∈ M), L = {Lt}t∈∆ and f : M̃ → M be as in Theorem 1(i). Also let
h = {ht}t∈∆ be as in (3.5.5). By (3.5.5), we have

c1(Lt, ht) =
√−1
2π

∂∂̄ut + c1(Lt, h̃t)(3.5.6)

= − 1
2π

∆tut · ωhyp,t + c1(Lt, h̃t)

= 0 on Mt (by (3.3.1), (3.5.2)).

Together with Lemma 3.2.2 (for h0), it follows that for each t ∈ ∆, ht
is a flat p-singular Hermitian metric on Lt, and this verifies condition (i)
of Definition 2.2.1 for {ht}t∈∆. From (3.3.1) and the construction of h̃ =
{h̃t}t∈∆ in (3.2), it is easy to see that {φt}t∈∆∗ glue together to form a
smooth function on M\M0. Also, it is obvious that for each t∗ ∈ ∆∗,
there exist λ∗ = λ∗(t∗) > 0 and ε = ε(t∗) > 0 such that λ1,t ≥ λ∗ for
all |t − t∗| < ε (cf. [KS, Theorem 2] or Lemma 3.5.1). Thus by [KS,
Theorem 3] and (3.5.1), {ut}t∈∆∗ glue together to form a smooth function
on M\M0. Then the smoothness of h on M\M0 follows from those of
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{ut}t∈∆∗ and h̃. Moreover, by letting u0 to be the constant zero function on
M\{p}, if follows from Proposition 3.5.2 that {ut}t∈∆ glue together to form
a continuous function on M\{p} (with (3.5.5) also satisfied at t = 0). Then
the continuity of h on M\{p} follows from those of {ut}t∈∆ and h̃, and this
verifies condition (ii) of Definition 2.2.1 for {ht}t∈∆. Thus {ht}t∈∆ forms an
almost nice family of flat p-singular Hermitian metrics. By Lemma 3.2.2,
f∗h0 extends to a smooth flat Hermitian metric on f∗L0 over M̃ . Thus we
have completed the proof of Theorem 1(i).

4. Family of flat p-singular Hermitian metrics in the separating
node case.

4.1. We are going to prove Theorem 1(ii) in §4. In (4.1), we will first prove
that under the conditions of Theorem 1(ii), {Lt}t∈∆ admits an almost nice
family of flat p-singular Hermitian metrics h = {ht}t∈∆. To streamline our
discussion, we will keep the notation as close to §3 as possible and simply
refer to §3 when the arguments and calculations in §3 also prevail verbatim
in the present case of a separating node. The goodness of h will be proved
in (4.2).

Throughout §4, unless otherwise stated, we let M = {Mt}t∈∆ be a plumb-
ing family of compact Riemann surfaces of genus q ≥ 2 degenerating to a
stable singular Riemann surface M with a single separating node p as in
(2.1). Recall also from (2.1) the normalization f : M̃(= M1 �M2) → M
with points pk ∈ Mk, where Mk is a smooth compact Riemann surface of
genus qk, k = 1, 2 (so that q1, q2 ≥ 1 and q1 + q2 = q). We also denote
the two components of M\{p} by M0

1 and M0
2 , so that via f , we have the

identifications

M0
1 � M1\{p1}, M0

2 � M2\{p2}.(4.1.1)

Let L = {Lt}t∈∆, L0,k = f∗L0

∣∣
Mk

, k = 1, 2, be as in Theorem 1(ii), so that
dk = deg(L0,k) = 0, k = 1, 2. Via f , we have an identification of the fibers

L0

∣∣
{p} � L0,1

∣∣
{p1} � L0,2

∣∣
{p2}.(4.1.2)

Fix a small number δ > 0, and let to := 1/41−4δ, zk : Uk → ∆, Vk, Rk, V ,
N , It, Nt, t ∈ ∆∗, k = 1, 2, be similarly defined as in (3.2). Note that in the
present case of a separating node, N and the Nt’s consist of two components.
Using the arguments in Lemma 3.2.1, one easily sees that L∣∣

V
and L∣∣

N
are

all holomorphically trivial, and as in (3.2), we will thus fix non-vanishing
holomorphic sections

eV ∈ Γ(V,L∣∣
V
), eN ∈ Γ(N,L∣∣

N
)(4.1.3)

throughout the remaining section.
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Lemma 4.1.1. For k = 1, 2, there exists a real-analytic Hermitian metric
h0,k on L0

∣∣
M0

k
such that f∗h0,k extends across pk to a real-analytic flat Her-

mitian metric f̃∗h0,k on L0,k over Mk; moreover, under the identification in
(4.1.2), we have

(L0,1, f̃∗h0,1)
∣∣
{p1} � (L0,2, f̃∗h0,2)

∣∣
{p2}.(4.1.4)

Proof. As in Lemma 3.2.2, the existence of such real-analytic flat h0,k (minus
the condition (4.1.4)) follows easily from the degree condition deg(L0,k) = 0,
k = 1, 2. Then (4.1.4) can easily be attained by multiplying h0,1 by a suitable
positive constant, if necessary.

By means of grafting (relative to an η as given in (3.1.1)) as in (3.2)
and with h0 replaced by h0,k on Mk, k = 1, 2, we obtain a smooth family
of p-singular Hermitian metrics h̃ = {h̃t}|t|<t0 on {Lt}t∈∆ with h̃

∣∣
Lt

= h̃t
for |t| < t0. Also, we let hV1 , hV2 , hN , hV1,t , hV2,t , hNt be the intermediate
Hermitian metrics involved in the construction of h̃ as in (3.2). As in (3.3.1),
we let

φt :=
2πc1(Lt, h̃t)

ωhyp,t
for t ∈ ∆∗.(4.1.5)

We shall need the following stronger version of Proposition 3.3.2 in the case
of a separating node:

Proposition 4.1.2. There exists a constant γ > 0 such that∫
It

φ2
tωhyp,t = O(|t|γ) as t → 0.(4.1.6)

Proof. We are going to prove Proposition 4.1.2 by modifying the proof of
Proposition 3.3.2 as follows. From Lemma 4.1.1 and (3.2.11), one sees that
the Hermitian metrics hV,1 and hV,2 on L∣∣

V
are real-analytic, and they agree

with each other at p. Together with (3.2.12) and (3.2.13), it follows that for
0 < |t| < t0 and z = (z1, z2) ∈ It (with z1z2 = t), one has∣∣∣∣hV1

hV2

(z)
∣∣∣∣ , ∣∣∣∣hV2

hV1

(z)
∣∣∣∣ ≤ 1 + C1|z1|+ C2|z2|(4.1.7)

≤ 1 + C3|t| 12−2δ (cf. (3.2.1))

for some positive constants C1, C2, C3 independent of t. As in (3.3.4) and
using the notation in (3.1.5), it follows that there exists a constant C4 > 0
such that for 0 < |t| < t0, one has

Φ(hV1,t , hV2,t) ≤ C4|t| 12−2δ(4.1.8)
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with respect to the annulus It ∼= A(4δ; 2π/| log |t||). Then (4.1.6) follows
easily from a calculation similar to (3.3.6) with (3.3.4) replaced by (4.1.8),
which gives Proposition 4.1.2.

Proposition 4.1.3. For k = 1, 2,
∫
Rk,t

φ2
tωhyp,t = O(|t|2) as t → 0.

Proof. The proof of Proposition 4.1.3 (for the separating node case) can
easily be obtained by adapting that of Proposition 3.3.3 (for the non-sepa-
rating node case).

Analogous to Lemma 3.5.1, we have:

Lemma 4.1.4. Let {Mt}t∈∆ be as in Theorem 1(ii) with a separating node.
(i) Then there exists a constant β > 0 such that λ1,t > β/

∣∣ log |t|∣∣ for all
t ∈ ∆∗.

(ii) There exist constants c1, c2 > 0 such that
c1

| log |t|| ≤ ρt ≤ c2
| log |t||

for all t ∈ ∆∗, where ρt denotes the injectivity radius of Mt.

Proof. By [SWY], there exists a constant C1 > 0 such that for all t ∈ ∆∗,
λ1,t > C1 lt, where lt is the minimum of the lengths of simple closed geodesics
(with respect to ds2hyp,t) on Mt which separate Mt into two components.
In our separating node case, it is well-known that there exist constants
C2, C3 > 0 such that for all t ∈ ∆∗,

C2

| log |t|| ≤ lt ≤ C3

| log |t||(4.1.9)

(cf. e.g., [Wo2, Example 4.3]), which leads to Lemma 4.1.4(i). Lemma
4.1.4(ii) follows from (4.1.9) and the simple fact that ρt = lt/2.

We shall need the following stronger version of Proposition 3.3.4 in the
separating node case:

Proposition 4.1.5. There exists a constant µ > 0 such that ‖φt‖2 = O(|t|µ)
as t → 0.

Proof. As in Proposition 3.3.4, it follows from Proposition 4.1.2 and Propo-
sition 4.1.3 that∫

Mt

φ2
tωhyp,t =

∫
It

φ2
tωhyp,t +

∫
R1,t

φ2
tωhyp,t +

∫
R2,t

φ2
tωhyp,t(4.1.10)

= O(|t|γ) +O(|t|2) +O(|t|2)
= O(|t|µ′) as t → 0,

where γ is as in Proposition 4.1.2 and µ′ = min{γ, 2} > 0, and this leads to
Proposition 4.1.5 with µ = µ′/2.
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As in (3.5.1) and (3.5.2), we let ut := Gtφt on Mt. Then = similar to
Proposition 3.5.2, we have:

Proposition 4.1.6. (i) There exists a constant µ > 0 such that

‖ut‖2 = O(|t|µ) and ‖∂ut‖2 = ‖∂̄ut‖2 = O(|t|µ) as t → 0.

(ii) For any continuous section {zt}t∈∆ in {Mt}t∈∆ with zt ∈ Mt and
z0 �= p, we have ut(zt) → 0 as t → 0.

Proof. As in (3.5.3), we have

‖ut‖2 ≤ 1
λ1,t

‖φt‖2(4.1.11)

≤ 1
β/| log |t|| |t|

µ (by Lemma 4.1.4 and Proposition 4.1.5)

= O(|t|µ/2) as t → 0,

where β and µ > 0 are as in Lemma 4.1.4 and Proposition 4.1.5 respectively,
and we have used the simple fact that limx→0+ x

α log x = 0 for any α >
0. Replacing µ by 2µ in (4.1.11), we get the first estimate of Proposition
4.1.6(i). Since ut is real-valued, we have

‖∂ut‖22 = ‖∂̄ut‖22 =
∫
Mt

〈∂̄ut, ∂̄ut〉ωhyp,t

(4.1.12)

=
∫
Mt

〈∆tut, ut〉ωhyp,t

=
∫
Mt

〈φt, ut〉ωhyp,t

≤ ‖φt‖2‖ut‖2
= O(|t|µ) as t → 0 (by Proposition 4.1.5 and (4.1.11))

for some µ > 0. This finishes the proof of Proposition 4.1.6(i). Let {zt} be
as in Proposition 4.1.6(ii). Using the arguments in the proof of Proposition
3.5.2, one easily sees that there exist constants C, µ > 0 such that, as in
(3.5.4),

|ut(zt)| ≤ C
(‖ut‖2 + ‖φt‖2

)
(4.1.13)

= O(|t|µ) as t → 0

(by Proposition 4.1.5 and Proposition 4.1.6(i)),

which gives Proposition 4.1.6(ii).

We remark that Proposition 4.1.6(ii) will be strengthened later in Propo-
sition 4.2.4, and it is proved here for the sake of exposition. To summarize
our results at this point, we have:
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Proposition 4.1.7. Let M = {Mt}t∈∆ (with a separating node p ∈ M),
M1, M2, L = {Lt}t∈∆ and f : M̃ → M , L0,1, L0,2, d1 and d2 be as in The-
orem 1(ii). Then {Lt}t∈∆ admits an almost nice family of flat p-singular
Hermitian metrics h = {ht}t∈∆ such that f∗h0 extends to smooth flat Her-
mitian metrics on L0,1 over M1 and L0,2 over M2 if and only if d1 = d2 = 0.

Proof. The ‘if’ part of Proposition 4.1.7 can be proved by using the ar-
guments in the proof of Theorem 1(i) in (3.4) with Proposition 3.5.2 and
Lemma 3.2.2 replaced by Proposition 4.1.6(ii) and Lemma 4.1.1 respectively
(and with each ht constructed as in (3.5.5)). The ‘only if’ part of Proposition
4.1.7 simply follows from the calculation that

dk =
∫
Mk

c1(L0,k, h0,k) = 0,

where h0,k denotes the smooth flat Hermitian metric on L0,k obtained by
extending f∗h0 on L0,k

∣∣
Mk\{pk}, k = 1, 2.

4.2. Notation as in (4.1). Let M = {Mt}t∈∆ (with a separating node
p ∈ M) and L = {Lt}t∈∆ (with d1 = d2 = 0) be as in the ‘if’ part of
Theorem 1(ii). Also let h = {ht}t∈∆ be the almost nice family of flat p-
singular Hermitian metrics on L = {Lt}t∈∆ constructed in (4.1) in the proof
of the ‘if’ part of Proposition 4.1.7. In this section, we are going to complete
the proof of Theorem 1(ii) by showing that the restriction h

∣∣∣
M\M0

is good

on M (cf. (2.2)).

First we recall the family of p-singular Hermitian metrics h̃ = {h̃t}t∈∆ on
L = {Lt}t∈∆ constructed in (4.1).

Proposition 4.2.1. h̃
∣∣∣
M\M0

is good on M.

Proof. First we recall from (4.1) that h̃ is smooth on M\{p}. Thus, to prove
the goodness of h̃, it suffices to consider a coordinate open neighborhood of
p in M. Let V ⊂ U1 × U2 = {z = (z1, z2)

∣∣ |z1|, |z2| < 1} be as in (4.1).
It is easy to see that one can choose a sufficiently small r0 > 0 such that
the subset ∆∗2(r0) := {z = (z1, z2)

∣∣ 0 < |z1|, |z2| < r0} ⊂ U1 × U2 satisfies
∆∗2(r0) ⊂ V and ∆∗2(r0) ∩ Rk = ∅, where Rk is as in (3.2.6), k = 1, 2. Let
η, δ and eV be as in (3.1.1), (3.2.1) and (4.1.3) respectively. Then as in
(3.2.14), one sees from (3.1) and (4.1) that for z = (z1, z2) ∈ ∆∗2(r0),

h̃(eV , eV )(z) =
(
h0,1(eV , eV )(z1, 0)

)η(τ) · (h0,2(eV , eV )(0, z2)
)1−η(τ)

, where

(4.2.1)

τ : =
1
4δ

(
log |z1|

log |z1|+ log |z2| −
1
2

+ 2δ
)
.
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From Lemma 4.1.1, one sees that there exists a constant C1 > 0 such that for
k, ;,m, n = 1, 2 and [z&, 0] with |z&| < r0 (here, as in (3.3.9), [z&, 0] = (z1, 0)
or (0, z2) according as ; = 1 or 2), we have

1
C1

≤ h0,k(eV , eV )[z&, 0] ≤ C1,(4.2.2) ∣∣∂zm log h0,k(eV , eV )[z&, 0]
∣∣ ≤ C1, and∣∣∂zm∂zn log h0,k(eV , eV )[z&, 0]
∣∣ ≤ C1.

First we see from (3.1.1), (4.1.1) and (4.2.2) that there exists a constant
C2 > 0 such that for z ∈ ∆∗2(r0),

1
C2

≤ h̃(eV , eV )(z) ≤ C2.(4.2.3)

For k, ; = 1, 2 and z = (z1, z2) ∈ ∆∗2(r0), one computes directly from (4.2.1)
that ∣∣∂z1η(τ)∣∣ = ∣∣∣∣η′(τ) · 1

8δz1
· log |z2|
(log |z1|+ log |z2|)2

∣∣∣∣(4.2.4)

≤ C3
1

|z1|
∣∣ log |z1|∣∣

for some constant C3 > 0. Similarly, one can verify that there exists a
constant C4 > 0 such that for k, ; = 1, 2 and z = (z1, z2) ∈ ∆∗2(r0),∣∣∂z2η(τ)∣∣ ≤ C4 · 1

|z2|
∣∣ log |z2|∣∣ , and(4.2.5)

∣∣∂zk∂z	η(τ)∣∣ ≤ C4 · 1
|zk|
∣∣ log |zk|∣∣ · 1

|z&|
∣∣ log |z&|∣∣ .

Finally by differentiating log h̃(eV , eV )(z) using the product rule, one sees
from (3.1.1), (4.2.1), (4.2.3) and (4.2.5) that there exists a constant C5 > 0
such that for k, ; = 1, 2 and z = (z1, z2) ∈ ∆∗2(r0),∣∣∂zk log h̃(eV , eV )(z)

∣∣ ≤ C5 · 1
|zk|
∣∣ log |zk|∣∣ , and(4.2.6)

∣∣∂zk∂z	 log h̃(eV , eV )(z)
∣∣ ≤ C5 · 1

|zk|
∣∣ log |zk|∣∣ · 1

|z&|
∣∣ log |z&|∣∣ ,

which, together with (4.2.3), lead to the goodness of h̃, and this finishes the
proof of Proposition 4.2.1.

To facilitate ensuing discussion, we recall briefly the family of diffeomor-
phisms {Φt : Mto → Mt}0<|t|<|to| constructed in [Wo2, 5.4T]. Recall from
(4.1) the coordinate neighborhood U1 ×U2 = {z = (z1, z2)

∣∣ |z1|, |z2| < 1} of
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p in M, so that Vt := (U1 × U2) ∩Mt is defined by the equation z1z2 = t,
t ∈ ∆∗. Let V ∗ := ∪0<|t|<|to|Vt. Fix a number to such that 0 < |to| < 1. Let

ν :=
log z1
log |to| , ν ′ :=

log z2
log |to| , ε :=

log t
log |to| − 1,(4.2.7)

so that the equation z1z2 = t becomes ν+ν ′ = 1+ε, and t = |to| corresponds
to ε = 0. The universal cover of each annulus Vt = Vt(ε) is given by =
Hε := {ζ ∈ C

∣∣ 0 < Re ζ < 1 + Re ε} with deck transformations

ζ → ζ + 2nπi/ log |to|, n ∈ Z.(4.2.8)

The inclusion Vt ⊂ (U1\{|z1| ≤ |t|})×(U2\{|z2| ≤ |t|}) induces an inclusion
on their universal covers given by

ζ ∈ Hε ↪→ (ν, ν ′) = (ζ, 1 + ε− ζ) ∈ Hε ×Hε.(4.2.9)

Fix a small constant 0 < δ1 < 1
2 and fix a smooth increasing function

ϕ(x), 0 ≤ x ≤ 1, such that

ϕ(0) = 0, ϕ(1) = 1 and supp(ϕ′) ⊂ [δ1, 1− δ1].(4.2.10)

To distinguish the ζ coordinate on H0 from that on a general Hε, we denote
it by ζ̂. Now we define a mapping f : H0 × {ε ∈ C

∣∣Re ε > 0} → C given by

f(ζ̂, ε) := ζ̂ + εϕ(Re ζ̂).(4.2.11)

It is easy to see that for each ε, f(·, ε) is a diffeomorphism from H0 to Hε.
In addition, each f(·, ε) descends to a diffeomorphism between Vto and Vt(ε),
which we denote by the same symbol. Recall from the plumbing construction
in (2.1) that each Mt \ Vt is canonically biholomorphic to M0 \ (U1 ∪ U2),
so that each Mt \ Vt is canonically biholomorphic to Mto \ Vto . Finally
we define Φt : Mto → Mt to be f(·, ε) on Vt and the inverse of the above
canonical biholomorphism on Mto \Vto . Then one easily sees that each Φt is
a diffeomorphism from Mto to Mt, and {Φt}0<|t|<|to| forms a smooth family
of diffeomorphisms.

Throughout the remaining discussion in (4.2), we will fix a coordinate
open cover of the total space of {Mt}0<|t|<|to| as follows. First we fix coordi-
nate open subsets {(Uα, ζα)}α∈A of Mto covering Mto \ Vto(1− δ2) for some
δ2 > 0 and such that

Uα ∩ Vto ⊂ {(z1, to/z1)
∣∣ |z1| > |to|δ1/2 or |z1| < |to|1−δ1/2}(4.2.12)

for all α ∈ A, shrinking δ2 if necessary (such choice of δ2 ensures that
supp(ϕ̂) ∩ Uα = ∅ for all α ∈ A, where ϕ̂ is as in (4.2.18) below). Here
ζα denotes the coordinate function on Uα, and δ1 is as in (4.2.10). Via the
maps i−1

k,t ◦ ik,to , k = 1, 2, as above, one sees that

{V ∗(1− δ2)} ∪ {(Uα ×∆∗(|to|), (ζα, t))}α∈A(4.2.13)
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forms a coordinate open cover of {Mt}0<|t|<|to|, where V ∗(1 − δ2) := V ∗ ∩
(U∗

1 (1−δ2)×U∗
2 (1−δ2)), so that V ∗(1−δ2) = ∪0<|t|<|to|Vt(1−δ2) (cf. (4.2.15)

below). Shrinking δ2 if necessary, it is easy to see that we may assume that
supp (φt) ∩ (Uα × {t}) = ∅ for 0 < |t| < |to| and each α ∈ A. By (4.2.7),
we may write ∂

∂ε = log |t0|· = t ∂∂t on ∆∗. Associated to {Φt}0<|t|<|to| is a
lifting of the vector field ∂/∂ε to a smooth vector field ∂/∂σ on the total
space of {Mt}0<|t|<|to| as follows. First observe that on V ∗ and in terms of
(ζ, ε), we have (ζ, ε) = (f(ζ̂, ε), ε), and ∂/∂σ is given by

∂

∂σ
=

∂

∂ε
+
∂f

∂ε

∂

∂ζ
=

∂

∂ε
+ ϕ

∂

∂ζ
on V ∗.(4.2.14)

Also for each α ∈ A, ∂/∂σ is simply given by ∂/∂ε(= log |to| · t(∂/∂t)) on
Uα×∆∗(|to|). Using (4.2.12), one can check that ∂/∂σ forms a smooth global
vector field on the total space of {Mt}0<|t|<|to| such that π∗(∂/∂σ)(z) = ∂/∂ε
at any point z ∈ {Mt}0<|t|<|to|, where π : M → ∆ denotes the projection
map. Notice that there is a slight abuse of notation here, as ∂/∂σ is not a
coordinate vector field. Observe also that by (4.2.8), ∂/∂ζ descends to a non-
vanishing tangent vector field on each Mt, 0 < |t| < |to|, and {∂/∂σ, ∂/∂ζ}
forms a basis of TzV ∗ at each z ∈ V ∗.

Write U∗
1 × U∗

2 := (U1 \ {0}) × (U2 \ {0}). For 0 < r < 1, we define
U∗
1 (r)× U∗

2 (r) := {z = (z1, z2)
∣∣ 0 < |z1|, |z2| < r} ⊂ U1 × U2, and we define

Vt(r) := Vt ∩ (U∗
1 (r)× U∗

2 (r)) ⊂ Mt.(4.2.15)

For a tangent vector v on U∗
1 × U∗

2 , we denote by ‖v‖U∗
1×U∗

2
the norm

of v with respect to the product metric induced by the Poincaré metrics
|dzk|2/|zk|2

∣∣ log |zk|∣∣2 on U∗
k , k = 1, 2.

Lemma 4.2.2. Let to, ∂∂ζ ,
∂
∂σ be as above. Then for any constant 0 < κ < 1,

there exist constants C1 = C1(κ), C2 = C2(κ) > 0 such that

C1∣∣ log |t|∣∣ ≤
∥∥∥ ∂
∂ζ

(z)
∥∥∥
U∗

1×U∗
2

,
∥∥∥ ∂

∂σ
(z)
∥∥∥
U∗

1×U∗
2

≤ C2

for any 0 < |t| < |to| and z ∈ Vt(κ).

Proof. Using the chain rule and the correspondence in (4.2.9), one easily
computes that on V ∗ ⊂ U∗

1 × U∗
2 , we have(

∂
∂ν
∂
∂ν′

)
=
(
1 1
0 1

)( ∂
∂ζ
∂
∂ε

)
=
(
1− ϕ 1
−ϕ 1

)( ∂
∂ζ
∂
∂σ

)
,(4.2.16)
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where the second equality follows from (4.2.14). Solving (4.2.16), we get

∂

∂ζ
=

∂

∂ν
− ∂

∂ν ′
= log |to|

(
z1

∂

∂z1
− z2

∂

∂z2

)
,(4.2.17)

∂

∂σ
= ϕ

∂

∂ν
+ (1− ϕ)

∂

∂ν ′
= log |to|

(
ϕz1

∂

∂z1
+ (1− ϕ)z2

∂

∂z2

)
,

where the second inequality on each line of (4.2.17) follows from (4.2.7).
Together with the boundedness of ϕ and the fact that ‖zk∂/∂zk‖U∗

1×U∗
2
∼

1/|zk| on U∗
1 (κ)× U∗

2 (κ), one obtains Lemma 4.2.2 immediately.

From (4.2.9), one sees that (ζ, ε) provides coordinate system for V ∗. Let
ϕ be as in (4.2.11). Define

ϕ̂(ζ, ε) := ϕ(ζ̂) for (ζ, ε) ∈ V ∗,(4.2.18)

where ζ̂ = ζ̂(ζ, ε) is defined implicitly by (4.2.11), i.e., ζ = ζ̂ + εϕ(Re ζ̂).
Denote the Lie bracket of two vector fields X,Y by [X,Y ], and denote
ϕ̂ζ := ∂ϕ̂/∂ζ, etc. Also we denote ϕ̂;σ := ∂

∂σ ϕ̂, etc., so that ϕ̂;ζ = ϕ̂ζ ,
ϕ̂;σζ̄ = ∂

∂ζ̄

(
∂
∂σ

)
ϕ̂, etc.

Lemma 4.2.3. (i) On V ∗, we have[ ∂
∂ζ

,
∂

∂σ

]
= ϕ̂ζ

∂

∂ζ
,
[ ∂
∂ζ̄

,
∂

∂σ

]
= ϕ̂ζ̄

∂

∂ζ
,[ ∂

∂ζ
,
∂

∂σ̄

]
= ϕ̂ζ

∂

∂ζ̄
,
[ ∂
∂ζ̄

,
∂

∂σ̄

]
= ϕ̂ζ̄

∂

∂ζ̄
, and[ ∂

∂σ
,
∂

∂σ̄

]
= (ϕ̂ε + ϕ̂ϕ̂ζ)

∂

∂ζ̄
− (ϕ̂ε̄ + ϕ̂ϕ̂ζ̄)

∂

∂ζ
.

(ii) Let (Uα ×∆∗(|to|), (ζα, t)), α ∈ A, be as in (4.2.13). We have[ ∂

∂ζα
,
∂

∂σ

]
=
[ ∂

∂ζ̄α
,
∂

∂σ

]
=
[ ∂

∂ζα
,
∂

∂σ̄

]
=
[ ∂

∂ζ̄α
,
∂

∂σ̄

]
= 0 on Uα ×∆∗(|to|).

(iii) There exists a constant C > 0 such that ϕ̂ and its partial derivatives
satisfy ∣∣ϕ̂∣∣, ∣∣ϕ̂∗

∣∣, ∣∣ϕ̂∗∗
∣∣, ∣∣ϕ̂∗∗∗

∣∣ ≤ C on V ∗,
where each subscript ∗ can be ζ, ζ̄, ε or ε̄.

(iv) There exists a constant C ′ > 0 such that∣∣ϕ̂∣∣, ∣∣ϕ̂;∗
∣∣, ∣∣ϕ̂;∗∗

∣∣, ∣∣ϕ̂;∗∗∗
∣∣ ≤ C ′ on V ∗,

where each subscript ∗ can be ζ, ζ̄, σ or σ̄.

Proof. Lemma 4.2.3(i) follows easily from (4.2.14) and the fact that ϕ̂ is
a real-valued function. The commutation relations in Lemma 4.2.3(ii) are
trivial since (ζα, σ) provide smooth coordinates on Uα × ∆∗(|to|). Lemma
4.2.3(iii) follows easily from the chain rule, the boundedness of ϕ and its
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derivatives and that of ∂ζ̂∂ζ and ∂ζ̂
∂ε . Finally Lemma 4.2.3(iv) follows easily

from Lemma 4.2.3(iii) and (4.2.14), and this finishes the proof of Lemma
4.2.3.

Let to, It, Rk,t, k = 1, 2, be as in Lemma 4.2.2, (3.2.1) and (3.2.6) respec-
tively. It is clear from (4.1.10) and the plumbing construction in (2.1) that
shrinking to if necessary, there exists ro > 0 such that

It ⊂ U∗
1 (ro)× U∗

2 (ro) and Bt(z, ρt) ⊂ Vt

(
1
2

)
(4.2.19)

for z ∈ U∗
1 (ro)× U∗

2 (ro), 0 < |t| < |to|. Let φt be as in (4.1.5), and let ut be
as in Proposition 4.1.6 (so that (3.5.1) and (3.5.2) hold). First we strengthen
Proposition 4.1.6(i) in the following:

Proposition 4.2.4. There exists a constant µ > 0 such that

sup
z∈Mt

|ut(z)| = O(|t|µ) as t → 0.

Proof. Let λ1,t and ρt be as in Lemma 4.1.4. By Lemma 3.4.1(ii), (3.5.2)
and (4.1.5), there exist constants C1, C2, C3, C4 > 0 such that

sup
z∈Mt

|ut(z)| ≤
( C1

λ1,t tanh ρt
+ C2 sinh ρt

)
‖φt‖2

≤ (C3

∣∣ log |t|∣∣2 + C4

∣∣ log |t|∣∣)‖φt‖2,
where the last inequality follows from Lemma 4.1.4 and the identities
lim
x→0

tanhx/x = lim
x→0

sinhx/x = 1. Together with Proposition 4.1.5 and

the identity lim
x→0+

xα log x = 0 for any α > 0, Proposition 4.2.4 follows im-

mediately.

Denote

u := {ut}t∈∆∗ .(4.2.20)

Then u forms a smooth function on {Mt}t∈∆∗ (cf. Proof of Theorem 1(i)).
Recall that ∂/∂ζ is only defined on U∗

1 × U∗
1 and is tangential to each fiber

Vt ⊂ Mt, while ∂/∂σ is a vector field on the total space of {Mt}0<|t|<|to|
but not tangential to any Mt. With slight abuse of notation, we denote, for
t ∈ ∆∗,

ut;ζ :=
∂

∂ζ
(u), ut;σσ̄ :=

∂

∂σ̄

( ∂

∂σ
(u)
)

on Mt, etc.

Notice that ut;ζ = ∂
∂ζ (ut), while for fixed t, ∂

∂σ (ut) does not make sense.

Lemma 4.2.5. (i) There exists a constant µ > 0 such that

sup
z∈Vt

|ut;ζζ̄∗| = O(|t|µ) and sup
z∈=Vt

|ut;ζζ̄∗∗| = O(|t|µ) as t → 0,
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where each subscript ∗ may be ζ, ζ̄, σ or σ̄.
(ii) For 0 < |t| < |to| and α ∈ A, we have ut;ζαζ̄α = 0 on Uα × {t} ⊂ Mt.

Proof. To prove Lemma 4.2.5(i), we first recall that

ut;ζζ̄ = −gt,ζζ̄φt on Vt(4.2.21)

(cf. (3.5.2)). First we recall that supp(φt) ⊂ It ∪R1,t ∪R2,t (cf. e.g., Propo-
sition 3.3.4), and thus by (4.2.21), we also have supp(ut;ζζ̄), supp(ut;ζζ̄∗),
supp(ut;ζζ̄∗∗) ⊂ It∪R1,t∪R2,t. From (4.1.5), (4.2.1), (4.2.7) and (4.2.9), one
sees that on It,

ut;ζζ̄ = ∂ζ∂ζ̄ log h̃(eV , eV )(4.2.22)

= ∂ζ∂ζ̄
(
η̂ · log ĥ), where

η̂(ζ, ε) : = η

(
1
4δ

· Re ζ
1 + Re ε

− 1
8δ

+
1
2

)
, and

ĥ(z) : =
h0,1(eV , eV )(z1, 0)
h0,2(eV , eV )(0, z2)

for z = (z1, z2) ∈ It.

Here η, h0,1, h0,2, eV , δ are as in (4.2.1). One easily = checks that

η̂ζ = η′ · 1
8δ(1 + Re ε)

, η̂ε = η′ · −Re ζ
8δ(1 + Re ε)2

.(4.2.23)

Since Re ε > 0 and
∣∣ Re ζ
1+Re ε

∣∣ = log |z1|
log |t| <

1
2 + 2δ on It (cf. (3.2.1) and (4.2.7)),

it follows that η̂ζ , η̂ε are uniformly bounded on It for 0 < |t| < |to| (and
hence so is η̂;σ := (∂/∂σ)η̂ by (4.2.14) and Lemma 4.2.3(iv)). Similarly, one
can show that there exists a constant C1 > 0 such that for 0 < |t| < |to|,

|η̂;∗∗∗∗| ≤ C1 on It,(4.2.24)

where each subscript ∗ may be ζ, ζ̄, σ, σ̄ or empty (so that |η̂;σζ̄ | ≤ C1,
etc.). By Lemma 4.1.1, log ĥ is a real analytic function and is equal to 0 at
z = (z1, z2) = (0, 0). Thus we may write

log ĥ = c1z1 + c2z2 + c̄1z̄1 + c̄2z̄2 +A(≥2)(z1, z2)(4.2.25)

for some constants c1, c2, where A(≥2)(z1, z2) denotes a (convergent) power
series in z1, z̄1, z2, z̄2 such that each term is of degree ≥ 2. Together with
(4.2.17) and the fact that |zk| = O(|t| 12−2δ) on It, one can easily show that
there exists a constant µ1 > 0 such that

sup
z∈It

|(log ĥ);∗∗∗(z)|, sup
z∈It

|(log ĥ);∗∗∗∗(z)| = O(|t|µ1)(4.2.26)

as t → 0, where each subscript ∗ can be ζ, ζ̄, σ or σ̄. Combining (4.2.22),
(4.2.24), (4.2.26) and Lemma 4.2.3(iv), one sees that

sup
z∈It

|ut;ζζ̄∗(z)|, sup
z∈It

|ut;ζζ̄∗∗(z)| = O(|t|µ1)(4.2.27)
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as t → 0, where each subscript ∗ can be ζ, ζ̄, σ or σ̄. Similarly, one can
show that there exists µ2 > 0 such that for k = 1, 2,

sup
z∈Rk,t

|ut;ζζ̄∗(z)|, sup
z∈Rk,t

|ut;ζζ̄∗∗(z)| = O(|t|µ2)(4.2.28)

as t → 0, where each subscript ∗ can be ζ, ζ̄, σ or σ̄. By combining (4.2.27)
and (4.2.28), one obtains Lemma 4.2.5(i) immediately. Lemma 4.2.5(ii)
follows easily from the equality ut;ζαζ̄α = −gt,ζαζ̄αφt on Uα and the fact that
supp(φt) ∩ Uα = ∅ for each α ∈ A, and this finishes the proof of Lemma
4.2.5.

Proposition 4.2.6. There exist constants C > 0 and m ≥ 1 such that for
any 0 < |t| < |to| and z ∈ Vt,

(i) |gt,ζζ̄(z)|, |gζζ̄t (z)| ≤ C
∣∣ log |t|∣∣2m, and

(ii) for any constant 0 < κ < 1, there exists a constant C = C(κ) > 0 such
that for all 0 < |t| < |to|,

∣∣(log gt,ζζ̄);ζ∣∣, ∣∣(log gt,ζζ̄);σ∣∣, ∣∣(log gt,ζζ̄);σζ̄∣∣, ∣∣(log gt,ζζ̄);σσ̄∣∣ ≤ C ′ on Vt(κ).
(4.2.29)

Proof. From (4.2.17), one sees that ∂/∂ζ is a local non-vanishing holomor-
phic section of the vertical line bundle T̃ near the node p. Then Proposition
4.2.6(i) and the first two inequalities of Proposition 4.2.6(ii) follow from
Wolpert’s result [Wo2, Theorem 5.8] that {ωhyp,t} is good (cf. (2.2)) and
the fact that for log |z1| + log |z2| = log |t| for = z = (z1, z2) ∈ Vt. Since the
verification of the third and fourth inequalities of Proposition 4.2.6(ii) are
similar, we will only prove the latter. The goodness of {ωhyp,t} also implies
that on U∗

1 × U∗
2 , one has∣∣∣∣(∂̄∂ log gt,ζζ̄)

(
∂

∂σ
,
∂

∂σ̄

)∣∣∣∣ ≤ C1

∥∥∥ ∂

∂σ

∥∥∥2
U∗

1×U∗
2

(4.2.30)

for some constant C1 > 0. By expanding d(∂ log gt,ζζ̄), one has, for 0 < |t| <
|to| and 0 < κ < 1,

∣∣(log gt,ζζ̄);σσ̄∣∣ = ∣∣∣∣−(∂̄∂ log gt,ζζ̄)
(
∂

∂σ
,
∂

∂σ̄

)
− (∂ log gt,ζζ̄)

([
∂

∂σ
,
∂

∂σ̄

])∣∣∣∣
(4.2.31)

≤
∣∣∣∣(∂̄∂ log gt,ζζ̄)

(
∂

∂σ
,
∂

∂σ̄

)∣∣∣∣+ ∣∣(ϕ̂ε + ϕ̂ϕ̂ζ)(∂ log gt,ζζ̄);ζ
∣∣

≤ C2 on Vt(κ),

where the last inequality follows from (4.2.30), Lemma 4.2.3(iii) and the first
inequality of (4.2.29). This finishes the proof of Proposition 4.2.6.
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Proposition 4.2.7. Let ro be as in (4.2.19). There exists a constant µ > 0
such that

sup
z∈Vt(ro)

|ut;ζ(z)| = O(|t|µ) as t → 0.

Proof. Similar to the proofs of Proposition 3.5.2 and Proposition 4.2.4, it
follows from Lemma 3.4.1(i) and Lemma 4.1.4(ii) that there exist constants
C1, C2 > 0 such that for 0 < |t| < 1

2 and z ∈ Vt(ro),

|ut;ζ(z)| ≤ C1

∣∣ log |t|∣∣√∫
Bt(z,ρt)

|ut;ζ |2ωhyp,t(4.2.32)

+
C2∣∣ log |t|∣∣

√∫
Bt(z,ρt)

|∆t(ut;ζ)|2ωhyp,t.

First we have

∫
Bt(z,ρt)

|ut;ζ |2ωhyp,t =
∫
Bt(z,ρt)

‖∂ut‖2
∥∥∥ ∂
∂ζ

∥∥∥2ωhyp,t

(4.2.33)

≤ C3

∣∣ log |t|∣∣2m‖∂ut‖22 (by Proposition 4.2.6(i))

= O(|t|µ1) (by Proposition 4.1.6(i))

as t → 0, where C3, µ1 > 0 are constants independent of t, and m ≥ 1 is as
in Proposition 4.2.6(i). Since Bt(z, ρt) ⊂ Vt(12) ⊂ Vt (cf. (4.2.19)), one has∫

Bt(z,ρt)
|∆t(ut;ζ)|2ωhyp,t(4.2.34)

≤
∫
Vt(

1
2
)
|gζζ̄t ut;ζζ̄ζ |2ωhyp,t

≤ C4

∣∣ log |t|∣∣4m · sup
z∈Vt

|ut;ζζ̄ζ |2 (by Proposition 4.2.6(i))

= O(|t|µ2) as t → 0 (by Lemma 4.2.5),

where µ2 > 0 is some constant. Finally by combining (4.2.32), (4.2.33) and
(4.2.34), one obtains Proposition 4.2.7 immediately.

Proposition 4.2.8. There exists a constant µ > 0 such that

sup
z∈Mt

|ut;σ(z)| = O(|t|µ) as t → 0.

Proof. Similar to the proof of Proposition 4.2.4, it follows from Lemma
3.4.1(ii) and Lemma 4.1.4 that there exist constants C1, C2 > 0 such that
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for 0 < |t| < 1
2 , one has

sup
z∈Mt

|ut;σ(z)| ≤ C1

∣∣ log |t|∣∣ ∣∣∣∣∫
Mt

ut;σωhyp,t

∣∣∣∣+ C2

∣∣ log |t|∣∣2‖∆t(ut;σ)‖2.
(4.2.35)

First by (3.5.2), we have
∫
Mt

utωhyp,t = 0 for all t = t(ε) �= 0, which implies
that

∂

∂ε

∫
Mt

utωhyp,t =
∫
Mt

ut;σωhyp,t +
∫
Mt

utL∂/∂σ(ωhyp,t) = 0,(4.2.36)

where L∂/∂σ denotes the Lie derivative with respect to ∂/∂σ. For each
0 < |t| < |to|, it follows from (4.2.13) that {Vt(1− δ2)}∪{(Uα×{t}, ζα)}α∈A
forms an open cover of Mt. On Vt(1 − δ2), the ζζ̄-component of the tensor
L∂/∂σ(ωhyp,t) is given by

∣∣∣(L∂/∂σ(ωhyp,t)
)
;ζζ̄

∣∣∣ = ∣∣∣ ∂
∂σ

(
gt,ζζ̄

)
+ ϕ̂ζgt,ζζ̄

∣∣∣
(4.2.37)

= |gt,ζζ̄
(
log gt,ζζ̄

)
;σ

+ ϕ̂ζgt,ζζ̄ |
≤ C3gt,ζζ̄ (by Lemma 4.2.3(iii), Proposition 4.2.6)

for some constant C3 > 0. On each Uα, one has

∣∣∣(L∂/∂σ(ωhyp,t)
)
;ζαζ̄α

∣∣∣ = ∣∣∣ ∂
∂ε

(
gt,ζαζ̄α

)∣∣∣
(4.2.38)

=
∣∣∣ log |to| · t ∂

∂t

(
gt,ζαζ̄α

)∣∣∣
≤ Cα|t| · gt,ζαζ̄α (cf. [Wo2, Expansion 4.2])

for some constant Cα > 0. Thus we have∣∣∣∣∫
Mt

ut;σ ωhyp,t

∣∣∣∣ = ∣∣∣∣∫
Mt

utL∂/∂σ(ωhyp,t)
∣∣∣∣ (by (4.2.36))(4.2.39)

≤ C4

∫
Mt

|ut|ωhyp,t (by (4.2.37), (4.2.38))

≤ C4 · 4π(q − 1) sup
z∈Mt

|ut(z)|

= O(|t|µ1) as t → 0 (by Proposition 4.2.4),



474 WING-KEUNG TO AND LIN WENG

where C4, µ1 > 0 are some constants. On Vt(1− δ2), we have

∆t(ut;σ) = −gζζ̄t ut;σζ̄ζ
(4.2.40)

= −gζζ̄t (ut;ζ̄σζ + (ϕ̂ζ̄ut;ζ);ζ) (by Lemma 4.2.3(i))

= −gζζ̄t (ut;ζ̄ζσ + ϕ̂ζut;ζ̄ζ + ϕ̂ζ̄ut;ζζ + ϕ̂ζ̄ζut;ζ) (by Lemma 4.2.3(i)).

Using the identity (∇(∂ut))ζζ = ut;ζζ−(log gt,ζζ̄);ζut;ζ , one has, on Vt(1−δ2),

|gζζt ut;ζζ |2 ≤ 2‖∇(∂ut)‖2 + 2|gζζ̄t (log gt,ζζ̄);ζut;ζ |2
(4.2.41)

≤ 2‖∇(∂ut)‖2 + C5

∣∣ log |t|∣∣2m‖∂ut‖2 (by Proposition 4.2.6)

for some constant C5 > 0 and with m ≥ 1 as in Proposition 4.2.6(i). Also,

‖∇(∂ut)‖22
(4.2.42)

=
∫
Mt

〈∇(∂ut),∇(∂ut)〉ωhyp,t

=
∫
Mt

〈∇∗∇(∂ut), ∂ut〉ωhyp,t

=
∫
Mt

〈∂̄∗∂̄∂ut + ∂ut, ∂ut〉ωhyp,t (cf. e.g., [S, p. 63, Equation (1.3.4)])

=
∫
Mt

〈∂̄∂ut, ∂̄∂ut〉ωhyp,t +
∫
Mt

〈∂ut, ∂ut〉ωhyp,t

= ‖∆tut‖22 + ‖∂ut‖22.
Combining (4.2.41) and (4.2.42), we have∫

Vt(1−δ2)
|gζζ̄t ut;ζζ |2ωhyp,t ≤ 2‖∆tut‖22 + (2 + C5

∣∣ log |t|∣∣2m)‖∂ut‖22(4.2.43)

= 2‖φt‖22 + (2 + C5

∣∣ log |t|∣∣2m)‖∂ut‖22
= O(|t|µ2) as t → 0,

where µ2 > 0 is some constant, and the last line follows from Proposition
4.1.5 and Proposition 4.1.6(i). For 0 < |t| < |to| and α ∈ A, one sees from
Lemma 4.2.3(ii) that on Uα × {t},

∆t(ut;σ) = −gζαζ̄αt ut;σζαζ̄α = −gζαζ̄αt ut;ζαζ̄ασ = 0 (by Lemma 4.2.5(ii)).

(4.2.44)
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Thus we have

‖∆t(ut;σ)‖22
(4.2.45)

=
∫
Vt(1−δ2)

|∆t(ut;σ)|2ωhyp,t (by (4.2.44))

≤ 4
∫
Vt(1−δ2)

|gζζ̄t |2(|ut;ζ̄ζσ|2 + |ϕ̂ζut;ζ̄ζ |2 + |ϕ̂ζ̄ut;ζζ |2 + |ϕ̂ζ̄ζut;ζ |2
)
ωhyp,t

(by (4.2.40))

≤ C5

∣∣ log |t|∣∣4m ∫
Vt(1−δ2)

|ut;ζ̄ζσ|2ωhyp,t

+ C6‖φt‖22 + C7

∫
Vt(1−δ2)

|gζζ̄t ut;ζζ |2ωhyp,t

+ C8

∣∣ log |t|∣∣2m‖∂ut‖22 (by Proposition 4.2.6(i), Lemma 4.2.3(iii))

= O(|t|µ2) as t → 0,

where C5, C6, C7, C8, µ2 > 0 are some constants, and the last line follows
from Lemma 4.2.5, Proposition 4.1.5, (4.2.43) and Proposition 4.1.6(i). By
combining (4.2.35), (4.2.39) and (4.2.45), one obtains Proposition 4.2.8 im-
mediately.

Similar to Proposition 4.2.7 and Proposition 4.2.8, we have:

Proposition 4.2.9. Let ro be as in (4.2.19). There exists a constant µ > 0
such that

sup
z∈Vt(ro)

|ut;σζ̄(z)| = O(|t|µ), and(4.2.46)

sup
z∈Mt

|ut;σσ̄(z)| = O(|t|µ) as t → 0.(4.2.47)

Proof. The proofs of (4.2.46) and (4.2.47) are similar to those of Proposition
4.2.7 and Proposition 4.2.8 respectively, and we will leave their verifications
to the reader.

Summarizing our discussion in this section, we have:

Proposition 4.2.10. Let ro be as in (4.2.19), and let u = {ut}t∈∆∗ be as
in (4.2.20). Then there exist constants C1, C2, C3 > 0 such that

(i) |u(z)| ≤ C1,
(ii) |∂t1u(z)| ≤ C2‖t1‖U∗

1 (ro)×U∗
2 (ro)

, and
(iii) |∂t2 ∂̄t3u(z)| ≤ C3‖t2‖U∗

1 (ro)×U∗
2 (ro)

‖t3‖U∗
1 (ro)×U∗

2 (ro)

for all z ∈ U∗
1 (ro)× U∗

2 (ro) and t1, t2, t3 ∈ Tz(U∗
1 (ro)× U∗

2 (ro)).
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Proof. First Proposition 4.2.10(i) follows immediately from Proposition
4.2.4. Recall that at each z ∈ Vt with 0 < |t| < |to|, {∂/∂ζ, ∂/∂σ} forms
a basis of Tz(U∗

1 × U∗
2 ). Thus, to prove Proposition 4.2.10(ii) and (iii), it

suffices to consider the case when t1, t2, t3 ∈ {∂/∂ζ, ∂/∂σ} . Then Proposi-
tion 4.2.10(ii) follows immediately from Lemma 4.2.2, Proposition 4.2.7 and
Proposition 4.2.8.

To prove Proposition 4.2.10(iii), we need to consider the four expressions

∂̄∂u

(
∂

∂ζ
,
∂

∂ζ̄

)
, ∂̄∂u

(
∂

∂σ
,
∂

∂ζ̄

)
, ∂̄∂u

(
∂

∂ζ
,
∂

∂σ̄

)
, ∂̄∂u

(
∂

∂σ
,
∂

∂σ̄

)
.

(4.2.48)

First, from (3.5.5), (3.5.6) and Proposition 4.2.1, one sees that

∣∣∣∣∂̄∂u( ∂

∂ζ
,
∂

∂ζ̄

)∣∣∣∣ = ∣∣∣∣(∂̄∂ log h̃(eV , eV ))
(
∂

∂ζ
,
∂

∂ζ̄

)∣∣∣∣ ≤ C1

∥∥∥ ∂
∂ζ

∥∥∥2
U∗

1 (ro)×U∗
2 (ro)

,

(4.2.49)

where eV is as in (4.1.3). As in (4.2.31), one has for z ∈ Vt(ro),∣∣∣∣∂̄∂u( ∂

∂σ
,
∂

∂ζ̄

)∣∣∣∣ = ∣∣∣∣−ut;σζ̄ − ∂u

([
∂

∂σ
,
∂

∂ζ̄

])∣∣∣∣(4.2.50)

≤ ∣∣ut;σζ̄∣∣+ |ϕ̂ζ̄ ||ut;ζ | (by Lemma 4.2.3(i))

≤ C2

∥∥∥ ∂

∂σ

∥∥∥
U∗

1 (ro)×U∗
2 (ro)

∥∥∥ ∂
∂ζ

∥∥∥
U∗

1 (ro)×U∗
2 (ro)

,

where the last inequality follows from Lemma 4.2.2, Lemma 4.2.3(iii), Propo-
sition 4.2.7 and Proposition 4.2.9. Since we obviously have |∂̄∂u( ∂∂ζ , ∂∂σ̄)| =
|∂̄∂u( ∂∂σ , ∂∂ζ̄ )|, the desired estimate for the third expression follows from that
for the second one. Similarly, we have

∣∣∣∣∂̄∂u( ∂

∂σ
,
∂

∂σ̄

)∣∣∣∣ = ∣∣∣∣−ut;σσ̄ − ∂u

([
∂

∂σ
,
∂

∂σ̄

])∣∣∣∣
(4.2.51)

≤ ∣∣ut;σσ̄∣∣+ |ϕ̂ε̄ + ϕ̂ϕ̂ζ̄ ||ut;ζ | (by Lemma 4.2.3(i))

≤ C3

∥∥∥ ∂

∂σ

∥∥∥2
U∗

1 (ro)×U∗
2 (ro)

,

where the last inequality follows from Lemma 4.2.2, Lemma 4.2.3(iii), Propo-
sition 4.2.7 and Proposition 4.2.9. Combining (4.2.49), (4.2.50) and (4.2.51),
one obtains Proposition 4.2.10(iii). Thus we have finished the proof of
Proposition 4.2.10.

Now we are ready to give the following:

Proof of Theorem 1(ii). In light of Proposition 4.1.7, it remains to prove
that the restriction (to M\M0) of the almost nice family of flat p-singular
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Hermitian metrics h = {ht}t∈∆
∣∣∣
M\M0

constructed in the ‘if’ part of Propo-

sition 4.1.7 is good on M. First we consider the coordinate open neighbor-
hood U1(ro) × U2(ro) of the node p, where ro is as in (4.2.19). Let h̃ be
as in Proposition 4.2.1 and let u be as in (4.2.20). Then from (3.5.5), we
have h = e−uh̃, which implies ∂ log h(eV , eV ) = −∂u + ∂ log h̃(eV , eV ) and
∂̄∂ log h(eV , eV ) = −∂̄∂u+ ∂̄∂ log h̃(eV , eV ) on U∗

1 (ro)×U∗
2 (ro), where eV is

as in (4.1.3). Then by combining Proposition 4.2.1 and Proposition 4.2.10,
one easily checks that h

∣∣
U∗

1 (ro)×U∗
2 (ro)

is good on U1(ro) × U2(ro). Similarly
one can prove the goodness of h on other coordinate open subsets of M
intersecting M0. This finishes the proof of Theorem 1(ii).

Remark 4.2.11. We remark that if one attempts to use the above approach
to prove the goodness of h = {ht}t∈∆ in the non-separating node case in
Theorem 1(i), then in terms of the above notation and those in Proposi-
tion 4.2.10, one will only obtain estimates of the form |∂t1 log h(eV , eV )| ≤
C
∣∣ log |t|∣∣n‖t1‖U∗

1 (ro)×U∗
2 (ro)

on (U∗
1 (ro) × U∗

2 (ro)) ∩ Mt for some constants
C, n > 0, etc., which are slightly weaker than what is desired.

5. Family of admissible Hermitian metrics with respect to
hyperbolic (1,1)-forms.

5.1. Before we prove Theorem 2, we first make some remarks on good
Hermitian metrics on holomorphic line bundles over Riemann surfaces (cf.
(2.2)). Let R be a compact Riemann surface with points x1, x2, . . . , xm ∈ R,
and let R0 := R \ {x1, x2, . . . , xm}.
Remark 5.1.1. (i) For k = 1, 2, let Lk be a holomorphic line bundle over
R0 and let hk be a smooth Hermitian metric on Lk which is good on R.
Then it is easy to check that the Hermitian metric h1 ⊗ h2 on L1 ⊗ L2 is
also good on R.

(ii) Let L be a holomorphic line bundle over R0. Suppose that for some
non-zero integer m, a Hermitian metric h′ on L⊗m is good on R. Then the
Hermitian metric h on L given by h(s, s) =

(
h′(s⊗m, s⊗m)

) 1
m is also good

on R.

We shall need the following well-known fact:

Proposition 5.1.2. Let R0 = R\{x1, x2, . . . , xm} be as above. Suppose
that R0 admits the complete hyperbolic metric ds2hyp of constant sectional
curvature −1. Then the Hermitian metric ds2hyp on TR0 is good on R,
and the corresponding line bundle extension is TR(log) := TR ⊗ [x1]−1 ⊗
· · · ⊗ [xm]−1. Here [xk] denotes the divisor line bundle over R associated to
xk, 1 ≤ k ≤ m.
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Proof. It is well-known that for 1 ≤ k ≤ m, there always exists a coordinate
unit disc ∆ centered at xk such that ds2hyp is given near xk by

ds2hyp =
dz ⊗ dz̄

|z|2(log |z|)2 on ∆∗.

A local non-vanishing holomorphic section of TR(log) near xk is given by
v = z ∂∂z ∈ Γ(∆, TR(log)|∆), so that ds2hyp(v, v) = 1/(log |z|)2 on ∆∗, from
which the goodness of ds2hyp follows easily.

5.2. Now we have:

Proof of Theorem 2(i). Let L = {Lt}t∈∆ be a holomorphic family of line
bundles of degree d over M = {Mt}t∈∆ with a non-separating node p ∈ M ,
and let f : M̃ → M , p1, p2, q be as in Theorem 2(i). Recall from (2.1) the
vertical line bundle T̃ = {Tt}t∈∆ over M such that Tt = TMt for t �= 0.
One easily sees that {Tt}t∈∆ forms a holomorphic family of line bundles of
degree 2− 2q, and f∗T0 = TM̃(log) = TM̃ ⊗ [p1]−1⊗ [p2]−1 (cf. e.g., [Wo2,
§1]). Next we define the holomorphic line bundle over M given by

L′ := T̃ ⊗d ⊗ L⊗(2q−2).(5.2.1)

Then one easily checks that L′ = {L′
t}t∈∆ with L′

t = T⊗d
t ⊗L

⊗(2q−2)
t forms a

holomorphic family of line bundles of degree 0 over {Mt}t∈∆. By Theorem
1(i), there exists an almost nice family of flat p-singular Hermitian metrics
h′ = {h′t}t∈∆ on {L′

t}t∈∆ such that f∗h′0 extends across p1, p2 to a smooth
flat Hermitian metric on f∗L′

0. This implies easily that h′ = {h′t}t∈∆ forms
an almost nice family of {ω̂hyp,t}-admissible p-singular Hermitian metrics
on {L′

t}t∈∆ such that the Hermitian metric f∗h′0 on f∗L′
0|M̃\{p1,p2} is good

on M̃ . By [Wo2, Theorem 5.8], {ds2hyp,t}t∈∆ forms an almost nice fam-
ily of ({ω̂hyp,t}t∈∆-admissible) p-singular Hermitian metrics on T̃ , and by
Proposition 5.1.2, the Hermitian ds2hyp,0 on = f∗T0|M̃\{p1,p2} is good on M̃ .
Together with Remark 2.2.2(i) and Remark 5.1.1(i), it follows from (5.2.1)
that one obtains an almost nice family of {ω̂hyp,t}t∈∆-admissible p-singular
Hermitian metrics h′′ = {h′′t }t∈∆ on L⊗(2q−2) = {L⊗(2q−2)

t }t∈∆ given by
h′′t = h′t ⊗ (ds2hyp,t)

⊗(−d), t ∈ ∆, such that the Hermitian metric f∗h′′0
on f∗L⊗(2q−2)

0 |
M̃\{p1,p2} is good on M̃ . Together with Remark 2.2.2(ii)

and Remark 5.1.1(i), one finally obtains the desired almost nice family of
{ω̂hyp,t}t∈∆-admissible p-singular Hermitian metrics h = {ht}t∈∆ on {Lt}t∈∆
given by ht(s, s) =

(
h′′t (s⊗(2q−2), s⊗(2q−2))

) 1
2q−2 , and this finishes the proof

of Theorem 2(i).
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5.3. For a smooth compact Riemann surface X of genus ≥ 2, we denote the
hyperbolic Green’s function on X by ghyp(·, ·) ∈ C∞(X × X\{diagonal}).
It is known that ghyp(x, y) = ghyp(y, x) for all x �= y ∈ X. Also for a fixed
point x ∈ X, it is known that in terms of local holomorphic coordinates z
near x, ghyp(x, ·) ∈ C∞(X\{x}) satisfies

ghyp(x, z) = − log |z − x|2 + α(z)(5.3.1)

for some smooth function α(z) near x, and
√−1
2π

∂∂̄ghyp(x, ·) = ωhyp(X) on X\{x}(5.3.2)

(see e.g., [Ji] for the definition and above properties of ghyp(·, ·)).
Proposition 5.3.1. Let {Mt}t∈∆ be as in (2.1) with a separating node p ∈
M . Let X = {xt}t∈∆ be a holomorphic section of {Mt}t∈∆ such that x0 ∈
M1\{p} or x0 ∈ M2\{p}. Then the family of divisor line bundles [X ] =
{[xt]}t∈∆ does not admit any almost nice family of {ωhyp,t}t∈∆-admissible
p-singular Hermitian metrics.

Proof. For simplicity, we only consider the case when x0 ∈ M1\{p}, and
we suppose that {[xt]}t∈∆ admits an almost nice family of {ωhyp,t}t∈∆-
admissible p-singular Hermitian metrics h = {ht}t∈∆. Fix a (holomorphic)
canonical section sX = {sxt}t∈∆ of [X ] = {[xt]}t∈∆ (i.e., sX vanishes only
along X with vanishing order equal to one). Then for t ∈ ∆∗, we define the
function given by

φt(z) = ghyp,t(xt, z) + log ht(sxt , sxt)(z) for z ∈ Mt\{xt}.(5.3.3)

Since both ghyp,t(xt, z) and − log ht(sxt , sxt)(z) are of the form given in
(5.3.1) for z near xt, it follows that φt extends uniquely across xt to a
smooth function on Mt which we denote by the same symbol. By (5.3.2), it
is easy to see that

√−1
2π

∂∂̄φt = ωhyp,t − ωhyp,t = 0 on Mt\{xt}.

Thus φt is harmonic on Mt\{xt} and hence also harmonic on Mt, which
implies that φt(z) ≡ ct for some constant ct. Now fix two continuous sections
{yt}t∈∆, {zt}t∈∆ of {Mt}t∈∆ such that y0 ∈ M1\{p, x0} and z0 ∈ M2\{p}.
Then we have h0(sx0 , sx0)(y0) > 0 and h0(sx0 , sx0)(z0) > 0. Also, since
x0, y0 ∈ M1\{p} and z0 ∈= M2\{p}, it follows from a result of [Ji, Theorem
1.1, part 2] that

lim
t→0

ghyp,t(xt, yt) = +∞, and lim
t→0

ghyp,t(xt, zt) = −∞.(5.3.4)
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Together with the continuity of {ht}t∈∆ (off p), we have

ct = φt(yt) = ghyp,t(xt, yt) + log ht(sxt , sxt)(yt)(5.3.5)

→ +∞+ log h0(sx0 , sx0)(y0)
= +∞ as t → 0.

On the other hand, we also have

ct = φt(zt) = ghyp,t(xt, zt) + log ht(sxt , sxt)(zt)

→ −∞+ log h0(sx0 , sx0)(z0)
= −∞ as t → 0,

which contradicts (5.3.5). Therefore, {[xt]}t∈∆ cannot admit any almost
nice family of {ωhyp,t}t∈∆-admissible p-singular Hermitian metrics, and this
finishes the proof of Proposition 5.3.1.

Now we are ready to give the following:

Proof of Theorem 2(ii). Let L = {Lt}t∈∆ be a holomorphic family of line
bundles of degree d over M = {Mt}t∈∆ with a separating node p ∈ M

as in Theorem 2(i). Also we let f : M̃ → M , M̃ = M1 � M2, L0,1, L0,2,
p1, p2, q1, q2, q, d1, d2 be as in Theorem 2(ii). Denote by ω̂(k)

hyp the normalized
complete hyperbolic (1,1)-form on Mk\{pk}, k = 1, 2. Then it is easy to
check that at t = 0,

f∗ω̂hyp,0 =
2qk − 1
2q − 2

ω̂
(k)
hyp on Mk\{pk}, k = 1, 2.(5.3.6)

Recall also that the vertical line bundle T̃ = {Tt}t∈∆ forms a holomorphic
family of line bundles of degree 2 − 2q such that Tt = TMt for t �= 0 and
f∗T0|Mk

= TMk ⊗ [pk]−1, so that deg(f∗T0|Mk
) = 1− 2qk, k = 1, 2.

To prove the ‘if’ part of Theorem 2(ii), we assume that d1/(2q1 − 1) =
d2/(2q2 − 1). Define L′ := T̃ ⊗d ⊗ L⊗(2q−2) so that L′ = {L′

t}t∈∆ (with
L′
t = T⊗d

t ⊗ L
⊗(2q−2)
t , t ∈ ∆) forms a holomorphic family of line bundles

of degree 0 over {Mt}t∈∆. Moreover, one easily sees that deg(f∗L′
0|Mk

) =
0, k = 1, 2. Thus by Theorem 1(ii), there exists a nice family of flat p-
singular Hermitian metrics h′ = {h′t}t∈∆ on {L′

t}t∈∆ such that the f∗h′0
extends to smooth flat Hermitian metrics on f∗L′

0|Mk
, k = 1, 2. Then one

can construct the desired nice family of {ω̂hyp,t}t∈∆-admissible p-singular
Hermitian metrics on {Lt}t∈∆ from {h′t}t∈∆ on {L′

t}t∈∆ and {ds2hyp,t}t∈∆ on
T̃ = {Tt}t∈∆ as in Theorem 2(i), and this finishes the proof of the ‘if’ part.

To prove the ‘only if’ part, we assume that L = {Lt}t∈∆ admits an
almost nice family of {ωhyp,t}t∈∆-admissible p-singular Hermitian metrics.
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We define

(5.3.7) L′′ := L⊗(2q2−1) ⊗ ([X ]⊗(2q1−1) ⊗ [Y]⊗(2q2−1)
)⊗(−d2)

⊗ [X ]⊗(d2(2q1−1)−d1(2q2−1))

over M, and write L′′ = {L′′
t }t∈∆, where L′′

t = L′′|Mt for t ∈ ∆. Then
it is easy to check that {L′′

t }t∈∆ forms a family of line bundles of de-
gree 0 such that deg(f∗L′′

0|Mk
) = 0, k = 1, 2. Thus by Theorem 1(ii),

{L′′
t }t∈∆ admits a nice family of flat p-singular Hermitian metrics. To-

gether with the assumption and the ‘if’ part of Theorem 2(ii), it follows
that L′′,L⊗q2 ,

(
[X ]⊗(2q1−1) ⊗ [Y]⊗(2q2−1)

)⊗(−d2) all admit almost nice fami-
lies of {ωhyp,t}t∈∆-admissible p-singular Hermitian metrics. Hence so does
[X ]⊗(d2(2q1−1)−d1(2q2−1)) by (5.3.7) and Remark 2.2.2(i). If d2(2q1 − 1) −
d1(2q2 − 1) �= 0, then by Remark 2.2.2(ii), [X ] itself also admits an al-
most nice family of {ωhyp,t}t∈∆-admissible p-singular Hermitian metrics,
which contradicts Proposition 5.3.1. Hence we must have d1/(2q1 − 1) =
d2/(2q2 − 1), and we have finished the proof of Theorem 2(ii).

6. Family of admissible Hermitian metrics with respect to
canonical (1,1)-forms.

6.1. Let R be a smooth compact Riemann surface of genus q ≥ 1, and
recall from (2.5) the canonical (1,1)-form ωcan(R) on R. Let {Ai, Bi}1≤i≤q
be a standard symplectic homology basis of H1(R,Z) (so that the intersec-
tion pairings satisfy #[Ai, Aj ] = 0, #[Ai, Bj ] = δij , #[Bi, Bj ] = 0, 1 ≤
i, j ≤ q). In terms of its associated normalized basis of abelian differen-
tials {ω1, . . . , ωq} (so that

∫
Ai
ωj = δij , 1 ≤ i, j ≤ q) and period matrix

Ω = (Ωij)1≤i,j≤q with Ωij =
∫
Bj
ωi, it is well-known that

ωcan(R) =
√−1
2q

∑
1≤i,j≤q

(ImΩ)−1
ij ωi ∧ ω̄j ,(6.1.1)

where ImΩ denotes the imaginary part of Ω.

Now let M = {Mt}t∈∆ be a plumbing family of compact Riemann surfaces
of genus q ≥ 2 degenerating to a Riemann surface M with a non-separating
node p, and let f : M̃ → M , p1, p2 be as in (2.1). Throughout (6.1), we will
make the identification M̃\{p1, p2} � M\{p} via f as in (2.5).

Proposition 6.1.1. Let M = {Mt}t∈∆ be as above with a non-separating
node p ∈ M . Then there exists a family of p-singular (1, 1)-forms {ωcan,t}t∈∆
on {Mt}t∈∆ (cf. (2.2)) such that ωcan,t = ωcan(Mt) for t ∈ ∆∗, and

ωcan,0 =
q − 1
q

ωcan(M̃)|M\{p} on M\{p}.(6.1.2)
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Proof. By [F, p. 51] or [Y, p. 135], one can find 2q continuous fami-
lies of closed loops {Ai,t, Bi,t}1≤i≤q,t∈∆ on {Mt}t∈∆ such that for t ∈ ∆∗,
{Ai,t, Bi,t}1≤i≤q form a standard symplectic homology basis of Mt, and at
t = 0, {Ai,0, Bi,0}1≤i≤q−1 do not meet p and form a standard symplec-
tic homology basis of M̃ (under the identification M̃\{p1, p2} � M\{p});
moreover, the associated period matrices Ω(t) of Mt, t ∈ ∆∗, are of the form

Ω(t) =
(
Ωij ai
aj

1
2πi log t+ c0

)
+O(t),(6.1.3)

where Ω = (Ωij)1≤i,j≤q−1 is the associated period matrix of M̃ , and a1, . . . ,
aq−1, c0 are constants independent of t, so that

lim
t→0

(ImΩ(t))−1 =
(
(ImΩ)−1

ij 0
0 0

)
.(6.1.4)

Moreover by [F, p. 51] or [Y, p. 135], on {Mt}t∈∆, there exist q holomorphic
families of 1-forms {ω1,t, . . . , ωq,t}t∈∆ such that for t ∈ ∆∗, {ω1,t, . . . , ωq,t}
form the normalized basis of abelian differentials associated to
{Ai,t, Bi,t}1≤i≤q, and at t = 0, {ω1,0, . . . , ωq−1,0} is the restriction to
M\{p} of the normalized basis of abelian differentials associated to
{Ai,0, Bi,0}1≤i≤q−1 on M̃ . Together with (6.1.1) and (6.1.4), by letting

ωcan,t = (
√−1/2q)

∑
1≤i,j≤q

(ImΩ(t))−1
ij ωi,t ∧ ωj,t

for all t ∈ ∆, one obtains Proposition 6.1.1 easily.

For a smooth compact Riemann surface X, we denote the Arakelov
Green’s function on X by gcan(·, ·) ∈ C∞(X ×X\{diagonal}). It is known
that gcan(x, y) = gcan(y, x) for all x �= y ∈ X. Also for a fixed point x ∈ X,
it is known that gcan(x, ·) ∈ C∞(X\{x}) satisfies an identity analogous to
(5.3.1), and

√−1
2π

∂∂̄gcan(x, ·) = ωcan(X) on X\{x}(6.1.5)

(see [We, p. 432] for the definition and above properties of gcan(·, ·)). Let
M = {Mt}t∈∆ be as in (2.1). For t ∈ ∆∗, we simply denote the Arakelov
Green’s function on Mt by gcan,t. At t = 0, by abuse of notation, we denote
by gcan,0 the Arakelov Green’s function on M̃ as well as its restriction to
M\{p}. We recall the following result of Wentworth:

Proposition 6.1.2 ([We, Theorem 7.2]). Let {Mt}t∈∆ be as in (2.1) with
a non-separating node p ∈ M , and let q (q ≥ 2), p1, p2 be as in (2.1). Let
{xt}t∈∆, {yt}t∈∆ be smooth sections of {Mt}t∈∆ (i.e., xt, yt ∈ Mt for all
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t ∈ ∆) such that xt �= yt for each t ∈ ∆ and x0, y0 �= p. Then

lim
t→0

[
gcan,t(xt, yt)− 1

12q2
log |t|

]
(6.1.6)

= gcan,0(x0, y0) +
5

6q2
gcan,0(p1, p2)

− 1
2q

∑
α=1,2

[
gcan,0(x0, pα) + gcan,0(y0, pα)

]
.

Next we have:

Proposition 6.1.3. Let {Mt}t∈∆ be as in (2.1) with a non-separating node
p ∈ M . Let X = {xt}t∈∆ be a holomorphic section of {Mt}t∈∆ with x0 �= p.
Then there exists an almost nice family of {ωcan,t}t∈∆-admissible p-singular
Hermitian metrics on the family of divisor line bundles [X ] = {[xt]}t∈∆.

Proof. For t ∈ ∆∗, we define

g′can,t(z) := gcan,t(xt, z)− 1
12q2

log |t| for z ∈ Mt\{xt}.(6.1.7)

Also, for t = 0, we define

g′can,0(z) :=gcan,0(x0, z) +
5

6q2
gcan,0(p1, p2)(6.1.8)

− 1
2q

∑
α=1,2

[
gcan,0(x0, pα) + gcan,0(z, pα)

]
,

for z ∈ M\{p, x0}. Then one easily checks that g′can,t ∈ C∞(Mt\{xt}) for
t ∈ ∆∗ and g′can,0 ∈ C∞(M\{p, x0}), and g′can,t satisfies (6.1.5) for all t ∈ ∆.
By (6.1.5) and (6.1.7), we have, for t ∈ ∆∗,√−1

2π
∂∂̄g′can,t =

√−1
2π

g′can,t(xt, ·) = ωcan,t on Mt\{xt}.(6.1.9)

Similarly by (6.1.5) and (6.1.8), we have

√−1
2π

∂∂̄g′can,0 =
√−1
2π

∂∂̄

(
gcan,0(x0, ·)− 1

2q
gcan,0(·, p1)− 1

2q
gcan,0(·, p2)

)(6.1.10)

= ωcan(M̃)− 1
2q
ωcan(M̃)− 1

2q
ωcan(M̃)

= ωcan,0 on M\{p, x0} (by (6.1.2)).

Fix a canonical holomorphic section sX of [X ] (i.e., sX vanishes only along
X with vanishing order equal to one), which then determines a holomorphic
family of canonical sections {sxt}t∈∆ of {[xt]}t∈∆ with sxt = sX |[xt] for all
t ∈ ∆. Then from (6.1.7), (6.1.8), (6.1.9), (6.1.10), one easily sees that
for each t ∈ ∆, g′can,t and sxt defines uniquely a smooth ωcan,t-admissible
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Hermitian metric ht on [xt] over Mt (over M\{p} when t = 0) satisfying
ht(sxt , sxt)(z) = exp(−g′can,t(z)) for z ∈ Mt \ {xt} (for z ∈ M\{p, x0} when
t = 0). Moreover, by Proposition 6.1.2, {g′can,t}t∈∆ forms a continuous
family of smooth functions on {Mt\{xt}}t∈∆\{p}, and this implies easily
that {ht}t∈∆ also form an almost nice family of {ωcan,t}t∈∆-admissible p-
singular Hermitian metrics. Thus we have finished the proof of Proposition
6.1.3.

Now we are ready to give the following:

Proof of Theorem 3(i). Let L = {Lt}t∈∆ be a holomorphic family of line
bundles of degree d over M = {Mt}t∈∆ with a non-separating node p ∈ M
as in Theorem 3(i). From the plumbing construction in (2.1), it is easy to
see that one can fix a holomorphic section X = {xt}t∈∆ of {Mt}t∈∆ such
that x0 �= p. Define the holomorphic line bundle L′ := L ⊗ [X ]⊗(−d) over
M. Then L′ = {L′

t}t∈∆ with L′
t = Lt ⊗ [xt]⊗(−d) forms a holomorphic

family of line bundles of degree 0 over {Mt}t∈∆. Thus by Theorem 1(i),
there exists an almost nice family of flat (and thus {ωcan,t}t∈∆-admissible)
p-singular Hermitian metrics h′ = {h′t}t∈∆ on {L′

t}t∈∆. Also by Proposition
6.1.3, [X ] = {[xt]}t∈∆ admits an almost nice family of {ωcan,t}t∈∆-admissible
p-singular Hermitian metrics h′′ = {h′′t }t∈∆. Then by Remark 2.2.2(i), h :=
h′⊗h′′⊗d = {h′t⊗h′′t ⊗d}t∈∆ is an almost nice family of {ωcan,t}t∈∆-admissible
p-singular Hermitian metrics on {Lt}t∈∆ = {L′

t ⊗ [xt]⊗d}t∈∆, and we have
finished the proof of Theorem 3(i).

6.2. Let M = {Mt}t∈∆ be a plumbing family of compact Riemann surfaces
of genus q ≥ 2 degenerating to a stable singular Riemann surface M with a
separating node p as in (2.1). Also let f : M̃ = M1 �M2, p1, p2, q1, q2 be as
in (2.1). We will also make the identification M\{p} � M1\{p1} �M2\{p2}
via f as in (2.5).

Proposition 6.2.1. Let M = {Mt}t∈∆ be as above with a separating node
p ∈ M . Then there exists a family of p-singular (1, 1)-forms {ωcan,t}t∈∆ on
{Mt}t∈∆ such that ωcan,t = ωcan(Mt) for t ∈ ∆∗ and

ωcan,0 =
qk
q
ωcan(Mk)

∣∣
Mk\{pk} on Mk\{pk}, k = 1, 2.(6.2.1)

Proof. In the separating node case, it is easy to find 2q continuous families
of closed loops {Ai,t, Bi,t}1≤i≤q,t∈∆ such that for t ∈ ∆∗, {Ai,t, Bi,t}1≤i≤q
form a standard symplectic basis of Mt, and at t = 0, {Ai,0, Bi,0}1≤i≤q1
(resp. {Ai,0, Bi,0}q1+1≤i≤q) form a standard symplectic homology basis of
M1 (resp. M2). Then the associated period matrices Ω(t) of Mt, t ∈ ∆∗,
satisfy

lim
t→0

Ω(t) =
(
Ω1 0
0 Ω2

)
,(6.2.2)
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where Ω1,Ω2 are the associated period matrices of M1,M2 respectively (cf.
e.g., [We, §3]). Moreover by [F, p. 38] or [Y, p. 129], there exist q holo-
morphic families of 1-forms {ω1,t, . . . , ωq,t}t∈∆ on {Mt}t∈∆ such that for
t ∈ ∆∗, {ω1,t, . . . , ωq,t} form the associated normalized basis of abelian dif-
ferentials on Mt, and at t = 0, {ω1,0, . . . , ωq1,0} (resp. {ωq1+1,0, . . . , ωq,0}) on
M1\{p1} (resp. M2\{p2}) are given by the restriction of the associated nor-
malized basis of abelian differentials on M1 (resp. M2), and {ω1,0, . . . , ωq1,0}
(resp. {ωq1+1,0, . . . , ωq,0}) vanish identically on M2\{p2} (resp. M1\{p1}).
Together with (6.1.1) and (6.2.2), one sees that Proposition 6.2.1 can be
obtained easily by letting ωcan,t = (

√−1/2q)
∑

1≤i,j≤q(ImΩ(t))−1
ij ωi,t ∧ ωj,t

for all t ∈ ∆.

At t = 0, we simply denote g(k)can,0 := gcan(Mk) as well as its restriction to
Mk\{pk}, k = 1, 2 (recalling that M\{p} � M1\{p1} �M2\{p2}). We will
need the following result of Wentworth:

Proposition 6.2.2 ([We, Theorem 6.10]). Let {Mt}t∈∆ be as in (2.1) with
a separating node p ∈ M . Let {xt}t∈∆, {yt}t∈∆ be continuous sections of
{Mt}t∈∆ such that xt �= yt for all t ∈ ∆. Then the following statements
hold:

(i) If x0, y0 ∈ M1\{p1}, then

lim
t→0

[
gcan,t(xt, yt)− q22

q2
log |t|

]
= g

(1)
can,0(x0, y0)−

q2
q
g
(1)
can,0(x0, p1)

− q2
q
g
(1)
can,0(y0, p1).

Also similar statement holds for the case when x0, y0 ∈ M2\{p2}.
(ii) If x0 ∈ M1\{p1} and y0 ∈ M2\{p2}, then

lim
t→0

[
gcan,t(xt, yt) +

q1q2
q2

log |t|
]
=
q1
q
g
(1)
can,0(x0, p1) +

q2
q
g
(2)
can,0(y0, p2).

Next we have:

Proposition 6.2.3. Let {Mt}t∈∆ be as in (2.1) with a separating node p ∈
M . Let X = {xt}t∈∆,Y = {yt}t∈∆ be two holomorphic sections of {Mt}t∈∆
such that x0 ∈ M1\{p1} and y0 ∈ M2\{p2}. Then the holomorphic family
of divisor line bundles [X ]⊗q1 ⊗ [Y]⊗q2 = {[xt]⊗q1 ⊗ [yt]⊗q2}t∈∆ admits an
almost nice family of {ωcan,t}t∈∆-admissible p-singular Hermitian metrics.

Proof. First we fix two (holomorphic) canonical sections sX = {sxt}t∈∆ of
[X ] = {[xt]}t∈∆ and sY = {syt}t∈∆ of [Y] = {[yt]}t∈∆. For t ∈ ∆∗, we define

g′can,t(z) := q1gcan,t(xt, z) + q2gcan,t(yt, z) for z ∈ Mt\{xt, yt}.(6.2.3)
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At t = 0, we define

g′can,0(z) :=


q1g

(1)
can,0(x0, z)− q1q2

q g
(1)
can,0(x0, p1)

+ q22
q g

(2)
can,0(y0, p2), if z ∈ M1\{p1, x0},

q2g
(2)
can,0(y0, z)− q1q2

q g
(2)
can,0(y0, p2)

+ q21
q g

(1)
can,0(x0, p1), if z ∈ M2\{p2, y0}.

(6.2.4)

Then for t ∈ ∆∗, it follows easily from (6.1.5) and (6.2.3) that√−1
2π

∂∂̄g′can,t = (q1 + q2)ωcan,t = qωcan,t on Mt\{xt, yt}.(6.2.5)

By (6.1.5) and (6.2.4), we also have, at t = 0,
√−1
2π

∂∂̄g′can,0 =

{
q1ωcan(M1) on M1\{p1, x0},
q2ωcan(M2) on M2\{p2, y0},

(6.2.6)

= qωcan,0 on M\{p, x0, y0} (by (6.2.1)).

Also, for all t ∈ ∆, it is clear that g′can,t(z) = q1 log |z|2 + O(1) in terms
of holomorphic coordinates z near xt with z(xt) = 0. Similarly, g′can,t =
q2 log |z|2 + O(1) for z near xt with z(yt) = 0. Together with (6.2.5),
(6.2.6), one easily sees that for each t ∈ ∆, g′can,t and s⊗q1xt ⊗ s⊗q2yt define
uniquely a ωcan,t-admissible Hermitian metric ht on [xt]⊗q1 ⊗ [yt]⊗q2 over
Mt (over M\{p} when t = 0) satisfying ht(s

⊗q1
xt ⊗ s⊗q2yt , s⊗q1xt ⊗ s⊗q2yt )(z) =

exp(−g′can,t(z)) for z ∈ Mt\{xt, yt} (for z ∈ M \{p, x0, y0} when t = 0). Now
for any continuous section {zt}t∈∆ of {Mt}t∈∆ such that z0 ∈ M1\{p1, x0},
we have

lim
t→0

g′can,t(zt)

= lim
t→0

[
q1gcan,t(xt, zt) + q2gcan,t(yt, zt)

]
(by (6.2.3))

= lim
t→0

[
q1

(
gcan,t(xt, zt)− q22

q2
log |t|

)
+ q2

(
gcan,t(yt, zt) +

q1q2
q2

log |t|
)]

= q1

(
g
(1)
can,0(x0, z0)−

q2
q
g
(1)
can,0(x0, p1)−

q2
q
g
(1)
can,0(z0, p1)

)
+ q2

(
q1
q
g
(1)
can,0(z0, p1) +

q2
q
g
(2)
can,0(y0, p2)

)
(by Proposition 6.2.2)

= g′can,0(z0) (by (6.2.4)).

Similarly, one can check that limt→0 g
′
can,t(zt) = g′can,0(z0) for any continuous

section {zt}t∈∆ of {Mt}t∈∆ such that z0 ∈ M2\{p2, y0}. Hence {g′can,t}t∈∆
form a continuous family of smooth functions on {Mt\{xt, yt}}t∈∆\{p},
and this implies easily that {ht}t∈∆ also form an almost nice family of
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{ωcan,t}t∈∆-admissible p-singular Hermitian metrics. Thus we have finished
the proof of Proposition 6.2.3.

Similar to Proposition 5.3.1, we have:

Proposition 6.2.4. Let {Mt}t∈∆ be as in (2.1) with a separating node p ∈
M . Let X = {xt}t∈∆ be a holomorphic section of {Mt}t∈∆ such that x0 ∈
M1\{p1} or x0 ∈ M2\{p2}. Then the family of divisor line bundles [X ] =
{[xt]}t∈∆ does not admit any almost nice family of {ωcan,t}t∈∆-admissible
p-singular Hermitian metrics.

Proof. From Proposition 6.2.2, we have

lim
t→0

gcan,t(xt, yt) = −∞, and lim
t→0

gcan,t(xt, zt) = +∞(6.2.7)

for any continuous sections {xt}t∈∆, {yt}t∈∆ and {zt}t∈∆ of {Mt}t∈∆ such
that x0 �= y0 ∈ M1\{p1} and z0 ∈ M2\{p2}. Then Proposition 6.2.4 can be
proved by using the arguments in the proof of Proposition 5.3.1 with gcan,t
replacing ghyp,t and with (6.2.7) replacing (5.3.4).

Finally we are ready to give the following:

Proof of Theorem 3(ii). Let L = {Lt}t∈∆ be a holomorphic family of line
bundles of degree d over {Mt}t∈∆ with a separating node p ∈ M as in
Theorem 3(ii). Also let f : M̃ = M1 � M2 → M , p1, p2, q1, q2, d1, d2 be
as in Theorem 3(ii). We fix two holomorphic sections X = {xt}t∈∆ and
Y = {yt}t∈∆ of {Mt}t∈∆ such that x0 ∈ M1\{p1} and y0 ∈ M2\{p2}. Also
we fix two (holomorphic) canonical sections sX = {sxt}t∈∆, sY = {syt}t∈∆
of [X ] = {[xt]}t∈∆ and [Y] = {[yt]}t∈∆ respectively.

To prove the ‘if’ part, we assume that

d1
q1

=
d2
q2

=
d

q
, since d1 + d2 = d, q1 + q2 = q.(6.2.8)

Then we define

L′ := L⊗q ⊗ ([X ]⊗q1 ⊗ [Y]⊗q2
)⊗(−d) over M,(6.2.9)

and write L′ = {L′
t}t∈∆, where L′

t = L′|Mt for t ∈ ∆. Using (6.2.8), it
is easy to check that {L′

t}t∈∆ forms a holomorphic family of line bundles
of degree 0 such that deg(f∗L′

0|Mk
) = qdk − dqk = 0, k = 1, 2. Then by

Theorem 1(ii), {L′
t}t∈∆ admits a nice family of flat (and thus {ωcan,t}t∈∆-

admissible) p-singular Hermitian metrics. By Proposition 6.2.3 and Remark
2.2.2(i),

(
[X ]⊗q1⊗[Y]⊗q2

)⊗d also admits an almost nice family of {ωcan,t}t∈∆-
admissible p-singular Hermitian metrics, and hence so does L⊗q by Remark
2.2.2(i) and (6.2.9). Then so does L itself by Remark 2.2.2(ii), and this
finishes the proof of the ‘if’ part.
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Finally the ‘only if’ part of Theorem 3(ii) can be proved by using the
arguments in the proof of Theorem 2(ii) with the line bundle in (5.3.7)
replaced by

L′′ := L⊗q2 ⊗ ([X ]⊗q1 ⊗ [Y]⊗q2
)⊗(−d2) ⊗ [X ]⊗(d2q1−d1q2)

and with Proposition 5.3.1 replaced by Proposition 6.2.4. This finishes the
proof of Theorem 3(ii).
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