Remark on
 Langlands' Combinatorial Lemma

Lin WENG

The combinatoric aspect of Arthur's trace formula depends heavily on Langlands' combinatorial lemma. In this note, we supply an easy proof of a special form of it.

Let G be an algebraic reductive group defined over a number field F. Let P be a parabolic subgroup of G over F. Denote by \mathcal{U}_{P}, resp. L_{P}, the unipotent radical, resp. the Levi quotient of P. Let T_{P}, resp. T_{P}^{\prime}, be a maximal split torus in the center of P over F, resp. a quotient maximal split torus of P. Then the composition of the natural morphisms

$$
\begin{equation*}
T_{P} \hookrightarrow Z_{P} \hookrightarrow P \rightarrow L_{P} \rightarrow L_{P}^{\mathrm{ab}} \rightarrow T_{P}^{\prime} \tag{1}
\end{equation*}
$$

is an isogeny, i.e. a morphism with finite kernel and finite cokernels. Set $X^{*}(P)=$ $\operatorname{Hom}\left(T_{P}, \mathbb{G}_{m}\right)$ and $\mathfrak{a}_{P}^{*}:=X^{*}(P) \otimes \mathbb{R}$. Then for any pair $P \subseteq Q$ of parabolic subgroups of G on F, there exist naturally an inclusion $\mathfrak{a}_{Q}^{*} \hookrightarrow \mathfrak{a}_{P}^{*}$ and a projection $\mathfrak{a}_{P}^{*} \rightarrow \mathfrak{a}_{Q}^{*}$, and hence a natural decomposition

$$
\begin{equation*}
\mathfrak{a}_{P}^{*}=\mathfrak{a}_{Q}^{*} \oplus \mathfrak{a}_{P}^{Q} \tag{2}
\end{equation*}
$$

Denote the projections from \mathfrak{a}_{P}^{*} to \mathfrak{a}_{Q}^{*} and $\mathfrak{a}_{P}^{Q *}$ by $[\cdot]_{Q}$ and $[\cdot]_{P}^{Q}$ respectively.
Denote by $\Phi_{P} \subset \mathfrak{a}_{P}^{G *}$, resp. Φ_{P}^{+}the set of non-trivial characters of T_{P} which occur in the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$, resp. $\mathfrak{u}=\operatorname{Lie}\left(\mathcal{U}_{P}\right)$ of \mathcal{U}_{P}. If $P=P_{0}$ is minimal, then $\Phi_{0}:=\Phi_{P_{0}}$ forms a root system with $\Phi_{0}^{+}:=\Phi_{P_{0}}^{+}$the set of positive roots. Denote the associated set of simple roots, resp. fundamental weights by $\Delta_{0} \subset \mathfrak{a}_{0}^{G *}$, resp. $\widehat{\Delta}_{0}$. Then it is well known that Δ_{0} and $\widehat{\Delta}_{0}$ are bases of $\mathfrak{a}_{0}^{G *}$, and that $\widehat{\Delta}$ is the dual basis of $\mathfrak{a}_{0}^{G}:=X_{*}\left(T_{P_{0}}\right) \otimes \mathbb{R}$ to the set of co-roots $\Delta^{\vee}:=\left\{\alpha^{\vee}:\right.$ $\left.\alpha \in \Delta_{0}\right\}$. Here $T_{0}:=T_{P_{0}}$ and $X_{*}\left(T_{P}\right):=\operatorname{Hom}\left(\mathbb{G}_{m}, T_{P}\right)$ is the set of 1-parameter subgroups in T_{P}. Accordingly, we may write $\widehat{\Delta}_{0}=\left\{\varpi_{\alpha}: \alpha \in \Delta\right\}$ which is known to be contained in $\sum_{\alpha \in \Delta_{0}} \mathbb{Q}_{\geq 0} \alpha$.

In general $\left(\Phi_{P}, \Phi_{P}^{+}\right)$does not form a root system. Nevertheless, the constructions above may be similarly carried over here. In particular, we have the subsets
$\Delta_{P} \subset \Phi_{P}^{+}, \Delta_{P}^{\vee}$ and $\widehat{\Delta}_{P}$. Indeed,
$\Delta_{P}=\left\{\left.\alpha\right|_{\mathfrak{a}_{P}}: a \in \Delta_{0}\right\} \backslash\{0\} \quad$ and $\quad \Delta_{P}^{\vee}:=\left\{\alpha^{\vee}:=[\beta]_{P}^{Q}: \forall \alpha=[\beta]_{P}^{Q} \in \Delta_{P}, \exists \beta \in \Delta_{0}\right\}$.
And they form bases of $\mathfrak{a}_{P}^{G *}$ and \mathfrak{a}_{P}^{G} respectively. Denote the dual basis of Δ_{P}^{\vee} in $\mathfrak{a}_{P}^{G *}$ by $\widehat{\Delta}_{P}$. Now, y an abuse of notation, we write α^{\vee} for $\left[\alpha^{\vee}\right]_{P}^{G}$ for $\alpha \in \Delta$. Then

$$
\begin{equation*}
\Delta_{P}^{\vee}=\left\{\alpha^{\vee}: \alpha \in \Delta_{P}\right\} \quad \text { and } \quad \widehat{\Delta}_{P}=\left\{\varpi_{\alpha}^{G}: \alpha \in \Delta_{P}\right\} \tag{4}
\end{equation*}
$$

Of course, we have

$$
\begin{equation*}
\left\langle\varpi_{\alpha}, \beta^{\vee}\right\rangle=\delta_{\alpha \beta} \quad \forall \alpha, \beta \in \Delta_{P} \tag{5}
\end{equation*}
$$

In addition, standard parabolic subgroups of G are parametrized by subsets of Δ_{0} : there is an order reversing bijection $P \longrightarrow \Delta_{0}^{P}$ between standard parabolic subgroups P of G and subsets Δ_{0}^{P} of Δ_{0} such that

$$
\begin{equation*}
\mathfrak{a}_{P}=\left\{H \in \mathfrak{a}_{0}:\langle\alpha, H\rangle=0 \quad \forall \alpha \in \Delta_{0}^{P}\right\} . \tag{6}
\end{equation*}
$$

Obviously, for any P, Δ_{0}^{P} forms a basis of \mathfrak{a}_{0}^{P}, and there is a bijection between $\Delta_{0} \backslash \Delta_{0}^{P}$ and Δ_{P} induced by taking restrictions. More generally, for any wto standard parabolic subgroups $P \subseteq Q$, we set Δ_{P}^{Q} to be the set of linear forms on the subspace \mathfrak{a}_{P}^{Q} of \mathfrak{a}_{P} obtained by restricting element in $\Delta_{0}^{Q} \backslash \Delta_{0}^{P}$ and set $\widehat{\Delta}_{P}^{Q}$ to be the set of linear forms on \mathfrak{a}_{P}^{Q} obtained by restricting element in $\widehat{\Delta}_{P} \backslash \widehat{\Delta}_{Q}$. Then both Δ_{P}^{Q} and $\widehat{\Delta}_{P}^{Q}$ form bases of $\mathfrak{a}_{P}^{Q *}$ denote their dual bases in \mathfrak{a}_{P}^{Q} by $\widehat{\Delta}_{P}^{Q \vee}$ and $\Delta_{P}^{Q \vee}$. We have

$$
\begin{equation*}
\Delta_{P}^{Q \vee}=\left\{\alpha^{\vee}: \alpha \in \Delta_{P}^{Q}\right\}, \quad \widehat{\Delta}_{P}^{Q}=\left\{\varpi_{\alpha}: \alpha \in \Delta_{P}^{Q}\right\} \quad \text { and } \quad \widehat{\Delta}_{P}^{Q \vee}=\left\{\varpi_{\alpha}^{\vee}: \alpha \in \Delta_{P}^{Q}\right\} \tag{7}
\end{equation*}
$$

Note that for any parabolic subgroup P of G its Levi quotient can be lifted to a subgroup of P, denoted also by L_{P}, by an abuse of notation, and this lift is unique if we assume that its is θ-stable. Here θ is a Borel-Serre Cartan involution whose existence can be guaranteed by a choice of maximal compact subgroup K_{∞} of $G\left(F_{\infty}\right)$. It is well known that L_{Q} is a reductive group of Q and $P \cap L_{Q}$ is a standard parabolic subgroup of L_{Q} (with respect to the fixed minimal parabolic subgroup $P_{0} \cap L_{Q}$) and that

$$
\begin{equation*}
\mathfrak{a}_{P \cap L_{Q}}=\mathfrak{a}_{P}, \quad \mathfrak{a}_{P \cap L_{Q}}^{L_{Q}}=\mathfrak{a}_{P}^{Q}, \quad \Delta_{P \cap L_{Q}}=\Delta_{P}^{Q} \quad \text { and } \quad \widehat{\Delta}_{P \mathcal{L}_{Q}}=\widehat{\Delta}_{P}^{Q} \tag{8}
\end{equation*}
$$

Definition 1. For a pair parabolic subgroups $P \subseteq Q$ of a reductive group G,, define the positive chamber \mathfrak{a}_{P}^{Q+} and the positive cone ${ }^{+} \mathfrak{a}_{P}^{Q}$ to be the subsets of \mathfrak{a}_{P}^{Q} by

$$
\begin{aligned}
\mathfrak{a}_{P}^{Q+} & :=\left\{H \in \mathfrak{a}_{P}^{Q}:\langle\alpha, H\rangle>0 \forall \alpha \in \Delta_{P}^{Q}\right\} \\
+\mathfrak{a}_{P}^{Q} & :=\left\{H \in \mathfrak{a}_{P}^{Q}:\left\langle\varpi_{\alpha}^{G}, H\right\rangle>0 \forall \alpha \in \Delta_{P}^{Q}\right\}
\end{aligned}
$$

respectively. Denote their characteristic functions (as subsets of \mathfrak{a}_{P}^{Q} or \mathfrak{a}_{P}^{G} or \mathfrak{a}_{0}^{G} or even \mathfrak{a}_{0}) by τ_{P}^{Q} and $\widehat{\tau}_{P}^{Q}$ respectively.

Lemma 1 ((A Special Form of) Langlands' Combinatorial Lemma [1, 2]). For each pair of parabolic subgroups $P \subseteq Q$ of a reductive group G, we have

$$
\begin{align*}
& \sum_{R: P \subseteq R \subseteq Q}(-1)^{d(R)-d(Q)} \tau_{P}^{R} \widehat{\tau}_{R}^{Q}=\delta_{P Q} \tag{4.a}\\
& \sum_{R: P \subseteq R \subseteq Q}(-1)^{d(P)-d(R)} \widehat{\tau}_{P}^{R} \tau_{R}^{Q}=\delta_{P Q} \tag{4.b}
\end{align*}
$$

Proof. We prove the two relations simultaneously with an induction on $d(P)-$ $d(Q)$.

We start with the case $d(P)-d(Q)=0$. Obviously, since $d(P)=d(Q), P=Q$. Hence in this case, it suffices to notice that

$$
\begin{equation*}
\tau_{P}^{P} \equiv 1 \quad \text { and } \quad \widehat{\tau}_{P}^{P} \equiv 1 \tag{9}
\end{equation*}
$$

Now assume that two relations holds for all pairs $P \subseteq Q$ of parabolic subgroups satisfying $d(P)-d(Q) \leq r$. We treat the case when $d(P)-d(Q)=r+1>0$ (in particular, $P \neq Q)$.

$$
\begin{aligned}
& \sum_{R: P \subseteq R \subseteq Q}(-1)^{d(P)-d(R)} \widehat{\tau}_{P}^{R} \tau_{R}^{Q}=\sum_{\substack{R, R^{\prime} \\
P \subseteq R \subseteq R^{\prime} \subseteq Q \\
d(R)-d\left(R^{\prime}\right) \leq r}}(-1)^{d(P)-d(R)} \widehat{\tau}_{P}^{R} \delta_{R R^{\prime}} \tau_{R^{\prime}}^{Q} \\
& =\sum_{\substack{R, R^{\prime}, S: \\
P \subseteq R \subseteq S \subseteq R^{\prime} \subseteq Q \\
d(R)-d\left(R^{\prime}\right) \leq r}}(-1)^{d(P)-d(R)} \widehat{\tau}_{P}^{R}\left((-1)^{d(S)-d\left(R^{\prime}\right)} \tau_{R}^{S} \widehat{\tau}_{S}^{R^{\prime}}\right) \tau_{R^{\prime}}^{Q} \\
& =\sum_{\substack{S: \\
P \subseteq S \subseteq Q}} \sum_{R: P \subseteq R \subseteq S}(-1)^{d(P)-d(R)} \widehat{\tau}_{P}^{R} \tau_{R}^{S} \sum_{R^{\prime}: S \subseteq R^{\prime} \subseteq Q}(-1)^{d(S)-d\left(R^{\prime}\right)} \widehat{\tau}_{S}^{R^{\prime}} \tau_{R^{\prime}}^{Q} \\
& =\sum_{\substack{S: \\
P \subseteq S \subseteq Q}} \delta_{P S} \delta_{S Q}=0
\end{aligned}
$$

Here in the 2ed equality, we have used the induction hypothesis on (4.a), and in the 4th equality, we have used first the fact that $d(R)-d\left(R^{\prime}\right) \leq r$ which implies that both $d(P)-d(S)$ and $d(S)-d(Q) \leq r$ and then the induction hypothesis on (4.b). Similarly, if instead, we apply the induction hypothesis on (4.b) in the 2ed equality first and apply the induction hypothesis on (4.a) in the 4th equalitysecondly, then
we have

$$
\begin{aligned}
& \sum_{R: P \subseteq R \subseteq Q}(-1)^{d(R)-d(Q)} \tau_{P}^{R} \widehat{\tau}_{R}^{Q}=\sum_{\substack{R, R^{\prime}: \\
\begin{array}{c}
P \subseteq R \subseteq R^{\prime} \subseteq Q \\
d(R)-d\left(R^{\prime}\right) \leq r
\end{array}}}(-1)^{d\left(R^{\prime}\right)-d(Q)} \tau_{P}^{R} \delta_{R R^{\prime}} \widehat{\tau}_{R^{\prime}}^{Q} \\
& =\sum_{\substack{R, R^{\prime}, S: \\
P \subseteq R \subseteq S \subseteq R^{\prime} \subseteq Q}}(-1)^{d\left(R^{\prime}\right)-d(Q)} \tau_{P}^{R}\left((-1)^{d(R)-d(S)} \widehat{\tau}_{R}^{S} \tau_{S}^{R^{\prime}}\right) \widehat{\tau}_{R^{\prime}}^{Q} \\
& d(R)-d\left(R^{\prime}\right) \leq r \\
& =\sum_{\substack{S: \\
P \subseteq S \subseteq Q}} \sum_{R: P \subseteq R \subseteq S}(-1)^{d(R)-d(S)} \tau_{P}^{R} \widehat{\tau}_{R}^{S} \sum_{R^{\prime}: S \subseteq R^{\prime} \subseteq Q}(-1)^{d\left(R^{\prime}\right)-d(Q)} \tau_{S}^{R^{\prime}} \widehat{\tau}_{R^{\prime}}^{Q} \\
& =\sum_{\substack{S: \\
P \subseteq S \subseteq Q}} \delta_{P S} \delta_{S Q}=0
\end{aligned}
$$

This completes the proof.
This proof is motivated by the discussions in \S III. 2 of [2].

References

[1] J. Arthur, A trace formula for reductive groups, Duke Math. J, 45 (1978) 911-952
[2] H. Jacquet, E. Lapid, J. Rogawski, Periods of Automorphic Forms, Journal of AMS 12.1 (1999) 137-240

Lin WENG
Graduate School of Mathematics,
Kyushu University,
Fukuoka 819-0395,
JAPAN
E-Mail: weng@math.kyushu-u.ac.jp

