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1. Introduction

Let {M,} be a degenerating family of compact Riemann surfaces of genus?
obtained by shrinking closed loops to form a noded Riemann suMgc&here are
essentially two cases, depending on whether the nodes sep#yalehroughout
this article, we assume that each fiber is stable, sogthat2, and each connected
component o2 := Mo\ {node$ admits a complete hyperbolic metric.

The behavior of Green’s functions associated to various canonical metrics on
degenerating Riemann surfaces have been widely studied (cf. [4—7, 10]). In partic-
ular, Ji [5] obtained the degenerative behaviors of Green'’s functions for hyperbolic
metrics in both cases of separating and non-separating nodes. Ji's approach in-
volved a detailed study of the resolvent kernel of the hyperbolic Laplacians and
used Hejhal's results on regulargroup theory [4]. It does not seem to generalize
directly to the variable curvature case.

Using a different and more geometric approach, To and Weng [9] recently ob-
tained the degenerative behavior of Green’s functions for a ‘continuous family
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of quasi-hyperbolic metrics’ ofM;} in the case of a non-separating node (cf.
[9, theorem 2]), which, generalized Ji's result in this case [5]. The main idea in
[9] is to construct a family of functions (with singularities) using Green'’s function
on M to approximate Green’s functions M, }, and then show that the error term
goesto0as — 0.

In this article, we are able to obtain the degenerative behavior of Green’s func-
tions for a continuous family of quasi-hyperbolic metrics{af}} with one separat-
ing node and finitely many non-separating nodes (cf. Theorem 2.4.1 in Section 2),
which generalizes Ji's result in this remaining case [5]. As noted in [9], the main
difficulty in adapting the geometric approach in [9] is that in the separating node
case, the first non-zero eigenvalug, of the Laplacian on/, tends to zero as
t — 0. We overcome this difficulty by constructing good approximations of the
eigenfunctions of the Laplacians di,} corresponding tc.; using the corre-
sponding eigenfunction oM. Then, together with Green’s function di,, we
are able to construct approximations of Green’s functiongMy}. To show that
the error term goes to 0 as— 0, we have to make essential use of the fact that
there is a positive lower bound for the second non-zero eigenvahjesf the
Laplacians ags — 0.

This paper is organized as follows. In Section 2 we introduce some defini-
tions and state our main results. In Section 3 we give the construction of the
approximations of the eigenfunctions of the Laplacians{®h} corresponding
to A1. The proof of Theorem 2.4.1 is given in Section 4, and finally we deduce
Corollaries 2.4.2 and 2.4.3 in Section 5.

2. Notation and Statement of Results

(2.1) Throughout this article, we consider the degeneration of compact Riemann
surfaces of fixed genug > 2 into a stable singular Riemann surfake with

one separating node ama non-separating nodes. Here, we always assume that
0<m < oo.

First, we recall the plumbing construction of a degenerating family of Rie-
mann surfaces starting frod as follows (cf. [2, 12]). Sincé has exactly one
separating node, the normalizatidd of M is a disjoint union of two smooth
compact Riemann surfacég, and M, of genusg; and ¢, respectively. Letn,
andm, be the numbers of non-separating nodes in the connected component of
M\ {separating nodecorresponding ta/, and M5, respectively (so that,+m, =

m). Let p1, pa, ..., pmya b all the nodes o#1. Rearranging if necessary, we will
always assume that; is the separating node, and, ps, ..., pn,+1 (respectively
DPmi+2> Pmy+3s - - - » Pm+1) @re the non-separating nodes in the connected component

of M\{p1} corresponding taVl; (respectivelyMy). For 1 < i < m + 1, the
node p; corresponds to two pointg; 1, p;2 iIn M. Moreover,p;,,1 < k < 2,

lie in different components or the same componendofiepending on whether

pi is a separating or non-separating node. Thus, without loss of generality, we will
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assume thatp11} U{pix | 2 <i <mi1+ Lk = 1,2} C M; and{py,} U
pix | mi+2<i<m+1k=212 C Mp. Let M® := M\{p1,..., pys1}.
ThenM? is a disjoint union of two punctured Riemann surfadé® and M9 with
identificationsM? ~ M;\({p11} U {pix | 2 <i <m+ Lk = 1,2}) and
M2 ~ M\({p12} U {pix | mi+2 <i <m+ L1k = 1 2}). Denote the unit
disc inC by A. Foreach 1< i < m + 1 andk = 1, 2, fix a coordinate function
Zix » Uix — A such thatz; ¢ (p;x) = 0, whereU, ; is an open neighborhood of
pix In M. Also for each 1< i < m + 1ands; € A, letS, = {(zi1,zi2) €
A? | zi1zi2 = t;}. Then for eacht = (11,12, ..., t,p1) € A™FL, we remove the
2m+2discs|zix| < |41, 1<i <m+1 k=12, from M, and glue the remaining
parts of M with Sis Stpr -5 Sy,,, Via the identifications; 1 ~ (z;1, 4 /2i,1) and
zi2 ~ (ti/zi2,2i2), 1 < i < m + 1. The resulting surfacef\,},can+1 form
an analytic familyr : M — A" wheremr denotes the holomorphic projec-
tion map. Denote the punctured unit disc@by A* := A\{0}. It is easy to
see that each fibeV,, t € (A*)"*1, is a smooth compact Riemann surface of
genusg = g1 + g» + m1 + my. Moreover,M, is a noded Riemann surface for
along the coordinate hyperplanes &f*1, and at the origin, we hav&y, = M.
Here and thereafter, by simplification of notation, we simply denote the origin
0,0,...,0) € C"*1 by 0 when no confusion arises. Also, by simplification of
notation, we simply say that su¢h, } is a family of compact Riemann surfaces of
genusg degenerating td/ (ast € (A*)"+1 — 0). Our main concern in this paper
is the study of behaviors of analytic objects on the smooth fibgrs e (A*)"+2,
ast — 0.

It is easy to see that for ¥ i < m + 1, there is a coordinate neighborhood
A"+2 of p; in M centered ap; and such that for = (11,1, ..., t,41) € A",
M, 0 A™2 = {(t1, .0 61,20 22 Bigds o0 Bng) € A™T2 | 2120 = 1)
Moreover,w |am+2 IS given by (ta, ..., ti—1, 2i1, 202 titds -« - s tws1) — (t1, ...,
ti—1, 2i1%i2s ti+1, - - - » tny1). AlSO, we remark that the restriction of Ker) to
M\{node$ forms a holomorphic line bundl& over M\ {node$, which will be
called the vertical line bundle, such that for ale A™*1, Llyo = T M?, where

M? denotes the smooth part df,.

(2.2) To facilitate ensuing discussion and for convenience of the reader, we recall
the following definition in [9]:

DEFINITION 2.2.1. A Hermitian metrie/s? on a punctured Riemann surfade
is said to beof hyperbolic growth near the puncturédsat each puncturey, there
exists a punctured coordinate dis¢ := {z € C: 0 < |z| < 1} centered ap such
that for some constan; > 0,

. C1|dz|?
) ds?’<——"""__ onA*, 2.2.1
O 45" = aiog 212 (22.1)
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and there exists a local potential functigh on A* satisfying ds?® =
((8%¢)/(9z07))dz @ dz on A*, and for some constant, Cz > 0,

(i) |¢(z)| < Camax{l,log(—log|z|)}, and (2.2.2)
(i) ‘8—¢ L PP B (2.2.3)
dz | |9z ]~ lz|lloglz||

DEFINITION 2.2.2. LetN = ;<< N, be a disjoint union of punctured Riemann
surfacesVy, 1 < k < [. A Hermitian metricds? on N is simply defined to be an
ordered-tuple (ds?, ..., ds?), whereds? is a Hermitian metric omV;. ds? is said
to be ofhyperbolic growth near the puncturéiseachds? is of hyperbolic growth
near the punctures in the sense of Definition 224,1, 2, ..., 1.

Now let : {M,} — A™1, M® = M\{py, p2, ..., pu1} = M U M3, q, 41, g2,
m1, mo, be as in (2.1). At the origim = 0 € A™*1, the stable condition o/
implies thatg, + m; > 0 andg, + m» > 0, or equivalently,M° admits the
complete hyperbolic metridsrz,yp)0 of constant sectional curvaturel. Also, it is
easy to see that the two inequalitigs+ m; > 0 andgz + m» > 0 actually imply
that M, is stable for each € A™*1, and thus the smooth pa#? of eachM,
admits the complete hyperbolic metric, which we denoteltﬁyp),. Now for each

t € A™*1, letds? be a Hermitian metric on the smooth paff of M, .

DEFINITION 2.2.3.{ds?} is said to be a continuous family of quasi-hyperbolic
metrics on{M,} if

(i) {ds?} form a continuous section df ® L*, whereL is as in (2.1);
(ii) there exist constant§;, C, > 0 such that

Cidshy,, < ds? < Cadshy,, forallr e A" (2.2.4)

and
(i) for eachr € A™*1, ds? is of hyperbolic growth near the punctures & (cf.
Definition 2.2.2).

Remark 2.2.4(i) By [12, theorem 5.8],{dsﬁyp’,} form a continuous family of
guasi-hyperbolic metrics ofW,}. Also, one can easily construct non-trivial fam-
ilies of quasi-hyperbolic metrics ofW,} by the grafting procedure in [12, 83,
84].

(ii) One easily sees from Equation (2.2.1) that Mdf, ds?) < oo for each
t e AL
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(2.3) Let{M,} be as in (2.1), an{ds?} be a continuous family of quasi-hyperbolic
metrics on{M,}. Fort € (A*)"*1, denote the K&hler form on the smooth compact
fiber M, associated tds? by ,, and denote the associated normalized Kahler form
by &, := (1/Vol(M,, w;))w,. It is well known that there exists a unique Green’s
functiong, (-, -) on M, x M,\{diagona} satisfying the following conditions:

(a) Forfixedx € M,, andy # x nearx,

g (x,y) = —log | f(WI? + a(y), (2.3.1)

where f is a local holomorphic defining function far anda is some smooth
function defined near;

(b) dydygi(x,y) = @ (y) — bx; (2.3.2)

(©) f g (x, y) (y) = 0; (2.3.3)
M,

(d) g(x,y) =g(y,x) forx #y; (2.3.4)

(e) g:(x,y)is smooth oM, x M,\{diagona}. (2.3.5)

Hered := (i/4m)(d — 9), ands, is the Dirac delta function at.

At the origint = 0, we write (M°, ds§) = (M7, ds§,) U (M3, ds§,), i.e.,
dsg, = dsi lwo k = 1,2 Also, fork = 1,2, we letwoy, @0 be the Kahler
forms onM} associated tas3, and defined similarly as above. Sin¢€s, is of
hyperbolic growth near the punctures & (cf. Definitions 2.2.1, 2.2.2 and 2.2.3),
it follows from [9, theorem 1] that there exists a unique Green'’s funcggst(-, -)
on M? x MP\{diagona} satisfying conditions (a) to (e) above (with= 0 andM,
replaced byM?) and also the following growth condition:

() Near each puncture d#?, there exists a punctured coordinate neighborhood
A* centered at the puncture such that for fixed A*, there exists a constant
C > 0 such that

lg0.x(x, 2)] < Cmax{l,log(—log|z|)} onA*. (2.3.6)

We remark that similar descriptions also hold for other noded fibgr$or ¢
along the coordinate hyperplanes/f+!.

(2.4) Notation as in (2.1), (2.2) and (2.3). We are ready to state our main result in
this article as follows:

THEOREM 2.4.1.Let {M,} be a family of compact Riemann surfaces of genus
g > 2 degenerating to a stable Riemann surfadewith one separating nodg;
andm non-separating nodes,, ps, - . ., p+1 as described in (2.1). Suppogs?}
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is a continuous family of quasi-hyperbolic metrics {ad,} (cf. Definition 2.2.3).
Then for continuous sections, y, of {M,} such thatx, # y, for all t € A" and

X0, Yo & {p1, p2, - - -+ Pm+1}, We have

) 1
!l_% (gt(xtv Vi) — E¢l,t(xt)¢l,t(yt)>

IE(A*)m_Hl

g0,1(x0, Yo), if xo,yo € MY,
=10, if (xo, y0) € MY x M2 or M3 x M?, (2.4.1)
g0,2(x0, Yo), if xo,y0 € M3,

where go « (-, -) is Green’s function onM,? with respect todsg’k, k = 1,2 (cf.
(2.3)), andgy , is any eigenfunction oM, of L2-norm 1 corresponding to the first
non-zero eigenvalug; , of the LaplacianA, associated tals?.

Theorem 2.4.1 gives rise to the following

COROLLARY 2.4.2.Let{M,}, {dsf}, x;, y; be asin Theorem 2.4.1.

(&) We have

lim A1,:8 (X, Vi)
t—0

re(AF)+L
_ VY2 0
Vo1(Vo1+Vo2) ° if xo0, yo € M7,
=1 ~Trms T (0. y0) € M x M3 or My x My 2.4.2
= Vo1tVoz2 ’ 0, Yo 1 b 9 0, (2.4.2)
Y1 0
Vo2(Vo1+Vo2) ° if xo0, yo € M5,

whereVo := Vol(M, ds§ ) < oo, k = 1, 2 (cf. Remark 2.2.4(ii)).
(b) In particular, there exist constants, x, Co (k = 1, 2), C3, C4 > 0 such that

(i) if xo, yo € M?, then fork = 1, 2,

0<Cyi < Iimicr;f i - g (xp, y) < limsup [, - g, (x;, y1) < Cay; (2.4.3)
t—

t—0
lE(A*)m+1 tE(A*)m-Hl

and
(ii) if (xo0, yo) € MY x M2 or M9 x M?, then

—C3 < lim igf li - g(xi, y;) < limsup [, - g,(x;, y;) < —C4 < 0.(2.4.4)
t—

t—0
tE(A*)m+1 tE(A*)nH»l
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Here, fort € (A*)"*1, [, denotes the infinum of the lengths of all simple closed
geodesics oM, (with respect tais?) which separateV, into two components.

We also have the following

COROLLARY 2.4.3. Let {M,} be as in Theorem 2.4.1, and l¢t#s?} be a
continuous family of complete Hermitian metrics gW,}. Suppose there exist
constantsCy, C; > 0 such that the sectional curvatures ffs?} are pinched
between—C; and —C, for all ¥ € A™*1, andds3 is of hyperbolic growth near
the punctures om/°. Then the conclusions of Theorem 2.4.1 and Corollary 2.4.2
remain valid.

We remark that in the special case of the family of hyperbolic mei{rdhﬁyp!t}

on {M,}, one can easily check (using Burger’s result [1, theorem 1.1]) that The-
orem 2.4.1 and Corollary 2.4.2 agree with the corresponding results of Ji [5,
theorems 1.1 and 1.2].

3. Approximation of Eigenfunctions on M;

Let M = {M,}, {ds?}, p1, P2, --.» Pms1, *1; DE @s in Theorem 2.4.1. In this
section, we are going to construct good approximations of the eigenfunctions on
M, corresponding to the first non-zero eigenvalye of the LaplacianA, with
respect tals? (cf. (3.2) below).

(3.1) To facilitate subsequent discussion, we first set up some notation¥ ket
M; L M be as in (2.1). For 1= i < m + 1, recall from (2.1) the coordinate
functionsz;; : Uix — A,k = 1,2, on M, and the coordinate neighborhoods

AL of p; in M such that forr = (11, to, ..., tuy1) € A", M, N A2 =
{1y oo i1, 201 Zi2s bigds -+ o s bug1) € A™F2 | z12; 2 = 1;}. Fix a small number
8§ > 0,and define, for ki <m +1andt = (11, 1, .. ., tyy1) € (A*)"H,

Ii,t = {(tl’ ceey tl'fl’ Zi,l’ ti/zi,l’ ti+1’ ceey tm+l)

€ A2 5| YPYP < z;4] < || YP7P)
Cc M,. (3.1.1)

For1<i <m+ 1, we denote by

Pl lie = Uppe k=12 te A" (3.1.2)

the holomorphic maps induced by theh and (i + 1)-st coordinate projection
maps onA™*2 respectively. Since; is a separating nodé/; \l,, consists of two
separated components, which we denote pydhd IL, , (so thatM; =11, ull} , U
I15,). Also, we denote Hl, := 1] \Uz<j<mtalic @and I, := 15 \Upyio<i<myaliv
(so that we also havef, = (Ui<j<pmiali) Uy, Llly,). Fork = 1,2 andr =
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(tr to - o bny1) € (A" we let Wy, = M\ Ugiyer, {zi € A | lziw| <
t;|/2-2Y 'whered; = {(LDYU{G. k) |i=2,....,mi+ 1k = 1,2} and
Lo ={Q2DIU{GE, k) |i=m+2,...,m+ 1 k' =1, 2}, and we denote by

ik s WMy = Wiy (3.1.3)

the biholomorphisms induced by the plumbing construction in (2.1). The inverse
of iy, will be denoted byji , : Wi, — ., k =1,2,t € (A*)"+1,

(3.2) Next we consider the following function a® = M2 L M2 given by
1 2

/ Vo.2 ; 0
Vo,1(Vo,1+V0,2) if ze M ’

$10(2) = (3.2.1)

_ Vo1 i 0
Vo,2(Vo,1+V0,2) if ze M,

whereVy 1, Vo2 are as in Equation (2.4.2). Throughout the rest of this pdper,
norm and inner products oM, will be with respect tais?, and they are simply
denoted byl||l, and (, ) respectively. From Equation (3.2.1), it is easy to see that
10l = 1 andey o is orthogonal to the constant functions &#?.

Notation is as in (3.1). We fix a smooth functign= 7(a) on R such that
O<n<lforalaeR,n=1fora < (1/2) —§,andn = 0fora > (1/2) +§.
Then we define the following family of cut-off functiorig,} on {M,} as follows:
fort = (t1, t2, ..., tyy1) € (AF)"FL,

/
1, for zelly,,
. log|z
n(2) == n( &thll"l‘), for z=(z11,11/211. 12, - .., twy1) € 11y, (3.2.2)
/
0, for z € IIZ),.

It is easy to see that eaghis smooth onM,. Next, fort € (A*)"+1, we define the
following smooth function orM, given by

- Vi Vi
$1.:(2) == nf<z>\/ 0.2 —(1- n,(z))\/ 0.1 (3.2.3)

Vo.1(Vo1 + Vo2) Vo,2(Vo,1 + Vo,2)
for z € M,. Finally, fort e (A*)"*, we define the smooth function
KT = Al‘;l,[ On M[. (3.2.4)
Remark 3.2.1. For any continuous sectionz; of {M;} such that

20 ¢ {p1.p2..... pmsa), it is easy to see from Equations (3.2.1) and (3.2.2)
thates ,(z;) — ¢1.0(z0) ast — O.

(3.3) We are going to derive some estimates;enl=1, ..., m+ 1, which will be
needed later. Recall from (2.1) that foli < m + 1, there is a coordinate neigh-
borhoodA™*2 of p; in M centered ap; and such that for = (t1, t5, .. ., tyi1) €
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A" M NA™2 = {(t, o b1, Zits Zi2s figds - Bng1) € A2 ] 21020 = 1)
with z; 1, z;2 providing two different coordinate functions. As in [9, proposi-
tion 4.2.1], we have

PROPOSITION 3.3.1There exist constan§;, C> > Osuch thatforalll <i <

m+1,t=(t,to..., tywy1) € (A" andk = 1, 2, we have, oM, N A"+2,
lo i dz; 2
1< T s glzikl | Z,k|)
log || log x| lzixl
lo i dz; 2
Sdsfscz< T csc 108 ikl | ”') . (3.3.1)
log |#| logltx]l  lzixl

Proof. It follows from a result of Wolpert [12, expansion 4.2] that Equa-
tion (3.3.1) holds for the hyperbolic metriwsﬁyp),} on{M,}. This, together with
Equation (2.2.4), implies Proposition 3.3.1 immediately. O

Next we have the following

PROPOSITION 3.3.2.etl;,,i =1,...,m + 1, be as in Equation (3.1.1), and let
k; be as in Equation (3.2.4). We have

() forl<i<m+1, fl,, w; — 0, fm &, — 0, and (3.3.2)
(i) |kl — Oast — 0. ' (3.3.3)
Proof. First we recall from Equation (3.1.1) that, ford i < m + 1,¢t =
(t1, to, . .., 1) € (A®)" L andk = 1, 2, one has
1 loglzix]l 1
- W< = < 425 3.34
2 = log |z = 2 + ( )
forz=(t1,...,t-1,2i1,2i2, tit1s - - - » Im+1) € ;s (SO thatz; 12; 2 = 1;). For fixed
iwithl<i<m+ 1, wewritet :=logz;,/log|z| on |, so that
1 1 2
= ib, — —2§ —+25, 0<b , 3.35
=a+i > <a<2+ <||Og|t,-|| ( )

gives a parametrization for each It € (A*)"*1. From Equation (2.2.4) and the
well-known fact that VolM,, dsf,,) = 2m(2g — 2) for t € (A*)™*1, it follows
that there exist constantss, C4 > 0 such thatC; < Vol(M,, ds?) < C, for all

t € (A*)"*1, Then, together with Proposition 3.3.1 and Equation (3.3.4), it follows
that there exist constant, Cg > 0 such that for alt € (A*)"+1,

csé de AdE <@, & < cﬁ’édg Ad? only,. (3.3.6)
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Therefore,

fc?)t < Cg / —a’g“Adg“
Ii,t It

@m)/(loglell)  p(1/2)+28
= Cg / / dadb
0 1/2)—25

875
_ 89 as oo, (3.3.7)

| log ]|
Similarly, one ha# w; — 0ast — 0, and this finishes the proof of (i). To verify
(i), we first see from construction @f that there exists a constafit > 0 such that
forall r € (A*)"*1, |0;9zm:] < C70n Iy, whereg is as in Equation (3.3.5). Write

Cs = /Vo2//Vo1(Vo1 + Vo2)—/Vo1/v/Vo2(Vo1 + Vo 2). Theniit follows from
Equations (3.2.2) and (3.2.4) that for akk (A*)"+! andz € 1,

CsCr
Cs '

ki (2)| = |Cs 9,0z (2)| <

1
w(8/8¢,0/8¢)

where Cs is as in Equation (3.3.6). From Equation (3.2.2), one sees that
Suppdxk;) C l1,, and thus

Ik lls = f lic; [P,
Iy,
CgC7\?
- ( 8 7) f o
Cs I,

— 0 ast - 0 (by(3.3.2)

This finishes the proof of Proposition 3.3.2. O

(3.4) We recall from (3.1) the biholomorphismyg, : Wy, — i, k = 1,2,
t € (A" Fort = (i1, to, . . ., twy1) € C™L, we denotdr| := maxi<i<,ui1 |t
Asin [9, lemma 4.3.1], we have

LEMMA 3.4.1.For 0 < 1p < 1andk = 1, 2, there exist constant§;, C;, > 0
such that for allr € (A*)"+1 with |f] < 1o,

Crds§y < ji,dsf < Cpdsg, onW,. (3.4.1)

Proof. For k = 1,2, we letz;, : Uiy — A be as in (2.1). For =
(t1, -+ twy1) € (AL with |t| < to, we write Wy, = Ny UG xyes, Uin.s, Where
the index setl; is as in (3.1) andJ; v, := {zix € Uiy : |ti|%*23 < |zixl < 1}
and Ny := Wi\ Uginer, Uik . Note thatV, does not vary witl. First, from the
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compactness al, x {t € A™*1: |t| < 1o} and the continuity ofds?}, it follows
that Equation (3.4.1) holds a¥,. Fork = 1, 2, it follows from Remark 2.2.4 that
there exist constants; ;, Ci.» > 0 such that for all i< i < m + 1,

ldz; k|2 ldz; x|?
k1 k.2
|z k12(10g |z )? |zik12(l0g |z k )?

Observe that 0 < =mlog|z;ix|/logls;] < =((1/2) — 26) on eachU; ,

(cf. Equation (3.1.1)), and that there exist constafitsC, > 0 such that

C3 <fcschd < Cqforall0 < 6 < w((1/2) — 25). Together with Equation (3.4.2)
and Proposition 3.3.1, it is easy to verify that Equation (3.4.1) also holds on each
Ui, for (i,k') € 4, t € (A*)"1 with |¢t| < 1o, and this finishes the proof of
Lemma 3.4.1. a

<dsg < C

onU,. (3.4.2)

Remark 3.4.2Sincen ((1/2) — 28) < mlog|zixl/loglt;| < m((1/2) + 25)
onl, k=1212i=1,...,m+ 1, and there exist constanty, C, > 0 such
thatCy; < 6cscd < Cofor m((1/2) — 28) < 6 < 7w((1/2) + 258), one can easily
verify as in Lemma 3.4.1 that fot = 1, 2, shrinking A" if necessary, there
exist constant€’; 1, Cr 2 > Osuch thatforall =1,...,m + 1 andr (A" +L,
one hasCy 1ds? < prf, ds5, < Cy2ds? onl;,.

PROPOSITION 3.4.3We have
() [y, #ri0 — 0, and (3.4.3)
(i)) ||¢1sll2 — 1ast — O, (3.4.4)

Proof. First we recall from (3.1) thadl, = (Ui<j<maliy) U112, LIy, for
t € (A*)"*1, so that

(il,twt: Z /{‘51,%’%"‘ | (il,twt'i_ (il,twt- (3-4-5)
i 1t

M; 1<i<m+1 2,

From Equation (3.2.3), one sees that there exists a corGtand such that for all
t e (A*)"H lp1.,(2)| < C for all z € I;,. Together with Proposition 3.3.2(i), one
easily deduces that foralld i <m + 1,

/ $1,0, — 0 and / (¢1.)?w;, — 0 ast — 0. (3.4.6)
|[y1 I[,I

From Equation (3.2.2), one also has

z Vo2 J1 @
Prion = ' 2 w1 (3.4.7)
LKW VO,l(VO,l + VO,Z) Wi, wo,1

Observe thatW, ,} form an increasing sequence of compact subsets exhausfing
ast — 0 and the right-hand side of Equation (3.4.7) can be regarded as an integral
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oveer by extending the integrand to be zero Mﬁ’\WL,. By Lemma 3.4.1 and
the continuity of{ds?}, J1,@¢/wo 1 is uniformly bounded from above by a constant
and converges pointwise to the constant function 1 as 0. SinceVy; < oo, it
follows from the dominated convergence theorem that

~ Vo,2
dri0 — : Vo1
I,

Vo.1(Vo.1 + Vo.2) '

Vo1V
= [21092 a5 0. (3.4.8)
Vo1 + Vo2

Similarly, using Equation (3.2.3), one can easily see that

~ Vo,1V0,2
P — — |20 (3.4.9)
o, o Vo1 + Vo2

~ Vo2
(Pr) 0, > ———— | 3.4.10
Iy, L Vo1 + Vo2 ( )
and
(P10 %0 — _ Vo1 ast — 0. (3.4.11)
[Py Vo1 + Vo2

By combining Equations (3.4.5), (3.4.6), (3.4.8) and (3.4.9), one obtains
Proposition 3.4.3(i) immediately. Similarly, Proposition 3.4.3(ii) can be obtained
by combining Equations (3.4.6), (3.4.10) and (3.4.11). Thus we have finished the
proof of Proposition 3.4.3. O

Remark 3.4.4We remark that one can easily modify the proof of Proposi-
tion 3.4.3 to show that VoM,, w,) — Vo1 + Vo2 ast — O.

(3.5) Let {M,},{ds?} be as in Theorem 2.4.1. Far € (A*)", we let
0 = Aos < A1y < X2, < ... Dbe the set of eigenvalues of the Laplacianon
M,, counting multiplicity. Also, for each € (A*)"*1, we fix an orthonormal set
{¢1.:}o<1<c0 Of €igenvectors of\, on M, with ¢, , corresponding te, ;. Moreover,
we will let ¢o, := 1//Vol(M,, w,). It follows from standard elliptic theory
that {¢;}o<1<oo fOrms a complete orthonormal basis of the Hilbert spacé of
functions onM, endowed with the inner product) induced byds?. First we have

LEMMA 3.5.1. There exists a constant > 0 such thati,, > « for all 1 €
(A*)m+1_

Proof. It is well known and follows from results in [4, 8] that in our case of
degenerating Riemann surfaces with one separating nodex{amh-separating
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nodes), there exists a constgnt- 0 such thakg?'tp > Bforallr € (A*)"*L, where

Ag}’,p denotes the second non-zero eigenvalue of the hyperbolic Laplaciaf on
(see, e.g., [5, corollary 2]). This, together with Equation (2.2.4) and the minimax
principle, implies Lemma 3.5.1 immediately. O

Fort e (A*)"*+1, we define the following smooth function d, given by
M = ‘51,1 - (&l,t’ $0,1)Po.r — (&l,t’ $1.1)P1s

= ¢1,t

VO, Jy, P O Pl 35.1

whereg, , is as in Equation (3.2.3).

PROPOSITION 3.5.2Let u;,x;,« be as in Equations (3.5.1), (3.2.4) and
Lemma 3.5.1 respectively. Then we have

(D) 1Az < llkill2,  and (3.5.2)
(i) llpllz < 2lillz forall r e (A, (3.5.3)
(i) In particular, |||l — 0 ast — 0.

Proof. From Equation (3.2.4), we have

(Kta ¢l,t> = (Atél,n ¢1,t> = (‘51,1, At¢1,t> = Al,t(‘il,t, ¢1,t>- (3-5-4)
Together with Equations (3.2.4) and (3.5.1), one easily checks that
Ay = kp — (K, P11)P1, ONM,. (3.5.5)

This implies, in particular, that
IA 13 = (o — Koy Br)Pres k0 — (iers P1e) 1)
= (ks ker) — 20k, d1.0 17 + ke, d1.0) 1P (Dres B1s)

= lliell3 = (ki ¢1.)17 (sincellga,llz = 1),

which implies Proposition 3.5.2(i). Next, by construction in Equation (3.5.1), one
sees thaj, is orthogonal to botlpy, and¢; . Together with Parseval’s identity,
we have

ledlls =D e i)

[>2

1 .
=> Goyp | (Bun, ¢1.)°  (asin (3.5.4))

1>2

IA

1 . .
— IIAthH% (by Lemma 3.5.1 and Parseval’s identity)
07

[A

1
— llkll5  (by Proposition 3.5.2(i)) (3.5.6)
o
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which leads to Proposition 3.5.2(ii). Finally, Proposition 3.5.2(iii) follows readily
from Proposition 3.3.2(ii) and Proposition 3.5.2(ii) by letting> O. O

PROPOSITION 3.5.3Let x; be a continuous section ¢f\/,} such thatxy ¢
{p1,..., Pms1}- Thenu,(x;) — Oast — O.

Proof. Sincexg ¢ {p1,..., pmy1}, it follows easily from the construction of
{M,} in (2.1) that one can find a continuous family of coordinate dis¢s, r) C
M, centered aty, and of fixed radiuss > 0 for 0 < |7] < 7y and such that
{p1, ..., Pmrr}NA(xo, r) = @, shrinkingtg andr if necessary. Then by the relative
compactness df),_, ., A(x;, r) and the continuity ofds?}, there exist constants

C1, Co > 0 such that for alt e (A*)"*+* with |7| < 1o,
Cidz ® d7 < ds? < Codz ®dZ ONA(x,, 7). (3.5.7)

Using standard Nash—Moser iteration technique (cf. [3, theorem 8.2.4]), one can
deduce from Equation (3.5.7) that there exists a conglaatC(C1, C,) > 0 such
that for allr € (A*)™+1 with || < to,

lw (x| < C (\/f Mzzwt +\// (AIMI)ZQ)I)
A(xy,r) A(xy,r)

Clllpellz + 1A e ll2)
< C(lpellz + lixcll2) ~ (by Proposition 3.5.2(j))
— 0 ast — 0 (by Propositions 3.3.2(ii) and 3.5.2(iii)Y3.5.8)

IA

A

Thus we have finished the proof of Proposition 3.5.3. O

(3.6) Notations are as before. To facilitate ensuing discussion, we summarize our
discussion in Section 3 as follows. L&, ;}o</-oc be as in (3.5), and lep; ;, ¢1;
be asin (3.2).

PROPOSITION 3.6.1\We have

() (Pvr. dos) — 0, and
(ii) |<¢l,t7 ¢1,t>| — lasr — 0.

Proof. Proposition 3.6.1(i) follows easily from Proposition 3.4.2(i) and Re-
mark 3.4.3 (cf. also Equation (3.5.1)). From Equation (3.5.1), it is easy to check
that

lells = @113 — [{brss dos) 2 — s, dro) % (3.6.1)

Then Proposition 3.6.1(ii) can be obtained from Equation (3.6.1) by lettirg0
and using Propositions 3.4.2(ii), 3.5.2(iii) and 3.6.1(i). O
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We remark that in Proposition 3.6.2(ii)1,, ¢1,) itself does not tend to a limit
sinceg¢ , is determined only up to sign. Also, from Proposition 3.6.1(ii), we may
assume thatg: ,, ¢1,) # 0 fort e (A*)"*1, shrinking A"+ if necessary. Then
forr € (A*)"*1, we define the following smooth function

1 -
V= ¢, — —=——¢1, OnM,. (3.6.2)
t t (D11, D1.1) t t
We have
PROPOSITION 3.6.2.

(i) llv:ll2— Oast — Q.

(i) Letx, be a continuous section @M,} such thatxg ¢ {p1, p2, ..., Pmi1}-
Then
Y (x;) > 0 ast — 0.

Proof. Rewriting Equation (3.5.1) using Equation (3.6.2), one has

(él,za ¢O,t>¢0,t — Mt

= — 3.6.3
v (D11 D11) ( )
which implies that
7 2 2
0< vl < 2(|(1,1» Do) 1% + [1aell5) ' (3.6.4)

(1, d1.)12

Then Proposition 3.6.2(i) can be obtained from Equation (3.6.4) by lettinrg0
and using Propositions 3.5.2(iii), 3.6.1(i) and (ii). Similarly, Proposition 3.6.2(ii)
can be obtained easily from Equation (3.6.3) by letting—~ 0 and using
Remark 3.2.1, Propositions 3.5.3, 3.6.1(i) and (ii). O

4. Proof of Theorem 2.4.1

(4.1) Notation is as in Sections 2 and 3. UYat,}, {x,}, {y:}, A1, ¢1, be as in
Theorem 2.4.1. As it is clear that the proofs of Theorem 2.4.1 in the two cases
whenyo € M? and wheny, € M2 are the same, we will consider only the first
case and assumg € M in ensuing discussion. First we recall from (3.1) that
M, = (Uizizmysali) Ullg, ully, for t e (A*)™*L Sinceyy € M3, it follows
thaty, e Iy, for |¢] sufficiently small. ShrinkingA”*! if necessary, we may thus
assume tha, € Il for all r € (A*)"+1, and we let

v, =1 (%) (4.1.1)
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denote the associated continuous curveMsh Letn : R — R be the smooth
function in (3.2). Foreach k¥ i < m 41 andt = (t1,t2, ..., tys1) € (A*)"+L,
we define, similar to Equation (3.2.3), the smooth functjgnon I;, given by

i (2) = 7 log |z; 1|
R log ||
for z=1(t1,....ti21,2i1,ti/Zi1, tis1s - - » tmt1) € lip. (4.1.2)

Fori=1,....m+1,k=12andr € (A%, let PL: s andi, , be as in Equa-
tions (3.1.2) and (3.1.3), respectively. Foe (A*)"*1, we define the following
function onM,\{y;} given by

n1.:(2)go.1(Pry 1, (2), ¥7), if zely;

Ni.(2)80.1(PY; 1, (2), 1) if zeli;,2<i<mi+1
8y, (2) = + (1= 1i.:(2))80.1(PY; 2, (2), ¥7), (4.1.3)

80.1(i1,:(2), y,), if zelly,;

0, it zelly,.

It is easy to see thak ,, is smooth onM,\{y,}. Then forr € (A*)"*1, we define
the following function onM,\{y,} given by

1
u(z) == g1z, y1) — E(pl,t(z)qbl,t()’t) — 8.y () for zeM,. (4.1.4)

From the growth condition (a) in (2.3) fax (-, y,) neary, and that forgo 1(-, y;)
neary;, it follows easily thatu, extends smoothly across, and we denote its
smooth extension o/, by the same symba, .

Remark 4.1.1lt follows easily from Equation (4.1.3) and the continuitygefi
that for a continuous section of {M,} such thatxg ¢ {p1, p2, ..., Pmi1}

20.1(x0, o), if xo € M?,

i, B () = { 0, if xo e M.

IE(A*)m_Hl

(4.2) Fort € (A*)"*1, let u, be as in Equation (4.1.4). Then it follows from
condition (b) in (2.3) forg, (-, y,) andgo 1(-, /) that forz € M,\{y;},

_ V=1804:,,,(2)
Vol(M,, »,) w(z)

Here ratios of1, 1)-forms make sense sindé, is one-dimensional.

A, (2) = (4.2.1)

- ¢1,t(2)¢1,t(yt) +

LEMMA 4.2.1. Letu, be as in Equation (4.1.4). Then

() f”h |Au,?w, — 0, and
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(i) fnz,[ |Au,l°w, - 0, ast— 0.

Proof. By Equation (4.1.3) and condition (b) in (2.3) fe.1(-, y;), we have

if,001

=103z, = { e on Il \{y}, (4.2.2)

on llp,.

To prove (i), we substitute Equations (3.6.2) and (4.2.2) into Equation (4.2.1),
which gives

1 $1t(z) élt()’t)
Auy = — - — + ¥ ———— + Vi
" = eI, (<¢1,,,¢1,,> WZ)) (< ot )>
i1,@0.1
o O b, (4.2.3)

where ¢, is as in Equation (3.6.2). As in Equation (4.1.4), since both sides of
Equation (4.2.3) are smooth on | Equation (4.2.3) actually holds on |L. From
Equations (3.2.1), (3.2.3), Remark 3.2.1, Lemma 3.4.1, Remark 3.4.4, Proposi-
tions 3.6.1(ii) and 3.6.2(ii), it follows that shrinking”** if necessary, there exists

a constantC; > 0 such that

A, (z)| < Cp forall zelly,, re(A®™ (4.2.4)

Let ji, : Wi, — I,k = 1,2, be as in (3.1). Then from Equation (4.2.3), we
have, forz € Wy, ¢ MY,

(b i) (2) ! Yoo | 1
J u)(z) — — - —
Lo Voi+ Vo2 Vo1(Vor1+Vo2)  Voi
= 0 astr—> 0. (4.2.5)

Here the first term on the right-hand side of Equation (4.2.5) follows from
Remark 3.4.4, the second term follows from Propositions 3.6.1(ii), 3.6.2(ii), Equa-
tion (3.2.1), Remark 3.2.1, and the last term follows from the continuity/f}.
Obviously, one has

f |Atut|2wt 2/ <|J]>i[Atut|2 : )CUO,L (4.2.6)
[LEW; Wy wo,1

The right-hand side of Equation (4.2.6) can be regarded as an integra/§vey
letting the integrand to be zero a#%\ Wy ;. From Lemma 3.4.1, Equations (4.2.4)
and (4.2.5), it follows that the integrand on the right-hand side of Equation (4.2.6)
is uniformly bounded from above and converges pointwise to zetdbast — 0.
SinceVy,1 < oo, it follows from the dominated convergence theorem that

f |Au, 2w, — 0 ast — 0, 4.2.7)
I,



256 W.-K. TO AND L. WENG

and this finishes the proof of (i). Next we proceed to prove (ii). As in Equa-
tion (4.2.4), one easily sees from Equations (4.2.4) and (4.2.3) that there exists
a constantC, > 0 such that

|Au,(2)] < Cy forall zelly,, te (A" (4.2.8)

Also, as in Equation (4.2.5), one can verify from Equations (4.2.2) and (4.2.3) that
forz e Wo, Cc M9,

1 1
> Aug)(2) — — + +0
(]2)[ t l)( ) VO,1+ VO,Z V0,1+ Vo)z
_ 0 ast -0 (4.2.9)

Then one can use the dominated convergence theorem as in (i) to deduce from
Equations (4.2.8) and (4.2.9) that

%
2 . 2J2,1®t

/ [Au |0, = / <|]2;Atut| )0)0,2
Iy, Wa, wo,2

— 0 ast— 0,

which gives (ii). Thus we have finished the proof of Lemma 4.2.1. |

Recall from (2.1) the coordinate mappings : U;x — A nearp;,i = 1,...,
m+1,k = 1,2, and let{z)} cc M? be a continuous curve. We shall need the
following lemma:

LEMMA 4.2.2. There exist constant§;, C, > 0 such that for allr € (A*)"+1,
i=1....m+landk =1, 2,

(1) lgox(zik, 2| < C1maxl, log(—log|z;«|)}, and (4.2.10)
. 080k (Zik, 2) | |980x(Ziks2})
(i) =
0Zik 0Zik
C
on U,',k\{p,'}. (4211)

S -
|zi k1100 |z ]

Proof. Same as [9, lemma 4.2.2], and it follows from conditions (2.2.2), (2.2.3)
for @g x and conditions (b), (e) in (2.3) fafo. (-, -). O

Now we have
LEMMA 4.2.3. Letu, be as in Equation (4.1.4). Thenfoe=1,2,...,m + 1,

/ |Au;|°w; — 0 ast — 0.
lis



GREEN'S FUNCTIONS FOR QUASI-HYPERBOLIC METRICS 257

Proof. By Equation (4.1.3), we have, fare |;,,
V=1898;,,(2)

V=199 (01, (2)80a(Pr 1, (2). ). i =1,
) V=130(nis(2)80.1(PF; 1, (2), V)
- , , (4.2.12)
+ (1= 1.1 (2)801(Pr;2,(2). ¥)), 2<i <m1+1,

0, m+2<i<m+1

As in Equation (4.2.3), by substituting Equation (3.6.2) into Equation (4.2.1), we
have

1 ¢1.4(2) b1 ()
At t = - - = + t -+ t\ U
W@ = e <<¢1,t,¢1,t> WZ)) <<¢1,t,¢1,,> Vo ))
V=130g;,,,(2)
Vo @i (2)
=: 11,(2) + 12,(z) onl,, (4.2.13)
where
1 b1 ()
@) = o ) (<<51,,,¢1,,>+W’(Z)) (<"1,,, 1_¢>+Wy’))’
and
_ +/—1008,,,(2)
72:(2) = W nl. (4.2.14)

Here,y; is as in Equation (3.6.2). For simplicity, we will only prove Lemma 4.2.3
for the case wheh = 2, ..., m1 + 1, since the calculations in the other cases are
similar. First, using Remark 3.4.4, Equation (3.2.3), Propositions 3.6.1(ii), 3.6.2(ii),
Equation (4.2.14) and the fact that € Il,,, it is easy to see that there exist
constantg”y, C, > 0 such that

172.:/(2)| < C14 Cal ()| for z el (4.2.15)

Then it follows that

flrl,t(z)lzwt < f | Ci+ Coln@)| P, (by (4.2.15))
lis lit

[A

2C% / o + 2C2|| ¢, |12

lis

— 0 astr—0

(by Propositions 3.3.2(i) and 3.6.2(i)) (4.2.16)
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Forfixedi with2 < i <my+1andt = (t1, ..., tur1) € (A*)"*1 we consider the
parametrization of;); in (3.3.5) given byt (= a + ib) = logz; 1/ log ||, (1/2) —
28 <a< (/2 +25,0 < b < 21/|loglt]|. Recall also from Equation (3.1.1)

that one has;2 = #/z;1 for z = (ta, ..., 621,201, Zi2s Litds -« s Imt1) €
l;;. By Equation (4.2.12) and condition (b) in (2.3) fgs1(-, y/), one easily
sees that for 2< i < mi+ 1,t = (t1,...,thy1) € (AH" 1 andz =
(s oo 6im1, 2015 Zi2s igds -+ -5 Bny1) € i,

V=190g:,y,(z) = ~—100m;,(2)(80,1(zi,1. ¥1) — 80.1(zi.2, ¥)))
+/=101;:1(2) A (080.1(zi,1, ¥}) — 080.1(2i2, ¥)))

— V/=13n;,1(2) A (380,121, ¥}) — 380.1(2i2, V)

i i 11—, i
n i1 (2)wo,1(2i,1) n 1 — i (2))wo1(zi,2) .
Vo1 Vo1

It is easy to see from Equation (3.2.2) that there exists a conStant0 such that
forall r € (A*)"*1,

(4.2.17)

10 i |8277i,t|, |a§8277i,t| <Cz onl,. (4.2.18)
By Lemma 4.2.2(ii), we have, fare (A*)"+2,

3:801(zi,1, YD = 10;,,801(zi,1, ¥;) - (824,1/92)|

Ca Izial log |z ]
=~ - Y Zi, i
zialllogzial]
< Cs onl;, (cf.(3.3.4)) (4.2.19)

Here the constantS,, Cs > 0 are independent of One can easily see that similar
inequality also holds fos; g0.1(z:.1, ¥)» 9:80.1(zi.2, ¥;), 9:80.1(zi.2, y)) on l; .. Then

by Equations (3.3.6), (4.2.3), (4.2.14), (4.2.18), (4.2.19), one easily sees that there
exists a constanfs > O such that for alt € (A*)"+1,

lt2,(z)| < Cg forall zel,. (4.2.20)

Then, using Equation (4.2.20), one can proceed as Equation (3.3.7) to show that
there exists a constaft > 0 such that for alt € (A*)"*1,

log(—log |7 )|
20, < C)
/IM T2/ |0 < C7 llog |7 ]
— 0 ast —» 0. (4.2.21)

Thus fori =2,...,m1+ 1, we have

/IA,utlzwt = / |T1; 4 T2, 1%0;  (by (4.2.13))
lii lis
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2 2
=< 2/ |71,/ 0y +2f |72, |y
lis lis

— 0 ast - 0 (by(4.2.16) and (4.2.21)) (4.2.22)
Similarly, one can show that fér= 1 andi = m.+2, ..., m+1,f|” |Au, 2w, —
0 ast — 0, and this finishes the proof of Lemma 4.2.3. ' O

Now we summarize our discussion in (4.2) in the following

PROPOSITION 4.2.4Let u, be as in Equation (4.1.4). Them,u,|, — 0 as
t — 0.
Proof. We have

||Atut||§ = Z / |Atut|2wt+f |Atut|2wt+/ |Atut|2wt
| ' ||1', ”2,1

1<i<m+1%'i
— 0 ast -> 0 (byLemmas4.2.1and 4.2.3)

(4.3) Notation is as before. Leu, be as in Equation (4.1.4)¢po,.(=
1//Vol(M,, w,;)) be as in (3.5), and letp;, be as in Theorem 2.4.1. We
have
PROPOSITION 4.3.1.

(U, pos) — 0 ast — 0. (4.3.1)

Proof. Using condition (c) in (3.2) fog, (-, y,) and the fact thapo , is orthogonal
to ¢1,, we have, for alt € (A*)"+1,

1
/ <gt (z,y) — A—‘Pl,t(z)‘Pl,t(yt)) ¢O,1(Z)wt =0. (4-3-2)
M; 1t

Letg, ,, be as in Equation (4.1.3). Using Lemma 4.2.2(i) and Equation (3.3.4), one
can then proceed as in [9, proposition 4.2.3(ii)] to show that feril< m + 1,

f &y, (2w, — 0 ast — 0. (4.3.3)

it

Also, using the dominated convergence theorem, the continu{ty/séf, condition
(c) in (3.2) forgo(z, y;), Proposition 3.3.1, Lemmas 3.4.1 and 4.2.2(i), one can
proceed as in [9, proposition 4.3.2(iii)] to show that

f &y, (2w, — 0 ast — 0. (4.3.4)
Iy,

Since suppg:.y,) C U1<i<my+1lis) U1, (cf. Equation (4.1.3)), one can combine
Equations (4.3.3), (4.3.4) and Remark 3.4.4 to get
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/ gt,y, (Z)¢0,1(Z)w;
M,

1
VOI(M,, ;)

1
- ———-0=0 asr— 0. (4.3.5)

VVoi1+ Voo

Then Equation (4.3.1) follows from Equations (4.1.4), (4.3.2) and (4.3.5) by
letting: — 0, and we have finished the proof of Proposition 4.3.1. O

/ ./I ) 8.y (D

1<i<mi+1 L,

Also we have:

PROPOSITION 4.3.2.
(s, 1) — Oast — 0. (4.3.6)

Proof. From the self-adjointedness of, and the identityA,;¢1, = A1,¢1,, We
have, for allt € (A*)"+1,

1
/ (gt (z, 1) — A—¢l,t(z)¢l,t(yt)> 1./ (Dw;
M; 1

A 8(2, y) A1 (Do — 280, (¢1.4(2))%w,
1t JM; 1t M;
_ 1 _ A\ $1.: ()

)\'l,t (¢l,t(yt) " ¢1,t(Z)w1) )\'l,t

(by condition (b) in (3.2) forg, (-, y;) and||¢1 ]2 = 1)
=0 (since(pis, o) = 0). (4.3.7)

Let ¢1, be as in (3.2.3). It is easy to check that there exists a conétast 0

such that|¢1,(z)] < C forall z € M, andtr € (A*)"*L. Then as in Equa-

tion (4.3.3), one can use Lemma 4.2.2(i), Equation (3.3.4) and proceed as in [9,
proposition 4.2.3(ii)] to show that far=1, ..., m1 + 1,

f 81y, @D d1(2)w, — 0 ast — 0. (4.3.8)

li
From Equations (3.2.2) and (3.2.3), one easily checks #at(z) =

\/Vogz/ Vo.1(Vo.1 + Vo2) on 1y, for |¢] sufficiently small. Thus by Equation (4.3.4),
we also have

f 8y, ()1, (D), — 0 ast — 0. (4.3.9)
[LEW;
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Since suppgt,y,) C (U1§i§m1+1|i,1) ul 1.t (Cf- Equation (4-1-3)) andélm ¢l,t>| =
C > 0 for some constant independent of (cf. Proposition 3.6.1(ii)), it follows
from Equations (4.3.8) and (4.3.9) that

/ g,,yl(z)Mw, —~ 0 ast— 0. (4.3.10)
M, (P11, 1.1)
Using Lemma 4.2.2(i), one can easily adapt the argument in [9, proposi-
tion 4.2.3(i)] to show that for 1< i < m; + 1 andt = (f1,...,tn11) €
(AL,

i | log(—log | ])I?

&y (@0, < C

/. S iEl e [og 7|
— 0 ast - 0. (4.3.11)

Also, using the continuity ofy;}, the growth condition (a) in (2.3) fogo.1(-, ;)
neary, and Lemma 4.2.2(i), one can easily adapt the argument in [9, proposi-
tion 4.3.2(iii)] to show that for alt € (A*)"*1,

(&1 ()%,

(LEW}

27 pl)2
<Cy+C3 f / (logr?)?rdrd®
0 0

+C f ) f " tog(— logryy? . -14rd?
! o Jo J 9r " r2(logr)2

< Cs. (4.3.12)

Since supfg;y,) C (Ui<i<my41lis) U 11, it follows from Equation (4.3.11) and
(4.3.12) that

18, (2)ll2 < Cs forallr e (A*)" L, (4.3.13)

Here the constant§y, C,, C3, C4, Cs, Cg > 0 are all independent of Let ¢, be
as in Equation (3.6.2). Then

< &y @llz- vill2

‘ / g’t,y, @)V (D)
M,

< Gsl:l2 (by(4.3.13))
— 0 ast - 0 (by Proposition 3.6.2(i)) (4.3.14)

Then one has
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/ gt,y, (Z)¢1,;(Z)w1
M,

- / 72 (L@ +:/ft<z)> o (by (3.62)
M;

(P11, H1.0)
— 0 ast —» 0 (by(4.3.10) and (4.3.14)) (4.3.15)
Then Equation (4.3.6) follows easily from Equations (4.1.4), (4.3.7) and (4.3.15),
and thus we have finished the proof of Proposition 4.3.2. O

(4.4) Finally we are ready to give the proof of Theorem 2.4.1 as follows:

Proof of Theorem 2.4.1 et {M,}, p1, ..., Pm+1, X1» Vi, Ars, 1, D€ @S IN Theo-
rem 2.4.1. First we consider the case whgre Mf. Let ¢, = 1//Vol(M;, w,)
on M, be as before, and lat be as in Equation (4.1.4). For (A*)"*1, we define
the smooth function given by

Wy = Uy — (U, Po)Por — (Ur, P1)P1,; ONM,. (4.4.1)
From Equation (4.4.1) and the self-adjointednesa gfone easily checks that
Aw, = Ay — 0 — (uy, ¢l,t>)"l,t¢l,t
= Ay — (Asuy, d14)01, ONM,. (4.4.2)
From Equation (4.4.2), it is easy to check that
1AW 5 = AwE — (A, ¢1)1?
< IAu 3. (4.4.3)

From Equation (4.4.1), it is easy to see that is orthogonal to the eigen-
functions¢o, and ¢1,. Then one can use Parseval’s identity and proceed as in
Equation (3.5.6) to show that

1
lw; |5 < = |Aw, |5 forallt e (A*)"F1, (4.4.4)

wherea > 0 is the constant in Lemma 3.5.1. Sinee¢ {p1, p2, ..., Pmi1}, ONE

can proceed as in Equation (3.5.8) in Proposition 3.5.3 using the standard Nash—
Moser iteration technique (cf., e.g., [3, theorem 8.24]) to show that there exists a
constantC > 0 such that for alt € (A*)"+1,

lw (x| = Cllwellz + 14w ll2)

1
< C(&”Atwt”2+”Atwt”2> (by (4.4.4))

< c(g +1) Al (by (4.4.3)

— 0 ast - 0 (by Proposition 4.2.4) (4.4.5)
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Also, sincexg ¢ {p1, p2, ..., Pmy1}, ONE has

[{ur, d1,0) P10 (x1)]

q;lt(xt)
< Kuy, 1, — |+ ¥ (xy) by (3.6.2
[, dr.e)l (‘ B b 1Y (x I) (by ( )
< Cl{us, ¢1,)| (by (3.2.3), Propositions 3.6.1(ii) and 3.6.2(ii))
— 0 ast — 0 (by Proposition 4.3.2) (4.4.6)

Here the constanC > 0 does not depend on Similarly, it follows from
Remark 3.4.4 and Proposition 4.3.1 that

1

(s, G000, (x0) = (1, bo.) s

1

VVoi1+ Voo

= 0 ast— 0. (4.4.7)

—- 0

Then one has, from Equation (4.4.1),
u(x)) = wi(x) + (e, Pos)Pos (xr) + (s, P1.0)d1.: (1)
— 0+0+0 (by(4.4.5),(4.4.6)and (4.4.7))
= 0 ast— 0. (4.4.8)

Finally, Theorem 2.4.1 in the case whep € MY follows readily from Re-
mark 4.1.1, Equations (4.1.4) and (4.4.8). It is clear that Theorem 2.4.1 in the case
whenyy € Mg can be proved similarly, and thus we have finished the proof of
Theorem 2.4.1. O

5. Deduction of Corollaries 2.4.2 and 2.4.3
(5.1) First we deduce Corollary 2.4.2 as follows:

Proof of Corollary 2.4.2.Let 11, and/, be as in Theorem 2.4.1 and Corol-
lary 2.4.2 respectively, and denote b%” and!™” the corresponding objects on

M, with respect to:lsﬁyp,t. It follows from results in [8] that there exist constants
C1, C> > 0 such that

CiM™P < A?’f’ < CI™ forallt e (A*)™ L, (5.1.1)

Also, from Equation (2.2.4) and the minimax principle, there exist constants
Cs, Ca, Cs, Cg > 0 such that for alt € (A*)"*1,

Cal™ <1, < Cal™, and CsATP <y, < CorlP (5.1.2)
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In our separating node case, it is well known tl'}"éi‘if — 0 ast — 0, and thus by
Equations (5.1.1) and (5.1.2),

A1 — 0 ast — 0. (5.1.3)

Multiplying both sides of Equation (2.4.1) by;,, one easily sees from Equa-
tion (5.1.3) and Theorem 2.4.1 that

!'LTB (M,zgz(xz, Vi) — ¢1,t(xt)¢l,t(yt)) =0. (5.1.4)
IE(A*)m_Hl
Sincexo, yo ¢ {p1, P2, - - -, Pm+1}, ONE has

lim = @1 (x)¢re ()

re(a¥ymtl
. b1 (x) b1:(3)
= lim ——+ Y (x) | | =———— + ¥: ()
(At <(¢1,;,¢1,z> g ) ((¢1,;,¢1,z) g )
(by (3.6.2))
= ¢1,0(x0)¢P1,0()0)

(by Remark 3.2.1, Propositions 3.6.1(ii) and 3.6.2(i)))  (5.1.5)

Then Corollary 2.4.2(a) follows readily from Equations (3.2.1), (5.1.4) and
(5.1.5). Also Corollary 2.4.2(b) follows easily from Corollary 2.4.2(a) and
Equation (5.1.2). O

Finally, we have

Proof of Corollary 2.4.3Let {ds?} be as in Corollary 2.4.3. By Schwarz Lemma
of Yau [13], the curvature condition ofa/s?} implies that{ds?} satisfies Equa-
tion (2.2.4). Together with the hypothesis d@s3 on M°, it follows that {ds?}
forms a continuous family of quasi-hyperbolic metricgafy }, and Corollary 2.4.3
follows immediately from Theorem 2.4.1 and Corollary 2.4.2. O
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