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In this article, we consider a family of compact Riemann surfaces of genus 
q >_ 2 degenerating to a Riemann surface of genus q -  1 with a non-separating 
node. We show that  the Green's functions associated to a continuous family 
of quasi-hyperbolic metrics on such degenerating Riemann surfaces simply 
degenerate to that  on the smooth part of the noded Riemann surface. 

1. I n t r o d u c t i o n  

Given a Hermitian metric on a complex manifold, an important analytic 
object associated to its Laplacian is the Green's function. In this paper, 
we s tudy the asymptotic behavior of the Green's functions with respect to 
certain Hermitian metrics on a degenerating family of Riemann surfaces. 

A degenerating family of Riemann surfaces {Mr} can be obtained by 
shrinking non-trivial closed loops to points to form a noded Riemann surface 
M. This corresponds to a path in the moduli space A4q of compact Riemann 
surfaces of genus q leading to boundary points in its Deligne-Mumford com- 
pactification A4 e. There are essentially two cases, depending on whether 
any of the nodes separate M. Throughout this paper, we will assume q >_ 2, 
so that  M is stable, or equivalently, its smooth part M ° := M\{nodes}  
admits the hyperbolic metric of constant sectional curvature -1. 



466 W.-K. To, L. Wend 

The behaviors of the Green's functions and other spectral properties 
with respect to various canonical metrics on degenerating Riemann surfaces 
have been extensively studied (see e.g. [He], [Jil], [Ji2], [Jo], [We], [Wol], 
[Wo2]). The degenerative behavior of Green's functions for Arakelov metrics 
was studied by Jorgenson [Jo] and Wentworth [We]. Ji [Jil] showed that  in 
the case of non-separating nodes, the Green's functions for the hyperbolic 
metrics on {Mr} simply degenerate to that  of M ° (see [Jil] for more precise 
statements and the results in the case of separating nodes). Ji's method 
involved a detailed s tudy of the resolvent kernel of the hyperbolic Laplacians 
and depended on Hejhal's results on regular b-group theory [He], and it does 
not appear to generalize directly to the case of Hermitian metrics of variable 
curvature. 

In this article, we consider Hermitian metrics which are quasi-isometric 
to the hyperbolic metrics. Our first result is to prove the existence and 
the uniqueness of Green's functions (with certain growth conditions) on 
punctured Riemann surfaces for Hermitian metrics 'of hyperbolic growth 
near the punctures'  (see Theorem 1 in Section 2). Our main result is to show 
that  in the case of a non-separating node, the Green's functions with respect 
to a 'continuous family of quasi-hyperbolic metrics' on {Mr} degenerate to 
that  on M °, which generalizes the above result of Ji (see Theorem 2 in 
Section 2). 

The proof of Theorem 1 is elementary, and is given in Section 3. Our 
proof of Theorem 2 is different from the approach in [Jill, and is more 
geometric in nature. We sketch it briefly as follows. First we use the 
Green's function on M ° to construct a family of functions (with singularity) 
to approximate the Green's functions on {M~}. Then we give a description 
of the asymptotic behavior of the family of quasi-hyperbolic metrics using 
Wolpert 's corresponding results on hyperbolic metrics [Wo2], which allows 
us to show tha t  the error term in our approximation goes to 0 as t --* 0. 
Here we make essential use of the fact that  there is a positive lower bound 
for the first nonzero eigenvalues ~1 of the Laplacians as t --~ 0. 

At present we do not know the precise behavior of the Green's functions 
in the equally interesting case of separating nodes. The analysis appears 
to be more difficult since A1 --* 0 as t ~ 0 in this case. It is likely that 
the behavior exhibited by the hyperbolic Green's functions in [Jill may also 
prevail in the case of separating nodes, although our geometric approach 
does not seem to generalize directly to this case. 

2. N o t a t i o n  and s t a t e m e n t  of  results  

(2.1) Throughout  this paper, we consider the degeneration of compact Rie- 
mann surfaces of fixed genus q >_ 2 into a singular Riemann surface of genus 
q - 1 with a single non-separating node p. 
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To facilitate ensuing discussion, we first recall the plumbing construc- 
tion of a degenerating family of Riemann surfaces start ing from M as fol- 
lows (cf. e.g. [F], [Wo2]). Let M ° := M\{p}.  Then M ° is a punctured 
Riemann surface with two punctures Pl, P2 in place of p, where Pl, P2 cor- 
respond to two points in the normalization M of M. Denote the unit disc 
in C by A. For i = 1, 2, fix a coordinate function zi : Ui -+ A such tha t  
zi(pi) = O, where Us is an open neighborhood of Pi. For each t E A, let 
St := {(x,y)  6 A 2 : xy = t}. Now for each t 6 A, remove the discs 
[zi[ < [tl, i = 1, 2, from M and glue the remaining surface with St via the 
identification 

Zl ~ ( z l , t / z l )  and z2 ~ (t/z2, z2). (2.1.1) 

The resulting surfaces {Mr}teA form an analytic family 7r : A/I --~ A with 
Mo = M. Here 7r denotes the holomorphic projection map. Note tha t  for 
t # 0, each fiber Mt is a compact  Riemann surface of genus q. Also the 
node p does not disconnect the Riemann surface when removed from M. 
The restriction of ker(dTr) to M \ { p }  forms a holomorphic line bundle over 
A/[\{p} such tha t  L[M~ = TMt and L[MO = T M  °, which will be called the 
vertical line bundle. Note tha t  ker(dTr) itself does not form a line bundle 
over J~4 since ker(dzr) is of rank 2 at p. 

(2.2) We shall need the following definitions for subsequent discussion. 

Definition 2.2.1. Let N be a punctured Riemann surface. A Hermitian 
metric ds 2 on N is said to be of hyperbolic growth near the punctures if for 
each puncture p, there exists a punctured coordinate disc A* := {z E C : 
0 < Izl < 1} centered at p such tha t  for some constant C1 > 0, 

Clldz l  2 
(i) ds 2 < izl2(loglzl) 2 on A*, (2.2.1) 

and there exists a local potential  function ¢ on A* satisfying ds 2 = 
°2~ dz @ d~ on A*, and for some constants C2, C3 > 0, OzO~" 

(ii) ]¢(z)[ < C2max{1,1og(-  log ]zl)}, and (2.2.2) 

~ z  '1-0--2 C3 A*. (2.2.3) (iii) 0 ¢  , 0 ¢  - < I z l l l o g J z l l  o n  

Now let ~r: {M,} --+ A and L be as in (2.1). For t # 0 (resp. t = 0), let 
ds2t (resp. ds~) be a Hermit ian metric on Me (resp. M ° := M\{nodes}) .  

Definition 2.2.2. {ds2t} is said to be a continuous family of Hermitian met-  
rics on {Mr} if {ds~} form a continuous section of L* ® L*. 

For t ~ 0 (resp. t = 0), denote the hyperbolic metric on Mt (resp. M °) 
by 2 (resp. dShyp,t ds2yp,0) • 

Definition 2.2.3. A continuous family of quasi-hyperbolic metrics {ds2t } on 
{Mr} is a continuous family of Hermitian metrics (in the sense of Definition 
2.2.2) such tha t  



468 W.-K. To, L. Weng 

(i) there exist constants C1, 6 2 > 0 such that  

CldS2yp,t < ds 2 < C2ds2yp,t for all t e A, (2.2.4) 

(ii) ds 2 is of hyperbolic growth near the punctures on M ° (cf. Definition 
2.2.1). 

Remark 2.2.4. (i) By a result of Wolpert [Wo2, Theorem 5.8] and well- 
known properties of hyperbolic metrics, the hyperbolic metrics {ds~yp,t} 
form a continuous family of quasi-hyperbolic metrics on {Mr}. 

(ii) Non-trivial continuous families of quasi-hyperbolic metrics can easily be 
constructed by the grafting procedure in [Wo2, §3, §4]. 

(iii) It follows easily from (2.2.1) that  Vol(M °, ds~) < oo. 

(iv) We remark that  one can deduce (2.2.1) for ds 2 from (2.2.4) with t = 0. 

(2.3) Let {Mr} be as in (2.1). Next we consider the Green's function on 
each Mr. For t ~ 0, let ds2t be a Hermitian metric on the compact Riemann 
surface Mr, whose associated K~ihler form is denoted by wt. Denote also the 

1 It is well-known that  there normalized K£hler form by &t . -  Vol(M,,~,)wt • 
exists a unique Green's function gt(', ") on Mt × Mr\Dr, where Dt denotes 
the diagonal, such that  the following conditions are satisfied: 

(a) For fixed x e Mr, and y ~ x near x, 

gt(x, y)  = - log  I / ( y ) l  2 + ~ ( y ) ,  (2 .3.1)  

where f is a local holomorphic defining function for x, and a is some 
smooth function defined near x; 
(b) dyd~gt(x, y) = C~t - 6 ~ ;  (2.3.2) 

(c) ~,vl/'q gt(x, y)C~t = 0; (2.3.3) 

(d) gt(x, y) = gt(Y, x) for x # y; (2.3.4) 
(e) gt(x, y) is smooth on Mt × Mr\Dr. (2.3.5) 

i - See e.g. ILl for the above definition. Here d~ := ~ ( 0  - 0) with respect to 
the first variable (so that  dxd~ = ~ 0 0 ) ,  and 6~ is the Dirac delta function 
at x. Note also that  the growth condition (a) is independent of the choice 
of the local holomorphic defining function for x. 

For t = 0, suppose ds~ is a Hermitian metric of finite volume on the 
punctured Riemann surface M ° with w0, &o defined similarly as above. The 
Green's function go(', ") on M ° with respect to ds 2 is a function on M ° × 
M°\{diagonal} satisfying conditions (a) to (e) above (with t = 0 and Mt 
replaced by M °) and the following growth condition: 

(f) Near each puncture p of M °, there exists a punctured coordinate 
neighborhood A* centered at p such tha t  for fixed x ~ A*, there exists 
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a constant C > 0 such that  

Igt(x,z)l < Cmax{1,1og(-  log Iz[) } on A*. (2.3.6) 

As a motivation, we remark that  (2.3.6) is obviously satisfied by the 
potential function - log(-  log Iz[) for the Poincar~ metric on A*. 

(2.4) Notation as in (2.1), (2.2) and (2.3). Now we state our results in 
this article. Our first result concerns existence and uniqueness of Green's 
function on a punctured Riemann surface, which we include here for the 
sake of completeness. 

T h e o r e m  1. Let N be a punctured Riemann surface, and ds 2 be a Her- 
mitian metric on N of hyperbolic growth near the punctures (see Defini- 
tion 2.2.1). Then there exists a unique Green's function g(., .) on N × 
N\{diagonal} with repect to ds 2 satisfying all the conditions (a) to (f) in 
(2.s). 

Our main result is the following 

T h e o r e m  2. Let {Mr } be a family of compact Riemann surface of genus 
q > 2 degenerating to a Riemann surface M of genus q - i with a single 
non-separating node p as described in (2.1). Suppose {ds~t } is a continuous 
family of quasi-hyperbolic metrics on {Mr} (cf. Definition 2.2.3). Then for 
continuous sections xt ,Yt  of {Mr} such that xt ~ y~ for all t and xo,Yo c 
M ° = M \ { p } ,  we have 

lira 9t(xt, Yt) = go(xo, Yo), 
t--~O 

(2.4.1) 

where go(', ") is the Green's function with respect to ds2o given by Theorem 
1. 

Finally, we have the following 

Coro l l a ry  3. Let {Mr} be as in Theorem 2, and let {ds 2} be a continuous 
family of complete Hermitian metrics on {Mr}. Suppose there exist con- 
stants C1, C2 > 0 such that the sectional curvatures of {ds 2} are pinched 
between -C1 and -C2  for all t E A,  and ds 2 is of hyperbolic growth near 
the punctures on M °. Then the conclusion of Theorem 2 remains valid. 

3. G r e e n ' s  f u n c t i o n  on  p u n c t u r e d  R i e m a n n  sur face  

(3.1) In this section, we give, for the sake of completeness, the proof of 
Theorem 1 following closely the approach in [L] in the compact case. As 
the proof is simple and elementary, some of the steps will only be sketched. 

We shall need the following elementary lemma on the extension of har- 
monic functions, whose proof will be skipped: 
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L e m m a  3.1.1. Let u be a harmonic  funct ion on the punctured unit  disc 
A* := {z • C :0  < Izl < 1}. Suppose there exists a c o n s t a n t C >  0 such 

that 
lu(z)l <_ Cmax{1 ,1og( - logH)  } for all z • A*. (3.1.1) 

Then u can be extended to a smooth harmonic  funct ion on the unit  disc 

A : =  {z C: Izl < 1}. 

Now we are ready to give the following 

Proof  o f  Theorem 1. I. Existence: Let N and ds 2 be as in Theorem 1, and 
let N be the smooth compactification of N such that  N \ N  consists of points 
{Pi} corresponding to the punctures of N. It follows easily from (2.2.1) that  
Vol(N, ds 2) < co. Denote the normalized volume form of ds 2 by d) so that 
Vol(N,&) = 1, which readily implies that  & extends trivially to a d-closed 
(1,1) current on/V, which we denote by ~. Moreover, the cohomology class 
represented by & is a positive generator of H2(/~, Z) -~ Z. Thus for x • N, 

- 6~ is a d-exact (1,1) current on N, where 6~ denotes the Dirac delta 
function at x. Since/~ is K£hler, one can find a locally integrable function 
g~(.) on/V satisfying 

c I dydyg x = & - 6x, (3.1.2) 

in the sense of (1,1) currents on/V. Near each puncture Pi, let ¢i be a local 
potential function for & satisfying (2.2.2) and (2.2.3) on some punctured 
coordinate unit disc A* centered at Pi. Then it follows easily from (2.2.3) 
and (3.1.2) that  dd~(g~ - ¢i) = 0 as (1,1) currents on A. Standard elliptic 
regularity theory implies that  

g~ = ¢i + hi on A*, (3.1.3) 

where hi is some harmonic function on A. It follows easily from (2.2.1), 
(2.2.2) and (3.1.3) tha t  f N  g~w is finite. Define 

:= - / N  on N\{x}, (3.1.4) 

and define finally the Green's function by 

g(x,y)  := for x # y • g .  (3.1.5) 

We need to verify condition (a) to (f) in (2.3). Condition (b) follows imme- 
diately from (3.1.2) and (3.1.3). Condition (a) is an immediate consequence 
of condition (b). Condition (c) follows easily from (3.1.4). To verify con- 
dition (d) on symmetry, we take x # y E N. Let Dr denote the union of 
coordinate discs i n / ~  of radius r and with centers at {Pi}, x, y, and let Cr 
denote the union of the boundary circles of Dr. Then condition (d) can 
be verified as in the compact case in [L, Chapter II] by applying Stokes' 
theorem on N \ D r  and showing that  limr-~0 fv~(g~dCg~ - g~dCg~) = 0 using 
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the growth condition (f) for gx, gy and the growth condition for dCgx, d~gy 
near the punctures implied by (2.2.3) and (3.1.3). To verify condition (e) 
on smoothness, we take a smooth normalized volume form/5 on/V, and find 
a locally integrable function ~ on N by solving the equation 

ddCt3 = c~ - /~  (3.1.6) 

as (1,1) currents on N and such that  fN/3(~; +/5) = 0. Then it is easy to see 
that ,  like gx('),/3 and d13 satisfy the growth conditions (2.2.2) and (2.2.3) 
near the punctures. Then one can deduce the smoothness of 9(-, .) on N x 
N\{diagonal} from that  of/5 as in [L, Chapter II, Proposition 1.3]. We only 
need to remark that  with the growth conditions of j3 and d~, the arguments 
in [L, Chapter  II, Proposition 1.3] involving Stokes' theorem remain valid 
by considering small circles of radius r centered at the punctures and then 
letting r -* 0. This finishes the proof of the existence part  of Theorem 1. 

II. Uniqueness: Suppose that  g(-, .) and gl(., .) are two functions satis- 
fying conditions (a) to (f) in (2.3). Then for fixed x E N, it follows from 
condition (b), condition (f) and Lemma 3.1.1 that  g(x, .) - g'(x, .) extends 
to a harmonic function on N, which implies that  g(x, .) = g'(x, .) + k for 
some constant k. Then it follows from condition (c) tha t  k = 0 and this 
proves the uniqueness of the Green's function. Thus we have completed the 
proof of Theorem 1. 

4. A p p r o x i m a t i o n  o f  G r e e n ' s  f u n c t i o n s  on  Mt 

(4.1) Notation as in §2. Let Ad = {Mr},  {ds~}, p, xt, Yt, gt(', ") and go(', ") 
be as in Theorem 2. In this section we are going to construct an approx- 
imation of gt(' ,Yt) on Mt using g0(', ').  Recall from (2.1) the coordinate 
functions zi : Ui -~ A, i = 1, 2, and that  there exists an open neighborhood 
A2 ~-- U1 x U2 centered at p such tha t  M t n A  2 = {(Zl,Z~) E A2 : zlz2 = t}. 
Fix a small number 5 > 0. We define, for t c A*, 

It :=- { ( z l , t / z l )  e A s :  Itl ½+2e < Izl[ < Itl ½-2e} 
={(t / z2 ,  z2) e A2:[tl½+~6 < Iz21 < It[ ½-26} (4.1.1) 

c M t ,  

and we let IIt := Mr\I t .  For each t, we let 

il,t : It --* U1, and i2,t : It -* U2 (4.1.2) 

denote the holomorphic maps induced by the coordinate projection maps 
on A 2. Also the plumbing construction in (2.1) induces a biholomorphism 

i t :  IIt --~ Wt, where Wt := M ° \  U {[zil < itl}-2~}. (4.1.3) 
i=1,2 
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We denote the inverse of it by jt : Wt ~ IIt. Note tha t  il,t, i2,t, it, jt all 
depend analytically on t, and {Wt } form an increasing sequence of compact 
subsets exhausting M ° as t ~ O. It is easy to see that  xt, Yt ~ It for Itl 
sufficiently small, since xo, y0 ~ P. Thus shrinking A if necessary, we may 
assume that  xt, Yt E IIt for all t E A. We let 

x~ := it(xt) and y~ := it(yt), t E A,  (4.1.4) 

denote the associated continuous curves on M °. Note that  x~ = x0 and 
Y~ = Y0. Write a = log lzli/  log it I. Then we have ½ - 25 < a < ½ + 2 5  on 
each It. Now we fix r/ = o(a) to be a smooth non-negative function such 

1 - 5 .  tha t supp(d~)  C ( 3 - 5 , ½ + 5 ) , r / = 0 f o r a >  ½ + S a n d r / = l f o r a <  
Finally for each t E A*, we define the following function on Mt\{y t}  given 
by 

S (1 - n)g0(i , , t (x) ,v;)  + vgo(i2,t(x),v~), x e It, 
~t,y,(x) := [ go(it(x), y~), x E IIt. (4.1.~) 

It  is easy to see that  gt,y< is smooth on Mt\{Yt} ,  and we shall call gt,yt the 
grafted Green's function on Mr. 

(4.2) Notation as in (4.1). In this subsection, we obtain some estimates on 
It needed for ensuing discussion. Recall from (4.1) the coordinate neighbor- 
hood A 2 o fp  in AA such that  M t N A  2 = { ( z x ,  Z2) E A 2 : ZlZ2 = t}. Thus for 
t ~ 0, zi,  z2 provide two different coordinate functions on Mt N A 2. First 
we have 

P r o p o s i t i o n  4.2.1.  There exist constants C1,C2 > 0 such that for all 
t E A*, we have, on Mt fq A 2, 

7rloglz~l Idz, l~ = [ 7r r l o g l z ,  I Idz,[~ 2 
c, [k,~csc ~ log Itl lz, I ) <- ds~ < c~ t,,lo--o-~]~csc log Itl Iz, t ) 

(4.2.1) 

Proof. A result of Wolpert [Wo2, Expansion 4.2] implies that  (4.2.1) holds 
for the hyperbolic metrics {ds~yp,t} on {Mr}. This, together with (2.2.4), 
implies Proposition 4.2.1. 

Recall from (2.1) the coordinate mappings zi : Ui ~ A near p. For 
Itl sufficiently small, {y~} c c  M °. Shrinking Ui if necessary, we may thus 
assume that  {y~} rq Ui = 0, i  = 1,2. Then we have 

L e m m a  4.2.2.  There exist constants 01,02 > 0 such that for all t E A* 
and for  i = 1, 2, 

(i) Igo(zi, Y~)I < Clmax{1, log( -  log Izil)}, and (4.2.2) 

Oz~ ' o~  Iz~llloglz~ll on  gi\{p}. (4.2.3) 
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Proof. For i = 1,2, let ¢~ be a local potential function for Wo satisfying 
(2.2.2) and (2.2.3) on Ui\{p}. From conditions (h), (e) in (2.3) for g0(', '), 
we easily have 

go(zi,y~) = ¢i(zi) + h(t, zi) on Ui\{p}, (4.2.4) 

where h is continuous in (t, z) and is harmonic in zi. Then we can easily 
deduce Lemma 4.2.2 using the Poisson integral formula for h(t, .) and the 
corresponding growth conditions (2.2.2), (2.2.3) for ¢i. 

We denote the Laplacian on Mt with respect to ds 2 by At. Here we 
adopt the notation that  the Laplacian for a Hermitian metric h is given by 
A = -hZ~OzO~. 

P r o p o s i t i o n  4.2.3. Let It be as in (4.1.1). We have 

(i) / w t -*  0, / ~bt--* 0, (4.2.5) 
~ x t  

(ii) / Ot,yt&t---* O, and (4.2.6) 
JIt 

(iii) ]i (At~Tt,vt)2wt ~ 0 as t --~ O. (4.2.7) 
g ~  

Proof. First we note that  by (4.1.1), there exist constants C1, C2 > 0 such 
that  for i = 1, 2, 

C1 _< log tzi____~ _< C2 on It. (4.2.8) 
log It1 

• 2 7 r  Wri tez l  = e  ¢l°gltl T h e n ~ = a + i b ,  1 - 2 6 < a <  ½ + 2 6 , 0 < _ b <  ~ ,  
provides a parametrization for each It, t E A*. It is well-known that  
Vol(Mt,ds~yp,t) = 27r(2q - 2) for each t. Thus by (2.2.4), there exist 
constants C3,C4 > 0 such that  C3 _< Vol(Mt,ds 2) <_ Ca for all t E A. 
Together with Proposition 4.2.1 and (4.2.8), it follows that  there exist con- 
stants C5, C6 > 0 such that  for all t E A*, 

C5-~d¢ A d~ < w~, &t <_C6 d¢ A d~ on It. (4.2.9) 

Then 

=c6 f +  eaeb (4.2.10) 
dO J½-26 

8~6C6 
- - - - - ~ 0  as t --+ 0. 

I I°g lell 

Similarly one can show that  fit wt --* 0 as t --* 0, and this finishes the 
verification of (i). To verify (ii), we take z = (zl, z2) E It C A 2. Note that  
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in terms of Zl, Z2, we have il,t(z) = Zl, i 2 , t ( z )  =- z2 (cf. (4.1.2)). Now on It, 

[~t,u~(z)[ <_[go(il,t(z),y~)l + Igo(i2,t(z),y~)[ (by (4.1.5)) 

<CTmax{1, log( -  log [Zl[) + log( -  log [z2[)} (by aemma 4.2.2) 

_<Csmax{1, log( -  log It[)} (by (4.2.8)), 
(4.2.11) 

where C7, C8 > 0 are constants independent of t. Using (4.2.11), one can 
show as in (4.2.10) that  for some constant C9 > 0, 

Ifh Ot'v*&t ..~ log( -  log ,t,) iVo  f ast- 0, 

which verifies (ii). To verify (iii), we first note that by (4.1.5), we have, for 
z = (Zl,Z2) E It C A2, 

0¢o~, ,~,  (z) =(0¢o~7)[90(i2,,(z),  y~) - g0(< , (z ) ,  y~) 
+ 2 R e [ ( O ¢ 7 ) O ( ( g o ( i 2 , t ( z ) ,  y~) - g o ( i l , t ( z ) ,  y~)) ]  (4.2.12) 

+ (1 - 7)O¢Ocgo(il,t(z), y~) + 70¢O~go(i2,t(z), y~). 

Here O¢O~gt,u, (z) denotes 029t,v, (z)/O¢O~, etc. By construction, it is easy to 
see that  there exists a constant Clo such that for all t E A*, 171, 10¢71, I0~71, 
10(0¢71 _< Clo on It. Also, one can show as in (4.2.11) that  there exists 
a constant C n  such that  for all t e A*, Igo(ix,t(z),y~)l, Igo(i2,t(z),y~) I <_ 
Cnmax{1,  log ( -  log Itl)} on It. For t 6 A*, we also have 

IO~go(il,,(z), v~)l =lOz,go(z~, v~) . Oz~/O¢l 
c12 

-< Izlll log IZlll " Izl[' I I°g Itll (by Lemma 4.2.2) (4.2.13) 

~C13 on It (by (4.2.8)). 

Here C12, C13 > 0 are constants independent of t. Similar inequality also 
holds for the quantity IOcgo(i2,t(z),y~)l. From conditions ( b ) i n  (2.3) for 
go(', ") and (2.2.1) for ds 2, one can show as in (4.2.13) that  there exists a 
constant Ca4 > 0 such that  for t 6 A*, 

IO¢O~go(i~,t(z),y~)l, IO¢O~go(i2,t(z),y~)l <_ C14 on It. 

It follows from (4.2.12) and the above considerations that  there exists a 
constant Cls > 0 such that  for t E A*, 

10¢O~9t,v,I <_ Cl~max{1,1og(-log Itl)} on It. (4.2.14) 

1 
Since AtOt,u, = wCO/O~,O/o~)O¢O~Ot,v,,,, one can use (4.2.9), (4.2.14) and 

proceed as in (4.2.10) to show that there exists a constant C16 > 0 such 
that 

f ,  (A,X~,)2~, < C16 [log(-log N)] ~ -~ 0 as t -~ 0. 
- I log Itll 
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This verifies (iii), and we have finished the proof of Proposition 4.2.3. 

(4.3) Notation as in (4.1) and (4.2). Let {Mr}, xt, Yt be as in Theorem 
2. To compare the grafted Green's function gt,y, in (4.1.5) with gt(', Yt), 
we make several definitions. First for t • A*, we let gt,~(') := gt(' ,yt) on 
Mt\{y t } ,  and define the following function 

uo,t := gt,y, - [Tt,y, + Ct on Mt\{y t} ,  (4.3.1) 

where Ct is the constant given by 

Ct (4.3.2) 
d / V /  t 

From the growth condition (a) in (2.3) for go(', Y~) near y~, it is easy to see 
that  Ct is finite for each t. Recall that,  from (4.1), we have two biholomor- 

phisms it : IIt --* Wt, j~ : Wt --* IIt, where Wt = M ° \  U {Izil < It1½-2~}" 
i = 1 , 2  

For IrE sufficiently small, y~ c Wt. Also, it follows from (4.1.5) that  ~t,y~ = 
• $ ! 
~tgo(',Yt) on IIt\{Yt}.  Since it : I I t  ~ Wt is a biholomorphism, it follows 
that  for any local holomorphic defining function h for y~, h o it is a local 
holomorphic defining function for Yr. Thus the growth condition (2.3.1) for 
go(', Y~) near y~ implies that  9t,y~ also satisfies (2.3.1), i.e. for x near Yt, 
x # yt, 

~,~(~) = - l o g  I:(x)l ~ + ~(z) 

for any local holomorphic defining function f for Yt, where ~ is some smooth 
function defined near Yr. Together with the growth condition (2.3.1) for 
gt,y~, it follows from (4.3.1) that  uo,t extends uniquely to a smooth function 
on Mr, which we denote by ut. Define also the smooth function 

Ct := Atut  on Mr. (4.3.3) 

First we have 

L e m m a  4.3.1. For 0 < to < 1, there exist constants C,C'  > 0 such that 
for all O < t < to, 

• . 2 C d s  2 on Cds2 <- Jt dst < Wt. (4.3.4) 

Proof. Let z~ : U~ --* A, i  = 1,2, be as in (2.1). Write each Wt = N[3 
Vl,t U U2,t where U~,t := {z • U~ : Itl½ -2~ < tzil < 1} C Ui, i = 1,2, and 
N := Wt\(UI,tUU2,t). To prove Lemma 4.3.1, it suffices to show that  (4.3.4) 
holds on N, Ul,t,U2,t respectively. First we note that  the compactness of 
N x {t E (3 : It I < to} and the continuity of {ds 2} imply that  (4.3.4) 
holds on N. From (2.2.4) with t = 0 and well-known behavior of the 
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hyperbolic metric ds2yp,0 near the punctures, it follows that there exist 
constants C1, C2 > 0 such that  for i = 1,2, 

C 
Idz~12 

l lz, t ( og Fz, < < 
Idzil 2 

Izd2(log Izd) 2 on Us. (4.3.5) 

lr log Izi_______~ I 1 
We observe that  0 < log }t I < 7r(~ - 26) on each U~,t, and there exist 

constants C3, C4 > 0 such that  the function f(O) := 0csc0 satisfies C3 < 

1 _ 26). Together with (4.3.5) and Proposition f(O) < C4 for 0 < 0 < Ir(~ 

4.2.1, one can easily verify that  (4.3.4) also holds on each Ui,t, and this 
finishes the proof of Lemma 4.3.1. 

P r o p o s i t i o n  4.3.2.  We have 
(i) Vol(Mt, cot) --* Vol(M0, w0), (4.3.6) 

(ii) fix 2 CtWt ~ O, and  (4.3.7) 
t 

(iii) /__ ~t,ytCot ~ 0 as t --~ O. (4.3.8) 
J l l  t 

Proof. Recall from (4.1) the decomposition Mt = It U IIt. Then one has 
Vol(Mt, wt) = fI~ wt + fII, cot. Note that  flI~ cot = fw~ j2wt, and the latter 
integral can be regarded as an integral on M ° by letting the integrand to 
be zero on M t \ W t .  Since Wt increases to M ° as t --* 0, it follows from the 
continuity of {ds 2} that  3t'*cot coverges pointwise to wo on M ° as t -* 0. 
Using Lemma 4.3.1 and the fact that  fMO COO < co, one deduces from the 
dominated convergence theorem that fw~ J~cot -~ fMO coo as t -~ 0. Together 
with Proposition 4.2.30), one gets (i) immediately. To verify (ii), recall 
from (4.1.5) that  gt,u~ = i~g0(', Yg) on I I t \ {y t } .  From (4.3.a), condition (b) 
in (2.3) for go(', y~) and gt(', Yt), one gets 

2rr dd c . - -  ( g t , ~  - Ot,y~ + C t )  
Wt 

27r (C~t - i 2~o )  
COt 

( 1 
2 ,  Vol(/~t,wt) Vol(M°,co0) w-~ /  

on I I t \ {y t } .  

(4.3.9) 

Here ratios of (1,1) forms make sense since Mt is 1-dimensional. Note also 
that  since both  Ct and the last line of (4.3.9) are smooth functions on IIt, 
they are actually equal to each other on IIt. Then 

Jt wt wo 
Vol(Mt, wt) Vol(m °, w0) j tw t  w---o" " 

(4.3.10) 

By (i), Lemma 4.3.1 and the continuity of {dst2}, it follows that the integrand 
in (4.3.10) is bounded from above by a constant independent of t and it 
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converges pointwise to 0 on M ° as t --~ 0. Then as in (i), one can use the 
dominated convergence theorem to obtain (ii). To verify (iii), we note from 
(4.1.5) that  

t l\3t t ^ 
gt,ytwt = y0k', Yt)-z'--wo" 

~ WO 

From (i) and the continuity of {ds~}, we see that  the integrand converges 
pointwise to go(', Y~) on M ° as t --* O. Fix a local coordinate function 
near y~, and let A(y~, r0) denote the coordinate disc centered at y~ and of 
fixed radius ro > 0. Such A(y~, ro) exists for Itl and r0 sufficiently small. 
Let ~-t : A(yG, r0) --~ A(y~, r0) denote the continuous family of translations 
sending yG to y~. Then it follows from condition (a) in (2.3) that in terms 
of polar coordinates (r, 9) centered at y~, T~go(', y~) = --logr2 ÷ a(t ,  r,8), 
where a(t,  r, 8) is continuous. Using the dominated convergence theorem, 
one deduces that  

/ h  Ot'v'wt -* / ~  g°(" ' ^ as t -* O. (4.3.11) 
(y,ro) (v~,~o) 

Now, by combining Lemma 4.2.1, Lemma 4.2.2, (4.3.5), and also the simple 
fact that  

/ ~  log( -  log Izl) idz A d2 < 
(½) N (log Iz{) 

where A ( ½ ) : =  {z E C :  Izl < ½}, one can use the dominated convergence 
theorem to deduce that  

~II gt'yt~t "-+ /M gO(',Y'o)WO as t -~ O. 
,\A(y~,~o) °\A(y~,ro) 

This, together with (4.3.11), implies (iii) immediately, and we have finished 
the proof of Proposition 4.3.2. 

Throughout the rest of this paper, L 2 norms on Mt are always with 
respect to ds~, and are simply denoted by I1" 112. Now we summarize our 
results in §4 in the following 

P r o p o s i t i o n  4.3.3.  Let ¢t be as in (~.3.3) and Ct be as in (~.3.2). We 
have 

(i) I1¢t112-'~ 0, and 
(ii) Ct --~ 0 as t ---* O. 

Proof. For Itl sufficiently small, yt ~ It. Then we have 

¢~ =(Atut)  2 (by (4.3.3)) 

=(A,g~,v, - At~t,v~) 2 (by (4.3.1)) 

- ( V o l ( - ~ , w t )  At0t 'u ' )  2 (by (2.3.2)) 

87r 2 
< + 2(At~t,~,) 2 on It. 
- (Vol(Mt, wt)) 2 
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Then it follows from Proposition 4.2.3 (i), (iii) and Proposition 4.3.2(i) that  
fI ,  ¢~t wt "-~ 0 as t ~ O. This, together with Proposition 4.3.2(iii), implies 
(i) immediately. Finally (ii) is an easy consequence of Proposition 4.2.3(ii) 
and Proposition 4.3.2(iii), and this finishes the proof of Proposition 4.3.3. 

5. P r o o f  of  T h e o r e m  2 

(5.1) Let {Mr}  be as in Theorem 2. For t E A*, we denote by /~l,t (resp. 
,'~ hyp'I the first non-zero eigenvalue of the Laplacian with respect to ds 2 (resp. 1,t ,' 
ds~yp,t) o n  Mr. W e  s h a l l  n e e d  t h e  following 

L e m m a  5.1.1. There exists a constant  c~ > 0 such that Al,t >_ c~ for  all 
t E A * .  

Proof. It is well-known and follows from results in [SWY] and [He] that  
in our case of degenerating Riemann surfaces with a non-separating node, 
there exists a constant /3 > 0 such that ,,~hyp > fl for t E A* (see e.g. 1,t --  
[Jil, Corollary 3.4]). Then by minimax principle and (2.2.4), Lemma 5.1.1 
follows immediately. 

L e m m a  5.1.2.  Let u t , ¢ t  be as in (~.3). Then ttuttt2 <_ _1 I1¢t112 f o r  all 
O~ 

t 6 A*,  where ~ is as in L e m m a  5.1.1. 

Proof. By (2.3.3), (4.3.1) and (4.3.2), it is easy to see that fM~ utwt = 

0. Together with (4.3.3), we have ut = Gt¢ t ,  where Gt is the Green's 
operator on M t  with respect to ds 2. It is well-known that this implies 

lluttl2 < x-~l. tlCtll2. This, together with Lemma 5.1.1, implies Lemma 5.1.2 

immediately. 

P r o p o s i t i o n  5.1.3.  Let  ut be as in (4.3) and xt  be as in Theorem 2. Then 
we have u t ( x t )  ~ 0 as t ~ O. 

Proof. Since x0 # p, there exists to > 0 such that xt  e IIt for all 0 < Itl < to. 
As in the proof of Proposition 4.3.2(iii), one can find a continuous family of 
coordinate discs A(xt,  r) C M t  centered at xt  and of a fixed radius r > 0 
for 0 < Itl < to, shrinking to if necessary. Shrinking r if necessary, we may 
assume that  for 0 < Itl < to, each A ( x t ,  r) C IIt, and Yt f[ A ( x t ,  r). By the 
relative compactness of U A(x t , r )  in { M t } \ { p }  and the continuity of 

O<ltl<to 
{ds~}, there exist constants C1, C2 > 0 such that  for all Itl < to, 

C l d z  ® d2 < ds 2 < C2dz ® d5 o n  A(xt, r). (5.1.1) 

Then using Nash-Moser iteration technique (cf. e.g. [GT, Theorem 8.24]), 
one can deduce from (4.3.3) and (5.1.1) that  there exists a constant C > 0 
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such that  for 0 < Itl < to, 

_<c(~11¢~1r2 + 11¢~112) (by Lemma 5.1.2) 

-~0 as t --+ 0 (by Proposition 4.3.30)). 

Here (~ is as in Lemma 5.1.2, and we have finished the proof of Proposition 
5.1.3. 

Finally we are ready to give the following 

Proof of Theorem 2. Let xt ,Yt  be as in Theorem 2, and gt,w,Ot,y~, xt; Yt; 
ut ,Ct  be as in (4.1) and (4.3). By construction, x~ = Xo and y~ = Y0 
in M °. Also, for Itl sufficiently small, xt, Yt c IIt and thus from (4.1.5), 
gt,y~ (xt) = go(x~, y~). Then it follows from the continuity of go(', ') that  

~,~(x~)  -~ g0(x~, y~) = g0(xo, yo) as t -~ 0. (5.1.2) 

Then 

g~(~, y~) =g~,~ (~) 
=ut(xt)  + ~t,yt(Xt) - Ct (by (4.3.1)) 

---,0 + go(xo, yo) - 0 
(by Proposition 5.1.3, (5.1.2) and Proposition 4.3.3(ii)) 

=g0(x0, Yo) as t --* 0. 

Thus we have completed the proof of Theorem 2. 

(5.2) To finish our discussion, we deduce the following 

Proof of Corollary 3. Let {ds 2} be as in Corollary 3. By Schwarz lemma 
[Y], the curvature hypothesis on {ds 2 } implies that  {ds 2} satisfies (2.2.4). 
Together with the hypothesis on ds 2 on M °, it follows that  {ds2t} form 
a continuous family of quasi-hyperbolic metrics on {Mr}, and Corollary 3 
follows readily from Theorem 2. 
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