Motivic Euler Product and Its Applications

Lin WENG

Kyushu University

Arithmetic and Algebraic Geometry University of Tokyo January 30, 2014

Special Uniformity of Zetas

- **Motivation**
 - Arithmetic versus Geometry
- Motivic Euler Product
 - Motivic Grothendieck K Ring
 - Motivic Zeta Functions
 - Motivic Euler Product
- **Motivic Measures**
 - Adelic space
 - Reductive Groups
- Special Uniformity of Zetas
 - Non-Abelian Motivic Zeta Function
 - Motivic SL_n-Zeta Function
 - Special Uniformity of Zetas
- **Total & Stable Motivic Masses**
 - Total & Stable Motivic Mass
 - Parabolic Reduction
 - Over \mathbb{F}_a

Arithmetic Masses

Setting

- X/\mathbb{F}_q : irre. red. reg proj curve of genus g
- \[
 \mathcal{M}_{X,r}^{\text{tot}}(d)
 \]: stack of rank r degree d bdls/X
- $\mathcal{M}_{X}^{\text{ss}}(d)$: substack of rank r degree d semi-stable bdls/X
- Mass:

$$\beta^{\text{tot}}_{X,r}(\textit{d}) := \sum_{\textit{E} \in \mathcal{M}^{\text{tot}}_{X,r}(\textit{d})} \frac{1}{|\text{Aut}(\textit{E})|}, \ \beta^{\text{ss}}_{X,r}(\textit{d}) := \sum_{\textit{E} \in \mathcal{M}^{\text{ss}}_{X,r}(\textit{d})} \frac{1}{|\text{Aut}(\textit{E})|}$$

Special Uniformity of Zetas

Theorem (Harder-Narasimhan, Desale-Ramanan, Zagier)

$$\frac{\beta_{X,r}^{\text{ss}}(0)}{q^{\frac{n(n-1)}{2}(g-1)}} = \sum_{k \ge 1} (-1)^{k-1} \sum_{\substack{n_1 + \dots + n_k = n \\ n_i > 0}} \frac{\prod_{j=1}^k \beta_{X,n_j}^{\text{tot}}(0)}{\prod_{i=1}^{k-1} (q^{n_i + n_{i+1}} - 1)}$$

Motivation

Arithmetic versus Geometry

Arithmetic Story

- + Dwork & Grothendieck (Weil Conjecture)
- Relations of Poincare Series for the related spaces

Geometric Story

- Atiyah-Bott (Morse Theory, Yang-Mills)
- Relations Poincare Series for the related spaces/ Riemann surfaces

Geometric Tamagawa Measure?

Fundamental Question (Atiyah-Bott)

- Arithmetic Approach: based on Tamagawa number conjectures/reductive groups
- Atiyah-Bott: similar theory/Riemann surface EXISTS ??? (History: [ADK] A. Asok, B. Doran, F. Kirwan: Yang-Mills theory and Tamagawa numbers)

Special Uniformity of Zetas

Basic Difficulties

- over \mathbb{F}_a ,
 - #Aut(E) < ∞
 - $\mathbb{F}_a(X)_P$ ($P \in X$ closed point): locally compact
 - G(A): locally compact
- over general k, say \mathbb{C} ,
 - #Aut(E) does not makes sense
 - $\mathbb{F}_q(X)_P$, $G(\mathbb{A})$: lack nice topology

Our Theory

Our Solutions: different from [ADK], but all related to \mathbb{A}^1 -homology

go Motivic (existing) & use Ind-Pro Topology (existing)

Special Uniformity of Zetas

 introduce Motivic Euler Product & define Adelic Motivic Measures (new)

What been Achived

- introduce Atiyah-Bott's conjectural Tamagawa Measures
- define Motivic Non-abelian Zetas and Group Zetas
- offer stable partition of $Z_{G^1(\mathbb{A})}G(F)\backslash G^1(\mathbb{A})/\mathbb{K}$
- expose relations on Special Uniformity of Zetas and "Parabolic Reduction, Stability & the Masses"

Motivic Grothendieck K Ring

K-Ring for varieties /k

Definition

- k: field
- $K_0(\text{var}/k)$: Motivic Grothendieck K-ring for varieties over k

Special Uniformity of Zetas

- Generators: varieties X over $k \Rightarrow \mu(X) = [X] \in K_0(\text{var}/k)$
- $\forall Z \hookrightarrow X \text{ closed}$ • Relations: (i) [X] = [X - Z] + [Z](ii) $[X \times Y] = [X] \cdot [Y]$

Examples

- $\mathbb{L} := \mu(\mathbb{A}^1_k)$
- \bullet $\mu(\mathbb{P}^1_k) = \mathbb{L} + 1$
- \bullet $\mu(\mathbb{G}_{m\,k}^1) = \mathbb{L} 1$
- $\bullet \ \mu(\mathrm{GL}_n(k)) = (\mathbb{L}^n 1)(\mathbb{L}^n \mathbb{L}) \cdots (\mathbb{L}^n \mathbb{L}^{n-1})$

Motivic class of Reductive Group

Reductive Group

- G/k: split reductive group,
- B, T: Borel and maximal torus
- $R_u(B)$: unipotent radical of B
- $X_*(T) = \operatorname{Hom}(T, \mathbb{G}_m)$: space of characters on T
- W: Weyl group
- $(\operatorname{Sym} X_*(T)_{\mathbb{Q}})^W =: \oplus_d V_d$: canonical motive of G
- $\mu(G) = \mathbb{L}^{\dim G} \cdot \prod_{d} (1 \mathbb{L}^{-d})^{\dim V_d}$
- Reasons: (i) $\mu(G) = \mu(G/B) \cdot \mu(R_{\mu}(B)) \cdot \mu(T)$ (ii) $\mu(R_u(B)) = \mathbb{L}^{\dim R_u(B)}, \quad \mu(T) = (\mathbb{L} - 1)^r$ (iii) $\mu(G/B) = \sum_{w \in W} \mathbb{L}^{l(w)}$ Burhat decomp

(see e.g., [Behrend-Dhillon])

K-Ring for nice stacks /k

Definition

- (nice) stacks over k: stacks with linear stabilizer Kresch stratified by global quotients
- $K_0(\operatorname{sta}/k)$: Motivic Grothendieck K-ring for nice k-stacks
- Generators: stacks X over $k \Rightarrow \mu(X) = [X] \in K_0(\operatorname{sta}/k)$
- Relations: (i) [X] = [X Z] + [Z] $\forall Z \hookrightarrow X \text{ closed}$ (ii) $[X \times Y] = [X] \cdot [Y]$ (iii) [X/G] = [X]/[G]

Fact

$$K_0(\operatorname{sta}/k) = K_0(\widehat{\operatorname{var}/k})[1/\mathbb{L}]$$

(see: any standard reference for motivic K)

Motivic Zeta Functions

Motivic Zeta

Definition (Kapranov)

Motivic Euler Product

- X/k: variety
- Sym^(m) X: m-th symmetric product of X
- Motivic zeta for X

$$Z_X(u) := \sum_{m\geq 0} \mu(\operatorname{Sym}^{(m)}X) \cdot u^m.$$

Facts

- If $k = \mathbb{F}_q$, $u = q^{-s}$, $Z_X(u)$ coincides with Artin-Weil zeta

$$Z_X(u) = Z_{X-Y}(u) \cdot Z_Y(u) \quad \forall Y \hookrightarrow X \text{ closed}$$

Motivic Euler Product

Motivic Euler Product

Definition (Weng)

- X/k: variety, $x \in X$: closed point, k(x): residue field
- \bullet deg(x) := [k(x) : k], $u_x := u^{\deg(x)}$
- Motivic Euler Product for X/k

$$\prod_{x \in X}^{\omega} \frac{1}{1 - u_x} := \sum_{m > 0} \mu(\operatorname{Sym}^{(m)} X) \cdot u^m$$

Basic properties

$$\prod\nolimits_{x \in X}^{\omega} \frac{1}{1 - u_x} = \left(\prod\nolimits_{x \in X - Y}^{\omega} \frac{1}{1 - u_x}\right) \cdot \left(\prod\nolimits_{x \in Y}^{\omega} \frac{1}{1 - u_x}\right) \ Y : \text{closed}$$

In particular,
$$\prod_{x \in X}^{\omega} f(x) = \prod_{x \in X} f(x) \qquad \forall' x, \ f(x) = 1$$

Motivic Measures

Local Theory

- X/k: irre, red, reg proj curve of genus g, F: functional field
- $x \in X$: closed point, $(F_x, \mathcal{O}_x, \mathfrak{m}_x, \pi_x)$: its local field
- $|\omega_x|$: motivic measure on F_x s.t.

$$\mu\Big(\mathcal{O}_X = \lim_{\leftarrow_n} \mathcal{O}_X/\mathfrak{m}_X^n\Big) = \int_{\mathcal{O}_X} |\omega_X| = 1$$

• Filtration with graded quotients k(x):

$$\{0\} \subset \mathfrak{m}_{X}^{n-1}/\mathfrak{m}_{X}^{n} \subset \cdots \subset \mathfrak{m}_{X}^{1}/\mathfrak{m}_{X}^{n} \subset \mathcal{O}_{X}/\mathfrak{m}_{X}^{n}$$

$$\mu(\mathcal{O}_{X}) = \mu(\mathfrak{m}_{X}^{n}) \cdot \mu(\mathcal{O}_{X}/\mathfrak{m}_{X}^{n}) = \mu(\mathfrak{m}_{X}^{n}) \cdot \mathbb{L}_{X}^{n}$$

$$\mu(\mathfrak{m}_{X}^{n}) = \mathbb{L}_{X}^{-n} \quad \text{where} \quad \mathbb{L}_{X} = \mathbb{L}^{\deg(X)}$$

Adelic space

Global Theory: Topology

Adelic Space and its ind-pro topopology

- $\mathbb{A} := \mathbb{A}_F = \prod_{x \in X}^{\omega'} (F_x, \mathcal{O}_x)$: adelic ring of X
- $D = \sum_{x} n_{x} \cdot x$: divisor on X
- $\bullet \ \mathbb{A}(D) := \{(a_x) \in \mathbb{A} : \operatorname{ord}_x(a_x) + n_x \geq 0 \ \forall x\}$

$$\mathbb{A} = \lim_{\to D_1} \lim_{\leftarrow D_2: D_2 \leq D_1} \mathbb{A}(D_1)/\mathbb{A}(D_2)$$

Facts on locally linearly compact topology

- A(D) is open and linearly compact
- ullet $\mathbb{A}(D_1)/\mathbb{A}(D_2)$: linearly compact and discrete
 - \Rightarrow finite dimensional *k*-vector space

Motivation

Riemann-Roch Theorem

Riemann-Roch Theorem

- $\mathbb{A}(0) = \prod_{x \in X}^{\omega} \mathcal{O}_X$
- $\mathbb{A}(D)/\mathbb{A}(0) \simeq \prod_{x \in X}^{\omega} k(x)^{n_x} \simeq k^{\deg(D)}$ for $D \geq 0$
- $H^0(X, D) = \mathbb{A}(D) \cap F$, $H^1(X, D) = \mathbb{A}/(\mathbb{A}(D) + F)$
- (Riemann-Roch) $h^0(X, D) h^1(X, D) = \deg(D) (g 1)$

Nine Diagram: exact columns and exact rows

Global Theory: Motivic Measure

Definition (Weil, Weng)

• Motivic measure on \mathbb{A} : $|\omega_{\mathbb{A}}| := \prod_{x \in X}^{\omega} \omega_{x}$ s.t.

$$\mu(\prod\nolimits_{x\in X}^{\omega}\mathcal{O}_X)=\prod\nolimits_{x\in X}^{\omega}\mu(\mathcal{O}_X)=\prod\nolimits_{x\in X}^{\omega}1=1$$

Theorem (Chevally, Tate, Weil, Weng)

$$\mu(\mathbb{A}/F) = \mathbb{L}^{g-1}$$

Proof.

- Nine diagram $\Rightarrow \mu(\mathbb{A}/F) = \mu(\mathbb{A}(D)) \cdot \mathbb{L}^{-\chi(X,0)}$
- For $D \geq 0$, $\mu(\mathbb{A}(D)) = \mu(\mathbb{A}(D)/\mathbb{A}(0)) = \prod_{x \in X}^{\omega} \mu(\mathfrak{m}_x^{-n_x})$ = $\prod_{x \in X}^{\omega} \mu(\mathbb{A}(D)/\mathbb{A}(D)) = \prod_{x \in X}^{\omega} \mu(\mathfrak{m}_x^{-n_x})$.
- Riemann-Roch

Reductive Groups

Motivic Measures: Reductive Groups

Local Definition

- \mathcal{G}/X : reductive group scheme
- η: generic point of X
- $G = \mathcal{G}_n/F$: split w/ B, T: split Borel and maximal torus /F
- ω : gauge form, non-zero element of Λ^{top} Lie G \Rightarrow for $x \in X$,

$$\omega_{\mathsf{X}}: T_{\mathsf{e}}(\mathcal{G}(\mathcal{O}_{\mathsf{X}})) o \mathcal{F}_{\mathsf{X}}$$

Special Uniformity of Zetas

 \Rightarrow fractional ideal Im(ω_x) =: $\langle \pi_x^{\mathrm{ord}_x(\omega_x)} \rangle$

•

$$\int_{G(\mathcal{O}_X)} |\omega_X| := \mathbb{L}_X^{-\operatorname{ord}_X(\omega_X)} \cdot \mathbb{L}_X^{-\dim G} \cdot \mu(G(k(X)))$$

Reductive Groups

Motivic Measures: Reductive Groups

Definition (Weil, Weng)

Motivic adelic measure on G(A):

$$|\omega_{\mathbb{A}}| := \mathbb{L}^{(1-g)\dim G} \cdot \prod_{x \in X}^{\omega} |\omega_{X}|$$

- First factor: make it comptible with Weil restriction $R_{K/F}$
- Similar as that for \mathbb{A} : $G = \mathbb{G}_a$, not reductive

Conjecture (Weil, Weng)

• For connected semi-simple G

$$\int_{G(F)\backslash G^1(\mathbb{A})} |\omega_{\mathbb{A}}| = 1.$$

• $k = \mathbb{F}_a$: Tamagawa number. See [Weil, Harder, Lurie]

Reductive Groups

Motivic Measure of K

Theorem (Weng)

Let
$$\mathbb{K} := \prod_{x \in X}^{\omega} \mathcal{G}(\mathcal{O}_x)$$
,

$$\mu(\mathbb{K}) := \int_{\mathbb{K}} |\omega_{\mathbb{A}}| = \mathbb{L}^{(1-g)\dim G} \cdot \prod_{d \geq 1} Z_X(\mathbb{L}^{-d})^{-\dim V_d}.$$

Special Uniformity of Zetas

Proof (Application of Motivic Euler Product)

$$\mathbb{L}^{(g-1)\dim G} \cdot \int_{\mathbb{K}} |\omega_{\mathbb{A}}| = \prod_{x \in X}^{\omega} \int_{\mathcal{G}(\mathcal{O}_{X})} |\omega_{X}|$$

$$= \prod_{x \in X}^{\omega} \left(\mathbb{L}_{x}^{-\operatorname{ord}_{x}(\omega_{x})} \cdot \mathbb{L}_{x}^{-\operatorname{dim} G} \cdot \mu(G(k(x))) \right)$$

$$= \mathbb{L}^{-\operatorname{deg}(\omega)} \cdot \prod_{x \in X}^{\omega} \left(\prod_{d} (1 - \mathbb{L}_{x}^{-d})^{\operatorname{dim} V_{d}} \right)$$

deg(Lie(G)) = 0 for reductive G

Non-Abelian Motivic Zeta Function

Definition (Weng)

- X/k: irre. red. reg. proj. curve of genus g
- $\mathcal{M}_{X,n}(d)$: moduli stack of s. stable bundles of rk n and deg

Special Uniformity of Zetas

- dμ: motivic measure induced from the adelic one
- Non-Abelian Motivic Zeta Function of X/k:

$$\widehat{Z}_{X,n}(u) := \sum_{m \geq 0} \int_{V \in \mathcal{M}_{X,n}(mn)}^{\omega} \frac{\mu(H^0(X,V) - \{0\})}{\mu(\operatorname{Aut}(V))} d\mu \cdot u^{\chi(X,V)}$$

 \int_{0}^{ω} : motivic integration, well-defined for filtered constant function over filtered stacks i.e., constant over each open filtered strata. Non-Abelian Motivic Zeta Function

Non-Abelian Motivic Zeta Function

Non-Abelian Motivic Invariants

- α -invariants: $\alpha_{X,n}(d) := \int_{V \in \mathcal{M}_{X,n}(d)}^{\omega} \frac{\mu(H^0(X,V) \{0\})}{\mu(\operatorname{Aut}(V))} d\mu$
- β -invariants: $\beta_{X,n}(d) := \int_{V \in \mathcal{M}_{X,n}(d)}^{\omega} \frac{1}{\mu(\operatorname{Aut}(V))} d\mu$

Basic Properties

• $\beta_{X,n}(d) = \beta_{X,n}(0)$.

$$\widehat{Z}_{X,n}(u) = \sum_{m=0}^{(g-1)-1} \alpha_{X,n}(mn) \left[\left(\frac{1}{u^n} \right)^{(g-1)-m} + (\mathbb{L}^n u^n)^{(g-1)-m} \right]$$

$$+\alpha_{X,n}(n(g-1))+\beta_{X,n}(0)\cdot \frac{\mathbb{L}^n\cdot (u^n)^g}{(1-u^n)(1-\mathbb{L}^nu^n)}.$$

Motivation

Counting Miracle and the Riemann Hypothesis

Theorem (g = 1: Weng-Zagier; in general, Sugahara)

• Counting Miracle: $\alpha_{X,n}(0) = \mathbb{L}^{n(g-1)}\beta_{X,n}(0)$

see also [Mozgovoy-Reineke]

Theorem (Weng-Zagier)

When X = E and elliptic curve $/\mathbb{F}_q$,

• Multiplicative structure of *beta*-invariants:

$$\sum_{n\geq 1}\beta_{E,n}(0)q^{-ns}=\prod_{k\geq 1}\zeta_E(s+k)\qquad \operatorname{Re}(s)>0$$

Riemann Hypothesis:

$$\zeta_{E,n}(s) = 0 \qquad \Rightarrow \qquad \operatorname{Re}(s) = \frac{1}{2}$$

Motivic SLn-Zeta Function

Motivic Periods for SL_n

Definition (Weng)

- $(V, \Phi^+ = (\alpha_{ij} = e_i e_i, i < j), \Delta = (\alpha_{i(i+1)}), W = S_n)$: root system for A_{n-1} , $\rho := \frac{1}{2} \sum_{\alpha > 0} \alpha$
- $\varpi := (\varpi_i)$: fundamental weight so that $\langle \alpha_i, \varpi_i \rangle = \delta_{ij}$
- $\lambda := \sum_{i=1}^{n-1} (1-s_i) \varpi_i = \rho \sum_{i=1}^{n-1} s_i \varpi_i$: coordinate system

Special Uniformity of Zetas

- $u_i := \mathbb{L}^{-s_i}$ and $u = \mathbb{L}^{-s}$,
- Period of SL_n:

$$\Omega_{X}^{SL_{n}}(\lambda) := \sum_{w \in W} \frac{1}{\prod_{\alpha \in \Delta} (1 - \mathbb{L}^{-\langle w\lambda - \rho, \alpha^{\vee} \rangle})} \cdot \prod_{\alpha > 0, w\alpha < 0} \frac{\widehat{Z}_{X}(\mathbb{L}^{-\langle \lambda, \alpha^{\vee} \rangle})}{\widehat{Z}_{X}(\mathbb{L}^{-\langle \lambda, \alpha^{\vee} \rangle - 1})}$$

Motivic SLn-Zeta Function

Motivic Periods for SL_n

Definition: Continued

• Period for $(SL_n, P_{n-1,1})$:

$$\Omega_X^{SL_n,P_{n-1,1}}(s) := \operatorname{Res}_{\langle \lambda - \rho, \alpha_j^{\vee} \rangle = 0} \Omega_X^{SL_n}(\lambda)$$
 $j=1,2,...,n-2$

Special Uniformity of Zetas

- $m(i) := \#\{\alpha > 0 : \langle \rho, \alpha \rangle = i\}, \quad n(i) = m(i) m(i-1)$
- Motivic SL_n-Zeta Function:

$$\widehat{Z}_X^{SL_n}(u) := \mathbb{L}^{\frac{n(n-1)}{2}(g-1)} \cdot \left(\prod_{i>2} \widehat{Z}_X(\mathbb{L}^{-i})^{-n(i)} \right) \cdot \widehat{Z}_X(u^{-n}) \cdot \Omega_X^{SL_n, P_{n-1, 1}}(u^{-n}).$$

Special Uniformity of Zetas

Conjecture (Weng)

Special Uniformity of Zetas:

$$\widehat{Z}_{X,n}(u) = \widehat{Z}_X^{SL_n}(u)$$

Special Uniformity of Zetas

• Set $\widehat{v}_{X,1} = \frac{\mu(\operatorname{Pic}^0(X))}{\mathbb{T}_1}$, $\widehat{v}_{X,n+1} = \widehat{Z}_X(\mathbb{L}^{-(n+1)}) \cdot \widehat{v}_{X,n} \quad \forall n \geq 1$

$$\frac{\beta_{X,n}(0)}{\mathbb{L}^{\frac{n(n-1)}{2}(g-1)}} = \sum_{k \ge 1} (-1)^{k-1} \sum_{\substack{n_1 + \dots + n_k = n \\ n_1, \dots, n_k \ge 1}} \frac{\prod_{i=1}^k \widehat{v}_{X,n_i}}{\prod_{j=1}^{k-1} (\mathbb{L}^{n_j + n_{j+1}} - 1)}$$

Theorem ($k = \mathbb{F}_q$)

- (Harder-Narasimhan, Zagier) Formula for $\beta_{X,n}(0)$ holds.
- (Mozgovoy-Reineke-Weng-Zagier) $\widehat{Z}_{X,n}(u) = \widehat{Z}_{X}^{SL_n}(u)$

Motivation

Motivic Eisenstein Series

Current proof of Special Uniformity

- Mozgovoy-Reineke: wall-crossing for $\widehat{Z}_{X,p}(u)$
- Weng-Zagier: Lie theory and combinatorics for $\widehat{Z}_{\nu}^{SL_n}(u)$
- MR=WZ

Special Uniformity and Motivic Eisenstein Periods

- Number fields: proved using Eisenstein periods
- Over \mathbb{F}_q : OK if Mellin transform applies for functional field. this is supposed to be very easy
- To prove the conjecture:
 - (i) study motivic Eisenstein series
 - or (ii) Try MR's wall-crossing approach for any base field

Total & Stable Motivic Mass

Total & Stable Motivic Masses

Definition

- X/k: irre. red. reg. proj curve of genus g
- (G, B, T): conn, split red group over F = k(X), $\lambda \in \mathfrak{a}$
- $\mathcal{M}_{X,G}(\lambda)$: moduli stack of G-bundles of slope λ on X
- Total Motivic Mass:

$$eta_{X,G}^{\omega;\,\mathrm{tot}}(\lambda) := \int_{\mathcal{M}_{X,G}(\lambda)}^{\omega} rac{1}{[\mathrm{Aut}(\mathcal{E})]} \; d\mu$$

Special Uniformity of Zetas

- $\mathcal{M}_{X,G}^{ss}(\lambda)$: moduli stack of s. stable G-bundles of slope λ
- Stable Motivic Mass:

$$\beta_{X,G}^{\omega;\,\mathrm{ss}}(\lambda) := \beta_{X,G}(\lambda) := \int_{\mathcal{M}_{X,G}^{\mathrm{ss}}(\lambda)}^{\omega} \frac{1}{[\mathrm{Aut}(\mathcal{E})]} \, d\mu$$

Motivation

Harder-Narasimhan Filtration

Notations

- P: collection of standard parabolic subgroups of G
- $P = M_P N_P$, $Q = M_O N_O \in \mathcal{P}$, $P \subset Q$
- A'_P : maximal quotient split torus of M_P^{ab} , $A'_P \rightarrow A'_Q$
- $X_*(A'_P)$: 1 PS of A'_P ; $X^*(A'_P)$: characters of A'_P
- $\bullet \ \mathfrak{a}_P := X_*(A_P)_{\mathbb{R}} = X_*(A_P')_{\mathbb{R}}, \quad \mathfrak{a}_O \hookrightarrow \mathfrak{a}_P \twoheadrightarrow \mathfrak{a}_O$
- $\bullet \ (\mathfrak{a}_P = \mathfrak{a}_P^Q \oplus \mathfrak{a}_Q, \ \mathfrak{a}_P^*; \ \lambda = [\lambda]_P^Q + [\lambda]_Q; \ \Phi_P^+, \ \Delta_P)$
- α^{\vee} : coroot for α ; $\{\varpi_{\alpha}^{G}\}$: dual of $\{\alpha^{\vee}: \alpha \in \Delta_{P}\}$
- $\rho_P = \frac{1}{2} \sum_{\alpha \in \Phi_P^+} \alpha$
- $\Lambda_P^Q := X_*(A_P') / \sum_{\alpha \in \Delta_P^Q} \mathbb{Z} \alpha^{\vee}, \ \ \Pi_P^Q := X_*(A_P') / \sum_{\alpha \in \Delta_P^Q} \mathbb{Z} \varpi_Q^{\vee}$

Parabolic Reduction

Canonical Filtration, Total Mass

Theorem (HN, Behrend, Ramanathan)

 $\forall \mathcal{E}$: G-bundle of slope λ

 $\Rightarrow \exists !: P \in \mathcal{P}, \lambda \in \mathfrak{a}_{P}, \text{ s.stable } P\text{-bundle } \mathcal{E}_{P} \text{ of slope } \lambda_{P}$ satisfying

$$[\lambda_P]^G \in \mathfrak{a}_P^{G+}$$
 and $\phi : \mathcal{E}_P \times^P G \simeq \mathcal{E}$.

Special Uniformity of Zetas

Conjecture: Total Mass (Behrend-Dhillon)

$$\beta_{X,G}^{\omega;\,\mathrm{tot}}(\lambda) = \prod_{d \geq 1} \widehat{Z}_X(\mathbb{L}^{-d})^{\dim V_d}$$

Parabolic Reduction

Partition of Moduli Stack

Notations

- $\mathcal{M}_{X,G,P}^{\text{tot}}(\lambda_P)$: sub moduli stack of $\mathcal{M}_{X,G}^{\text{tot}}(\lambda)$ induced by P-bundles of slope λ_P
- $\mathcal{M}_{X,G,P}^{ss}(\lambda_P)$: sub stack of $\mathcal{M}_{X,G}^{ss}(\lambda)$ w/ can. type (P,λ_P)

Special Uniformity of Zetas

Theorem (Behrend, Weng)

Parabolic Partition

$$\mathcal{M}^{\text{tot}}_{X,G,Q}(\lambda_Q) = \bigcup_{P \in \mathcal{P}, P \subset Q} \bigcup_{\substack{\lambda_P \in X_*(A_P') \\ [\lambda_P]_Q = \lambda_Q, [\lambda_P]^Q \in \mathfrak{a}_P^{Q+}}} \mathcal{M}^{\text{ss}}_{X,G,P}(\lambda_P)$$

 $\bullet \ \mu(\mathcal{M}_{X \ G \ P}^{\text{ss}}(\lambda_P)) = \mathbb{L}^{2\langle \rho_P^G, \lambda_P \rangle + \dim N_P(g-1)} \cdot \mu(\mathcal{M}_{X \ M_P}^{\text{ss}}(\lambda_P))$

Conjecture

Conjecture: Parabolic Reduction, Stability & the Masses

$$\begin{split} \beta_{X,M_Q}^{\omega;\,\text{tot}}(\lambda_Q) &= \sum_{P \in \mathcal{P},\, P \subset Q} \sum_{\overline{\lambda_P} \in (\Lambda_P^Q)^\perp} \beta_{X,M_P}^{\omega;\,\text{ss}}(\overline{\lambda_P}) \\ &\times \sum_{\pi \in \Pi_P^Q,\, [\pi]_Q = \lambda_Q} \prod_{\alpha \in \Delta_P^Q} \frac{\mathbb{L}^{2 \cdot \langle \rho_P^Q,\varpi_\alpha^{\vee Q} \rangle \cdot \{\alpha^{\vee Q}(\pi)\}}}{\mathbb{L}^{2 \cdot \langle \rho_P^Q,\varpi_\alpha^{\vee Q} \rangle} - 1} \\ &\frac{\beta_{X,M_Q}^{\omega;\,\text{ss}}(\lambda_Q)}{\mathbb{L}^{(\dim N_Q - \dim N_Q) \cdot (g-1)}} &= \sum_{P \in \mathcal{P},\, P \subset Q} (-1)^{\dim \mathfrak{a}_P^Q} \beta_{X,M_P}^{\omega;\,\text{tot}}(0) \\ &\times \sum_{\lambda \in \Lambda_P^Q,\, [\lambda]_Q = \lambda_Q} \prod_{\alpha \in \Delta_P^Q} \frac{\mathbb{L}^{2 \cdot \langle \rho_P^Q,\alpha^{\vee} \rangle \cdot \{\varpi_\alpha^Q(\lambda)\}}}{\mathbb{L}^{2 \cdot \langle \rho_P^Q,\alpha^{\vee} \rangle} - 1} \end{split}$$

w/ $a \in \mathbb{R}/\mathbb{Z}$: $0 < \langle a \rangle \le 1, 0 \le \{a\} = 1 - \langle a \rangle < 1$

Motivation

Over \mathbb{F}_{a}

Theorem (SL_n : HN, DR, Zagier; General: Weng)

For X/\mathbb{F}_a , Conjectures hold!

Key Ingredients:

- Partition of Adelic Space
 - Arthur's Analytic truncation
 - Lafforque's arithmetic truncation
 - combinatorial Langlands lemma (Laumon-Rapoport)
 - Parabolic reduction
- Tamagawa Number: Weil, Ono, Harder, Oesterle, Lurie ...

Thank You

Motivation

Thank You

Tokyo, 30, 01, 2014

Total & Stable Motivic Masses

0000000