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Abstract

New theories on local p-adic and global adelic quantum gates are de-
veloped. In particular, the corresponding universality properties are es-
tablished using only finitely many local/global quantum gates.

1 Quantum Computing

Motivated by the theory of quantum mechanics ([1]), for quantum computings,
the state space of 1-qubits is defined as a 2-dimensional C-vector space with
standard Hermitian inner product

H := C|0⟩+ C|1⟩ (1)

where |0⟩ =

(
1
0

)
and |1⟩ =

(
0
1

)
, and similarly, the state space of n-qubits is

defiend as the N(= 2n)-dimensional C-vector space with standard Hermitian
inner product

Hn := H⊗n = ⊕ (kn...k2k1)
k1,k2,...,kn∈{0,1}

C|kn . . . k2k1⟩ = C|00 · · · 0⟩+ . . .+ C|11 · · · 1⟩,

(2)
where {|kn · · · k2k1⟩ := |kn⟩⊗· · ·⊗|k2⟩⊗|k1⟩ (ki ∈ {0, 1})} forms an orthonormal
basis of Hn. We call an element x =

∑
xkn...k2k1

|kn . . . k2k1⟩ ∈ Hn normalized
if
∑

|xkn...k2k1
|2 = 1, in which case, |xkn...k2k1

|2 is called the probability for
the pure qubit state |kn . . . k2k1⟩ to appear in x, which can be observed via
measurements.

Partially because normalized states should be preserved by quantum oper-
ations, which deeply rooted in the time dependence of the wave solutions for
Schrödinger equation by the theory of quantum mechanics, unitary matrices of
size N are used to build up quantum gates for quantum computers when dealing
with n qubits. These quantum gates satisfy the so-called finite (approximate)
universality properties. Consequently, each quantum circuit can be (approxi-
mately) built up from a family of finite quantum gates, consisting of Hadamard
gate, Pauli gates, Toffoli gates and their associates. For examples, we have
following quantum gates for one qubits.

(1) Global phase gate

M(α) := eiαI2 with I2 :=

(
1 0
0 1

)
& α ∈ R

1



(2) Relative phase shift

P (α) :=

(
1 0
0 eiα

)
with α ∈ R.

In particular, we set phase π/4-gate to be S = P (π/2) =

(
1 0
0 i

)
and

π/8-gate to be T = P (π/4) =

(
1 0
0 eiπ/4

)
.

(3) Pauli gates

σX = X =

(
0 1
1 0

)
, σY = Y =

(
0 i
−i 0

)
, σZ = Z =

(
1 0
0 −1

)
.

(4) Rotations with respect to x̂, ŷ, ẑ axes of the Bloch sphere

Rx(θ) = cos
θ

2
I2 − i sin

θ

2
X =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)

Ry(θ) = cos
θ

2
I2 − i sin

θ

2
Y =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)

Rz(θ) = cos
θ

2
I2 − sin

θ

2
Z =

(
exp( θ2 i) 0

0 exp( θ2 i)

)
(3)

More generally, for 2-qubits/3-qubits, we introduce controlled-NOT/controlled-
controlled NOT gate or CNOT/Toffoli gate C/C(2) by

C|00⟩ =|00⟩, C|01⟩ = |01⟩, C|10⟩ = |11⟩, C|11⟩ = |10⟩.

C(2)|t1, t2, ψ⟩ :=

{
|t1, t2, ψ⟩, t1t2 = 0

|t1, t2, 1⊕ ψ⟩, t1t2 = 1.

(4)

Theorem 1 (Approximate universality, see e.g. [10]). We have

(1) The CNOT gate together with the above 1-qubit gates is universal.

(2) The CNOT gate C, Hadamard gate H, and π/8-gate T are approximately
universal.

(3) The CNOT gate C, Hadamard gate H, phase gate S and Toffoli gate are
approximately universal.

For details on fundamentals of quantum computer, quantum information
and quantum programming, please refer to [5, 10, 18]. The reader may also find
some background materials in [3].

2 Local p-Adic Quantum Computings

Motivated by the above discussion and our own researches on distributions of
zeros of non-abelian zeta functions for number fields ([15]), we now initiate an
approach to what might be called the theory of local p-adic quantum computings
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(and p-adic quantum computers). This is based on p-adic probability theory of
Khrennikov ([6]), p-adic quantum mechanics and p-adic string theory of, say,
Freund, Witten and others.

Fix a prime integer p, and let Qp be the field of p-adic rationals with Zp

the ring of p-adic integers. By definition, a p-adic 1-qubit is an element of the
p-adic quantum state space

Hp := Qp|0⟩+Qp|1⟩,

and a p-adic n-qubit is an element in the p-adic quantum state space

Hn
p := H⊗n

p := Qp|00 · · · 0⟩+ . . .+Qp|11 · · · 1⟩.

Moreover, a p-adic n-qubit x :=
∑
xkn...k2k1

|kn . . . k2k1⟩ is called normalized if
xkn...k2k1

∈ Zp (ki ∈ {0, 1}).

Remark 1. The definition of normalized states is based on the fact that p-adic
probability is taken values in Zp for which negative values is possible. In fact
any negative natural number is considered to be of small p-adic probability. This
also offers a reason why we decide to remove the constrain that 1 is the totality
of probabilities since it does not make a good sense in p-adic setting.

Ideally, p-adic quantum gates should preserve normalized states. Hence, it is
only natural to consider the elements in the maximal compact subgroup group
GLN (Zp) of GLN (Qp). That is to say, an element g ∈ GLN (Zp) defines a p-
adic quantum gate. This appears to be perfectly compatible with nowadays
mathematics: With respect to the structure of the general linear group GLN

over the adeilc ring A = AF associated to a global algebraic number field F ,
it is central for us to introduce its canonical maximal open compact subgroup
K :=

∏
p:finiteKp×

∏
σ|∞Kσ where for each finite place p of F , Kp = GLN (Op)

is the general linear group over the local ring Op of p-adic integers, and for each
infinite place σ of F , when σ is real, resp. complex, we set Kσ = ON , resp. UN ,
the orthogonal group, resp., the unitary group, of size N .

Note that GLN (Z) is finitely generated and moreover is dense in {±1} ×
SLN (Zp) (with respect to the topology induced from the p-adic topology), it
is in principal not very difficult but rather fundamental to establish the p-adic
approximate universality theorem for p-adic quantum gates. Before explain the
details, let us make some preparations.

For an element a ∈ Qp, set

E(a) :=

(
a 0
0 1

)
U(a) :=

(
1 a
0 1

)
and L(a) :=

(
1 0
a 1

)
(5)

In addition, as usual, when p ̸= 2, we introduce the p-adic exponential expp(pa) :=∑
n≥0

pnan

n! as the isomorphism of the additive group : pZp onto the multiplica-
tive group 1 + pZp such that | expp(pa) − expp(pb)| = |p||a − b|, whose recip-
rocal isomoriphism is given by the p-adic logarithmic function logp(1 + pa) =∑

n≥1(−1)n−1 pnan

n .1 Fix also a primitive (p− 1)-th root ζp of unity in Zp.

1when p = 2, we instead consider the isomorphism exp2(2
2a) =

∑
n≥0

22nan

n!
, an iso-

morphism of the additive group 22Z2 onto the mulriplicative group 1 + 22Z2 such that
| exp2(22a) − exp2(2

2b)| = |22||a − b| whosereciprocal isomorphism is given by the 2-adic

logarithmic function log2(1 + 22a) =
∑

n≥0 = (−1)n−1 22nan

n
.
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Theorem 2 (p-Adic Approximate Universality). The following set of p-adic
quantum gates is approximately universal:

(1) if p ̸= 2, {
Mζ := E(ζp), E(expp(p)), U(1), L(1)

}
or

{Mζ := E(ζp), P1+p := E(1 + p), P+ := U(1), P− := L(1)}

(2) if p = 2,{
M−1 := E(−1), P22 := E(exp2(2

2)), P+ := U(1), P− := L(1)
}

or {
M−1 := E(−1), P1+22 := E(1 + 22), P+ := U(1), P− := L(1)

}
Proof. Since the proof for p = 2 is similar, we here only give a proof for p ̸= 2
and briefly sketch how modifications can be made to apply the same argument
to the case p = 2. Let us first consider the case N = 2. Obviously, GLs(Zp)
admits a natural semi-product decomposition

GL2(Zp) = E(Z∗
p)⋊ SL2(Zp). (6)

Hence it suffices to find the topological generators of the p-adic unit group Z∗
p

and SL2(Zp). First we deal with Z∗
p by considering the canonical quotient map

Zp 7→ Zp/pZ/p = Fp. Obviously, F∗
p = ⟨ζp⟩ as a cyclic group of order p− 1, and

an element x ∈ Zp belongs to Z∗
p if and only if

z = ζn(z)p

(
1+pb(z)

)
= ζn(z)p exp

(
expp(pα(z)

)
∃α(z) :=

logp(1 + pb(z)

p
∈ Zp.

(7)

Therefore, if we set αn(z) :=
∑n−1

k=0 λk(z)p
k be the (n− 1)-th truncated sum of

teh p-adic expansion of α(z), then

1 + pb(z) = exp((pα(z)) = lim
n→∞

expp
(
pαn(z)

)
= lim

n→∞
expp(p)

αn(z).

Hence
z = ζn(z)p · lim

n→∞
expp(p)

αn(z).

In other words, Z∗
p is topologically generated by {ζp, expp(p)}.

In addition, using the p-adic logarithmic function logp(1 + pa), any element
x = 1 + pc of 1 + pZp can be written uniquely as

(1+p)α(x) =
∑
k≥0

(
α(x)

k

)
pk = expp(α(x) logp(1+p))

(
∃α(x) :=

logp(1 + pc)

logp(1 + p)

)
.

Thus for a sequence {αn(x)}n ⊂ Z≥0 satisfying α(x) = limn→∞ αn(x), we have

x = lim
n→∞

(1 + p)αn(x).
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This implies that {ζp, 1 + p} topologically generates Z∗
p as well.

When p = 2, we have Z∗
2 = {−1, 1}×(1+22Z2). Hence the above arguments

works well as claimed.
From the discussions above, to complete the proof of this theorem for N =

2, it suffices to show that SL2(ZP ) is topologically generated by P+ and P−
together with E(Z∗

p).

For this, let s =

(
a b
c d

)
∈ SL2(Zp). Following [9], we note that, if c is a

p-adic unit, with ad− bc = 1, or the same b = (ad− 1)c−1,(
a b
c d

)
=

(
1 −(1− a)c−1

0 1

)(
1 0
c 1

)(
1 −(1− d)c−1

0 1

)
(
a c
b d

)
=

(
1 0

−(1− a)c−1 1

)(
1 c
0 1

)(
1 0

−(1− d)c−1 1

)
.

(8)

Each of the factors on the right hand sides of both relations can be topologically
generated by P+ and P−. Hence we may assume that c is not a p-adic unit.
This implies that a is a p-adic unit since ad = 1 + bc. Hence we may instead
consider the matrix (

c d
−a −b

)
=

(
0 1
−1 0

)(
a b
c d

)
and apply the above argument. This then complete the proof for the case N = 2
since (

0 1
−1 0

)
= P+P

−1
− P+.

To deal with general N , it suffices to use the Schmit normal form for matrices
A = (aij) ∈MN (Zp). In fact, it is a standard fact that there exist two elements
L,R ∈ GLN (Zp) such that LAR = diag(d1, d2, . . . , dN ), where d1, d2, . . . , dN ,
the so-called elementary divisors of A, satisfy the condition that d1|d2| . . . |dN
and di = ∆i/∆i−1 (1 ≤ i ≤ N), where ∆0 = 1 and ∆i (1 ≤ i ≤ N) denotes
the gcd of all i × i-minors of M . Furthermore, L and R are products of the
elementary matrices of the following three types:

Tij(b) =IN + bEij (1 ≤ i ̸= j ≤ N, b ∈ Zp),

Pij :=IN − Eii − Ejj + Eij + Eji(1 ≤ i ̸= j ≤ N),

Di(u) :=IN − (1− u)Eii (1 ≤ i ≤ N, u ∈ Z∗
p).

(9)

Here IN denotes the identity matrix of size N and Eij ∈ MN (Zp) denotes the
matrix whose (k, l)-entry is 1 if (k, l) = (i, j), 0 otherwise.

3 Global Adelic Quantum Computings

Quantum computers and p-adic quantum computers should be viewed as local
versions of more global quantum computers. For this reason, we sometimes call
current quantum computers analytic quantum computers, while saving the ter-
minology of quantum computer for both analytic quantum and p-adic quantum
computers.
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Recall that in mathematics, naturally associated to global fields F are local
fields first, both archimedean Fσ and non-archimedian (Fv,Ov, kv), and then
the global adelic ring AF , defined as the restricted product of Fv and Fσ with
respect to

∏
v Ov. In parallel, for the theory of quantum computers, there should

be one for what might be called global or adelic quantum computers.
Our first task is to understand what should be the state space HA. It is only

natural to take it to be AN or more generally ⊕i∈IA where I is a countable index
set. For simplicity, in the sequel, we only work over finite ’dimensional’ state
space, namely, assuming that #I = N < +∞. A state vector x = (xv;xσ) ∈ HA
is called normalized if for all finite places v, resp. infinite places σ of F , xv,
resp. xσ are locally normalized. Consequently, adelic quantum gates should be
associated to the elements of a maximal compact subgroupK =

∏
vKv×

∏
σKσ

of GLN (A) with Kv = GLN (Ov) and Kσ are either orthogonal group ON or
unitary group UN depending whether σ is real or complex.

To be more precise, 2-dimensional adelic state space consisting of adelic one
qubit is defined to be HA,2 := A|0⟩ + A|1⟩, and more generally, N = (2n)-
dimensional adelic state space consisting of adelic n qubit is defined to be

Hn
A :=

⊕
(kn...k2k1)

k1,k2,...,kn∈{0,1}

A|kn . . . k2k1⟩.

An adelic n-qubit

a =
∑

(kn...k2k1)
k1,k2,...,kn∈{0,1}

akn...k2k1 |kn . . . k2k1⟩ ∈ HA,N

is called normalized if for each (kn . . . k2k1) ∈ {(0 . . . 00), . . . (1 . . . 11)}, akn...k2k1

= (akn...k2k1,v; akn...k2k1,σ) ∈ A, and for each finite place v, akn...k2k1,v ∈ Ov

while for each infinite place σ,∑
(kn...k2k1)

k1,k2,...,kn∈{0,1}

|akn...k2k1,σ|2 = 1.

Furthermore, among all elements g = (gv; gσ) ∈ GLN (A), adelic quantum gates
should be build up merely from the elements of its maximal compact subgroup

KN :=
∏

v:finite

GLN (Ov)×
∏

σ:F↪→R

ON ×
∏

τ :F↪→C

UN .

The first difficulty faced by adopting this approach to adelic quantum gates is
that, for each such a adelic quantum gate, there are infinitely many operations
which should be proceeded. To understand this, we may recall the so-called
strong approximation theorem for algebraic groups.

Let G be an algebraic group over a global field F . Within the adelic ring
A of F , for a non-empty finite set S of places of F , define AS to be the ring
of S-adeles and AS to be the product of Kv’s for all v ∈ S. Obviously, via
the diagonal embeddings, G(F ) can be viewed as a subgroups of both G(As)
and G(AS). Then the weak approximation is a property that G(F ) is dense
in G(AS), while the strong approximation is a property that G(F ) is dense in
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G(AS). This later property is equivalent to that G(F )G(AS) is dense in G(A).
If so then the approximate university can be answered using elements of G(F ),
since G(AS) always satisfies approximate university for the reason that S is
finite.

For general algebraic groups, the strong approximation is not satisfied. How-
ever, when G is a semi-simple and simply-connected, the strong approximation
holds, established by Kneser ([7]) and Platonov ([11, 12]), resp. Margulis ([9])
and Prasad ([13]), when F is a number field, resp. a function field over a finite
field.

Related to this, one may wonder how the classical reduction theory enters
into the picture. In case SL2, we may consider the quotient SL2(F )\SL2(A)/K2.
This is studied intensively in ([14]) using stability, as an integrated part of rank
two non-abelian zeta function of F . In terms of integral model to be discussed
below, this means that the global quantum gates are build up from SL(OF ⊕a),
which enjoys the university property since SL(OF ⊕a) is finitely generated (See
e.g. [2]), and admits a natural action on Hr1 ×Hr2 where H, resp. H, denotes
the hyperbolic upper half plane resp. the 3-dimensional hyperbolic upper half
space. In this way, then geometry is naturally involved.2

To avoid this, we may use the adelic topology involved to do the approxi-
mation. The ideal situation then should be for each adelic quantum gate, there
should be only finitely many places which are not trivial. For our own use, we
call such adelic quantum gates one of finite type. Put this in an equivalent way,
in terms of adelic quantum state vectors, for the difference between the input
and the output adelic quantum state vectors, there is a finite set S of places,
including possibly parts of infinite places, such that for v ̸∈ S, the v-component
of the adelic quantum gates is trivial, i.e. degenerates to the identity opera-
tors. This then would mean that the difference between the input and output
state vectors should be the same for almost all but finitely many components.
In other words, there should be a global integral structure involved for adelic
quantum calculations. To understand this, we supply the following discussion
on global quantum computings.

3.1 Integral Structures

Even this first level consideration above would certainly lead to a nice and rich
theory of adelic quantum computers, it may prove to be too complicated for
us human beings to achieve in even a distance future. Accordingly, as a more
realistic goal, we may instead work over a global integral version of this adelic
theory. That is to say, we only work over finite rank OF -lattices Λ = (P, ρ), or
the same, the metrized locally free sheaves of finite rank over arithmetic curves
X = SpecOF . Here P denotes a projective OF -module of finite rank N = 2n

over the ring of integers OF of F , and ρ denotes a compatible metric on the

2For example, we may viewed both upper half plane H = R|0⟩+R≥0|1⟩ and 3-dimensional
hyperbolic upper half-space H = R + Ri + R≥0j as topological subspaces in H = C|0⟩ +
C|1⟩. Despite the fact they are not vector subspaces, the action on these subspaces by global
quantum gates still make perfect sense.
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Minkowski space

P ≃ON−1
F ⊕ a ↪→ ⊕ (kn...k2k1)

k1,k2,...,kn∈{0,1}
F |kn . . . k2k1⟩

↪→⊕ (kn...k2k1)
k1,k2,...,kn∈{0,1}

F∞|kn . . . k2k1⟩

=⊕ (kn...k2k1)
k1,k2,...,kn∈{0,1}

(Rr1 × Cr2)|kn . . . k2k1⟩

=:Hn
glo.

(10)

Here a denotes a fractional ideal of F , and r1, resp. r2 denotes the number of
real, resp. complex places of F 3. A element x ∈ Hglo is called a state vector
and a state vector x is called normalized if x is in an Minkowski image of P .
In this way, we are lead to build up global quantum gates through elements
of GLN (OF ). Since GLN (OF ) is known to be of finitely generated, global
(quantum) gates satisfy universality property.

To simplify our presentation, let us assume that F = Q, the field of rationals.
Then the fact that global quantum gates enjoy the universality property can be
justified as follows. For N = 2, GL2(Z) is well known to be generated by{

Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
, P =

(
1 1
0 1

)}
.

More generally, thanks to Hua and Reiner ([4]), we know that GLN (Z) is gen-
erated by two elements. To be more precise, for any positive integer m, the
general linear group GLm(Z) of size m is generated by X and P when m is even
and by −X and P when m is odd. Here

X =


0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 1 0

 , P =


1 1 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1

 .

In terms of lattices, X corresponds to the state swap, and P corresponds to the
state shift. Since these gates can be realized classically, we may use classical
computer to help us to understand this type of global quantum computings. In
particular, these global gates are adelic quantum gates of finite type.

Similarly, then the reduction theory for reductive groups naturally enters
into the picture. Classically, the theory is developed using Siegel sets. But the
classical approach is not neat since nowhere precisely estimations are needed. In
contrast, a new very much powerful approach is adopted in ([14] working over
number fields, [16, 17] working over function fields) using stability, From this
new approach, the involved fundamental domains and their associated cusps are
classified and partitioned according to various levels the parabolic subgroups of
the groups involved. Even in this sense, we hope that our discussions here on
local and global quantum gates certainly opens a narrow door to these wonderful

3Indeed, since OF is a Dedekind domain, it is well known that for each fixed projective
OF -module P of rank N , there exists a fractional ideal a(P ) of F such that as OF -modules,

P ≃ ON−1
F ⊕ a(P ). For details, see e.g. [14].
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parallel worlds with vast fertile lands and rich structures, and that the studies on
what might be called local p-adic quantum computers and global adelic quantum
computers would become more and more attractive.

Acknowledgement. We would like to thank Zhan SHI for his discussions,
during which a slip in the first version was detected.
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