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Introduction

Almost twenty years ago, starting with Arakelov metrics on compact Riemann
surfaces, Arakelov developed an admissible theory for arithmetic surfaces [2].

Recall that the Ricci forms of Arakelov metrics on compact Riemann surfaces
are the so-called canonical forms, which are the pull-back of the KaÈhler forms
corresponding to the ordinary ¯at metrics on the associated Jacobians. Hence, the
admissible theory of Arakelov and Faltings is essentially in the nature of
Euclidean geometry.

But, from the moduli point of view, hyperbolic metrics are more natural.
First of all, the Weil±Petersson metric on the moduli space Mq of compact
Riemann surfaces of genus q �>2� comes directly from hyperbolic metrics of
these surfaces; secondly, a result of Wolpert [26, § 2, p. 1485] says that the
singularities of the KaÈhler form qWP, de®ned by the Weil±Petersson metric on
Mq, are suf®ciently mild. (More precisely, in the sense of currents on
the compacti®ed moduli space Mq of Mq constructed by Deligne and Mumford,
qWP =p2 is the curvature form of a continuous metric hWP on a certain
line bundle and the metric hWP may be approximated by smooth positive
curvature metrics.)

Thus we should develop an admissible theory with respect to hyperbolic volume
forms. For this purpose, we create a more general q-admissible theory in this
paper: for any normalized volume form q on a compact Riemann surface M, we
introduce the Arakelov metric rAr�q� with respect to q on the canonical line
bundle KM of M. With such an q-Arakelov metric rAr�q�, we can then develop an
q-admissible theory for arithmetic surfaces, which is parallel to what was done in
[2] and [7]. Moreover, we show that various q-admissible theories are closely
related by the so-called Mean Value Lemma: for any arithmetic surface
p: X ! S, the self-intersection of the canonical line bundle Kp equipped with the
q-Arakelov metric rAr�q� is independent of q, and hence is exactly the self-
intersection of the classical Arakelov canonical divisor. As a by-product we give
the q-insertion formula, which has some applications in string theory. All this is
done in § 1.

There are two interesting examples for this q-admissible theory. The ®rst is
obtained by taking q as the canonical form qcan. In this case, the q-admissible
theory coincides with the classical admissible theory of Arakelov. The second is
obtained by taking q as the (normalized) hyperbolic volume form qhyp. In this
case, we show that the metric rAr �qhyp� on the Riemann surface M induced by

1991 Mathematics Subject Classi®cation: 11G30, 11G99, 14H15, 53C07, 58A99.

Proc. London Math. Soc. (3) 79 (1999) 481±510.



the qhyp-Arakelov metric is proportional to the original hyperbolic metric rhyp on
M. Thus the ratio of rAr�qhyp� and rhyp de®nes a natural, yet important, invariant
for the compact Riemann surface M. We call this invariant the Arakelov±PoincareÂ
volume of M and show that it actually forms a Weil function on the moduli space
Mq. In fact we do much more: we ®rst evaluate this invariant in terms of Quillen
metrics, and then give precise degeneration behaviour on the boundary of Mq.

As an application of the admissible theory with respect to hyperbolic volume
forms, we offer an upper bound for the self-intersection of the classical Arakelov
canonical divisor in terms of Petersson norms of modular forms, by applying
SouleÂ's arithmetic vanishing theorem. All this is done in § 2.

In § 3, we develop an q-admissible theory for singular arithmetic surfaces,
which is motivated by the work of Aitken in [1]. As a by-product, we introduce a
metric on the determinant of cohomology, and hence give an arithmetic Riemann±
Roch theorem for singular arithmetic surfaces.

We end this paper with an appendix, in which Deligne pairings are expressed in
terms of determinant line bundles. Such a relation will be used in a forthcoming
study on Chow±Mumford stability and KaÈhler±Einstein metrics.

This paper is an edited version of papers written around 1995 under the title
`Arakelov theory in terms of hyperbolic metrics'. I would like to thank Professor
S. Lang for sending me Aitken's paper [1] some years ago, Professor To Wing-
Keung for helpful discussions, Professor Feng Keqin for giving me the
opportunity to speak on the results of this paper in his Tunxi conference in
1996, and Professor C. T. C. Wall for suggestions for improving the clarity
and readability of this paper. Also, I would like to dedicate this paper to
Professor Cao Xihua.

1. Q-Admissible theory for compact Riemann surfaces

1.1. Admissible metrics on line bundles with respect to any volume form
In this section, we introduce an q-admissible theory for line bundles over a

compact Riemann surface with respect to any ®xed volume form q. In particular,
we de®ne the q-Arakelov metric on the canonical line bundle, prove the Mean
Value Lemma for arithmetic intersections, and give the q-adjunction formula.

Let M be a compact Riemann surface. For any normalized volume form q on
M, that is, for any positive (1,1) form q on M such that

R
M q � 1, there is a

unique Green's function gq�P; Q) with respect to q satisfying the following
conditions [15, Chapter 1, Theorem 1.4]:

(a) if f is a rational function on an open subset U of M such that, over U , the
divisor of f is P, then there exists a smooth function a on U such that for
Q 6� P,

gq�P; Q� � ÿ logj f �Q�j2 � a�Q�;
(b) dPd c

Pgq�P; Q� � q�P� ÿ dQ;

(c)
R

M gq�P; Q�q�P� � 0.

Indeed, if q is the canonical form qcan on M, the existence of gqcan
is proved by

Arakelov in [2] (see [15, Chapter 2] for more details). On the other hand, for any
®xed normalized volume form q 0, there exists a unique smooth real function bq 0;q

482 lin weng



on M such that

dd cbq 0;q � q 0 ÿ q;

Z
M

bq 0;q�q 0 � q� � 0: �1�

Furthermore, if P 6� Q, we have gq 0 �P; Q� � gq�P; Q� � bq 0;q�P� � bq 0;q�Q�.
This then gives the existence of the Green's functions with respect to any
normalized volume form.

By de®nition, a hermitian metric r on a line bundle L of M is called
q-admissible if the ®rst Chern form of the hermitian line bundle �L; r� satis®es
c1�L; r� � d�L� ´ q. Here d�L� denotes the degree of the line bundle L. It is easy
to see that the set of q-admissible hermitian metrics on a ®xed line bundle is
parametrized by R�. Moreover, by using the Green's functions with respect to q,
we can construct q-admissible metrics over all line bundles on M: ®rst, for any
point P 2M, on OM�P�, we set the inner product of the de®ning section 1P (with
itself) at any point Q to be Gq�P; Q� :� exp�ÿgq�P; Q��; then we use linearity to
get the q-admissible metrics on all line bundles by assuming that the natural
algebraic isomorphisms OM�D� 
 OM�D0�. OM�D� D0� are isometries for all
divisors D and D0 on M. If a hermitian metric h on a line bundle L is
q-admissible, we call the corresponding hermitian line bundle �L; h� an q-admissible
hermitian line bundle, and denote it L, by abuse of notation.

Therefore, on the canonical bundle KM of M, there exist q-admissible metrics.
But such metrics are far from being unique. For our purpose, we ®x a
normalization as follows:

kdzk2
Ar�q��P� :� lim

Q!P

jz�P� ÿ z�Q�j2
Gq�P; Q� exp�ÿ2qbq;qcan

�P��:

Here z denotes a holomorphic coordinate of M at P, and q denotes the genus of
M. (From now on, for simplicity, we will use bq�P� to denote bq;qcan

�P�.) In the
sequel, we call this metric the Arakelov metric with respect to q, or the q-
Arakelov metric, on KM .

This normalized hermitian metric on KM is q-admissible. Indeed, by [15,
Chapter 4, Theorem 5.4], the metric on KM de®ned by

kdzk2
Ar�qcan��P� :� lim

Q!P

jz�P� ÿ z�Q�j2
Gqcan
�P; Q�

is an qcan-admissible metric on KM . So, for any non-zero section s of KM,

dd c�ÿlogksk2
Ar�q��

� dd c�ÿlogksk2
Ar�qcan�� ÿ dd c lim

Q!P
log

�
Gqcan
�P; Q�

Gq�P; Q� exp�ÿ2qbq�
�

� �2qÿ 2�qcan � 2�qcan ÿ q� � 2qdd cbq

� �2qÿ 2�qcan � 2�qcan ÿ q� � 2q�qÿ qcan�
� �2qÿ 2�q:

Hence we have the following.
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Proposition 1.1. With the same notation as above,

kdzk2
Ar�q��P� :� lim

Q!P

jz�P� ÿ z�Q�j2
Gq�P; Q� exp�ÿ2qbq�P��

de®nes an admissible metric rAr�q� with respect to q on KM.

The Arakelov metric with respect to q on KM has another more geometric
interpretation. To explain it, we ®rst introduce the q-Arakelov metric on the line
bundle OM�P� associated to a point P 2M: de®ne the q-Arakelov metric rAr�q; P�
on OM�P� by setting the inner product (with itself) of the de®ning section 1P of
OM�P� at any point Q 2M equal to exp�ÿgq�P; Q� � bq�P��. Obviously rAr�q; P�
on OM�P� is q-admissible. On the other hand, for two distinct points P and Q on
M, if we impose the q-Arakelov metrics rAr�q; P� and rAr�q; Q� on OM�P� and
OM�Q�, respectively, then the induced metric on OM�P�jQ is quite different from
the induced metric on OM�Q�jP: for the ®rst, the norm of the section 1 is
exp�ÿ 1

2
´ gq�P; Q� � 1

2
´ bq�P��, while for the second, the norm of the section 1 is

exp�ÿ 1
2

´ gq�Q; P� � 1
2

´ bq�Q��. So the Arakelov metric rAr�q; P� on OM�P� is not
compatible with restriction. To remedy this, we make the following modi®cation
of the metric on the restriction: let L be an q-admissible hermitian line bundle on
M; then on the restriction LjP, we introduce a new metric by multiplying the
restriction metric from L to P by an additional factor exp�d�L� ´ bq�P��, and we will use
the symbol LkP to indicate the vector space LjP together with the above modi®ed

metric. Thus, in particular, on OM�P�kQ, the inner product of 1 (with itself ) at Q

is just exp�ÿgq�P; Q� � bq�P� � bq�Q��. So OM�P�kQ is isometric to OM�Q�kP.
Now we easily see that the Arakelov metric with respect to q on KM is the

unique metric such that, at each point P 2M, the natural residue map
res : KM�P�jP ! CjP induces an isometry res : KM�P�kP ! CjP with respect to
the metrics rAr on KM, rAr�q; P� on OM�P�, and the standard ¯at metric on C.

We next give some applications of the q-Arakelov metrics to the theory of
arithmetic surfaces.

Let F be a number ®eld with OF the ring of integers. Let p: X ! S be a
regular arithmetic surface over S :�Spec�OF�. Fix a normalized volume form q on
X�C�, the ®bre of p at in®nity. Denote the q-Arakelov metrics on KX�C� and on
P 2 X�C� by rAr�q� and rAr�q; P�, respectively. For any algebraic point P of XF ,
the generic ®bre of p, denote the corresponding Zariski closure of P in X by EP.
Denote by Kp�q� and EP�q� the hermitian line bundles �Kp; rAr�q�� and
�O�EP�; rAr�q; P��, respectively.

Mean Value Lemma I. With the same notation as above, we have the
following relations for arithmetic intersections:

(i) Kp�q�2 � Kp�qcan�2;

(ii) Kp�q� ´ EP�q� � Kp�qcan� ´ EP�qcan�;
(iii) EQ�q� ´ EP�q� � EQ�qcan� ´ EP�qcan�, for any two algebraic points P; Q

of XF.

Proof. We only prove (i), as the proof of the others is similar. Denote the ®rst
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arithmetic Chern class of a hermitian line bundle �L; r� on X by c1;Ar�L; r�. Then

c1;Ar�Kp�q�� � c1;Ar�Kp�qcan�� � �0; �2qÿ 2�bq�P��:
Thus,

c2
1;Ar�Kp�q�� � c1;Ar�Kp�q���c1;Ar�Kp�qcan�� � �0; �2qÿ 2�bq�P���

� c1;Ar�Kp�q��c1;Ar�Kp�qcan�� � c1;Ar�Kp�q���0; �2qÿ 2�bq�P��

� c2
1;Ar�Kp�qcan��
� �c1;Ar�Kp�qcan�� � c1;Ar�Kp�q����0; �2qÿ 2�bq�P��

� c2
1;Ar�Kp�qcan�� � 1

2

Z
�2qÿ 2�bq�P��c1�Kp�qcan�� � c1�Kp�q���

� c2
1;Ar�Kp�qcan�� � 1

2

Z
�2qÿ 2�bq�P���2qÿ 2�qcan � �2qÿ 2�q�

� c2
1;Ar�Kp�qcan�� � 1

2

Z
�2qÿ 2�2bq�P��qcan � q�

� c2
1;Ar�Kp�qcan��;

by the normalization condition (1) of bq�P�.

Remark. The Mean Value Lemma says that, in terms of arithmetic
intersection, the q-admissible theory is just the classical Arakelov admissible
theory. In particular, we can use different normalized volume forms to calculate
the self-intersection of the classical Arakelov canonical divisor. On the other
hand, the reader should notice that our q-Arakelov metric on OM�P� is not de®ned
by using the q-Green's function only. Thus, EP in [15] is not our
EP�q� � �EP; rAr�q; P��, while, for any q-admissible hermitian line bundle �L; r�
on X, �L; r� ´ �EP; rAr�q; P�� is not just the arithmetic degree of the pull-back of
�L; r� via the section of p corresponding to P on S.

As a direct consequence, we have the following.

Q-Adjunction Formula. With the same notation as above, if P is an
F-rational point on XF, then

Kp�q� ´ EP�q� � EP�q�2 � 0:

1.2. Admissible metrics on determinants with respect to any volume form
In this section, we are going to show that there exists a natural q-determinant

metric on the cohomology determinant of q-admissible hermitian line bundles. In
particular, if we take q to be the canonical form, this q-determinant metric
coincides with the Faltings metric.

Let M be a compact Riemann surface of genus q. Fix a normalized volume
form q on M. Denote the q-Arakelov metric on the canonical line bundle KM of
M by rAr�q�, and for any point P 2M, denote the q-Arakelov metric on OM�P�
by rAr�q� also. In the sequel, we always assume that the metrics on KM (and
hence on the Riemann surface M ) and on OM�P� are rAr�q�. For any q-admissible
hermitian line bundle L, denote L
 �OM�P�; rAr�q��
ÿ1 by L�ÿP�.
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Theorem 1.2. Let M be a compact Riemann surface of genus q. Let q be a
normalized volume form on M. Then, for any q-admissible hermitian line bundle
L on M, there exists a unique q-determinant metric, denoted by h�L�, over the
cohomology determinant of L ;

l�L� :� Det RG�M; L� :� VmaxH 0�M; L� 
 ÿVmaxH 1�M; L���;
up to a universal constant multiple, such that the following conditions are satis®ed:

(a) an isometry of q-admissible hermitian line bundles L! L 0 induces an
isometry from �l�M; L�; h�L�� to �l�M; L 0�; h�L 0��;

(b) if the q-admissible metric on L is changed by a factor a 2 R�, then the

metric on l�M; L� is changed by the factor ax�M;L�;
(c) (Riemann±Roch condition for closed immersions) for any point P on M,

the algebraic isomorphism

l�M; L�. l�M; L�ÿP�� 
 LjP
induced by the short exact sequence of coherent sheaves

0! L�ÿP� ! L! LjP ! 0

gives an isometry

�l�M; L�; h�L��. �l�M; L�ÿP��; h�L�ÿP��� 
 LkP:

Before proving this theorem, let us make a few comments. First, if q is
the canonical volume form, this theorem is proved by Faltings [7] with one
more condition:

(d) the metric on l�M; Q1
M� �

Vg H 0�M; Q1
M� is the determinant of the L2-

metric on H 0�M; Q1
M� induced by the canonical pairing.

Note that this condition is merely a normalization, which will ®x the above-
mentioned universal constant once and for all. So we drop it for our purposes,
as such a normalization is not important for the arithmetic Riemann±Roch
theorem. (On the other hand, a normalization is crucial for the arithmetic
Noether formula.)

Secondly, in the proof of Faltings' theorem [7], it appears that the use of the
canonical form is essential, as it plays a central role in the curvature calculation.
But this is not quite true: one has Mean Value Lemma III at the end of this
section, and hence can prove our theorem by using Faltings' method (see, for
example, [23]). Nevertheless, here we use another approach.

Proof of Theorem 1.2. We will show that the Quillen metric satis®es the
conditions above. Hence, up to a universal constant, we can take the Quillen
metric as the q-determinant metric.

Denote the q-admissible hermitian metric on L in the theorem by rAd. Then,
with respect to rAd on L and the q-Arakelov metric rAr on M, we naturally get
the Quillen metric on the cohomology determinant l�L�, which we simply denote
by hQ. By de®nition, the Quillen metric hQ satis®es conditions (a) and (b). So, in
order to get a good admissible metric theory on the cohomology determinant with
respect to q, we only need to check condition (c).

486 lin weng



To do so, without loss of generality, we suppose that there is a smooth family
p: X ! Y for M , together with a section s: Y ! X of p corresponding to P, and
that there is a family of line bundles L on X for L=M . That is to say, M is a
special ®bre of p at a certain point y0, s�y0� � P 2M, and L is a line bundle on X
such that LjM�pÿ1�y0� � L. In this way, we get two determinant line bundles on Y:
one, denoted by l�L�, comes from the family L for L , while the other, denoted by
l�L�ÿs�Y��, comes from the family L�ÿs�Y�� for L�ÿP�.

Fix a �1; 1�-form, denoted also by q by abuse of notation, on X, such that, for each
y 2 Y , the restriction of q to Xy :� pÿ1�y� is a normalized volume form qy and
qy0
� q is the original normalized volume form on M. Now, on L, choose a hermitian

metric, denoted by rAd too by abuse of notation, such that the restriction of rAd to
LjXy

is an qy-admissible hermitian metric and the restriction to LjXy0
� L is just the

original hermitian metric rAd on L. Moreover, on the relative canonical line bundle
Kp of p, choose a hermitian metric, denoted by rAr such that the induced metric on
each ®bre of p is the qy-Arakelov metric. (This then induces a hermitian metric,
denote by r_

Ar on the relative tangent bundle Tp of p:) Similarly, on O�s�Y��, choose a
hermitian metric, denoted by rAr�s�, such that the restriction of rAr�s� to O�s�y�� is
the qy-Arakelov metric. For simplicity, denote by rAd also the hermitian metric
induced by using a tensor product on L�ÿs�Y�� � L
 OX�ÿs�Y��.

Then, with respect to these hermitian metrics, on l�L� and on l�L�ÿs�Y��, we
have the associated Quillen metrics. Denote both of them simply by hQ.

Now, by the well-known formula of the ®rst Chern form for the Quillen metric,
we have

c1�l�L�; hQ� ÿ c1�l�L�ÿs�Y���; hQ�

�
�Z

p
ch�L; rAd��1ÿ ch�O�ÿs�Y��; rAr��td�Tp; r

_
Ar�
��1�

�
�Z

p
c1�O�ÿs�Y��; rAr�� 12 c1�O�ÿs�Y��; rAr� ÿ 1

2
c1�Kp; rAr�

� c1�L; rAd��
��1�

:

Here �?��1� denotes the �1; 1)-part of the differential form �?�. Thus, by the fact that
the metric on OM�P� is the Arakelov metric with respect to q, we see that the ®rst
Chern form of �O�ÿP�, rAr� is given by c1�O�ÿP�, rAr� � ÿdd cgq ÿ dP. Hence

c1�l�L�;hQ� ÿ c1�l�L�ÿs�Y���; hQ�

� ÿdd c

Z
p

gq�12 c1�O�ÿs�Y��; rAr� ÿ 1
2

c1�Kp; rAr� � c1�L; rAd��

� s��c1�L; rAd�� ÿ 1
2

s��c1�Kp 
 O�s�Y��; rAr��:

But, by the admissible property of the metrics rAr and rAd,

1
2

c1�O�ÿs�Y��; rAr� ÿ 1
2

c1�Kp; rAr� � c1�L; rAd�
is just a multiple of q. So, by the normalization condition (c) in § 1.1 of the
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Green's function gq with respect to q, we haveZ
p

gq�12 c1�O�ÿs�Y��; rAr� ÿ 1
2

c1�Kp; rAr� � c1�L; rAd�� � 0:

Thus

c1�l�L�; hQ� ÿ c1�l�L�ÿs�Y���; hQ�
� s��c1�L; rAd�� ÿ 1

2
c1�s��Kp 
 O�s�; rAr��:

Therefore, by the fact that the Arakelov metric on M with respect to q is de®ned
so that the isomorphism induced by the residue map gives an isometry KM�P�kP .
CjP, we see that if we understand s� as the q-restriction k de®ned in the
geometric interpretation of the Arakelov metric rAd in § 1.1, then

c1�s��Kp 
 O�s�; rAr�� � 0;

as it corresponds to C together with the standard ¯at metric, and hence we get

c1�l�L�; hQ� ÿ c1�l�L�ÿs�Y���; hQ� � s��c1�L; rAd��;
which gives condition (c) as s� means k. This completes the proof of the theorem.

With this theorem, we then see that the q-admissible metric theory for the
cohomology determinant is very similar to the Faltings theory. Thus all results in
[15] or in [4] can be reproduced here. In particular, we ®nd that the Riemann±
Roch theorem stands without any change. But we do not list any of these results
here. Instead, we show that the q-determinant metrics do not depend on q.

Mean Value Lemma II. Let M be a compact Riemann surface. For any line
bundle L over M, denote the cohomology determinant Det RG�M; L� of L by l�L�.
For any normalized volume form q on M, put the q-Arakelov metrics on KM and
on OM�P� for a point P 2M. Denote the associated Quillen metrics on l�KM� and
l�P� :� l�OM�P�� simply by hQ�q�. Then, for any two normalized volume forms
q1 and q2 on M, we have the following isometries:

(i) �l�KM�; hQ�q1��. �l�KM�; hQ�q2��;
(ii) �l�P�; hQ�q1��. �l�P�; hQ�q2�� for any point P 2M.

Proof. We only need to show that the result is valid for the case where q2 is
the canonical form of M. By the Polyakov variation formula for Quillen metrics
[8, Formula (3.31)], if two metrics r1 and r0 on the Riemann surface M satisfy
r1 � efr0 for some smooth function f, then, for any non-zero element a of
l�KM�, the variation of the associated Quillen metrics is given by

hQ�r1��a� ÿ hQ�r0��a� � 1
6

Z
M

f 1
2
�c1�r0� � c1�r1��:

Thus, if we take the Arakelov metric to be r0 and the q-Arakelov metric rAr�q�
to be r1, respectively, then we know that f � �ÿq� 1�bq. In particular,Z

M
f�c1�r0� � c1�r1�� �

Z
M
�ÿq� 1��2qÿ 2�bq�qcan � q� � 0:
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This completes the proof of (i). Using (i), we see that (ii) is a direct consequence of
the Riemann±Roch theorem and Mean Value Lemma I in the previous subsection.

Insertion Formula. Let q be a normalized volume form on a compact
Riemann surface M. Let L be a line bundle on M. Put an q-admissible metric on
L. Put the q-Arakelov metrics on KM, on M, and on OM�P� for any point P 2M.
Denote simply by hQ the associated Quillen metrics on l�L� and l�LÿPa

i�1 niPi�,
where ni 2 Z, and Pi 2M. Then we have the following isometry:

�l�L�; hQ�.
�

l

�
Lÿ

Xa

i�1

niPi

�
; hQ

�


�Oa

i�1

�LkPi
�
ni

�



�Oa

i�1

�KMkPi
�
ni�niÿ1�=2

�


� O

1 < i< j <a

�PikPj
�ÿ
 ninj

�
:

Proof. By using the fact that the residue map gives an isometry KM�P�kP .
CjP, we can obtain the above isometry from the following two isometries, which
can be checked directly from condition (c) of Theorem 1.2:

�l�L�; hQ�.
�

l

�
Lÿ

Xa

i�1

Pi

�
; hQ

�


�Oa

i�1

LkPi

�


� O

1 < i< j <a

�PikPj
�ÿ1

�
and

�l�L�; hQ�. �l�Lÿ nP�; hQ� 
 ��LkP �
n� 
 ��KMkP �
 n�nÿ1�=2�:

Mean Value Lemma III. With the same notation as above, for any two
normalized volume forms q1 and q2 on M, we have the isometry�

l

�Xa

i�1

niPi

�
; hQ�q1�

�
.
�

l

�Xa

i�1

niPi

�
; hQ�q2�

�
:

That is, for the admissible theory, the Quillen metric does not depend on the
choice of the normalized volume forms on the Riemann surface.

Proof. This is a direct consequence of the Riemann±Roch theorem and the
Mean Value Lemmas I and II.

2. Admissible theory with respect to hyperbolic metrics

In this chapter, we give an application of the q-admissible theory developed in
§ 1 by taking q to be the normalized volume form induced from the hyperbolic
metric on a compact Riemann surface. As main results, we construct a Weil
function on the moduli space of stable curves and give an upper bound for the
self-intersection of the Arakelov canonical divisor in terms of Peterson norms of
some modular forms.

2.1. The Arakelov±PoincareÂ volume
In this section, we de®ne an invariant, the Arakelov-PoincareÂ volume, for any

compact Riemann surface of genus at least 2.
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Let M be a compact Riemann surface of genus q > 2. For any metric r on KM ,
denote the corresponding normalized volume form on M by mr. Let rAr�mr� be the
Arakelov metric with respect to mr. Then there exists a function C�r� on M such that

C�r� :� rAr�mr�=r:

In general, C�r� is not a constant on M: by de®nition, C�r� is a constant only
when r is proportional to the standard hyperbolic metric rhyp. (By the standard
hyperbolic metric on M, we mean the hyperbolic metric on M with the total
volume 2p�2qÿ 2�.) In particular, if r � rhyp, we call the constant C�rhyp� the
Arakelov±PoincareÂ volume of M. Indeed, if qhyp is de®ned to be the normalized
volume form induced from the standard hyperbolic metric mhyp, that is, if qhyp :�
mhyp =�2p�qÿ 2��, then

C�rhyp� �
AAr�hyp�

2p�2qÿ 2� ;

where AAr�hyp� denotes the volume of the qhyp-Arakelov metric of M.
Before making an intensive study of the Arakelov±PoincareÂ volume, we give an

application of such a quantity to the theory of arithmetic surfaces.
Let p: X ! Spec�OF� be a regular arithmetic surface de®ned over the ring of

integers OF of a number ®eld F. Consider three hermitian line bundles on X:

�Kp; rAr�; �Kp; rhyp�; �Kp; rAr�hyp��;
where Kp denotes the (relative) canonical line bundle, and rAr, rhyp, and rAr�hyp�
denote the Arakelov metric, the hyperbolic metric and the Arakelov metric with
respect to the normalized hyperbolic volume form on the Riemann surface X�C�,
the ®bre of p at in®nity, respectively. For a real place j of F, set Nj to be 1, and
for a complex place j of F, set Nj � 2. By the Mean Value Lemma I in § 1, we
know that

c2
1;Ar�Kp; rAr� � c2

1;Ar�Kp; rAr�hyp��:
Therefore, by rAr�hyp� � C�rhyp� ´ rhyp, we get the following.

Proposition 2.1. With the same notation as above,

c2
1;Ar�Kp; rAr� � c2

1;Ar�Kp; rhyp� ÿ �2qÿ 2�
X

j

Nj log C�rj;hyp�:

In other words, the difference between the self-intersection of the Arakelov
canonical divisor and the self-intersection of the canonical line bundle equipped
with the standard hyperbolic metric is measured by C�rhyp�:

Thus, in order to study the self-intersection of the classical Arakelov canonical
divisor, which is the key part to all interesting applications, we only need to study
C�rhyp� and the self-intersection of the canonical line bundle equipped with the
standard hyperbolic metric.

Next we go back to the study of C�rhyp�. First we give another evaluation of
C�rhyp� in terms of Quillen metrics.

For any hermitian metric r on KM , we naturally get a metric on M. With
respect to these metrics, denote the associated Quillen metric on l�KM� by hQ�r�.
By the Polyakov variation formula [8, Formula (3.31)], for any constant c and any
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non-zero section a of l�KM�,

hQ�ecr��a� ÿ hQ�r��a� � 1
6

Z
M

c ´ c1�r� � 1
6
c

Z
M

c1�r� � 1
6
c�2qÿ 2�:

Lemma 2.2. With the same notation as above, we have

hQ�rhyp��a� ÿ hQ�rAr��a� � ÿ1
6
�2qÿ 2�c�rhyp�:

Here c�rhyp� is de®ned by C�rhyp� � : exp�c�rhyp��.

Proof. By Mean Value Lemma II(i) in § 1, we get

hQ�rAr��a� ÿ hQ�rAr�qhyp���a� � 0:

Thus, by the relation stated before this lemma, we get

hQ�rhyp��a� ÿ hQ�rAr�qhyp���a� � ÿ1
6
c�rhyp��2qÿ 2�

� ÿ1
6
�2qÿ 2�c�rhyp�:

This completes the proof of the lemma.

On the other hand, by de®nition,

l�KM� � det H 0�KM� 
 det H 1�KM�ÿ1 . det H 0�KM� 
 Cÿ1;

so if we choose a to be q1 ^ . . . ^ qq ^ 1ÿ1 with q1; . . . ;qq an orthonormal basis
of H 0�KM� with respect to the natural pairing, we see that for any hermitian
metric r on KM ,

hQ�r��q1 ^ . . . ^ qq ^ 1ÿ1� � ÿz 0r�0� ÿ log Ar�M�;

where zr�s� is de®ned as a formal sum
P

j l
ÿs
j with lj the non-zero eigenvalues

of the Laplacian associated with r on KM and hence on M, and Ar�M� denotes
the volume of M associated to r. Hence, if we de®ne the regularized determinant
of the corresponding Laplacian by det � Dr :� exp�ÿz 0r�0��, we have the following.

Theorem 2.3. With the same notation as above,

c�rhyp� � 12
1

2qÿ 2

�
log

det � DrAr

ArAr
�M� ÿ log

det � Drhyp

Arhyp
�M�

�
:

2.2. Degeneration of c�rhyp�
In this section, we are going to discuss the degeneration of c�rhyp� along with a

degenerating family of compact Riemann surfaces. Here, by a degenerating family
of Riemann surfaces, we mean a holomorphic map of the unit disc D into the
compacti®ed moduli space Mq of moduli space Mq of compact Riemann surfaces
of genus q (in the sense of Deligne and Mumford) such that the restriction of this
map to the punctured disc Dÿ f0g is a holomorphic map into Mq. Hence, the
®bre over the origin, the so-called central ®bre, in D is a nodal curve. As the
general discussion is the same, we assume in the sequel that the central ®bre
contains only one single node.
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We ®rst study the quantity log��det � DrAr
�=ArAr

�M��. By the works of Faltings
[7], Deligne [5], Smit, Moret-Bailly [16], and Gillet and SouleÂ [10], among
others, we see that log��det � DrAr

�=ArAr
�M�� is essentially the Faltings delta

function. Indeed, if we let dF�M� be the Faltings delta function of M, then, by
(52) of [20], we get

6 log
det � DrAr

ArAr
�M� � ÿdF�M� ÿ 2q log p� 4q log 2� a�q�:

Here, a�q� is the Deligne constant. Thus by using the arithmetic Riemann±Roch
formula [10], we know that a�q� � ÿ�1ÿ q��ÿ24z 0�ÿ1� � 1�. Here, z�s� denotes
the Riemann zeta function. (The reader may also ®nd the value of a�g� by using
the degeneration discussion in [13].) So we have the following.

Lemma 2.4. With the same notation as above,

log
det � DrAr

ArAr
�M� � ÿ

1
6

ÿ
dF�M� � 2q log pÿ 4q log 2� �1ÿ q��ÿ24z 0�ÿ1� � 1��:

Thus the degeneration of log��det � DrAr
�=ArAr

�M�� is simply the degeneration
of Faltings' delta function, which was discussed in detail in [12] and [24].
Applying their results, we get the following.

Proposition 2.5. (i) For a family of compact Riemann surfaces Mt of genus q,
degenerating as t! 0 to surfaces M0;1 and M0;2 of genera q1; q2 > 0 joined at a
separating node, we get

lim
t!0

�
log

det � Dt
rAr

ArAr
�Mt�

ÿ 2
3

q1q2

q
log jtj

�

� log
det � D1

rAr

ArAr
�M0;1�

� log
det � D2

rAr

ArAr
�M0;2�

� 1
6
�ÿ24z 0�ÿ1� � 1�:

Here Dt
rAr

, D1
rAr

and D2
rAr

denote the Laplacians on Mt, M0;1 and M0;2, respectively.

(ii) For a family of compact Riemann surfaces Mt of genus q degenerating as
t! 0 to a surface M0 of genus qÿ 1 with two punctures R and S identi®ed at a
non-separating node, denote the Arakelov±Green function on the normalization of
the central ®bre M0 by g0�?; ?�: We have

lim
t!0

�
log

det � Dt
rAr

ArAr
�M� ÿ

4qÿ 1

18q
log jtj ÿ log�ÿ log jtj�

�

� log
det � D0

rAr

ArAr
�M0�

� 2qÿ 5

9q
g0�R; S�

� 1
3

log 2p� 1
6
�ÿ2 log p� 4 log 2� �ÿ24z 0�ÿ1� � 1��:

Here Dt
rAr

denotes the Laplacian on Mt.

Next, we consider the degeneration of log��det � Drhyp
�=Arhyp�M��. Related

problems for such a degeneration have been studied by many authors, notably
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Hejhal [11], Wolpert [25], and Jorgenson and Lundelius [14]. We will follow [13].
The starting point is the following result of Wolpert.

Lemma 2.6 [25]. Let �g� denote a homology class that generates H1�Mt; Z�
and let l�g� denote the length of the geodesic path g in �g�. Then as jtj
approaches zero, we get

l�g� � 2p2

ÿ log jtj � o��log jtj�ÿ2�:

Thus we may use the length of the geodesic path to parametrize our family of
degenerating hyperbolic Riemann surfaces.

To go further, we now recall the de®nition of the Selberg zeta function for
Riemann surfaces. For a connected hyperbolic Riemann surface X with a cusp,
let fgg denote the set of primitive closed hyperbolic geodesics on X, that is,
those g such that �g� generates its centralizer in the fundamental group of
X. The Selberg zeta function Z�s; X� of X is de®ned, for Re�s� > 1, by Z�s; X� :�Q1

k�0

Q
fgg�1ÿ eÿ�s� k�l�g��. In general, if X is a ®nite-volume hyperbolic Riemann

surface with connected components X1; . . . ;Xr�1, we de®ne the Selberg zeta
function of X by Z�s; X� :�Qr�1

j�1 Z�s; Xj�. For convenience, we de®ne the delta
function of X with respect to the hyperbolic metric by

dhyp�X� :� 1
2
x�X��ÿ4z 0�ÿ1� � 1

2
ÿ log�2p�� � log

�
Z�r�1��1; X�
�r � 1�!

1

Ahyp�X�
�
;

where x�X� denotes the Euler characteristic of X, and Ahyp�X� denotes the volume
of M with respect to the usual hyperbolic metric. This de®nition makes sense, as by the
Selberg trace formula for weight-zero forms, we know that Z�s; X� has a meromorphic
continuation to the whole complex s-plane with a zero at s � 1 of order r � 1. With
this, we may state the following fundamental result of D'Hoker and Phong.

Lemma 2.7 [6]. If X is a connected compact Riemann surface of genus q > 2, then

log
det � Drhyp

Arhyp�X�
� �ÿ4z 0�ÿ1� � 1

2
ÿ log�2p���1ÿ q� � log

Z 0�1; X�
Arhyp
�X� � dhyp�X�:

So the degeneration behaviour of log��det � Drhyp
�=Arhyp�M�� is essentially the

degeneration of the Selberg zeta function.

Proposition 2.8. (i) For a family of compact Riemann surfaces Mt of genus q,
degenerating as t! 0 to surfaces M0;1 and M0;2 of genera q1; q2 > 0, joined at a
separating node,

lim
t!0

�
log

det � Dt
rhyp

Arhyp
�Mt�

ÿ 1
6

log jtj
�
� dhyp�M0� ÿ log p� log

�
1

2q1 ÿ 1
� 1

2q2 ÿ 1

�
:

(ii) For a family of compact Riemann surfaces Mt of genus q degenerating
as t! 0 to a surface M0 of genus qÿ 1 with two punctures identi®ed at a
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non-separating node,

lim
t!0

�
log

det � Dt
rhyp

Arhyp
�Mt�

ÿ 1
6

log jtj ÿ log�ÿ log jtj�
�
� dhyp�M0� ÿ log p:

Proof. Note that, in general, for a degenerating family, some eigenvalues of
the corresponding Laplacians will approach zero. So when we measure the change
for �det � Dt

rhyp
�=Arhyp

�Mt�, we should study the behaviour of these eigenvalues. To
regularize it, we set

Q
sev�Mt� to be the product of small eigenvalues of the

Laplacian on functions of Mt, that is, the eigenvalues of the Laplacian which are
less than 1

4
. (If there are no small eigenvalues, we set

Q
sev�Mt� :� 1:) The ®rst

result we use here is the following degeneration behaviour of the difference

log
det � Dt

rhyp

Arhyp
�Mt�

ÿ log

�Y
sev

�Mt�
�
;

which is well known to experts.

Lemma 2.9 [14]. Let Mt denote a degenerating family of hyperbolic Riemann
surfaces. Let �g� denote a homology class that generates H1�Mt; Z�, and let l�g�
denote the length of the geodesic path g in �g�. Then

log
det � Dt

rhyp

Arhyp
�Mt�

ÿ log

�Y
sev

�Mt�
�

� ÿ�2p�2
12l
� log

2p

l
� dhyp�M0� ÿ log

�Y
sev

�M0�
�
� o�1�:

Note that the degeneration behaviour of ÿ�2p�2 =�12l� � log�2p= l� is given by
Lemma 2.6, so we still need to consider the degeneration behaviour of

Q
sev�Mt�.

For this, we have the following.

Lemma 2.10. (i) If there is only one component for M0, then

lim
t!0

log

Q
sev�Mt�Q
sev�M0�

� 0:

(ii) (Burger [3]) If there are two components for M0, then

lim
t!0

�
log

Q
sev�Mt�Q
sev�M0�

ÿ log
�2p�2
ÿ log jtj2

�
� log

�
1

2p2

�
1

2q1 ÿ 1
� 1

2q2 ÿ 1

��
:

Proof. The ®rst statement comes from the fact that the ®rst eigenvalues of Mt

will not go to zero as t goes to zero, while the second statement comes from the
result of Burger [3] on small eigenvalues of Riemann surfaces together with
Lemma 2.6, since it is known that the small eigenvalues vary continuously over
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the stable compacti®ed moduli space [11]. This completes the proof of Lemma
2.10 and hence Proposition 2.5.

With Propositions 2.5 and 2.8, we then easily have the following.

Theorem 2.11. (i) For Mt a family of compact Riemann surfaces of genus q,
degenerating as t! 0 to surface M0;1 and M0;2 of genera q1; q2 > 0 joined at a node,

lim
t!0

�
c�rt

hyp� ÿ
6

2qÿ 2

�
2
3

q1q2

q
ÿ 1

6

�
log jtj

�

� 6

2qÿ 2

��
log

det � D1
rAr

ArAr
�M0;1�

ÿ log
Z 01�1�

Ahyp�M0
0;1�

�

�
�

log
det � D2

rAr

ArAr
�M0;2�

ÿ log
Z 02�1�

Ahyp�M0
0;2�

��
� j1�q1; q2�:

Here Dt
rAr

, D1
rAr

and D2
rAr

denote the Laplacians on Mt, M0;1 and M0;2,
respectively, with respect to the Arakelov metric, Z1 and Z2 denote the Selberg
zeta functions of M0;1 and M0; 2 respectively, and j1�q1; q2� is a function of q1

and q2.

(ii) For Mt a family of compact Riemann surfaces of genus q degenerating as
t! 0 to a surface M0 of genus qÿ 1 with two punctures R and S identi®ed at a
non-separating node,

lim
t!0

�
c�rt

hyp� ÿ
6

2qÿ 2

�
4qÿ 1

18q
ÿ 1

6

�
log jtj

�

� 6

2qÿ 2

�
log

det � D0
rAr

ArAr
�M0�

ÿ log
Z 00�1�

Ahyp�M0
0�
�

� 2�2qÿ 5�
3q�2qÿ 2� g0�R; S� � j2�q�:

Here Dt
rAr

denotes the Laplacian on Mt with respect to the Arakelov metric, Z0

denotes the Selberg zeta function of M0, and j2�q� is a function of q.

We remark ®rst, that the functions j1 and j2 can be precisely evaluated, and
second, that the singularity of c�rt

hyp� has order approximately log jtj. In particular,
there is no log�ÿ log jtj�-term.

2.3. An upper bound for the self-intersection of the Arakelov canonical divisor
In this section, we use the Arakelov±PoincareÂ volume to give an upper bound

for the self-intersection of the Arakelov canonical divisor in terms of Weil±
Petersson norms of certain modular forms.

Let p: X ! S � SpecOF be a regular arithmetic surface de®ned over a number
®eld F with a ring of integers OF . Let q be a normalized volume form on X�C�,
the ®bre of X at in®nity. For any q-admissible hermitian line bundle �L; r�, let

s�L; r� :� inf
P2X�F �

hL;r�P�
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and

s 0�L; r� :� lim inf
P2X�F �

hL;r�P�:

Here hL;r denotes the height corresponding to �L; r�.

Theorem 2.12. With the same notation as above, if the degree of the
restriction of L to any component of any ®bre of X on S is non-negative, and
d :� degF L is strictly positive, then, for any non-torsion element e 2 H 1�X; Lÿ1�,
we have the following two relations:

(1) [21, Theorem 2] c2
1;Ar�L; r�< ÿd�dÿ2�s�L; r�� �F : Q�d2�logkekL2�r;q� �1�;

(2) [27, Theorem 6.3] 2s 0�L; r�> c2
1;Ar�L; r�=d > s 0�L; r� � s�L; r�.

Moreover, if p: X ! S is semi-stable, then

(3) [7, Theorem 5] c2
1;Ar�Kp; rAr�> 0. Here Kp denotes the Arakelov canonical

line bundle of X equipped with the Arakelov metric rAr.

From now on, we always assume that p: X ! S is semi-stable. Apply the
q-admissible theory to the normalized hyperbolic volume form qhyp. Denote the
Arakelov metric with respect to qhyp by rAr�hyp�. Applying Theorem 2.12(1) to
�Kp; rAr�hyp��, we get

c2
1;Ar�Kp; rAr�hyp��< ÿ �2qÿ 2��2qÿ 4�s�Kp; rAr�hyp��

� �F : Q��2qÿ 2�2�log kekL2�rAr�hyp�;qhyp� � 1�:
Next, we discuss the quantities on the right-hand side term by term.

First, let us consider the s-term. By de®nition,

c1;Ar�EP; rAr�q�� � c1;Ar�EP; rAr� � �0; bq�P� � bq�Q��;
thus we see that

s�Kp; rAr�hyp��> s�Kp; rAr� � 1
2
�2qÿ 2��F : Q� inf

P2X�F�
bhyp�P�:

Here bhyp denotes bqhyp
. On the other hand, essentially, by (2), (3) and the Hodge

index theorem, we know that s�Kp; rAr�> 0 [7, Theorem 5]. Thus we get

s�Kp; rAr�hyp��> 1
2
�2qÿ 2��F : Q� inf

P2X�K �
bhyp�P�:

Hence

c2
1;Ar�Kp; rAr�hyp��< ÿ 1

2
�2qÿ 2�2�2qÿ 4��F : Q� inf

P2X�F�
bhyp�P�

� �F : Q��2qÿ 2�2�log kekL2�rAr�hyp�;qhyp� � 1�:
Secondly, we consider the e-term. It follows from the de®nition that, for any

e 2 H 1�X; Kÿ1
p �, kek2

L2�rAr�hyp�;qhyp� is given by

sup
j

Z
Xj

hej; ejirAr�hyp�qhyp;j:
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Since rAr�hyp� � C�hyp� ´ r�hyp�, we obtain

kekL2�rAr�hyp�;qhyp� � sup
j

�
Cj�hyp�

Z
Xj

hej; ejir�hyp�qhyp;j

�
:

But

H 1�Xj; Kÿ1
Xj
�. H 0�Xj; K
2

Xj
�;

so
R

Xj
hej; ejir�hyp�qhyp;j is nothing but the Weil±Petersson norm of the quadratic

differential corresponding to e at Xj. Denote this quantity by kek2
WP. We then have

c2
1;Ar�Kp; rAr�hyp��< ÿ 1

2
�2qÿ 2�2�2qÿ 4��F : Q� inf

P2X�F�
bhyp�P�

� �F : Q��2qÿ 2�2�log kekWP � 1�
� �F : Q��2qÿ 2�2c�hyp�:

Here exp�c�hyp�� � C�hyp� denotes the maximum of the various Cj�hyp�.
Thus, using Theorem 2.3 from § 2.1, we have the following.

Theorem 2.13. With the same notation as above, the self-intersection of the
Arakelov canonical divisor of X is bounded from above as follows:

c2
1;Ar�Kp; rAr�<

6

2p
�F : Q�

�
log

det � DrAr

ArAr

ÿ log
det � Drhyp

Arhyp

�
ÿ 1

2
�2qÿ 2�2�2qÿ 4��F : Q� inf

P2X�C�
bhyp�P�

� �F : Q��2qÿ 2�2�log kekWP � 1�:

We end this section with the following observations. First, by a result of
Wolpert [26], if we have an analytic family of stable curves, the term kekWP can
be totally controlled. Unfortunately, the same idea cannot be applied to the
arithmetic situation: we do not know how to choose an arithmetic extension, as
there is no good deformation theory in arithmetic at this moment.

Secondly, to apply our result to Diophantine Geometry, one should use the
construction of Kodaira and Parshin [17, proof of Theorem in § 3]. In this case,
one ®nds that the limited family of Vojta is quite useful [22, pp. 165±166]: for a
limited family,

log
det � DrAr

ArAr

ÿ log
det � Drhyp

Arhyp

can be uniformly bounded, while b can also be uniformly bounded, as a standard
Moser iteration [9, Theorem 8.24] shows that sup b is bounded by Clÿ1

1 , where C
is a constant which does not depend on b, and l1 denotes the ®rst (non-zero)
eigenvalue of the Laplacian associated to qcan � qhyp. Thus the only term we need
to take care of is kekWP, the term which involves Petersson norms of some
modular forms.

Finally, observe that, for modular curves, by Rankin's work on Petersson norms
of modular forms, kekWP can be calculated in terms of the special value of the
Rankin L-function associated to e [18, Theorem 3]. So it is essential to study the
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Rankin L-function in order to obtain the arithmetic Miyaoka±Yau inequality. (For
this purpose, one may ®nd that the paper [19] is quite useful.) Independently, such
ideals have been used already with success by Abbes Ullmo and Michel Ullmer. I
thank the referee for informing me of this.

3. Q-Admissible theory for singular arithmetic surfaces

In this chapter, we give an q-admissible theory for singular arithmetic surfaces
associated to stable curves. When q corresponds to a canonical volume form, such
a theory was (®rst) given by Aitken [1].

3.1. Generalized NeÂron family
The q-admissible theory for line bundles on compact Riemann surfaces consists

of two parts: one concerns the q-Green's functions, while the other deals with the
q-Arakelov metric over the canonical line bundle. In this section, we give a
parallel theory for nodal curves. We begin by recalling the theory of NeÂron
families for smooth curves C, which is equivalent to q-admissible theory for
line bundles.

Following [15, Chapter 1], by a NeÂron family on a smooth curve C of genus
q�C� de®ned over C, we mean a map D 7! lD from Cartier divisors on C to Weil
functions, satisfying the following conditions

NF 1. The map D 7! lD is a homomorphism.

NF 2. If D � � f � is the divisor of a rational function f , and n the valuation
associated to D, then lD � n ± fÿ constant.

NF 3. If �U; f � represents D, then there exists a C 1-function a on U such that

lD � n ± f � a:

NF 4. For any two points P 6� Q, lP�Q� � lQ�P�.
A NeÂron family always exists. (Usually, we also write lD�E� as l�D; E�:)

Moreover, for a ®xed volume form q on C, if the Chern form of the NeÂron
family l, de®ned to be dPd c

PlD�P�, is proportional to q, then l is essentially
unique; if l0 is another NeÂron family such that its Chern form is proportional
to q, then there exists an absolute constant c such that, for any two divisors D
and E on C,

lD�E� ÿ l0D�E� � c ´ deg D ´ deg E:

(See below, or [15, Chapter 1], for more details.) We call such a NeÂron family an
q-admissible NeÂron family, and denote it by lq.

There is another way to express the admissibility condition on a NeÂron family l.

NF 5. For all points P in C,

ÿl��a�; P� �
�

log jh�P�j � lim
Q!P
�log jz�Q� ÿ z�P�j � l�P; Q��

�
ÿ q�C�bq�P� � constant:

Here a � h�z� dz is a section of the canonical bundle, and bq is the unique
function such that dd cbq � qÿ qcan,

R
bq�q� qcan� � 0 with qcan the canonical

volume form of C.
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Obviously, if we let lq be 1
2

gq with gq the q-Green's function, and impose the
q-Arakelov metric on KC, then lq satis®es the above conditions.

With this in mind, we make the following de®nition of a generalized admissible
NeÂron family for a nodal curve C de®ned over C.

Let C � SCi be the decomposition of C into its irreducible components. Let S
denote the set of singular points of C and denote the arithmetic genus of C by
pa�C�. Denote the normalization of Ci by ÄCi. Put normalized volume forms
q � fqig on f ÄCig. Let bq � fbqi

g be the functions on
S

ÄCi de®ned as above.
(Here, if the geometric genus of Ci is zero, then to de®ne bq we take the
normalized volume form associated to the standard Fubini±Study metric on P1 as
the canonical volume form.) With this, by a generalized admissible NeÂron family
with respect to q, we mean a map D 7! lD from Cartier divisors on C with supports
disjoint from the singular set S to functions, satisfying the following conditions.

GNF 1. The map D 7! lD is a homomorphism.

GNF 2. If D � � f � is the divisor of a rational function f on C, then there exists
a constant gl� f �, depending only on f , such that, for any P 2 CnS;

lD�P� � n ± f �P� ÿ gl� f �:
GNF 3. If �U; f � represents D, then there exists a continuous function a on U

such that

lD � n ± f � a:

GNF 4. For any two points P 6� Q, disjoint from S, lP�Q� � lQ�P�.
GNF 5. Let a be a meromorphic section of the dualizing sheaf KC whose

divisor k has support disjoint from S. Let U be an open neighbourhood in C,
disjoint from S and the support of k, which is parametrized by a complex
coordinate z. On U, write a � h�z� dz for some nowhere-zero holomorphic
function h. Then there exists a constant gl�a�, depending only on a, such that for
any point P 2 CnS,

l�k; P� � ÿ log jh�P�j ÿ lim
Q!P
�log jz�Q� ÿ z�P�j � l�P; Q�� � pa�C�bq�P� ÿ gl�a�:

If q is the collection of canonical volume forms on f ÄCig, then in [1] Aitken
shows that there exists a generalized admissible NeÂron family. We will construct
later a generalized admissible NeÂron family with respect to any q. But now, to
understand how we end up with our construction, let us study a toy model.

For the time being, let C be a regular curve. Denote by gq the Green's
functions on C with respect to any ®xed normalized volume form q. Let R and S
be two distinct points on C and let C 0 be the new nodal curve of arithmetic genus
pa�C 0� resulting from identifying R and S into an ordinary double point.

For any two regular points P and Q in C 0, set

l0q�P; Q� :� lq�P; Q� ÿ 1

2pa�C 0�
lq�P� Q; R� S�

� 1
2

1

pa�C 0�
�bq�P� � bq�Q� � bq�R� � bq�S��:

Extend the de®nition of l0q by linearity. Then, it is easy to see that GNF 1, GNF
3 and GNF 4 are satis®ed. So we need to check GNF 2 and GNF 5.
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Let f be a rational function of C 0 whose divisor � f � is away from the double
point. Then

g0q� f � :� ÿ log j f �P�j ÿ l0q�� f �; P�

� ÿ log j f �P�j ÿ lq�� f �; P� � 1

2pa�C 0�
lq�� f �; R� S� ÿ 1

2pa�C 0�
bq�� f ��

� gq� f � � 1

2pa�C 0�
lq�� f �; R� S� ÿ 1

2

1

pa�C 0�
bq�� f ��;

which is independent of P. Here, if D �P nkPk is a divisor, bq�D� denotesP
nkbq�Pk�. This shows that GNF 2 is satis®ed.

Now let a be a meromorphic section of the dualizing sheaf KC 0 of C 0 whose
divisor k has support away from the double point. Let U be an open
neighbourhood in C 0 away from the double point and k, which is parametrized
by a complex coordinate z. On U, we write q � h�z� dz for some holomorphic
function h on U. Then, for each regular point P in C 0, we get

g0q�a�� ÿ log jh�P�jÿ l0q�k; P�ÿ lim
Q!P
�log jz�Q� ÿ z�P�j�l0q�P; Q���pa�C 0�bq�P�

� ÿ log jh�P�j ÿ lq�k; P� � 2pa�C 0� ÿ 2

2pa�C 0�
lq�P; R� S� � 1

2pa�C 0�
lq�k; R� S�

ÿ 1

2pa�C 0�
bq�k� ÿ

2pa�C 0� ÿ 2

2pa�C 0�
bq�P� ÿ

2pa�C 0� ÿ 2

2pa�C 0�
�bq�R� � bq�S��

ÿ lim
Q!P
�log jz�Q�ÿz�P�j�lq�P; Q��� 1

pa�C 0�
lq�P; R�S�ÿ 2

2pa�C 0�
bq�P�

ÿ 1

4pa�C 0�
�bq�R� � bq�S�� � pa�C 0�bq�P�

� ÿ log jh�P�j ÿ lq�kÿ Rÿ S; P�
ÿ lim

Q!P
�log jz�Q� ÿ z�P�j � lq�P; Q�� � pa�C�bq�P�

ÿ 1

2pa�C 0�
bq�k� �

1

2pa�C 0�
lq�k; R� S� ÿ 2pa�C 0� ÿ 1

2pa�C 0�
�bq�R� � bq�S��:

Thus, if we also consider a as a meromorphic section of the dualizing line bundle
KC of C, then it has divisor kÿ Rÿ S. Thus,

g0q�a� � gq�a� ÿ
1

2pa�C 0�
bq�k� �

1

2pa�C 0�
lq�k; R� S�

ÿ 2pa�C 0� ÿ 1

2pa�C 0�
�bq�R� � bq�S��;

which is independent of P. So GNF 5 is also satis®ed. This completes the proof
of the existence of a generalized admissible NeÂron family for the model.

It seems to be the case that for this toy model, the construction of l0q is quite
arti®cial. It is not so. Indeed, we have the following observation.

With respect to the canonical volume form on C, the construction of Aitken [1]
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gives the generalized admissible NeÂron family l0�P; Q� on C 0 on setting

l0�P; Q� :� l�P; Q� ÿ 1

2pa�C 0�
l�P� Q; R� S�:

Writing the right-hand side in terms of lq, we get

l0�P; Q� � lq�P; Q� ÿ 1

2pa�C 0�
lq�P� Q; R� S�

� 1ÿ pa�C 0�
2pa�C 0�

�bq�P� � bq�Q�� �
1

2pa�C 0�
�bq�R� � bq�S��

� lq�P; Q� ÿ 1

2pa�C 0�
lq�P� Q; R� S�

� 1

2pa�C 0�
�bq�P� � bq�Q� � bq�R� � bq�S�� ÿ 1

2
�bq�P� � bq�Q��:

Thus by setting l0q�P; Q� equal to

lq�P; Q� ÿ 1

2pa�C 0�
lq�P� Q; R� S� � 1

2pa�C 0�
�bq�P� � bq�Q� � bq�R� � bq�S��;

we obtain the relation

2l0q�P; Q� � 2l0�P; Q� � bq�P� � bq�Q�;
which is exactly the same as the relation in § 1.1 for Green's functions over
smooth curves. So, by using the process in § 1, we should get a suitable theory for
the generalized admissible NeÂron family with respect to q.

With this in mind, we are ready now to give the following theorem.

Existence Theorem. Let C � SCi be a nodal curve; then there exists a
generalized admissible NeÂron family lq with respect to any normalized volume
forms q � fqig on C � SCi.

Proof. Denote by l the generalized NeÂron family on C with respect to the
canonical volume forms on C introduced by Aitken [1]. De®ne bq � fbqi

g on C
by the condition that

dd cbqi
� qi ÿ qcan; i;

Z
ÄCi

bqi
�qi � qcan; i� � 0:

Here qcan; i denotes the canonical volume form on the normalization ÄCi of the
irreducible component Ci of C. (If the genus of ÄCi is zero, then the canonical
volume form is supposed to be the normalized volume form associated to the
Fubini±Study metric on P1:)

Then for any two regular points P and Q of C, set

lq�P; Q� :� l�P; Q� � 1
2
bq�P� � 1

2
bq�Q�:

Extend the de®nition of lq by linearity. Then it is easy to see that GNF 1, GNF 3,
and GNF 4 are satis®ed. Next, we check GNF 2 and GNF 5.
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Let f be a rational function of C whose divisor � f � is away from double
points. Then

gq� f � :� ÿ log j f �P�j ÿ lq�� f �; P�
� ÿ log j f �P�j ÿ l�� f �; P� ÿ 1

2
bq�� f ��

� g� f � ÿ 1
2
bq�� f ��;

which is independent of P. Here g� f � denotes the corresponding constant in
GNF 2 for Aitken's generalized admissible NeÂron family (with respect to the
canonical volume forms). This shows that GNF 2 is satis®ed.

Now let a be a meromorphic section of the dualizing sheaf KC of C whose
divisor k has support away from double points. Let U be an open neighbourhood
in C, away from double points and k, which is parametrized by a complex
coordinate z. On U, we write q � h�z� dz for some holomorphic function h on U.
For each regular point P in C, we get

gq�a; P�� ÿ log jh�P�jÿlq�k; P�ÿ lim
Q!P
�log jz�Q�ÿz�P�j�lq�P; Q���pa�C�bq�P�

� ÿ log jh�P�j ÿ l�k; P� ÿ 1
2
bq�k� ÿ �pa�C� ÿ 1� bq�P�

ÿ lim
Q!P
�log jz�Q� ÿ z�P�j � l�P; Q� � 1

2
bq�P� � 1

2
bq�Q�� � pa�C�bq�P�

� ÿ log jh�P�j ÿ l�k; P� ÿ lim
Q!P
�log jz�Q� ÿ z�P�j � l�P; Q�� ÿ 1

2
bq�k�

� g�a� ÿ 1
2

bq�k�;
which is independent of P. Here g�a� denotes the corresponding constant in
GNF 5 for Aitken's generalized admissible NeÂron family (with respect to the
canonical volume forms). So GNF 5 also is satis®ed. This completes the proof of
the existence theorem.

3.2. lq-admissible metrics on line bundles
Having established the existence of a generalized admissible NeÂron family

with respect to q in § 3.1, we now give a metric theory for line bundles over a
nodal curve.

With the same notation as in § 3.1, assume that lq is a generalized admissible
NeÂron family with respect to q. We introduce lq-admissible metrics on all
line bundles as follows: ®rst, for any regular point Q 6� P, on OC�P�, de®ne a
metric by setting

k1Pk�Q� :� eÿlq�P;Q�;

where 1P denotes the de®ning section of OC�P�; then we use linearity to de®ne
metrics on all line bundles by assuming that the natural algebraic isomorphisms
OC�D� 
 OC�D 0�. OC�D� D 0� are isometries for all divisors D and D 0 on C,
whose supports are away from the double points (and call the metrics on OC�D�
obtained in this way restricted lq-admissible metrics); ®nally, by a lq-admissible
metric on OC�D�, we mean a metric on OC�D� which is a constant multiple of the
restricted lq-admissible metric on OC�D�.

The lq-admissible metrics on line bundles are well de®ned: ®rst, any line
bundle L on C can be expressed as OC�D� for some divisor D on C with support
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away from the double points; secondly, the expression of L in the form OC�D� is not
unique, but by GNF 2, lq-admissible metrics on L are well de®ned, as we allow
admissible metrics to differ from each other by a constant factor. Usually we will
denote the line bundle OC�D� together with the restricted lq-admissible metric by
OC�D�, while a line bundle L together with a lq-admissible metric is denoted by L ,
by abuse of notation. We will call L a lq-admissible hermitian line bundle.

3.3. Deligne metric and arithmetic intersection
With the same notation as above, let L and M be two lq-admissible hermitian

line bundles on C. Choose sections l and m of L and M respectively, such that the
divisors �l� and �m� are away from the double points of C and have disjoint
supports. Then there exist constants c�l� and c�m� such that

L � OC��l�� 
 OC�ec�l��; M � OC��m�� 
 OC�ec�m��:
Here OC�ec� denotes the trivial line bundle together with a metric such that the
square of the norm of 1 is eÿc.

Now, we are ready to introduce a norm on the Deligne pairing hL; Mi
associated to L and M, which we call the Deligne norm hD. First choose two
sections l and m and L and M respectively, such that the divisors �l� and �m� are
away from the double points of C and have disjoint supports; then de®ne a norm
on a generator hl; mi of hL; Mi by

ÿ log jhl; mij2hD
:� 2l��l�; �m�� � deg M ´ c�l� � deg L ´ c�m�:

Usually, we also write �hL; Mi; hD� as hL; Mi. Obviously we have the following.

Proposition 3.1. With the same notation as above, for line bundles with lq-
admissible metrics on C, we have the following natural isometries:

(a) hL; M i. hM; Li;
(b) hL1 
 L2; M i. hL1; M i 
 hL2; M i:

3.4. lq-Arakelov metrics
In arithmetic intersection theory for regular curves, the central result is the so-

called adjunction formula, which claims that the residue isomorphism
KC�P�jP . C naturally becomes an isometry if we put suitable metrics on OC�P�
and KC, respectively. Here KC is the dualizing line bundle of C. In this section,
we study the same problem for nodal curves.

With the same notation as above, for any regular point P of C, de®ne the lq-
Arakelov metric on OC�P�, denoted by rAr;lq;P

, as follows:

k1Pk2
rAr;lq;P

�Q� :� eÿ2lq�P;Q��bq�P�:

Obviously, rAr;lq;P
is a lq-admissible metric on OC�P�.

Next, we de®ne the lq-Arakelov metric rAr;lq
on KC: for any section

a � h�z� dz of KC, whose divisor is away from the double points of C,

kh�z� dzk2
rAr; lq
�P� :� jh�P�j2 ´ lim

Q!P

jz�Q� ÿ z�P�j2
eÿ2l�P;Q� ´ eÿ2pa�C�bq�P�:

By GNF 5, we see that rAr;lq
is a lq-admissible metric on KC.
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With this, if we start with �KC; rAr;lq
� and �OC�P�; rAr;lq;P

�, then the restriction
of the tensor metric on KC�P�, denoted by rAr for simplicity, to the point P can
be calculated as follows:


h�z� dz

z

 1P




2

rAr

�P� � kh�z� dzk2
rAr; lq

´



 1P

z




2

rAr; lq ; P

�P�

� jh�P�j2 ´ lim
Q!P

jz�Q� ÿ z�P�j2
eÿ2l�P;Q� ´ eÿ2pa�C�bq�P�

´ lim
Q!P

1

jz�Q� ÿ z�P�j2 ´ eÿ2l�P;Q� ´ ebq�P�

� jh�P�j2 ´ e�ÿ2pa�C��1�bq�P�

� jresP�a�j2 ´ eÿd�KC�P��´bq�P�:

Here d�KC�P�� denotes the degree of KC�P�. Therefore, for L, if we denote by
LkP the space obtained by scaling the metric of LjP by a constant factor ed�L�bq�P� ,
then we have the following.

Adjunction Formula. With the same notation as above, for any regular
point P of C, the natural residue map induces as isometry

KC�P�kP . C:

Here KC and OC�P� have the lq-Arakelov metrics, and C has the standard
¯at metric.

Remark. All the lq-admissible metrics are only de®ned over regular points of
C. In general, at double points, such metrics have logarithmic singularities.

From the above we see that arithmetic intersection theory for nodal curves is
exactly the same as for regular curves. So we can use the same methods as for
regular curves to prove the results for nodal curves. In particular, we also have
the so-called Mean Value Lemmas as in § 1. We leave this to the reader.

3.5. lq-admissible metrics on cohomology determinants
In this section, we de®ne lq-admissible metrics on cohomology determinants.
For this, let us ®rst recall that for any two line bundles L and M over a nodal

curve C, the Deligne pairing hL; Mi has a natural decomposition:

hL; Mi � Det RG�L
M� 
 Det RG�L�ÿ1 
 Det RG�M�ÿ1 
 Det RG�OC�:
Here Det RG�L� denotes the cohomology determinant associated to L. Moreover,
we have Serre duality

Det RG�L�. Det RG�KC 
 Lÿ1�:
It is then well known that these two relations for Deligne pairings are equivalent
to the Riemann±Roch isomorphism:

Det RG�L�
 2 
 Det RG�OC�
ÿ2 . hL; L
 Kÿ1
C i:

(For more discussion about Deligne pairings, please see the appendix.)
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To de®ne admissible metrics on cohomology determinants for nodal curves, we
will use the above isomorphisms of the Deligne pairings. With the same notation
as in the previous sections, let lq be a generalized admissible NeÂron family on a
nodal curve C. Write rAr;q for the lq-Arakelov metric on the dualizing sheaf KC

of C. Fix a metric h0 on Det RG�OC�. Then, for any line bundle L with a lq-
admissible metric rL, we de®ne the lq-admissible metric hAd�L� on Det RG�L� by
requiring that the following map is an isometry:

�Det RG�L�; hAd�L��
2 
 �Det RG�OC�; h0�
ÿ2 . h�L; rL�; �L; rL� 
 �KC; rAr;q�ÿ1i:
We call this metric hAd�L� the lq-admissible metric on Det RG�L� with respect to
rL (and with respect to the generalized admissible NeÂron family lq).

Obviously, with this de®nition of the lq-admissible metric on Det RG�L�, the
Serre duality and the Deligne decomposition become isometries if we put lq-
admissible metrics on the corresponding data. So we have the following.

Theorem 3.2. With the same notation as above, for a nodal curve C, with
respect to a ®xed metric h0 on Det RG�OC� and a ®xed generalized NeÂron family
lq, for any lq-admissible metrized line bundle L there exists a unique metric
hAd�L� on Det RG�L�, such that we have the following isometries:

(i) (Deligne decomposition)

hL; M i. �Det RG�L
M�; hAd�L
M�� 
 �Det RG�L�; hAd�L��ÿ1


 �Det RG�M�; hAd�M��ÿ1 
 �Det RG�OC�; h0�;
(ii) (Serre duality)

�Det RG�L�; hAd�L��. �Det RG�KC 
 Lÿ1�; hAd ��KC; rAr;q� 
 L
ÿ1��;

(iii) (Riemann±Roch theorem)

�Det RG�L�; hAd�L��
2 
 �Det RG�OC�; h0�
ÿ2 . hL; L
 �KC; rAr;q�ÿ1i:

There is another way to de®ne the lq-admissible metric hAd�L� associated to L.
Indeed, we have the following.

Proposition 3.3. With the same notation as above, for a nodal curve C, with
respect to a ®xed metric h0 on Det RG�OC� and a ®xed generalized NeÂron family
lq, for all lq-admissible metrized line bundles L, the metric hAd�L� on Det RG�L�
de®ned in the previous theorem satis®es the following conditions:

(i) an isometry of lq-admissible hermitian line bundles L! L
0

induces an
isometry from �Det RG�L�, hAd�L�� to �Det RG�L0�, hAd�L0��;

(ii) if the lq-admissible metric on L is changed by a multiplicative factor a 2 R�,
then the metric on �Det RG�L�, hAd�L�� is changed by the factor ax�L�;

(iii) (Riemann±Roch condition for closed immersions) For any regular point P
on C, take the lq-Arakelov metric on OM�P� and the tensor metric on
L�ÿP�; then the algebraic isomorphism

Det RG�L�. Det RG�L�ÿP�� 
 LjP;
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induced by the short exact sequence of coherent sheaves

0! L�ÿP� ! L! LjP ! 0;

is an isometry

�Det RG�L�; hAd�L��. �Det RG�L�ÿP��; hAd�L�ÿP��� 
 LkP:

Remark. One may use this proposition ®rst to de®ne the lq-admissible metric
on Det RG�L� for any lq-admissible line bundle L; then to prove the (local and
global) arithmetic Riemann±Roch theorems by using the adjunction formula as
was done in [15]. (Here local means the result on archimedean places, while
global refers to the results on arithmetic surfaces.) We leave this to the reader.

Proof of Proposition 3.3. This is an easy consequence of the previous theorem
and the adjunction formula.

Appendix. Algebraic and analytic structures of Deligne's pairing

A.1. Algebraic structure
Let G and H be abelian groups with H uniquely 2-divisible. The map

D: G! H is said to be quadratic (following Bourbaki) if it satis®es the identity

D�x� y� z� ÿ D�x� y� ÿ D�x� z� ÿ D�y� z� � D�x� � D�y� � D�z� ÿ D�0� � 0;

or equivalently, if

hx; yi :� D�x� y� ÿ D�x� ÿ D�y� � D�0�
is a bilinear pairing. De®ne L�x� :� D�x� ÿ 1

2
hx; yi ÿ D�0�. Then an equivalent

condition is that L is a homomorphism. We can regard the decomposition

D�x� � 1
2
hx; yi � L�x� � D�0�

as decomposing the quadratic map D into homogeneous components of degree 2,
1 and 0. (Please compare this with the Deligne decomposition for Deligne pairing
in terms of cohomology determinants.)

For a 2 G it is equivalent to require that L�x� � ÿ 1
2
hx; ai for all x 2 G or that

D�aÿ x� � D�x� for all x 2 G. Such an element a is called canonical with
respect to D. (Please compare this with Serre duality.) When a canonical element
exists, the above decomposition takes the form

D�x� � 1
2
hx; xi ÿ 1

2
hx; ai � D�0�: �2�

(Please compare this with the Riemann±Roch theorem for surfaces.)
Just as in geometry, (2) does not determine D uniquely. In fact, it depends on

the choice of D�0�. For this reason, we usually call the geometric version of (2)
the weak version of the Riemann±Roch theorem.

We always have D�a� � D�0� and D�2a� � ha; ai � D�0�. If there is an integer
a with D�2a� � aD�a�, then ha; ai � �aÿ 1�D�0�, so for any n 2 Z we have

�aÿ 1�D�na� � �1
2
�aÿ 1��n2 ÿ n� � 1�ha; ai:

(Please compare this with the Mumford relation on determinant line bundles over
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moduli spaces of stable curves. I thank Professor C. T. C. Wall for providing me
with this alternative presentation of this section.)

A.2. Analytic structure
Let p: X ! S be a ¯at family of relative dimension n. Let L0; . . . ; Ln be

invertible hermitian sheaves over X . Then, in [5], Deligne introduces the Deligne
pairing hL0; . . . ; Lni�X=S� together with the Deligne metric hD, which is
multilinear and symmetric in the Li.

On the other hand, for any line bundle L over X , there exists a determinant line
bundle l�L� � Det RG�L� over S. A natural question is what should be the relation
between the Deligne pairing and the cohomology determinant.

To understand this precisely, consider the case of arithmetic surfaces. Deligne
shows that there exists a natural algebraic isomorphism

hL; Mi. l�L
M� 
 l�L�ÿ1 
 l�M�ÿ1 
 l�OX�:
Indeed, one may equally use this isomorphism to de®ne the Deligne pairing.

For this algebraic isomorphism, we have an hermitian metric hD on the Deligne
pairing hL; Mi as soon as we are given metrics r and t on L and M respectively.

Proposition A.1. With respect to any metric on XC, if we put the Deligne
metric on the Deligne pairing and the Quillen metrics on the associated
determinant line bundles, then

hL; Mi. l�L
M� 
 l�L�ÿ1 
 l�M�ÿ1 
 l�OX�
is an isometry. In particular, the metric for the manifold plays no role in the
combination on the right-hand side.

From this, one may use the cohomology determinant together with Quillen
metrics to give arithmetic intersections. ( Please compare this statement with the
arithmetic Riemann±Roch formula, where the arithmetic intersection was used to
give information about the determinant with the Quillen metric.)

Next we use determinant line bundles to express the Deligne pairing for any
smooth family of regular varieties. Without loss of generality, in the sequel we
only consider the global version of the Deligne pairing over arithmetic varieties.

In that case, we have the following arithmetic Riemann±Roch formula of Gillet
and SouleÂ [10]. Denote by det R�p�L the cohomology determinant associated to L,
by hQ the Quillen metric, and by TdAr the arithmetic Todd genus. Then

c1;Ar�Det R�p�L; rQ� � p��chAr�L; r� ´ TdAr�Tp; tp���1�:
To express the Deligne pairing in terms of determinant line bundles, we consider
n� 1 line bundles L0; . . . ; Ln together with hermitian metrics ri. Let l�x0 � . . .� xn�
be c1;Ar�Det R�p��L0 
 . . .
 Ln�; rQ�. Then we should ®nd a

j1;...; jm
i1;...; im

2Q such thatX
a

j1;...; jm
i1;...;im

l�i1xj1
� . . .� imxjm

� � p��c1;Ar�L0; r0� . . . c1;Ar�Ln; rn��
� c1;Ar�hL0; . . . ; Lni�X=S�; rD�:

We claim that this can always be done. As a special case, let us ®rst express
hL; . . . ;Li in terms of determinant line bundles. Let A�n� � �aij� be the matrix
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de®ned by a00 � 1, aij � j i for i; j � 0; . . . ; n� 1 and �i; j� 6� �0; 0�. Then, A�n� is
a Vandermonde determinant. In particular, A�n� is non-degenerate. Consider

A�n��x� :� A�n� ÿ
�

0n�1 ´ n�1 0

0 x

�
:

There exists a unique x 2Q such that A�n��x� is degenerate. Moreover, the rank of
A�n��x� is its size minus 1, that is, n� 1. Thus the homogeneous linear equation
A�n��x�X � 0 has solution space of dimension 1, say R�x0; . . . ; xn�1�t. Hence

A�n�X �
�

0n�1 ´ n�1 0

0 x

�
X � �0; . . . ; 0; xxn�1�t:

In particular, we see that xn�1 6� 0 and also

xn�1 ´ c1;Ar�hL; . . . ; Li�X=S�; rD� �
Xn�1

i�0

xic1;Ar�Det R�p��Li�; rQ�

by using the arithmetic Riemann±Roch formula. Indeed,

Xn�1

i�0

xic1;Ar�Det R�p��Li�; rQ�

�
�Xn�1

i�0

xip�

�Xn�1

k�0

c1;Ar�L
i; r
i�k
k!

TdAr
n�1ÿ k�Tp; tp�

���1�

�
Xn�1

k�0

Xn�1

i�0

xip�

�
i k c1;Ar�L; r�k

k!
TdAr

n�1ÿ k�Tp; tp�
��1�

� 0� . . .� 0� xn�1p��c1;Ar�L; r��n�1

� xn�1c1;Ar�hL; . . . ; Li�X =S�; rD�:

On the other hand, by elementary row operations followed by dividing the i th row
by i! for each i, we see that A�n��x� takes the form

0
0

ÿ �
1
0

ÿ �
2
0

ÿ �
3
0

ÿ �
. . . n

0

ÿ � �n�1
0
�

0 1
1

ÿ �
2
1

ÿ �
3
1

ÿ �
. . . n

1

ÿ �
n�1

1

ÿ �
0 0 2

2

ÿ �
3
2

ÿ �
. . . n

2

ÿ �
n�1

2

ÿ �
0 0 0 3

3

ÿ �
. . . n

3

ÿ �
n�1

3

ÿ �
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . n
n

ÿ �
n�1

n

ÿ �
0 0 0 0 . . . 0 1ÿ x

�n�1�!

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

So the value of x making the matrix singular is x � �n� 1�!. This then implies
that xi � �ÿ1�i�n�1

i
�. Therefore we have the following.
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Proposition A.2. With the same notation as above, there exists an isometry

�hL; . . . ; Li�X=S�; hD�. �Det R�p��Ln�1�; hQ�

 �Det R�p��Ln�; hQ�
ÿ�

n� 1
1
� 
 . . .


 �Det R�p��Ln�1ÿ i�; hQ�
�ÿ1�i�n� 1
i
�


 . . .
 �Det R�p��OX�; hQ�
�ÿ1�n� 1

:

In general, one may show the following.

Proposition A.3. With the same notation as above, there exists an isometry

�hL1; . . . ; Ln�1i�X =S�; hD�
. �Det R�p��L1 
 L2 
 . . .
 Ln�1�; hQ�

 ��Det R�p��L1 
 L2 
 . . .
 Ln�; hQ�

 . . .
 �Det R�p��L2 
 L3 
 . . .
 Ln�1�; hQ��
ÿ1


 ��Det R�p��L1 
 L2 
 . . .
 Lnÿ1�; hQ�

 . . .
 �Det R�p��L3 
 L4 
 . . .
 Ln�1�; hQ��
�ÿ1�2


 . . .
 �Det R�p��OX�; hq�
�ÿ1�n� 1:

In fact, the proof of Proposition A.3 comes from the arithmetic Riemann±Roch
formula, together with the equalityXn�1

k� i�1

�ÿ1�k k

i

� �
n� 1

k

� �
� �ÿ1�i�1 n� 1

i

� �
:

Remark. We will use the above propositions in a forthcoming study of the
existence of Einstein±KaÈhler metrics and Chow±Mumford stability.
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