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Introduction

Almost twenty years ago, starting with Arakelov metrics on compact Riemann
surfaces, Arakelov developed an admissible theory for arithmetic surfaces [2].

Recall that the Ricci forms of Arakelov metrics on compact Riemann surfaces
are the so-called canonical forms, which are the pull-back of the Kihler forms
corresponding to the ordinary flat metrics on the associated Jacobians. Hence, the
admissible theory of Arakelov and Faltings is essentially in the nature of
Euclidean geometry.

But, from the moduli point of view, hyperbolic metrics are more natural.
First of all, the Weil-Petersson metric on the moduli space .#, of compact
Riemann surfaces of genus ¢ (=2) comes directly from hyperbolic metrics of
these surfaces; secondly, a result of Wolpert [26, §2, p. 1485] says that the
singularities of the Kéhler form wyp, defined by the Weil-Petersson metric on
M4, are sufficiently mild. (More precisely, in the sense of currents on
the compactified moduli space .#, of .4, constructed by Deligne and Mumford,
wwp/ 7% is the curvature form of a continuous metric hwp on a certain
line bundle and the metric hwp may be approximated by smooth positive
curvature metrics.)

Thus we should develop an admissible theory with respect to hyperbolic volume
forms. For this purpose, we create a more general w-admissible theory in this
paper: for any normalized volume form w on a compact Riemann surface M, we
introduce the Arakelov metric py (w) with respect to w on the canonical line
bundle K, of M. With such an w-Arakelov metric p,,(w), we can then develop an
w-admissible theory for arithmetic surfaces, which is parallel to what was done in
[2] and [7]. Moreover, we show that various w-admissible theories are closely
related by the so-called Mean Value Lemma: for any arithmetic surface
m: X — S, the self-intersection of the canonical line bundle K, equipped with the
w-Arakelov metric pu(w) is independent of w, and hence is exactly the self-
intersection of the classical Arakelov canonical divisor. As a by-product we give
the w-insertion formula, which has some applications in string theory. All this is
done in §1.

There are two interesting examples for this w-admissible theory. The first is
obtained by taking w as the canonical form w.,,. In this case, the w-admissible
theory coincides with the classical admissible theory of Arakelov. The second is
obtained by taking w as the (normalized) hyperbolic volume form wyy,. In this
case, we show that the metric pa, (wpy,) on the Riemann surface M induced by
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the wy,y,-Arakelov metric is proportional to the original hyperbolic metric oy, on
M. Thus the ratio of pa(wpy,) and pyy, defines a natural, yet important, invariant
for the compact Riemann surface M. We call this invariant the Arakelov—Poincaré
volume of M and show that it actually forms a Weil function on the moduli space
%. In fact we do much more: we first evaluate this invariant in terms of Quillen
metrics, and then give precise degeneration behaviour on the boundary of ..

As an application of the admissible theory with respect to hyperbolic volume
forms, we offer an upper bound for the self-intersection of the classical Arakelov
canonical divisor in terms of Petersson norms of modular forms, by applying
Soulé’s arithmetic vanishing theorem. All this is done in § 2.

In §3, we develop an w-admissible theory for singular arithmetic surfaces,
which is motivated by the work of Aitken in [1]. As a by-product, we introduce a
metric on the determinant of cohomology, and hence give an arithmetic Riemann—
Roch theorem for singular arithmetic surfaces.

We end this paper with an appendix, in which Deligne pairings are expressed in
terms of determinant line bundles. Such a relation will be used in a forthcoming
study on Chow—Mumford stability and Kéhler—Einstein metrics.

This paper is an edited version of papers written around 1995 under the title
‘Arakelov theory in terms of hyperbolic metrics’. I would like to thank Professor
S. Lang for sending me Aitken’s paper [1] some years ago, Professor To Wing-
Keung for helpful discussions, Professor Feng Keqin for giving me the
opportunity to speak on the results of this paper in his Tunxi conference in
1996, and Professor C. T. C. Wall for suggestions for improving the clarity
and readability of this paper. Also, I would like to dedicate this paper to
Professor Cao Xihua.

1. Q-Admissible theory for compact Riemann surfaces

1.1. Admissible metrics on line bundles with respect to any volume form

In this section, we introduce an w-admissible theory for line bundles over a
compact Riemann surface with respect to any fixed volume form w. In particular,
we define the w-Arakelov metric on the canonical line bundle, prove the Mean
Value Lemma for arithmetic intersections, and give the w-adjunction formula.

Let M be a compact Riemann surface. For any normalized volume form w on
M, that is, for any positive (1,1) form w on M such that [, w =1, there is a
unique Green’s function g,(P, Q) with respect to w satisfying the following
conditions [15, Chapter 1, Theorem 1.4]:

(a) if f is a rational function on an open subset U of M such that, over U, the
divisor of f is P, then there exists a smooth function « on U such that for

Q#P,
8.(P. Q) = —log|f(Q)I” + (Q);
(b) dpdpg.,(P, Q) = (P) — dp;
© Ju 8u(P, Q)u(P) =0.
Indeed, if w is the canonical form w.,, on M, the existence of g, is proved by

Arakelov in [2] (see [15, Chapter 2] for more details). On the other hand, for any
fixed normalized volume form w’, there exists a unique smooth real function B
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on M such that
dd B, ., = 0 — w, / Bw/,w(w’ +w) =0. (1)
M

Furthermore, if P# Q, we have g,/(P,Q) = g,(P, Q) + B,/.o,(P) + B, ..(Q).
This then gives the existence of the Green’s functions with respect to any
normalized volume form.

By definition, a hermitian metric p on a line bundle L of M is called
w-admissible if the first Chern form of the hermitian line bundle (L, p) satisfies
ci(L,p) = d(L) - w. Here d(L) denotes the degree of the line bundle L. It is easy
to see that the set of w-admissible hermitian metrics on a fixed line bundle is
parametrized by R*. Moreover, by using the Green’s functions with respect to w,
we can construct w-admissible metrics over all line bundles on M: first, for any
point P € M, on (,,(P), we set the inner product of the defining section 1p (with
itself) at any point Q to be G, (P, Q) := exp(—g,(P, Q)); then we use linearity to
get the w-admissible metrics on all line bundles by assuming that the natural
algebraic isomorphisms (D) ® Oy(D') = Oy (D + D') are isometries for all
divisors D and D' on M. If a hermitian metric # on a line bundle L is
w-admissible, we call the corresponding hermitian line bundle (L, &) an w-admissible
hermitian line bundle, and denote it L, by abuse of notation.

Therefore, on the canonical bundle K,, of M, there exist w-admissible metrics.
But such metrics are far from being unique. For our purpose, we fix a
normalization as follows:

. :(P) —=(Q)]°
izl (@) = i O expl2gs . (P)

Here z denotes a holomorphic coordinate of M at P, and g denotes the genus of
M. (From now on, for simplicity, we will use 3,(P) to denote (3, ,_(P).) In the
sequel, we call this metric the Arakelov metric with respect to w, or the w-
Arakelov metric, on Ky;.

This normalized hermitian metric on Kj; is w-admissible. Indeed, by [15,
Chapter 4, Theorem 5.4], the metric on K, defined by

o 2P) — Q)]
||dZHAr (@ean) (P) T thnpm

iS an w.,,-admissible metric on Kj;. So, for any non-zero section s of Kj,,
~ 2
dd*(—log|slar(w))

= dd“(—log||s||3

HAr(wmn)

)~ dd Jim, 1og<%f”QQ))exp[—2q6w])
= (2 — s + 2rn — ) + 244,

— (2 — 2 + 2an — @) + 240 — )

=29 -2)w.

Hence we have the following.
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ProposITION 1.1.  With the same notation as above,

12400 (P) = lim 1:(P) — Q)

0—P Gw(P, Q) exp[—Zqu(P)]

defines an admissible metric pay(,) with respect to w on Ky.

The Arakelov metric with respect to w on K, has another more geometric
interpretation. To explain it, we first introduce the w-Arakelov metric on the line
bundle @y,(P) associated to a point P € M: define the w-Arakelov metric pa(w; P)
on 0y (P) by setting the inner product (with itself) of the defining section 1, of
Oy (P) at any point Q € M equal to exp|—g,(P, Q) + B,(P)]. Obviously pa(w; P)
on (y;(P) is w-admissible. On the other hand, for two distinct points P and Q on
M, if we impose the w-Arakelov metrics p (w; P) and pu(w; Q) on Oy (P) and
Oy (Q), respectively, then the induced metric on @), (P)|, is quite different from
the induced metric on O (Q)|p: for the first, the norm of the section 1 is
exp[—1-g,(P, Q) +1-B,(P)], while for the second, the norm of the section 1 is

exp[— 13- 8,(0, P) +1-B,(Q)]. So the Arakelov metric pa,(w; P) on (U (P) is not
compatible with restriction. To remedy this, we make the following modification
of the metric on the restriction: let L be an w-admissible hermitian line bundle on
M; then on the restriction L|p, we introduce a new metric by multiplying the
restriction metric from L to P by an additional factor exp[d(L) - 8,,(P)], and we will use
the symbol L||p to indicate the vector space L|p together with the above modified

metric. Thus, in particular, on (/;(P)||o, the inner product of 1 (with itself) at Q
is just exp[—g, (P, Q) + B,(P) + B, (Q)]. So Oy (P)]|y is isometric to Oy (Q)]|p.

Now we easily see that the Arakelov metric with respect to w on Kj; is the
unique metric such that, at each point P €M, the natural residue map
res: Ky (P)|p — C|p induces an isometry res: K, (P)||p — C|p with respect to
the metrics pa, on Ky, par(w; P) on ¢y (P), and the standard flat metric on C.

We next give some applications of the w-Arakelov metrics to the theory of
arithmetic surfaces.

Let F be a number field with @ the ring of integers. Let m: X — S be a
regular arithmetic surface over S :=Spec((r). Fix a normalized volume form w on
X(C), the fibre of = at infinity. Denote the w-Arakelov metrics on Ky, and on
P € X(C) by par(w) and pa.(w; P), respectively. For any algebraic point P of Xp,
the generic fibre of w, denote the corresponding Zariski closure of P in X by Ep.
Denote by K,(w) and Ep(w) the hermitian line bundles (K, pa/(w)) and
(O(Ep), pac(w; P)), respectively.

MEAN VALUE LeEmMA 1. With the same notation as above, we have the
following relations for arithmetic intersections:

() Kr(@)” = Ky(wean)’s
(i) Kw(w) 'EP(w) = Kw(wcan) : EP(wcan);
(iii) Ep(w) - Ep(w) = Eg(wean) - Ep(Wean)> for any two algebraic points P, Q
Of XF'

Proof.  We only prove (i), as the proof of the others is similar. Denote the first
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arithmetic Chern class of a hermitian line bundle (L, p) on X by c; a.(L, p). Then

Cl,Ar(Kw(w>) = Cl,Ar(Kﬂ'(wcan>) + (0’ (26] - 2>Bw(P))
Thus,

C%,Ar(Kw(w)) = Cl,Ar(Kw(w))[Cl,Ar(Kw(wcan)) + (0’ (261 - Z)Bw(P))]
= Cl,Ar(K‘lr(w))cl,Ar(Kr(wcan)) + Cl,Ar(Kr(w>)(0’ (2q - 2)Bw<P)>

= C%,Ar(KW (wcan))
+ [Cl,Ar(Kw(wcan)) + Cl,Ar(Kw(w))](O’ (2q - Z)Bw(P))

= & po(Ke(wean)) + 1 / (24 — 2B (P)ler (K (wean)) + 1 (Kx ()]

= & p (K () + 1 / (24 — 226, (P) e + ]

= C%, Ar (Kw (wcan))’

by the normalization condition (1) of B,(P).

REMARK. The Mean Value Lemma says that, in terms of arithmetic
intersection, the w-admissible theory is just the classical Arakelov admissible
theory. In particular, we can use different normalized volume forms to calculate
the self-intersection of the classical Arakelov canonical divisor. On the other
hand, the reader should notice that our w-Arakelov metric on (/y;(P) is not defined
by using the -Green’s function only. Thus, Ep in [15] is not our
Ep(w) = (Ep, par(w; P)), while, for any w-admissible hermitian line bundle (L, p)
on X, (L, p) - (Ep, par(w; P)) is not just the arithmetic degree of the pull-back of
(L, p) via the section of 7 corresponding to P on S.

As a direct consequence, we have the following.

Q-ADJUNCTION FORMULA. With the same notation as above, if P is an
F-rational point on Xy, then

K. () - Ep(w) + Ep(w)* = 0.

1.2. Admissible metrics on determinants with respect to any volume form

In this section, we are going to show that there exists a natural w-determinant
metric on the cohomology determinant of w-admissible hermitian line bundles. In
particular, if we take w to be the canonical form, this w-determinant metric
coincides with the Faltings metric.

Let M be a compact Riemann surface of genus g. Fix a normalized volume
form w on M. Denote the w-Arakelov metric on the canonical line bundle K, of
M by pac(w), and for any point P € M, denote the w-Arakelov metric on (), (P)
by pa(w) also. In the sequel, we always assume that the metrics on K, (and
hence on the Riemann surface M) and on (),(P) are py,(w). For any w-admissible
hermitian line bundle L, denote L ® (Uy(P), pac(w))®~! by L(—P).
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THEOREM 1.2. Let M be a compact Riemann surface of genus q. Let w be a
normalized volume form on M. Then, for any w-admissible hermitian line bundle
L on M, there exists a unique w-determinant metric, denoted by h(Z), over the
cohomology determinant of L,

N(L) := Det RT(M, L) := N™H(M, L) ® (A" H'(M, L))",

up to a universal constant multiple, such that the following conditions are satisfied:
(a) an isometry of w-admissible hermitian line bundles L — L' induces an
isometry from (NM, L), h(L)) to (N(M, L"), h(L"));
(b) if the w-admissible metric on L is changed by a factor o € R", then the
metric on N(M, L) is changed by the factor XML,

(¢) (Riemann—Roch condition for closed immersions) for any point P on M,
the algebraic isomorphism

N(M. L) = N(M. L(~P)) & L|,
induced by the short exact sequence of coherent sheaves
0—L(-P)—>L—Ljp—0

gives an isometry

Before proving this theorem, let us make a few comments. First, if w is
the canonical volume form, this theorem is proved by Faltings [7] with one
more condition:

(d) the metric on NM, Qi) = NSH°(M, Q);) is the determinant of the L*-

metric on H*(M, Q),) induced by the canonical pairing.

Note that this condition is merely a normalization, which will fix the above-
mentioned universal constant once and for all. So we drop it for our purposes,
as such a normalization is not important for the arithmetic Riemann—Roch
theorem. (On the other hand, a normalization is crucial for the arithmetic
Noether formula.)

Secondly, in the proof of Faltings’ theorem [7], it appears that the use of the
canonical form is essential, as it plays a central role in the curvature calculation.
But this is not quite true: one has Mean Value Lemma III at the end of this
section, and hence can prove our theorem by using Faltings’ method (see, for
example, [23]). Nevertheless, here we use another approach.

Proof of Theorem 1.2. We will show that the Quillen metric satisfies the
conditions above. Hence, up to a universal constant, we can take the Quillen
metric as the w-determinant metric.

Denote the w-admissible hermitian metric on L in the theorem by p,4. Then,
with respect to ppq on L and the w-Arakelov metric p,, on M, we naturally get
the Quillen metric on the cohomology determinant N\(L), which we simply denote
by hgy. By definition, the Quillen metric A satisfies conditions (a) and (b). So, in
order to get a good admissible metric theory on the cohomology determinant with
respect to w, we only need to check condition (c).
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To do so, without loss of generality, we suppose that there is a smooth family
m: X — Y for M, together with a section s: ¥ — X of « corresponding to P, and
that there is a family of line bundles L on X for L/M. That is to say, M is a
special fibre of 7 at a certain point yy, s(yy) = P € M, and L is a line bundle on X
such that L|y— r-1(,,) = L. In this way, we get two determinant line bundles on Y:
one, denoted by A(L), comes from the family L for L, while the other, denoted by
NL(—=s(Y)), comes from the family L(—s(Y)) for L(—P).

Fix a (1, 1)-form, denoted also by w by abuse of notation, on X, such that, for each
y €Y, the restriction of w to X, := 7 '(y) is a normalized volume form w, and
wy, = w is the original normalized volume form on M. Now, on L, choose a hermitian
metric, denoted by psq too by abuse of notation, such that the restriction of ppq to
L x, 18 an w,-admissible hermitian metric and the restriction to L X, = L is just the
original hermitian metric p,q on L. Moreover, on the relative canonical line bundle
K, of m, choose a hermitian metric, denoted by p4, such that the induced metric on
each fibre of = is the wy-Arakelov metric. (This then induces a hermitian metric,
denote by px, on the relative tangent bundle T, of 7.) Similarly, on ('(s(Y)), choose a
hermitian metric, denoted by pa,(s), such that the restriction of pa.(s) to O(s(y)) is
the w,-Arakelov metric. For simplicity, denote by p,q also the hermitian metric
induced by using a tensor product on L(—s(Y)) = L ® Ox(—s(Y)).

Then, with respect to these hermitian metrics, on A(L) and on A(L(—s(Y)), we
have the associated Quillen metrics. Denote both of them simply by A,,.

Now, by the well-known formula of the first Chern form for the Quillen metric,
we have

ci(ML), hg) — e1(ML(=5(Y))), ho)

(1)
_ ( [ ehlt oas)(1 = ch(O(=5(). pad(T-. px»)
_ ( [ ei@=50). s ber (=500, a0 ~ b1 (K )

ra pAdn)m-

Here (-)!") denotes the (1, 1)-part of the differential form (-). Thus, by the fact that
the metric on y;(P) is the Arakelov metric with respect to w, we see that the first
Chern form of (O(—P), pa,) is given by ¢;(O(—P), pa;) = —dd g, — 6p. Hence
ct(ML),hg) — e (ML(=s(Y))), ho)
= —dd* / gw[% c1(O0(=s(Y)), oar) — %Cl (Kzs par) + 1 (L, paq)]
+5%(er(Ls pag)) = 35" (c1(Kr @ O(s(Y)), pa))-

But, by the admissible property of the metrics p,, and paq,

%cl((ﬁ(—s(Y)), Par) — %Cl(Km Par) +c1(L, paq)

is just a multiple of w. So, by the normalization condition (c) in §1.1 of the
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Green’s function g, with respect to w, we have

/w gulle1 (O(=5(V)). par) — her (K. par) + 1(Ls paa)] = 0.
Thus

c1(ML), hg) — ct(ML(=s(Y))), ho)
=5"(c1(L, paqa)) — 1 (" (Kr @ O(s), par))-

Therefore, by the fact that the Arakelov metric on M with respect to w is defined
so that the isomorphism induced by the residue map gives an isometry Ky, (P)|p =
Clp, we see that if we understand s* as the w-restriction | defined in the
geometric interpretation of the Arakelov metric ppq in § 1.1, then

(5" (Ky @ O(s), par)) =0,
as it corresponds to C together with the standard flat metric, and hence we get
ci(ML), hg) — er(ML(=s(Y))), hg) = 5" (c1(L, paa)),

which gives condition (c) as s* means ||. This completes the proof of the theorem.

With this theorem, we then see that the w-admissible metric theory for the
cohomology determinant is very similar to the Faltings theory. Thus all results in
[15] or in [4] can be reproduced here. In particular, we find that the Riemann—
Roch theorem stands without any change. But we do not list any of these results
here. Instead, we show that the w-determinant metrics do not depend on w.

MEAN VALUE LEMMA II. Let M be a compact Riemann surface. For any line
bundle L over M, denote the cohomology determinant Det RT'(M, L) of L by N(L).
For any normalized volume form w on M, put the w-Arakelov metrics on K, and
on Oy(P) for a point P € M. Denote the associated Quillen metrics on N(Ky;) and
N(P) := Ny (P)) simply by ho(w). Then, for any two normalized volume forms
wy and wy, on M, we have the following isometries:

(@) (MKy), ho(wr)) = (M(Ky), ho(w2));
(i) (N(P), hg(wy)) = (N(P), hg(w,)) for any point P € M.

Proof. We only need to show that the result is valid for the case where w, is
the canonical form of M. By the Polyakov variation formula for Quillen metrics
[8, Formula (3.31)], if two metrics p; and py on the Riemann surface M satisfy
0] = e¢p0 for some smooth function ¢, then, for any non-zero element « of
A(Ky), the variation of the associated Quillen metrics is given by

holo1)(@) = holpo)(@) = L L 6 L(c1(p0) + 1(p1)-

Thus, if we take the Arakelov metric to be p, and the w-Arakelov metric py,(w)
to be p,, respectively, then we know that ¢ = (—g + 1)8,,. In particular,

A o(c1(po) + c1(p1)) = A (=g + 1)(2q — 2)B (6o + @) = 0.
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This completes the proof of (i). Using (i), we see that (ii) is a direct consequence of
the Riemann—Roch theorem and Mean Value Lemma I in the previous subsection.

INSERTION FORMULA. Let w be a normalized volume form on a compact
Riemann surface M. Let L be a line bundle on M. Put an w-admissible metric on
L. Put the w-Arakelov metrics on Ky, on M, and on Oy(P) for any point P € M.
Denote simply by hy the associated Quillen metrics on N(L) and N(L — Y/ | n;P;),
where n; € Z, and P; € M. Then we have the following isometry:

(ML), ho) = <>\<L— in,P,-),hQ) ® <®([TP[)®”')

i=1 i=1

2 (é(—ﬂ)@cm(w—l)/z) 2 < R (Pi||3/)—®ninj>.

i=1 I<i<j<a

__Proof. By using the fact that the residue map gives an isometry Ky (P)|p=
C|p, we can obtain the above isometry from the following two isometries, which
can be checked directly from condition (c) of Theorem 1.2:

(D), hy) = (( ZP> >®<(§)Wpi>®< & (P,-IIP,W)

i=1 i=1 I<i<j<a

and

(ML), hg) = (ML —nP), hy) @ (L][p)*") @ (Kol )= 172),

MEAN VALUE LeEmma IIlI. With the same notation as above, for any two
normalized volume forms w, and w, on M, we have the isometry

() oten) = (5(3nm ) teten)

That is, for the admissible theory, the Quillen metric does not depend on the
choice of the normalized volume forms on the Riemann surface.

Proof. This is a direct consequence of the Riemann—Roch theorem and the
Mean Value Lemmas I and II.

2. Admissible theory with respect to hyperbolic metrics

In this chapter, we give an application of the w-admissible theory developed in
§1 by taking w to be the normalized volume form induced from the hyperbolic
metric on a compact Riemann surface. As main results, we construct a Weil
function on the moduli space of stable curves and give an upper bound for the
self-intersection of the Arakelov canonical divisor in terms of Peterson norms of
some modular forms.

2.1. The Arakelov—Poincaré volume
In this section, we define an invariant, the Arakelov-Poincaré volume, for any
compact Riemann surface of genus at least 2.
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Let M be a compact Riemann surface of genus ¢ = 2. For any metric p on K,
denote the corresponding normalized volume form on M by p,. Let pa,(u,) be the
Arakelov metric with respect to p,. Then there exists a function C(p) on M such that

Clp) == par(py)/ p.

In general, C(p) is not a constant on M: by definition, C(p) is a constant only
when p is proportional to the standard hyperbolic metric pyy,. (By the standard
hyperbolic metric on M, we mean the hyperbolic metric on M with the total
volume 27(2g —2).) In particular, if p = pyy,, we call the constant C(pp,,) the
Arakelov—Poincaré volume of M. Indeed, if Whyp is defined to be the normalized
volume form induced from the standard hyperbolic metric pyyp,, that is, if wyy, =

pyp/ (27(g — 2)), then

_ AAr (hyp)

Clony) = 21(2q — 2)

where Ay, (hyp) denotes the volume of the wyy,-Arakelov metric of M.

Before making an intensive study of the Arakelov—Poincaré volume, we give an
application of such a quantity to the theory of arithmetic surfaces.

Let m: X — Spec(U) be a regular arithmetic surface defined over the ring of
integers (0 of a number field F. Consider three hermitian line bundles on X:

(K‘n-a pAr)a (Kr» phyp)’ (Kr’ pAr(hyp))’

where K denotes the (relative) canonical line bundle, and pa;, Phyp. and pa,(hyp)
denote the Arakelov metric, the hyperbolic metric and the Arakelov metric with
respect to the normalized hyperbolic volume form on the Riemann surface X(C),
the fibre of 7 at infinity, respectively. For a real place o of F, set N, to be 1, and
for a complex place ¢ of F, set N, = 2. By the Mean Value Lemma I in § 1, we
know that

C%,Ar(Kw pAr) = C%,Ar(Kw pAr(hyp))
Therefore, by par(hyp) = C(pnyp) - Pnyp We get the following.

ProrosiTION 2.1.  With the same notation as abowve,

c%,Ar(qus PAr) = c%,Ar(qus phyp) - (2q - 2) ZNU log C(pa,hyp)'

In other words, the difference between the self-intersection of the Arakelov
canonical divisor and the self-intersection of the canonical line bundle equipped
with the standard hyperbolic metric is measured by C(ppyp).

Thus, in order to study the self-intersection of the classical Arakelov canonical
divisor, which is the key part to all interesting applications, we only need to study
C(pnyp) and the self-intersection of the canonical line bundle equipped with the
standard hyperbolic metric.

Next we go back to the study of C(pyy,). First we give another evaluation of
C(pnyp) in terms of Quillen metrics.

For any hermitian metric p on K;, we naturally get a metric on M. With
respect to these metrics, denote the associated Quillen metric on A(Kj,) by /g(p).
By the Polyakov variation formula [8, Formula (3.31)], for any constant ¢ and any



Q-ADMISSIBLE THEORY 491

non-zero section o of N(Ky,),

o) (@) — ho(p)(a) = | A ¢-ci(p) = Le A e1(0) = Le(2g — 2).

LEMMA 2.2. With the same notation as above, we have

hQ(ﬂhyp)(a) - hQ(pAr) (O‘) = _é(zq - 2)C(phyp)'
Here c(pyyp) is defined by C(pny,) =: exp[c(opyp)]-

Proof. By Mean Value Lemma II(i) in § 1, we get
ho(par) (@) = ho(par(whyp))(er) = 0.
Thus, by the relation stated before this lemma, we get
(o) (@) — g (Par(enyp)) (@) = —Ac(nyp) (29 — 2)
— —1(2q — 2)c(pnyp)-

This completes the proof of the lemma.

On the other hand, by definition,
NKy) = det H'(Ky,) @ det H' (Ky,) ™' = det H(K,,) @ C™1,

so if we choose o to be w; A... Aw, A 17! with Wi, ..., w, an orthonormal basis
of H°(K,;) with respect to the natural pairing, we see that for any hermitian
metric p on K,

ho(p) (@1 Ao Aw, A7) = =1 (0) — logA, (M),

where {,(s) is defined as a formal sum ) ;N\’ with \; the non-zero eigenvalues
of the Laplacian associated with p on K), and hence on M, and A,(M) denotes
the volume of M associated to p. Hence, if we define the regularized determinant

of the corresponding Laplacian by det” A, :=exp(—¢{,(0)), we have the following.

THEOREM 2.3. With the same notation as above,

1 det® A det” A,
c(pnyp) = 12 <10g "Af—log7“’).
vP 2 —2 A, (M) A, (M)

2.2. Degeneration of c¢(ppyp)

In this section, we are going to discuss the degeneration of c(pny,) along with a
degenerating family of compact Riemann surfaces. Here, by a degenerating family
of Riemann surfaces, we mean a holomorphic map of the unit disc D into the
compactified moduli space % of moduli space .#, of compact Riemann surfaces
of genus ¢ (in the sense of Deligne and Mumford) such that the restriction of this
map to the punctured disc [ — {0} is a holomorphic map into .#,. Hence, the
fibre over the origin, the so-called central fibre, in D is a nodal curve. As the
general discussion is the same, we assume in the sequel that the central fibre

contains only one single node.
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We first study the quantity log((det® A, )/A, (M)). By the works of Faltings
[7], Deligne [5], Smit, Moret-Bailly [16], and Gillet and Soulé [10], among
others, we see that log((det™ A, )/A,, (M)) is essentially the Faltings delta
function. Indeed, if we let 6y(M) be the Faltings delta function of M, then, by
(52) of [20], we get

det™ A
6 log——24 = —§,(M) — 2q log 7 + 4q log2 + a(q).
ApAr(M) r

Here, a(q) is the Deligne constant. Thus by using the arithmetic Riemann—Roch
formula [10], we know that a(q) = —(1 — q)(—24{'(—1) + 1). Here, {(s) denotes
the Riemann zeta function. (The reader may also find the value of a(g) by using
the degeneration discussion in [13].) So we have the following.

LEMMA 2.4. With the same notation as above,

det* A
log—— 24 — —%(6F(M) +2g logm —4qlog2 + (1 — q)(—24¢'(—1) + 1))
ApAr (M)

Thus the degeneration of log((det™ A, )/A, (M)) is simply the degeneration
of Faltings’ delta function, which was discussed in detail in [12] and [24].

Applying their results, we get the following.

ProrosiTION 2.5. (i) For a family of compact Riemann surfaces M, of genus g,
degenerating as t — 0 to surfaces My and M, , of genera qy, g, > 0 joined at a
separating node, we get

det™ A}
lim <log o 29192 log |t|)
t—0 q

ApAr (Mt) 3
det” A, det” A,
= log PA 1 log Pac 4 1248 (—1) + 1).
ApA, (MO,I) ApA,(MO,Z) 6
Here Aﬁ, " A,l) ., and A?)A, denote the Laplacians on M,, My, | and M, ,, respectively.

(i) For a family of compact Riemann surfaces M, of genus q degenerating as
t — 0 to a surface M of genus q — 1 with two punctures R and S identified at a
non-separating node, denote the Arakelov—Green function on the normalization of
the central fibre My by go(+,*). We have
det™ Al 4g—1

li 1 Par log |t| — log(—log |t
im (102 1o = 44T o ]~ tog(— g

det™ A) L2245
APAr (MO) 9q

+ llog2m +L(—2log w + 4log2 + (—24¢'(—1) + 1)).

= log (R, S)

Here Ai, ., denotes the Laplacian on M,.

Next, we consider the degeneration of log((det™ A, )/A, ). Related
problems for such a degeneration have been studied by many authors, notably
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Hejhal [11], Wolpert [25], and Jorgenson and Lundelius [14]. We will follow [13].
The starting point is the following result of Wolpert.

LEMMA 2.6 [25]. Let [y] denote a homology class that generates H,(M,, 7)
and let I(y) denote the length of the geodesic path v in [y|. Then as |t
approaches zero, we get

27

= gy oozl ).

I(y)

Thus we may use the length of the geodesic path to parametrize our family of
degenerating hyperbolic Riemann surfaces.

To go further, we now recall the definition of the Selberg zeta function for
Riemann surfaces. For a connected hyperbolic Riemann surface X with a cusp,
let {7} denote the set of primitive closed hyperbolic geodesics on X, that is,
those v such that [y] generates its centralizer in the fundamental group of
X. The Selberg zeta function Z(s; X) of X is defined, for Re(s) > 1, by Z(s; X) :=
[0 [Ty (1 = e~ +0I)) In general, if X is a finite-volume hyperbolic Riemann
surface with connected components Xi,...,X,,;, we define the Selberg zeta
function of X by Z(s; X) := ;i}Z(s; X;). For convenience, we define the delta
function of X with respect to the hyperbolic metric by

ZrYx) 1 )
(r+ 1)1 App(X))

where x(X) denotes the Euler characteristic of X, and Apy,(X) denotes the volume
of M with respect to the usual hyperbolic metric. This definition makes sense, as by the
Selberg trace formula for weight-zero forms, we know that Z(s; X) has a meromorphic
continuation to the whole complex s-plane with a zero at s = 1 of order r + 1. With
this, we may state the following fundamental result of D’Hoker and Phong.

By (X) = Lx(X)(—4"(—1) +1 — log(2m)) + log (

LeEMMA 2.7 [6]. If X is a connected compact Riemann surface of genus q = 2, then

det* A, , Z'(1;X
log———* = (—4{"(—1) + 5 — log(2m))(1 — q) + log ( (X))

Phyp (X ) Phyp

= Opyp(X).

So the degeneration behaviour of log((det” A,,) /Aphyp(M)> is essentially the
degeneration of the Selberg zeta function.

ProposiTiON 2.8. (i) For a family of compact Riemann surfaces M; of genus q,
degenerating as t — 0 to surfaces My 1 and M, , of genera qy, g, >0, joined at a
separating node,

tim ((1og ™ 2o 11001t} = 80 (o) — logr 11 !
1im og—— — 710 = — 10 (0] .
150 gAphyp(Ml> 6 g hyp 0 g7T' g 2611 _ 1 242 _ 1

(i) For a family of compact Riemann surfaces M, of genus q degenerating
as t — 0 to a surface My of genus q— 1 with two punctures identified at a
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non-separating node,

det™ Al
lim | log———222 — Log |¢| — log(— log |t|)) = Opyp(My) — log .
1—0 < Ay (M) ° »P

Proof. Note that, in general, for a degenerating family, some eigenvalues of
the corresponding Laplacians will approach zero. So when we measure the change
for (det” A;hyp) / A, (M,), we should study the behaviour of these eigenvalues. To
regularize it, we set [y (M;) to be the product of small eigenvalues of the
Laplacian on functions of M,, that is, the eigenvalues of the Laplacian which are
less than 1. (If there are no small eigenvalues, we set [[s(M;) := 1.) The first
result we use here is the following degeneration behaviour of the difference

det® Al
log——— _ Jog ( M >,
Aphyp(Mt) g( t)

which is well known to experts.
LEMMA 2.9 [14]. Let M, denote a degenerating family of hyperbolic Riemann

surfaces. Let [y| denote a homology class that generates H,(M,, Z), and let I(vy)
denote the length of the geodesic path v in [y]. Then

det” A,
logm — log ( H(M,))

Phyp ( sev

2
S (2172 + 10g277r+ Onyp(Mo) — log (H(MO)> +o(1).

Note that the degeneration behaviour of —(27)*/(121) + log(2x /1) is given by
Lemma 2.6, so we still need to consider the degeneration behaviour of [ [, (M,).
For this, we have the following.

LEMMA 2.10. (i) If there is only one component for My, then

HS@V (Ml> — 0.

lim log =——=
=0 Hsev (MO)

(ii) (Burger [3]) If there are two components for M,, then
. Hsev (Mt) (277')2 ) ( 1 ( 1 1 )>
lim ( lo —lo =log | — + .
=0 < gHsev(MO) 8 log |1 e 2, —1 2q,—1

Proof. The first statement comes from the fact that the first eigenvalues of M,
will not go to zero as ¢ goes to zero, while the second statement comes from the
result of Burger [3] on small eigenvalues of Riemann surfaces together with
Lemma 2.6, since it is known that the small eigenvalues vary continuously over
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the stable compactified moduli space [11]. This completes the proof of Lemma
2.10 and hence Proposition 2.5.
With Propositions 2.5 and 2.8, we then easily have the following.

THEOREM 2.11. (i) For M, a family of compact Riemann surfaces of genus q,
degenerating as t — 0 to surface My 1 and M, , of genera qy,q, > 0 joined at a node,

. 6 919>
roy 241e 1
lim [C(Phyp) Zq_2(3 g log |t

det* Al Zi(1
6 |:<10g € PAr —log 1( ) )

B 2q—2 ApA, (MO,I) Ahyp(Mg,l)

N (log det™ A _log Z5(1)
A, (M) Anyp(MQ )

)] + o @)

Here AZA,’ A}vm and Af,Ar denote the Laplacians on M, M,, and M, ,,
respectively, with respect to the Arakelov metric, Z, and Z, denote the Selberg
zeta functions of My, and M, , respectively, and o,(q, q») is a function of q
and q,.

(i1) For M, a family of compact Riemann surfaces of genus q degenerating as
t — 0 to a surface M of genus q — 1 with two punctures R and S identified at a
non-separating node,

. 6 4g — 1
12 - e e |
fm [C("hyp> 292 < 18¢ 6) log |t|]

6 det* A Zh(1
<log € PAr_log 0( ) )

T2q -2\ CA, (My) T Ap, (M)
%gom S) + 0x(q).

Here Aﬁ, ., denotes the Laplacian on M, with respect to the Arakelov metric, Z
denotes the Selberg zeta function of My, and 0,(q) is a function of q.

We remark first, that the functions o, and o, can be precisely evaluated, and
second, that the singularity of ¢(ppy,) has order approximately log|#|. In particular,
there is no log(— log|¢|)-term.

2.3. An upper bound for the self-intersection of the Arakelov canonical divisor
In this section, we use the Arakelov—Poincaré volume to give an upper bound
for the self-intersection of the Arakelov canonical divisor in terms of Weil-
Petersson norms of certain modular forms.
Let w: X — S = Spec O be a regular arithmetic surface defined over a number
field F with a ring of integers (/z. Let w be a normalized volume form on X(C),
the fibre of X at infinity. For any w-admissible hermitian line bundle (L, p), let

s(L,p) := inf_ h; ,(P)
PeX(F)
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and

s'(L, p) := liminf A, ,(P).

PeX(F)

Here £ , denotes the height corresponding to (L, p).

THEOREM 2.12. With the same notation as above, if the degree of the
restriction of L to any component of any fibre of X on S is non-negative, and
d :=degy L is strictly positive, then, for any non-torsion element e € HI(X, Lil),
we have the following two relations:

(1) [21, Theorem 2] ¢t 5 (L. p) < —d(d—2)s(L, p)+ [F : Q]d*(log|le]| 2. +1);
(2) [27, Theorem 6.3] 25'(L, p) = ¢ ar(L, p)/d = 5" (L, p) + s(L, p).
Moreover, if w: X — S is semi-stable, then

(3) [7, Theorem 5] c%,Ar(K,r, par) = 0. Here K, denotes the Arakelov canonical
line bundle of X equipped with the Arakelov metric pa,.

From now on, we always assume that 7: X — § is semi-stable. Apply the
w-admissible theory to the normalized hyperbolic volume form wyy,. Denote the
Arakelov metric with respect to wpy, by pa.(hyp). Applying Theorem 2.12(1) to

(Km pAr(hyp))’ we get
C%,Ar(Km pAr(hyp)> s - (2q - 2) (Zq - 4)S(K1r’ pAr(hyp))
+[F : Q)(2q —2)*(log el 22 (o (hyp). nyy) T 1)-

Next, we discuss the quantities on the right-hand side term by term.
First, let us consider the s-term. By definition,

ci,ar(Ep, par(@)) = ¢1 ac(Eps par) + (0, B,(P) + B,(Q))s

thus we see that

S(K‘ll" pAr(hyp)) = S(K‘ln pAr) + %(2('] - 2)[F : @] il’lf_ Bhyp(P)'
PeX(F)

Here 3, denotes Bwhyp. On the other hand, essentially, by (2), (3) and the Hodge
index theorem, we know that s(K,, pa;) = 0 [7, Theorem 5]. Thus we get

$(Kz> oar(hyp)) =3(2g = 2)[F : Q] inf By, (P).
PeXx(K)

Hence

C%,Ar(Kw’ pAr(hyp)> s - %(261 - 2)2(2(’1 - 4)[F : @] il’lf_ ‘Bhyp(P)
PeX(F)

+[F  Q)(2g —2)*(10g llell 2o typ).onyy) T 1)-

Secondly, we consider the e-term. It follows from the definition that, for any

1 -1 2 o
ecH (X,K; "), HeHLZ(pA,V(hyp),whyp) is given by

sup A (€os eo>pA,<hyp>‘*’hyp,0'
o

g
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Since pu,(hyp) = C(hyp) - p(hyp), we obtain

||e||L2(pAr(hyp),whyp) = sup |:Co(hyp)‘/x <ea> eo>p(hyp)whyp,o .
But
H' (X, Kx,') = H' (X, Kx),

SO fx €55 €5) p(hyp)@Phyp,o 1S NOthing but the Weil-Petersson norm of the quadratic
differential correspondmg to e at X,. Denote this quantity by ||e||3p. We then have

Cl AI(KT’ pAr(hyp)) = —(26] 2) (2q - 4)[F : @] Peu)l(ff) 6hyp( )

+[F : Q)(2q —2)*(log [lellwe + 1)

+ [F : Q](2g — 2)*c(hyp).

Here exp|c(hyp)] = C(hyp) denotes the maximum of the various C,(hyp).
Thus, using Theorem 2.3 from § 2.1, we have the following.

THEOREM 2.13. With the same notation as above, the self-intersection of the
Arakelov canonical divisor of X is bounded from above as follows:

6 det™ A det™ A
G o) = 5+ @10 pog =2 )
Phyp

PAr

~324=2PCa=HIF : QI inf_Biy(P)
+1F : Q2 2 (1og lellwp + 1)

We end this section with the following observations. First, by a result of
Wolpert [26], if we have an analytic family of stable curves, the term ||e||wp can
be totally controlled. Unfortunately, the same idea cannot be applied to the
arithmetic situation: we do not know how to choose an arithmetic extension, as
there is no good deformation theory in arithmetic at this moment.

Secondly, to apply our result to Diophantine Geometry, one should use the
construction of Kodaira and Parshin [17, proof of Theorem in §3]. In this case,
one finds that the limited family of Vojta is quite useful [22, pp. 165-166]: for a
limited family,

Phyp

det™ A, det™ A
A

PAr Phyp

log

can be uniformly bounded, while 3 can also be uniformly bounded, as a standard
Moser iteration [9, Theorem 8.24] shows that sup 3 is bounded by C)\l_l, where C
is a constant which does not depend on (3, and A; denotes the first (non-zero)
eigenvalue of the Laplacian associated to we,, + wpyp. Thus the only term we need
to take care of is |le|lwp, the term which involves Petersson norms of some
modular forms.

Finally, observe that, for modular curves, by Rankin’s work on Petersson norms
of modular forms, |e|wp can be calculated in terms of the special value of the
Rankin L-function associated to e [18, Theorem 3]. So it is essential to study the
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Rankin L-function in order to obtain the arithmetic Miyaoka—Yau inequality. (For
this purpose, one may find that the paper [19] is quite useful.) Independently, such
ideals have been used already with success by Abbes Ullmo and Michel Ullmer. I
thank the referee for informing me of this.

3. Q-Admissible theory for singular arithmetic surfaces

In this chapter, we give an w-admissible theory for singular arithmetic surfaces
associated to stable curves. When w corresponds to a canonical volume form, such
a theory was (first) given by Aitken [1].

3.1. Generalized Néron family

The w-admissible theory for line bundles on compact Riemann surfaces consists
of two parts: one concerns the w-Green’s functions, while the other deals with the
w-Arakelov metric over the canonical line bundle. In this section, we give a
parallel theory for nodal curves. We begin by recalling the theory of Néron
families for smooth curves C, which is equivalent to w-admissible theory for
line bundles.

Following [15, Chapter 1], by a Néron family on a smooth curve C of genus
q(C) defined over C, we mean a map D — \p from Cartier divisors on C to Weil
functions, satisfying the following conditions

NF 1. The map D — Ap is a homomorphism.

NF 2. If D = (f) is the divisor of a rational function f, and » the valuation
associated to D, then \p = v o f— constant.

NF 3. If (U, f) represents D, then there exists a C*-function o on U such that
M=rof+a
NF 4. For any two points P # Q, Np(Q) = Ng(P).

A Néron family always exists. (Usually, we also write A\p(E) as N(D, E).)
Moreover, for a fixed volume form w on C, if the Chern form of the Néron
family A, defined to be dpdphp(P), is proportional to w, then N\ is essentially
unique; if N is another Néron family such that its Chern form is proportional
to w, then there exists an absolute constant ¢ such that, for any two divisors D
and E on C,

Mo(E) — Np(E) = c-deg D - degE.

(See below, or [15, Chapter 1], for more details.) We call such a Néron family an
w-admissible Néron family, and denote it by A,
There is another way to express the admissibility condition on a Néron family A.

NF 5. For all points P in C,
N, P) = (1ogh(P)| + Jim (log :(0) ~ x(P)| + NP, 0))

—q(C)B,(P) + constant.

Here o = h(z)dz is a section of the canonical bundle, and (3, is the unique
function such that dd‘B, = w — wp» f Bo(w + wean) = 0 with wg,, the canonical
volume form of C.
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Obviously, if we let A\, be %gw with g, the w-Green’s function, and impose the
w-Arakelov metric on K., then A, satisfies the above conditions.

With this in mind, we make the following definition of a generalized admissible
Néron family for a nodal curve C defined over C.

Let C =JC; be the decomposition of C into its irreducible components. Let S
denote the set of singular points of C and denote the arithmetic genus of C by
pa(C). Denote the normalization of C; by C;. Put normalized volume forms
w={w;} on {C;}. Let B, ={B,,} be the functions on |JC; defined as above.
(Here, if the geometric genus of C; is zero, then to define (3, we take the
normalized volume form associated to the standard Fubini—Study metric on P! as
the canonical volume form.) With this, by a generalized admissible Néron family
with respect to »w, we mean a map D — A from Cartier divisors on C with supports
disjoint from the singular set S to functions, satisfying the following conditions.

GNF 1. The map D +— \p is a homomorphism.

GNF 2. If D = (f) is the divisor of a rational function f on C, then there exists
a constant v, (f), depending only on f, such that, for any P € C\S,

Ap(P) = v o f(P) = (/).

GNF 3. If (U, f) represents D, then there exists a continuous function & on U
such that

M=vof+a.
GNF 4. For any two points P # Q, disjoint from S, Ap(Q) = No(P).

GNF 5. Let o be a meromorphic section of the dualizing sheaf K- whose
divisor k has support disjoint from S. Let U be an open neighbourhood in C,
disjoint from S and the support of k, which is parametrized by a complex
coordinate z. On U, write o« =h(z)dz for some nowhere-zero holomorphic
function 4. Then there exists a constant v, («), depending only on «, such that for
any point P € C\S,

N, P) = —log|h(P)| — lim (log [2(Q) — 2(P)| + NP, Q) + pa(C)B,(P) — 7a(e)-

If w is the collection of canonical volume forms on {C;}, then in [1] Aitken
shows that there exists a generalized admissible Néron family. We will construct
later a generalized admissible Néron family with respect to any w. But now, to
understand how we end up with our construction, let us study a toy model.

For the time being, let C be a regular curve. Denote by g, the Green’s
functions on C with respect to any fixed normalized volume form w. Let R and §
be two distinct points on C and let C' be the new nodal curve of arithmetic genus
P.(C') resulting from identifying R and S into an ordinary double point.

For any two regular points P and Q in C’, set

Ao(P, Q) := N\, (P, Q) ()

(Bo(P) + Bu(Q) + Bu(R) + B, (S))-

No(P+Q,R+S)

_|_l
2pa(C)

Extend the definition of N, by linearity. Then, it is easy to see that GNF 1, GNF
3 and GNF 4 are satisfied. So we need to check GNF 2 and GNF 5.
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Let f be a rational function of C’ whose divisor (f) is away from the double
point. Then

Yo(f) = —log|f(P)] = No((f). P)
= —log|f(P)| = N ((f), P) +

1 1
2p,(C") 2pa(C)
which is independent of P. Here, if D =) mP; is a divisor, B,(D) denotes
> B, (Py). This shows that GNF 2 is satisfied.

Now let o be a meromorphic section of the dualizing sheaf K. of C’ whose
divisor k has support away from the double point. Let U be an open
neighbourhood in C’ away from the double point and «, which is parametrized
by a complex coordinate z. On U, we write w = h(z) dz for some holomorphic
function & on U. Then, for each regular point P in C’, we get

Yolo)= —log [h(P)| = N, (k. P) — Jim (log [2(Q) — z(P)| +NL(P, Q) +pa(C)B.(P)

1 1

m%((f), R+S) - mﬁw((f))

=7o(f) + No((f), R+S) — Ba((£)),

= —log|h(P)| — N,(, P) +%)\w(ﬂ R+S) +ﬁ>\‘”(& R+S)
1 p _ZPa(Cl)—z 2p,(C') -2 -2
21Da(C’)6°°< ) 2p.(C") BulP) - 2p.(CT) (BulR) +8,(5))
. 1 2
— Jim (log|z(Q) —2(P)| + Ao (P Q))er)\w(f’, R+S)— mﬁw(f’)
1 /
- W(Bw(R) + Bw(S)) +pa(c )Bw(P)
= —log [h(P)| — N,(k —R— S, P)
— Jim (log[z(Q) — 2(P)| + Aa(P. Q) + Pa(C)Bu(P)
I Y (€)1
e Bule) 4 N R4 8) ~ LA L 5,k 4505

Thus, if we also consider o as a meromorphic section of the dualizing line bundle
K of C, then it has divisor k — R — S. Thus,

(@) = vo(ct) - %

2pa<c/) -1
(7 (BB +8.(5))
which is independent of P. So GNF 5 is also satisfied. This completes the proof
of the existence of a generalized admissible Néron family for the model.
It seems to be the case that for this toy model, the construction of N\, is quite
artificial. It is not so. Indeed, we have the following observation.
With respect to the canonical volume form on C, the construction of Aitken [1]

1
ﬁw(K) + m)\w(& R + S)
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gives the generalized admissible Néron family N (P, Q) on C’ on setting

N(P, Q) :== \(P, Q) — ﬁ%(l’ +QO,R+5S).

Writing the right-hand side in terms of A, we get

MR@zmm®—5%3

l_pa(c/) 1
+W(6w(l)) +B.(0)) +m

:)\w(P’ Q)_

N(P+Q,R+S)

(Bu(R) + Bu(S))

— N\, (P ,R+S
2p(C1) o(P+Q,R+S5)

1

+ 5y BolP) +Bul(Q) + BulR) + Bu(S)) ~ §(Bu(P) + Bu(Q))

Thus by setting \,,(P, Q) equal to

No(P. Q) — P+Q,R+S)+ (Bu(P) + Bu(Q) + Bu(R) + Bo(S)),

— N\
2p,(C”) o
we obtain the relation

2N, (P, Q) = 2N (P, Q) + B, (P) + B,(Q),

which is exactly the same as the relation in §1.1 for Green’s functions over
smooth curves. So, by using the process in § 1, we should get a suitable theory for
the generalized admissible Néron family with respect to w.

With this in mind, we are ready now to give the following theorem.

2p,(C)

EXISTENCE THEOREM. Let C =|JC; be a nodal curve; then there exists a
generalized admissible Néron family N\, with respect to any normalized volume

forms o = {w;} on C=JC,.

Proof. Denote by N\ the generalized Néron family on C with respect to the
canonical volume forms on C introduced by Aitken [1]. Define 8, = {8,,} on C
by the condition that

ddCBwi = W; — Wean, i» L Bwi(wi + wcan,i) =0.

Here w,,; denotes the canonical volume form on the normalization C; of the
irreducible component C; of C. (If the genus of C; is zero, then the canonical
volume form is supposed to be the normalized volume form associated to the
Fubini—Study metric on P'.)

Then for any two regular points P and Q of C, set

Ao(P, Q) == NP, Q) +3B,(P) +3B,(0Q).

Extend the definition of A, by linearity. Then it is easy to see that GNF 1, GNF 3,
and GNF 4 are satisfied. Next, we check GNF 2 and GNF 5.
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Let f be a rational function of C whose divisor (f) is away from double
points. Then

Yolf) = —log|f(P)] = No((f), P)
= —log|f(P)| = M(f). P) = 3B8.((f))
=v(f) = 3Bu((f));

which is independent of P. Here +(f) denotes the corresponding constant in
GNF 2 for Aitken’s generalized admissible Néron family (with respect to the
canonical volume forms). This shows that GNF 2 is satisfied.

Now let o be a meromorphic section of the dualizing sheaf K- of C whose
divisor k has support away from double points. Let U be an open neighbourhood
in C, away from double points and k, which is parametrized by a complex
coordinate z. On U, we write w = h(z) dz for some holomorphic function 4 on U.
For each regular point P in C, we get

Yola, P)= —log|h(P)| =N, (k, P)— Qlignp(log 2(Q) —=2(P)[+ N (P, Q)) +pa(C)B,(P)

= —log [h(P)| = N, P) = 3B,(k) = (Pa(C) = 1) Bu(P)
— Jim (log|2(Q) — 2(P)| + NP, Q) +3B8,(P) +3B.(Q) + pu(C) B(P)

= —log|h(P)] = Nx, P) = lim (log |2(Q) = 2(P)| + NP, ©)) — 8u(x)

= y(a) — 5 Bu(k),

which is independent of P. Here +y(«) denotes the corresponding constant in
GNF 5 for Aitken’s generalized admissible Néron family (with respect to the
canonical volume forms). So GNF 5 also is satisfied. This completes the proof of
the existence theorem.

3.2. N -admissible metrics on line bundles

Having established the existence of a generalized admissible Néron family
with respect to w in §3.1, we now give a metric theory for line bundles over a
nodal curve.

With the same notation as in § 3.1, assume that A, is a generalized admissible
Néron family with respect to w. We introduce A, -admissible metrics on all
line bundles as follows: first, for any regular point Q # P, on (-(P), define a
metric by setting

I1p[/(Q) = e ™2,

where 1p denotes the defining section of ()-(P); then we use linearity to define
metrics on all line bundles by assuming that the natural algebraic isomorphisms
Oc(D)® Oc(D") = Oc(D + D') are isometries for all divisors D and D' on C,
whose supports are away from the double points (and call the metrics on (D)
obtained in this way restricted A, -admissible metrics); finally, by a A, -admissible
metric on (¢(D), we mean a metric on /(D) which is a constant multiple of the
restricted \,-admissible metric on (D).

The A, -admissible metrics on line bundles are well defined: first, any line
bundle L on C can be expressed as (/-(D) for some divisor D on C with support
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away from the double points; secondly, the expression of L in the form ¢-(D) is not
unique, but by GNF 2, A -admissible metrics on L are well defined, as we allow
admissible metrics to differ from each other by a constant factor. Usually we will
denote the line bundle O-(D) together with the restricted A -admissible metric by
Oc(D), while a line bundle L together with a A,-admissible metric is denoted by L,
by abuse of notation. We will call L a \,-admissible hermitian line bundle.

3.3. Deligne metric and arithmetic intersection
With the same notation as above, let L and M be two A,-admissible hermitian
line bundles on C. Choose sections / and m of L and M respectively, such that the
divisors (/) and (m) are away from the double points of C and have disjoint
supports. Then there exist constants ¢(/) and ¢(m) such that
L=0c(() ® Oc(e), M = Oc((m) ® Oc(e™).

Here (c(e) denotes the trivial line bundle together with a metric such that the
square of the norm of 1 is e .

Now, we are ready to introduce a norm on the Deligne pairing (L, M)
associated to L and M, which we call the Deligne norm hp. First choose two
sections / and m and L and M respectively, such that the divisors (/) and (m) are
away from the double points of C and have disjoint supports; then define a norm

on a generator (I, m) of (L, M) by
—log {1, m>|,21D = 2N((1), (m)) + deg M - c(I) + deg L - c(m).
Usually, we also write ((L, M), hp) as (L, M). Obviously we have the following.

ProrosITION 3.1.  With the same notation as above, for line bundles with \,-
admissible metrics on C, we have the following natural isometries:

(@) (L,M) = (M, L),
(b) (L; ® L, M) = (L;, M) @ (L,, M).

3.4. N\,-Arakelov metrics

In arithmetic intersection theory for regular curves, the central result is the so-
called adjunction formula, which claims that the residue isomorphism
Ko (P)|p = C naturally becomes an isometry if we put suitable metrics on O(P)
and K, respectively. Here K is the dualizing line bundle of C. In this section,
we study the same problem for nodal curves.

With the same notation as above, for any regular point P of C, define the A,-
Arakelov metric on O¢(P), denoted by pa;», p. as follows:

| 1P||;2)A,~,)\w,P(Q) 1= ¢ (PO,

Obviously, pary, p is a N,-admissible metric on O¢(P).
Next, we define the A,-Arakelov metric pp;), on K¢: for any section
o = h(z) dz of K, whose divisor is away from the double points of C,

2 . N < () <V | P
17(2) dZ”PAr,)\w(P) = [h(P)| .QthPW'e Pa(C)Bu(P)

By GNF 5, we see that pa, ), is a N,-admissible metric on K.
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With this, if we start with (K¢, pa;»,) and (Oc(P), par ), p)> then the restriction
of the tensor metric on K(P), denoted by p,, for simplicity, to the point P can
be calculated as follows:

2 2

(P)

PAr, N\, P

e e @) =P o cm)
= [h(P)] 'thnp PEIYTYY

@S @)= a,, |~

PAr

Lo 2NP.0) | Bu(P)

im e
0-P[z(Q) — z(P)]
= |h(P))*- e (72Pa(C)+1)Bu(P)

= |resp()]* - e d(Kc(P))-Bu(P)

Here d(K:(P)) denotes the degree of K (P). Therefore, for L, if we denote by

L||p the space obtained by scaling the metric of L|» by a constant factor DB (P)

then we have the following.

ADJUNCTION FORMULA. With the same notation as above, for any regular
point P of C, the natural residue map induces as isometry

Kc(P)]p=C.

Here Kc and Oc(P) have the N\,-Arakelov metrics, and C has the standard
flat metric.

REMARK. All the A, -admissible metrics are only defined over regular points of
C. In general, at double points, such metrics have logarithmic singularities.

From the above we see that arithmetic intersection theory for nodal curves is
exactly the same as for regular curves. So we can use the same methods as for
regular curves to prove the results for nodal curves. In particular, we also have
the so-called Mean Value Lemmas as in § 1. We leave this to the reader.

3.5. N\ -admissible metrics on cohomology determinants
In this section, we define A -admissible metrics on cohomology determinants.
For this, let us first recall that for any two line bundles L and M over a nodal
curve C, the Deligne pairing (L, M) has a natural decomposition:

(L, M) = DetRT'(L ® M) ® Det RT'(L) "' ® Det RT'(M) ™" ® Det RT'(0).

Here DetRT'(L) denotes the cohomology determinant associated to L. Moreover,
we have Serre duality

Det RT'(L) = DetRT'(Kc @ L ™).

It is then well known that these two relations for Deligne pairings are equivalent
to the Riemann—Roch isomorphism:

Det RT'(L)®? @ Det RT\(0c)® ™% = (L, L ® K¢").

(For more discussion about Deligne pairings, please see the appendix.)
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To define admissible metrics on cohomology determinants for nodal curves, we
will use the above isomorphisms of the Deligne pairings. With the same notation
as in the previous sections, let A, be a generalized admissible Néron family on a
nodal curve C. Write p,, , for the A, -Arakelov metric on the dualizing sheaf K.
of C. Fix a metric hy on Det R['(O¢). Then, for any line bundle L with a \,-
admissible metric p;, we define the \,-admissible metric hpq(L) on Det RT'(L) by
requiring that the following map is an isometry:

(Det RT(L), haq(L))®* @ (Det RT(Oc), hy)® 2 = (L, p1)> (L, p) © (K¢ pare) )

We call this metric hpq(L) the \,-admissible metric on Det RI'(L) with respect to
p;, (and with respect to the generalized admissible Néron family A,).

Obviously, with this definition of the A, -admissible metric on DetRI'(L), the
Serre duality and the Deligne decomposition become isometries if we put A,-
admissible metrics on the corresponding data. So we have the following.

THEOREM 3.2. With the same notation as above, for a nodal curve C, with
respect to a fixed metric hy on DetRT(O¢) and a fixed generalized Néron family
N> for any \,-admissible metrized line bundle L there exists a unique metric
haq(L) on DetRT(L), such that we have the following isometries:

(i) (Deligne decomposition)
(L, M) = (DetRT'(L @ M), hyq(L ® M)) ® (Det RT'(L), haq(L)) ™"
® (Det RT(M), hpg(M)) ™' @ (DetRT'(C¢), hy);
(i1) (Serre duality)
(DetRT(L). hsg(L)) = (Det RT(Ke @ L") g (Ke- pava) ©L7)):
(iii) (Riemann—Roch theorem)

(Det RT(L), haa(L))®* @ (Det RT(Oc), hy)® % = (L L ® (K¢, pare) )-

There is another way to define the \,-admissible metric haq(L) associated to L.
Indeed, we have the following.

ProposiTION 3.3.  With the same notation as above, for a nodal curve C, with
respect to a fixed metric hy on DetRT(O) and a fixed generalized Néron family
No» for all \,-admissible metrized line bundles L, the metric hyq(L) on DetRT(L)
defined in the previous theorem satisfies the following conditions:

(i) an isometry of N,-admissible hermitian line bundles ZJHE/ induces an
isometry from (DetRT'(L), haq(L)) to (DetRT(L), hag(L));

(ii) if the \,-admissible metric on L is changed by a multiplicative factor a € R™,
then the metric on (DetRT'(L), hag(L)) is changed by the factor oX®;

(iii) (Riemann—Roch condition for closed immersions) For any regular point P
on C, take the \,-Arakelov metric on Oy(P) and the tensor metric on
L(—P); then the algebraic isomorphism

Det RT'(L) = Det RT'(L(—P)) ® L|p,
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induced by the short exact sequence of coherent sheaves
0— L(—P) - L— L|p—0,
is an isometry

(DetRT(L). hpg(L)) = (Det RT(L(~P)). hpa(L(~P))) @ L]

REMARK. One may use this proposition first to define the A\ -admissible metric
on DetRT'(L) for any \,-admissible line bundle L; then to prove the (local and
global) arithmetic Riemann—Roch theorems by using the adjunction formula as
was done in [15]. (Here local means the result on archimedean places, while
global refers to the results on arithmetic surfaces.) We leave this to the reader.

Proof of Proposition 3.3. This is an easy consequence of the previous theorem
and the adjunction formula.

Appendix. Algebraic and analytic structures of Deligne’s pairing

A.l1. Algebraic structure
Let G and H be abelian groups with H uniquely 2-divisible. The map
D: G — H is said to be quadratic (following Bourbaki) if it satisfies the identity

D(x+y+2z) —D(x+y)—D(x+z) — Dy +2z)+ D(x) +D(y) + D(z) — D(0) =0,
or equivalently, if
(x,y) := D(x +y) = D(x) — D(y) + D(0)

is a bilinear pairing. Define L(x) := D(x) — 4 (x,y) — D(0). Then an equivalent
condition is that L is a homomorphism. We can regard the decomposition

D(x) =1 (x,y) + L(x) + D(0)

as decomposing the quadratic map D into homogeneous components of degree 2,
1 and 0. (Please compare this with the Deligne decomposition for Deligne pairing
in terms of cohomology determinants.)

For o € G it is equivalent to require that L(x) = —3 (x, a) for all x € G or that
D(a —x) = D(x) for all x€G. Such an element « is called canonical with
respect to D. (Please compare this with Serre duality.) When a canonical element

exists, the above decomposition takes the form
D(x) = 3(x, x) — 3(x, a) + D(0). (2)

(Please compare this with the Riemann—Roch theorem for surfaces.)

Just as in geometry, (2) does not determine D uniquely. In fact, it depends on
the choice of D(0). For this reason, we usually call the geometric version of (2)
the weak version of the Riemann—Roch theorem.

We always have D(«) = D(0) and D(2a) = (e, ) + D(0). If there is an integer
a with D(2a) = aD(a), then (o, a) = (a — 1)D(0), so for any n € Z we have

(a—1)D(na) = (X(a — 1)(n* — n) + 1){e, @).

(Please compare this with the Mumford relation on determinant line bundles over
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moduli spaces of stable curves. I thank Professor C. T. C. Wall for providing me
with this alternative presentation of this section.)

A.2. Analytic structure

Let m: X — S be a flat family of relative dimension n. Let Ly,...,L, be
invertible hermitian sheaves over X. Then, in [5], Deligne introduces the Deligne
pairing (Lg,...,L,)(X/S) together with the Deligne metric hp, which is
multilinear and symmetric in the L;.

On the other hand, for any line bundle L over X, there exists a determinant line
bundle A(L) = DetRT'(L) over S. A natural question is what should be the relation
between the Deligne pairing and the cohomology determinant.

To understand this precisely, consider the case of arithmetic surfaces. Deligne
shows that there exists a natural algebraic isomorphism

(L, M) =NL®M)@NL) ™ @ \M)™" @ N(0y).

Indeed, one may equally use this isomorphism to define the Deligne pairing.
For this algebraic isomorphism, we have an hermitian metric s on the Deligne
pairing (L, M) as soon as we are given metrics p and 7 on L and M respectively.

PropPoSITION A.l. With respect to any metric on X¢, if we put the Deligne
metric on the Deligne pairing and the Quillen metrics on the associated
determinant line bundles, then

(L, M) = NL M) @NL) " @ NM) " @ N0y)

is an isometry. In particular, the metric for the manifold plays no role in the
combination on the right-hand side.

From this, one may use the cohomology determinant together with Quillen
metrics to give arithmetic intersections. (Please compare this statement with the
arithmetic Riemann—Roch formula, where the arithmetic intersection was used to
give information about the determinant with the Quillen metric.)

Next we use determinant line bundles to express the Deligne pairing for any
smooth family of regular varieties. Without loss of generality, in the sequel we
only consider the global version of the Deligne pairing over arithmetic varieties.

In that case, we have the following arithmetic Riemann—Roch formula of Gillet
and Soulé [10]. Denote by det R* 7, L the cohomology determinant associated to L,
by hgy the Quillen metric, and by Td the arithmetic Todd genus. Then

¢ ar(DetR*m, L, pg) = m,(char(L, p) - Td* (T, 7)) V.

To express the Deligne pairing in terms of determinant line bundles, we consider
n+ 1 line bundles Ly, ..., L, together with hermitian metrics p;. Let N(xy + ... + x,,)

be ¢; o (DetR* 7, (Ly ®...®L,), pg). Then we should find a{l' """ /n € @ such that

----- In

Za{l' ........ l],, ',”)\(ille +...+ imxjm) = W*(Cl,Ar(LO’ p0> e Cl,Ar(Ln’ ,On))
= Cl,Ar(<L0’ s 7L11>(X/S>’ pD)'

We claim that this can always be done. As a special case, let us first express
(L,...,L) in terms of determinant line bundles. Let A(n) = (a;) be the matrix
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defined by agy = 1, a; = j' "for i,j=0,...,n+1 and (i,j) # (0, 0). Then, A(n) is
a Vandermonde determmant In particular, A(n) is non-degenerate. Consider

A(n)[x] := A(n) — (0”“0*"*‘ 2)

There exists a unique x € Q such that A(n)[x] is degenerate. Moreover, the rank of
A(n)[x] is its size minus 1, that is, n + 1. Thus the homogeneous linear equation
A(n)[x]X = 0 has solution space of dimension 1, say R(x,...,x,)". Hence

sty (e ¢
0 X

)X:(O,...,O,xxn+1)t.

In particular, we see that x, ; # 0 and also
n+1 )
oot Ciar((L o LY(X/S). pp) = Y xi¢1 ar(Det R*m, (L), pg)
i=0

by using the arithmetic Riemann—Roch formula. Indeed,

n+1
incl’Ar(DetR*ﬂ'* (Ll), ,OQ)
i=0

n+1 ntl Qi ®ik (1)
i, r(L > P )
( E x,7r*< g MT dn+1 K(Tos 7 )))

i=0 k=0

n+ln+l (1)
ciar(Ly p

szﬂr*< klAri')Tdn+l W(Tos 7 ))

k=0

1

=04... +0+x, 7 (cpalL o))"t
= n+1cl,Ar(<L" . ,L>(X/S), pD)

On the other hand, by elementary row operations followed by dividing the ith row
by i! for each i, we see that A(n)[x] takes the form

© 6

=
—_

@ G © )
o ) 0 0 M 7
0 0 () @ ()
0 0 0 () G 3
o 0 0 0 ... (" ™
O 0 0 0 .. 0 I-

(n-i)-cl)!

So the value of x making the matrix singular is x = (n + 1)!. This then implies
that x; = (—1)'("T"). Therefore we have the following.
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ProposITION A.2.  With the same notation as above, there exists an isometry

((L,...,L)(X/S), hp) = (DetR*m,(L"""), hy)

® (DetR*m, (L"), hp)* "1V @ ...

® (DetR*ﬂ_*(anLlfi), hQ)®(71)i(nJirl)

n+1

®...® (DetR'm,(Oy), hy)* V"
In general, one may show the following.

PropPoSITION A.3.  With the same notation as above, there exists an isometry
((Lis- s Ly 1 )(X/S), hp)
=DetR 7, (L L, ® ... ® L, 1), hp)
® (DetR* (L ® Ly @ ... ® L), hy)
®...0 (DetRm, (L ®Ly @...® Ly, 1), hy))®
® ((DetR*m, (L ® Ly ®...® L, 1), hp)

®...0 (DetRm, (L3 Ly ®...R L, 1), hg))@a(ﬂ)z

R...Q (DetR*7r*(0X), hq)@(‘l)'x+l.

In fact, the proof of Proposition A.3 comes from the arithmetic Riemann—Roch
formula, together with the equality

S ()

Remark. We will use the above propositions in a forthcoming study of the
existence of Einstein—Ké&hler metrics and Chow—Mumford stability.

References

1. W. Arken, An arithmetic Riemann—Roch theorem for singular arithmetic surfaces, Memoirs of
the American Mathematical Society 573 (AMS, Providence, RI, 1996).

2. S. ArakeLov, ‘Intersection theory of divisors on an arithmetic surface’, Izv. Akad. Nauk SSSR
Ser. Mat. 38 (1974) no. 6.

3. M. BURrGER, ‘Small eigenvalues on Riemann surfaces and graphs’, Math. Z. 205 (1990) 395-429.

4. T. CHINBURG, ‘An introduction to Arakelov intersection theory’, Arithmetic geometry (ed. G.
Cornell and J. Silverman, Springer, New York, 1985) 309-311.

5. P. DELIGNE, ‘Le déterminant de la cohomologie’, Current trends in arithmetic algebraic geometry
(ed. K. Ribet), Contemporary Mathematics 67 (American Mathematical Society, Providence,
RI, 1987) 93-178.

6. E. D’Hoker and D. H. PHong, ‘On determinants of Laplacians on Riemann surfaces’, Comm.
Math. Phys. 104 (1986) 537-545.

7. G. FarLtings, ‘Calculus on arithmetic surfaces’, Ann. of Math. 119 (1984) 387-424.

8. 1. Fay, Kernel functions, analytic torsion, and moduli spaces, Memoirs of the American
Mathematical Society 464 (AMS, Providence, RI, 1992).

9. D. GiLBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order (Springer,
New York, 1977).



510 Q-ADMISSIBLE THEORY

10

11.
12.
13.
14.

15.
16.

17.
18.
19.

20.
21.
23.
24.
25.
26.

. H. GiLLET and CH. SouLE, ‘An arithmetic Riemann—Roch theorem’, Invent. Math. 110 (1992)
473-543.

D. HeHAL, Regular b-groups, degenerating Riemann surfaces and spectral theory, Memoirs of
the American Mathematical Society 437 (AMS, Providence, RI, 1990).

J. JorGgENsoNn, ‘Asymptotic behavior of Faltings’ delta function’, Duke Math. J. 61 (1990) 221—
254.

J. JorGeEnsoN, ‘Degenerating hyperbolic Riemann surfaces and an evaluation of Deligne constant’,
preprint, Yale University, 1991.

J. JorGEnsoN and R. LunpeLius, ‘Factorization theorem for determinants on finite volume
Riemann surfaces’, preprint, Yale University, 1991.

S. LaNG, Introduction to Arakelov theory (Springer, New York, 1988).

L. Morer-BaiLry, ‘Le formule de Noether pour les surfaces arithmétiques’, Invent. Math. 98
(1989) 491-498.

A. N. ParsHIN, ‘On the application of ramified coverings in the theory of Diophantine equations’,
Math. USSR Sb. 66 (1990) 249-264.

R. A. RankiN, ‘The scalar product of modular forms’, Proc. London Math. Soc. (3) 2 (1952)
198-217.

M. J. Razar, “Values of Dirichlet series at integers in the critical strip’, Modular functions of one
variable VI, Proceedings of the Second International Conference, University of Bonn, 1976
(ed. J. P. Serre and D. Zagier), Lecture Notes in Mathematics 627 (Springer, Berlin, 1977) 1-
10.

CH. SouLk, ‘Géométrie D’Arakelov des surfaces arithmétiques’, Séminaire Bourbaki 1988/89,
Exposé 713, Astérisque 177-178 (Société Mathématique de France, Paris, 1989) 327-343.

CH. SoULE, ‘A vanishing theorem on arithmetic surfaces’, Invent. Math. 116 (1994) 577-599.

. P. Voita, ‘Diophantine inequalities and Arakelov theory’, Appendix to [15].

L. WeNG, Hyperbolic metrics, Selberg zeta functions and Arakelov theory for punctured Riemann
surfaces, Lecture Note Series in Mathematics 6 (Osaka University, 1998).

R. WenTwoRTH, ‘The asymptotics of the Arakelov—Green’s function and Faltings’ delta invariant’,
Comm. Math. Phys. 137 (1991) 427-459.

S. WoLperT, ‘Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann
surfaces’, Comm. Math. Phys. 112 (1987) 283-315.

S. Worrert, ‘The hyperbolic metric and the geometry of the universal curve’, J. Differential
Geom. 31 (1990) 417-472.

27. S. W. Zuang, ‘Positive line bundles on arithmetic surfaces’, Ann. of Math. 136 (1992) 569-587.

Department of Mathematics
Graduate School of Science
Osaka University

Present address:

Department of Mathematics
Faculty of Science

Kobe University

Rokko

Kobe 657-8501

Japan

E-mail: weng@math.kobe-u.ac.jp



