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The Riemann zeta function

() =) 5= 11 <1—;s>1 (Res > 1).

n=1 p: prime

The functional equation

il (g) ¢(s)=n"2°T <;> (1 - s).



The number of zerosin 0 < Ims < T
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S(T) = ;arg((1/2+iT).



Why difficult?

S(T)=0(log T) (unconditionally);
logT
S(T) = Q(\/log T/+/loglog T) (RH, Montgomery);
logT
S(T)=o <|o;|%gr> (RH,?);
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lim sup =
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(RMT, 7).




Montgomery’s pair correlation conjecture (RH)

()

Here 1/2 + iy, 1/2 + i% are zeros of ().

> 1~IogT/

0<yALT
0<y—4<2rB/log T




The Riemann-Siegel formula |

73 (3) () = F(s) + F(T —3),

where



The Riemann-Siegel formula Il

()~ Y s+ X
Sy ne /£

where



Why the Riemann-Siegel formula is good?

E(s)+E( —9),
or

W(z)+ W(Z).

RH will follow if we show that E(s) has no zeros in Re(s) > 1/2
or Re(s) < 1/2!



Hermite-Biehler’s theorem

Suppose a polynomial W(z) has exactly n zeros in the lower

half-plane.
Then, W(z) + W(Z) can have at most n pairs of conjugate

complex zeros.



Theorem
Let W(z) be a function in C. Suppose W(z) satisfies

W(z) = H(z)e* ﬁ [(1 - Z) (1 + Z)] ,

n=1 Pn

where H(z) is a nonzero polynomial having N many (counted
with multiplicity) in the lower half-plane, o € R, Im p, > 0
(n=1,2,...), and the infinite product converges uniformly in
any compact subset of C. Then, W(z) + W(z)

(or W(z) — W(Z)) has at most N pair of conjugate complex

zeros (counted with multiplicity).




Unfortunately, it seems that

F(s) in the R-S formula has infinitely many zeros

in Re(s) > 1/2 and also in Re(s) < 1/2.



Recall

E(s)+ E(1—79),

or

W(z)+ W(Z).

Is there any nice representation of ((s) like this?



Eisenstein series

1 %
Eo(zis) =5 > Mz + njes (Re(s) > 1),
(m,n)#(0,0)

where z=x+yi, xR, y > 0.



Fourier series

Eo(z:8) = C(28)y° + Vi \® (1)/2)<(2s—1)y1—3

Ks_1/0(2
+ 478y Z n'/2=sy " g?e! S1/F2((S)7my) cos(2mnx).
n=1 d|n



Properties
noT(S)Eo(2:8) = 7 FT(1 — s)Eo(zi1 — 5).

Eo(i; s) = 4C(S)L(s, x~4)-

Warning: In general, the Eisenstein series does not satisfy the
analogue of the Riemann hypothesis.



Truncations

EO,N(Z; S) ( ) + \/‘ ( r( 1)/2) <(2S _ 1)y1—s

N
Ks_1/2(2mn
+arS\yy n'ES Ny S gPe S Tl 1/FZ(€9)7T y) cos(2mnx).
n=1 din



Constant terms

cCesy® + v L B as - yts

Theorem [Ki]

For y > 1, all complex zeros of the constant term are simple
and on Res_ 1/2.



Theorem [Ki]

All but finitely many zeros of truncations of the Eisenstein
series in any strip containing the line Re s = 1/2 are simple and
onRes=1/2.

If Im z > 1, then all but finitely many zeros of truncations of the
Eisenstein series are simple and on Res = 1/2.



Use

C(s) = /21 (s/2)¢(s)

£(s) = s(s — 1)m 21 (s)((s)



Notations

F: a number field

A = Af its ring of adéles

G: a quasi-split connected reductive algebraic group over F
Z: the central subgroup of G

Fix a Borel subgroup Py of G over F.

Write Py = MyUy (Mp: a maximal torus, Up: the unipotent
radical of Py).

P > Py: a parabolic subgroup of G over F.

Write P = MU (My C M the standard Levi, U the unipotent
radical).

W: the Weyl group of the maximal F-split subtorus of My in G



Ag: the set of simple roots

pp: half the sum of roots in U.

K: a maximal compact subgroup of G(A) such that

P(A)NK = (M(A) N K)(U(A) NK).

mp . G(A) — M(A)/M(A)', g=m-n-k— MA)"-m,

g e G(A), me M(A),ne Uy(A), k e K.

Fix Haar measures on My(A), Up(A), K (the induced measures
on M(F) and Uy(F) are the counting measures and the
volumes of M(F)\ M(A)", Up(F) \ Up(A) and K are 1).



X(G)E: for the additive group homomorphisms from G to GL(1)
over F.

ag = Hom,:(X(G),:,R).

ap = ay (P = MU), ag = ap,.

AF: the set of simple roots in P.

Ap: the set of linear forms on ap obtained by restriction of
elements in the complement Ag — AL

§0 = {w, : @ € Ag}: the set of simple weights.
Ap={ws:a€Dg— AL}

Tp: the characteristic function of the subset

{tcap:w(t) >0, we Ap}.

Fix T € ap with a(T) > 0 for any simple root c.



Arthur’s analytic truncation

(AT6) (x) = 3 (~1)Im#e/2 37 gp(ox)7e(H(0x)~T).

P2P, SeP(F)\G(F)

Here ¢ € C(G(F)\ G(A)"), Ap: the central subgroup of M
(P = MU), 6p(x) = [y(ry uia) 2(nX)an.



Arthur’s period

For an automorphic form ¢ of G, define
ATy = [ ATo(g)dg.
G(F)\G(A)

For ¢ an M-level automorphic form, we form the associated
Eisenstein series

E(o, (@)= Y. mp(6g)***e(dg9)  (RereCp).
deP(F)\G(F)

Here C denotes the positive chamber in ap and
A= (M,...,Ar), Where ris the rank of the group.



The Eisenstein period A(E(¢; A); T) (¢: a cusp form)

(1) 0if P#£ Py;
(WA—pp,. T)
e )
2) v
@V W e

/ (M(w, \)é)(mk)dm dk, if P = Py,
Mo(F)\W(4)T <K



Here v = vol (‘{Eaer a,a :a, €10, 1)}), aV is the coroot
associated to o and for g € G(A)
(M(w, M)¢)(g) =

me(g) 7 | mp(w gy Pealn
U(F)nwU(F)w—1\U"(A)

with M = wMw~" and P’ = M'U'.



Weng

Define the period wZ(\) of G over F by

1
OéEA()(W)\ - '0":'0’0[\/>

x M(w, \),

/ mp(w=Tn)Arean’,
U(F)nwU(F)w="\U'(A)



Weng'’s zeta functions

- G: aconnected semisimple algebraic group defined over Q
endowed with a maximal (Q-)split torus T

- ® : the root system with respect to (G, T)

- B: aBorel subgroup of G containing T

- A : the fundamental system of ¢

- X*(T) : the group of characters of T defined over Q, being a
free module of rank r = dim T

~ag = X*(T) ®Re, ag = Hom(X*(T),Re)

-ap and a; : real vector spaces of dimension r

- & : afinite subset of X*(T), embedded in aj.

-a¥ € ag: the coroot for a simple root o € A.



Gindikin-Karpelevich

G: a classical semisimple algebraic group over Q.

1 ) {(Aa)
)= 2T - T ey

wA aVv
wew a€A0< PPo> ) a>0,Wa<0

where A € CT (CT = C;O).



Weng

P: a fixed maximal parabolic subgroup of G.

ap: the corresponding simple root in Ag.

Write A\ {ap} ={B1,...,8,-1}, r = r(G): the rank of G.
Define the period wg/P for (G, P) over Q by

G/P G
(Ap) = Resi 3y, =0 -Resppsv)=0 (w@()\))

with Ap > 0 and the constraint of taking residues along with
(r — 1) singular hyperplanes

<)\_p7ﬁ‘\l/>:077<)\_puﬁ/\’/(e)_1> :O,



Weng’s Zeta function

Using wg/P()\p) with necessary normalizations, we can define
the Weng’s zeta function:

&%(s)



Weng’s Conjecture

The zeta function C (G T)(

Riemann hypotheS|s

s) satisfies the analogue of the



Examples

Weng provides the following ten zeta functions:

one zeta function for SL(2);
one zeta function for SL(3);
two zeta functions, for SL(4);
two zeta functions for SL(5);
two zeta functions for Sp(4);
two zeta functions for Go..



Comh(s) =

$(2)2((3) - {(55 — 1){(55) n {(2) - {(55 —1){(59)
4
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Theorem [Lagarias, Suzuki, Weng]

2SL(2) 2SL(3)
All zeros of CQP ,C QP C p13 C Q,Piong’ ( Papon A€ ON

Res=1/2.



Theorem [Ki]

All zeros of ten Weng’s zeta functions are on Re (s) = 1/2 and
simple.



Main Theorem

Theorem [Ki, Komori, Suzuki]

Let G be a Chevalley group defined over Q, in other words, G is
a connected semisimple algebraic group defined over Q
endowed with a maximal (Q-)split torus T. Let B be a Borel
subgroup of G containing T. Let P be a maximal parabolic
subgroup of G defined over Q containing B. Then all but finitely

many zeros of @Ef,;%(s) are simple and on the critical line of its

functional equation.



Chevalley’s fundamental theorem

- G: aconnected semisimple algebraic group; g its Lie algebra
of G

- T: amaximal torus of G; g, = {X € g|Ad(£)X = a(t)X} for
each character a € X*(T)

O =d(G, T)={ae X*(T)|ga #0}: finite with a root
system (in the vector space X*(T) ® Re)

- Conversely, for a given root system &, there exists a
connected semisimple algebraic group G = G(®) defined over
a prime field having ¢ as its root system with respect to a split
maximal torus T of G

- G(®) : a Chevalley group of type ¢ (or split group, since it
has a maximal torus which is split over the prime field)



Weng zeta functions in terms of abstract root system

Thus, we can deal with Weng zeta functions for Chevalley
groups defined over Q by using the language of abstract root
systems only.



Root system and the Weyl group

Important properties:

- ®* . the corresponding positive system of ¢; d— = —d* so
that ® = T U~

L df =T N, (C dT): the corresponding positive system of
bp; Op = dF Ud, with &y = —&f

- wp : the longest element of W; Wg =id, wpA = —A and
Wo¢+ =~

- wp : the longest element of Wp; w3 = id, wpAp = —Ap and
wpd) = o,

- The condition Ap C w— (AU ®7)



Outline of the proof of Theorem
Define the entire function £,(s) = Q(s) (p(s) by multiplying a
suitable polynomial.

1. At first we construct an entire function e,(s) satisfying

Ep(S) = ep(S) ep(—Cp — 9).

2. (i) the number of zeros of e,(s) in R(s) > —cp/2 is finitely
many,

(i) in a left half-plane, e,(s) has no zero in a region

R(s) < —rlog(|3(s)| + 10).

3. Essentially, Hermite-Biehler’s theorem



Proposition

The number of zeros of e,(s) lying in right half-plane

R(s) > —cp/2 is finitely many at most. Furthermore, there
exists a positive function §(t) on the real line satisfying

d(t) log |t| — oo (|t| = o0) such that the number of zeros of
ep(8) in R(s) = —cp/2 — 4(t) is finitely many at most.



A crucial point of Proposition

1 2 v dp
Zi Do auy CowDpw = 11 ((hta” +1)- F:ii“Ap(A)-
wew ac
|(W_1A)\ip|:1 ’

By a theorem of Weng, the right-hand side is a product of
special values of the Riemann zeta function and volumes of
several (truncated) domains corresponding to irreducible
components of ®p,.



Proposition

There exists a positive real number « such that E,(s) has no
zeros in the region R(s) < —«xlog(|3(s)| + 10).



Proposition

Let T > 1, and o > ¢,/2. Denote by N(T; o) the number of
zeros of gp(s) in the region

—o <R(s) < —cp/2—0(t), 0<I(s)<T.
Then there exist a positive number o, > 0 such that
N(T;o)=CyTlogT + Co T+ O(log T)
for some positive real number C; > 0 and real number C,, and
N(T;+o00) = Cy Tlog T + C3 T + O(log? T)

for some real number Cs.



Proposition

Define
Wp(2) = ep(—Cp/2 + i2).

Then it has the product formula
Wo(2) = w ™ V(2) Wi (2) W2(2),

where w is a nonzero real number, « is a real number, V(z) is a
polynomial having no zeros in 3(z) > 0 except for purely
imaginary zeros,



Proposition [Continue]

- i[6-2) (7))

n=1

wi2) = [ [(1 - 77Z> <1 * nzﬂ

n=1
with R(pn) > 0, R(ns) > 0 and

0<d(t) <S(pn) <oL+1<3(nn) < klog(R(nn) + 10) for
every n> 1.



Proposition

Let W(z) be a function in C. Suppose that W(z) has the
product factorization

- morefi[(-2) (1 2)]

n=1

where h(z) is a nonzero polynomial having N many zeros
counted with multiplicity in the lower half-plane, a € Re,

S(pn) >0 (n=1,2,---), and the product converges uniformly
in any compact subset of C. Then, W(z) + W(Zz) and

W(z) — W(z) has at most N pair of conjugate complex zeros
counted with multiplicity.




Theorem [Weak Riemann Hypothesis for &p]

There exists a bounded region 9B, such that all zeros of £x(s)
outside B, lie on the line R(s) = —cp/2.



Theorem [Simple zeros of ]

There exists a bounded region %B,(> Bp) such that all zeros of
¢p(s) outside B, lie on the line R(s) = —cp/2 and simple.



Thank you very much!



