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NON-ABELIAN ZETA FUNCTIONS FOR FUNCTION FIELDS

By LIN WENG

Abstract. In this paper we initiate a geometrically oriented construction of non-abelian zeta functions
for curves defined over finite fields. More precisely, we first introduce new yet genuine non-abelian
zeta functions for curves defined over finite fields, by a “weighted count” on rational points over
the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these
points. Then we define non-abelian L-functions for curves over finite fields using integrations of
Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.

Introduction. In this paper we initiate a geometrically oriented construction
of non-abelian zeta functions for curves defined over finite fields. It consists of
two chapters.

More precisely, in Chapter I, we first introduce new yet genuine non-abelian
zeta functions for curves defined over finite fields. This is achieved by a “weighted
count” on rational points over the corresponding moduli spaces of semi-stable
vector bundles using moduli interpretation of these points. We justify our con-
struction by establishing basic properties for these new zetas such as functional
equation and rationality, and show that if only line bundles are involved, our
newly defined zetas coincide with Artin’s Zeta. All this, in particular, the ratio-
nality, then leads naturally to our definition of (global) non-abelian zeta functions
(for curves defined over number fields), which themselves are justified by a con-
vergence result. We end this chapter with a detailed study on rank two non-abelian
zeta functions for genus two curves, based on what we call infinitesimal structures
of Brill-Noether loci (and Weierstrass points).

In Chapter II, we begin with a similar construction for the field of rationals
to motivate what follows. In particular, we show that there is an intrinsic relation
between our non-abelian zeta functions and Eisenstein series. Due to this, instead
of introducing general non-abelian L-functions for curves defined over finite fields
with more general test functions (as what Tate did in his Thesis for abelian L-
functions), we then define non-abelian L-functions for curves over finite fields as
integrations of Eisenstein series associated to L2-automorphic forms over certain
generalized moduli spaces. Here geometric truncations play a key role. Basic
properties for these non-abelian L-functions, such as meromorphic continuation,
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974 LIN WENG

functional equations and singularities, are established as well, based on the theory
of Eisenstain series of Langlands and Morris. We end this chapter by establishing
a closed formula for what we call the abelian parts of non-abelian L-functions
associated with Eisenstein series for cusp forms, via the Rankin-Selberg method,
motivated by a formula of Arthur and Langlands.

This work is an integrated part of our vast yet still developing Program for Ge-
ometric Arithmetic [We1], and is motivated by our new non-abelian L-functions
for number fields [We2] in connection with non-abelian arithmetic aspects of
global fields.

Acknowledgments. We would like to thank Deninger, Fesenko, Ueno and
Zagier for their discussions, encouragement and interests.

Chapter I. Non-abelian zeta functions. This consists of two aspects: con-
struction and justification. For the construction, we first introduce a new type of
zeta functions for curves defined over finite fields using the corresponding mod-
uli spaces of semi-stable vector bundles. We show that these new zeta functions
are indeed rational and satisfy certain functional equations, based on the vanish-
ing theorem (duality, Riemann-Roch theorem), for cohomologies of semi-stable
vector bundles. Based on this, in particular, the rationality, we then introduce
global non-abelian zeta functions for curves defined over number fields, via the
Euler product formalism. Moreover, we establish a convergence result for our
Euler products using the Clifford Lemma, an ugly yet quite explicit formula for
local non-abelian zeta functions, a result of (Harder-Narasimhan) Siegel about
quadratic forms, and Weil’s theorem on the Riemann Hypothesis for Artin zeta
functions.

As for the justification, we check that when only line bundles are involved (so
moduli spaces of semi-stable bundles are nothing but the standard Picard groups),
our (new) zeta functions, global and local, coincide with the classical Artin zeta
functions for curves defined over finite fields and Hasse-Weil zeta functions for
curves defined over number fields respectively. Moreover, as concrete examples,
we compute rank two zeta functions for genus two curves by studying Weier-
strass points and non-abelian Brill-Noether loci in terms of what we call their
infinitesimal structures.

I.1 Local non-abelian zeta functions for curves. In this section, we in-
troduce our non-abelian zeta functions for curves defined over finite fields. Basic
properties for these non-abelian zeta functions, such as meromorphic extensions,
rationality and functional equations, are established.

1.1. Moduli spaces of semi-stable bundles.

1.1.1. Semi-stable bundles. Let C be a regular, reduced and irreducible
projective curve defined over an algebraically closed field k̄. Then according to
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Mumford [Mu], a vector bundle V on C is called semi-stable (resp. stable) if for
any proper subbundle V ′ of V ,

µ(V ′) :=
d(V ′)
r(V ′)

≤ (resp. <)
d(V)
r(V)

=: µ(V).

Here d denotes the degree and r denotes the rank.

PROPOSITION. Let V be a vector bundle over C. Then: (a) ([HN]) there exists a
unique filtration of subbundles of V, the Harder-Narasimhan filtration of V,

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vs−1 ⊂ Vs = V

such that all Vi/Vi−1 are semi-stable and for 1 ≤ i ≤ s − 1, µ(Vi/Vi−1) >
µ(Vi+1/Vi);

(b) (see e.g. [Se]) if moreover V is semi-stable, there exists a filtration of sub-
bundles of V, a Jordan-Hölder filtration of V,

{0} = Vt+1 ⊂ Vt ⊂ · · · ⊂ V1 ⊂ V0 = V

such that for all 0 ≤ i ≤ t, Vi/Vi+1 is stable and µ(Vi/Vi+1) = µ(V). Moreover,
the associated graded bundle Gr(V) := ⊕t

i=0Vi/Vi+1, the (Jordan-Hölder) graded
bundle of V, is determined uniquely by V.

1.1.2. Moduli space of stable bundles. Following Seshadri, two semi-
stable vector bundles V and W are called S-equivalent, if their associated Jordan-
Hölder graded bundles are isomorphic, i.e., Gr(V) � Gr(W). Applying Mumford’s
general result on geometric invariant theory, Narasimhan and Seshadri proved the
following:

THEOREM. (See e.g. [NS] and [Se].) Let C be a regular, reduced, irreducible
projective curve of genus g ≥ 2 defined over an algebraically closed field. Then
over the set MC,r(d) (resp. MC,r(L)) of S-equivalence classes of rank r and degree
d (resp. rank r and determinant L) semi-stable vector bundles over C, there is
a natural normal, projective (r2(g − 1) + 1)-dimensional (resp. (r2 − 1)(g − 1)-
dimensional) algebraic variety structure.

Remark. In this paper, we always assume that the genus of g is at least 2.
For elliptic curves, whose associated moduli spaces are very special, please see
[We3].

1.1.3. Rational points. Now assume that C is defined over a finite field
k. It makes sense to talk about k-rational bundles over C, i.e., bundles which
are defined over k. Moreover, from geometric invariant theory, projective vari-
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eties MC,r(d) are defined over a certain finite extension of k; and if L itself is
defined over k, the same holds for MC,r(L). Thus it makes sense to talk about
k-rational points of these moduli spaces too. The relation between these two types
of rationality is given by Harder-Narasimhan based on a discussion about Brauer
groups:

PROPOSITION. [HN] Let C be a regular, reduced, irreducible projective curve
of genus g ≥ 2 defined over a finite field k. Then there exists a finite field Fq such
that for all d (resp. all k-rational line bundles L), the subset of Fq-rational points of
MC,r(d) (resp. MC,r(L)) consists exactly of all S-equivalence classes ofFq-rational
bundles in MC,r(d) (resp. MC,r(L)).

From now on, without loss of generality, we always assume that the fi-
nite fields Fq (with q elements) satisfy the property stated in the Proposition.
Also for simplicity, we write MC,r(d) (resp. MC,r(L)) for MC,r(d)(Fq) (resp.
MC,r(L)(Fq)), the subset of Fq-rational points, and call them moduli spaces by
an abuse of notations. Clearly these sets are all finite.

1.2. Local non-abelian zeta functions.

1.2.1. Definition. Let C be a regular, reduced, irreducible projective curve
of genus g ≥ 2 defined over the finite field Fq with q elements. Define the rank
r non-abelian zeta function ζC,r,Fq(s) of C by setting

ζC,r,Fq(s) :=
∑

V∈[V]∈MC,r(d),d≥0

qh0(C,V) − 1
#Aut(V)

· (q−s)d(V), Re(s) > 1.

PROPOSITION. With the same notation as above, ζC,1,Fq(s) is nothing but the
classical Artin zeta function ζC(s) for curve C. That is to say,

ζC,1,Fq(s)=
∑
D≥0

1
N(D)s =: ζC(s) Re(s) > 1.

Here D runs over all effective divisors of C, and N(D) := qd(D) with d(ΣPnPP) :=
ΣPnPd(P).

Proof. By definition, the classical Artin zeta function ([A], [Mo]) for C is
given by

ζC(s) :=
∑
D≥0

1
N(D)s .

Thus by first grouping effective divisors according to their rational equivalence
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classes D, then taking the sum on effective divisors in the same class, we obtain

ζC(s) =
∑
D

∑
D∈D,D≥0

1
N(D)s .

Clearly,

∑
D∈D,D≥0

1
N(D)s =

qh0(C,D) − 1
q − 1

· (q−s)d(D).

Therefore,

ζC(s) =
∑

L∈ Picd
(C),d≥0

qh0(C,L) − 1
#Aut(L)

· (q−s)d(L)

due to the fact that Aut(L) � F∗q.

Remark. Before going further, let us explain the notation V ∈ [V] appeared
in the summation in detail. By

∑
V∈[V], we mean that the sum is taken over all

(isomorphism classes of) rational vector bundles V in [V]. From Prop. (b) in
1.1.1, for each fixed [V], there are only finitely many terms involved. On the
other hand, we may instead use only a single element V for each class [V], say,
one with maximal automorphism group (as used in the proof of the projectivity of
moduli spaces). However, while interesting, such a change yields quite different
functions. (See e.g. [We1].) Our decision to use all rational elements in [V]
is motivated by an adelic consideration, in particular, by Harder-Narasimhan’s
understanding of Siegel’s formula.

1.2.2. Convergence and rationality. At this point, we must show that for
general r, the infinite summation in the definition of our non-abelian zeta function
ζC,r,Fq(s) converges when Re(s) > 1. For this, let us start with the following
simple vanishing result for semi-stable vector bundles.

LEMMA 1. Let V be a rank r semi-stable vector bundle of degree d on C. Then:
(a) if d ≥ r(2g − 2) + 1, h1(C, V) = 0;
(b) if d < 0, h0(C, V) = 0.

Proof. This is a direct consequence of the fact that if V and W are semi-
stable vector bundles with µ(V) > µ(W), then H0(C, Hom(V , W)) = {0}.

Thus, by definition,

ζC,r,Fq(s) =
∑

V∈[V]∈MC,r(d),0≤d≤r(2g−2)

qh0(C,V) − 1
#Aut(V)

· (q−s)d(V)

+
∑

V∈[V]∈MC,r(d),d≥r(2g−2)+1

qd(V)−r(g−1) − 1
#Aut(V)

· (q−s)d(V).
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Clearly only finitely many terms appear in the first summation, so it suffices to
show that when Re(s) > 1, the second term converges. For this purpose, we
introduce what we call the Harder-Narasimhan numbers

βC,r,Fq(d) :=
∑

V∈[V]∈MC,r(d)

1
#Aut(V)

.

LEMMA 2. With the same notation as above, for all n ∈ Z,

βC,r,Fq(d + rn) = βC,r,Fq(d).

Proof. This comes from the following two facts: (1) there is a degree one
Fq-rational line bundle A on C; and (2) Aut(V) � Aut(V ⊗A⊗n) and d(V ⊗A⊗n) =
d(V) + rn.

Therefore, the second summation becomes

r∑
i=1

βC,r,Fq(i)
∞∑

n=2g−2

(
qnr+i−r(g−1) − 1

)
· (q−s)nr+i

=
r∑

i=1

βC,r,Fq(i) · (q−s)i ·
(

qi−r(g−1) · q(1−s)·r(2g−2)

1 − q(1−s)·r − q(−s)·r(2g−2)

1 − q(−s)·r

)
,

provided that |q−s| < 1. Thus we have proved the following:

PROPOSITION. The non-abelian zeta function ζC,r,Fq(s) is well-defined for Re(s) >
1, and admits a meromorphic extension to the whole complex s-plane.

Moreover, if we set t := q−s and introduce the non-abelian Z-function of C
by

ZC,r,Fq(t) :=
∑

V∈[V]∈MC,r(d),d≥0

qh0(C,V) − 1
#Aut(V)

· td(V), |t| < 1.

Then the above calculation implies that

ZC,r,Fq(t) =
r(2g−2)∑

d=0


 ∑

V∈[V]∈MC,r(d)

qh0(C,V) − 1
#Aut(V)


 · td

+
r∑

i=1

βC,r,Fq(i) ·
(

qr(g−1)+i

1 − qrtr − 1
1 − tr

)
· tr(2g−2)+i.
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Therefore, there exists a polynomial PC,r,Fq(s) ∈ Q[t] such that

ZC,r,Fq(t) =
PC,r,Fq(t)

(1 − tr)(1 − qrtr)
.

In this way, we have established the following:

RATIONALITY. Let C be a regular, reduced irreducible projective curve defined
over Fq with ZC,r,Fq(t) the rank r non-abelian Z-function. Then, there exists a
polynomial PC,r,Fq(s) ∈ Q[t] such that

ZC,r,Fq(t) =
PC,r,Fq(t)

(1 − tr)(1 − qrtr)
.

1.2.3. Functional equation. To understand PC,r,Fq(s) better, as well as for
theoretical purpose, we next study functional equation for rank r zeta functions.
Let us introduce the rank r non-abelian ξ-function ξC,r,Fq(s) by setting

ξC,r,Fq(s) := ζC,r,Fq(s) · (qs)r(g−1).

That is to say,

ξC,r,Fq(s) =
∑

V∈[V]∈MC,r(d),d≥0

qh0(C,V) − 1
#Aut(V)

· (q−s)χ(C,V), Re(s) > 1,

where χ(C, V) denotes the Euler-Poincaré characteristic of V .

FUNCTIONAL EQUATION. Let C be a regular, reduced irreducible projective
curve defined over Fq with ξC,r,Fq(s) its associated rank r non-abelian ξ-function.
Then,

ξC,r,Fq(s) = ξC,r,Fq(1 − s).

Before proving the functional equation, we give the following:

COROLLARY With the same notation as above:
(a) PC,r,Fq(t) ∈ Q[t] is a degree 2rg polynomial;
(b) Denote all reciprocal roots of PC,r,Fq(t) by ωC,r,Fq(i), i = 1, . . . , 2rg. Then

after a suitable rearrangement,

ωC,r,Fq(i) · ωC,r,Fq(2rg − i) = q, i = 1, . . . , rg;
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(c) For each m ∈ Z≥1, there exists a rational number NC,r,Fq(m) such that

Zr,C,Fq(t) = PC,r,Fq(0) · exp

( ∞∑
m=1

NC,r,Fq(m)
tm

m

)
.

Moreover,

NC,r,Fq(m) =

{
r(1 + qm) −∑2rg

i=1 ωC,r,Fq(i)m, r |m;
−∑2rg

i=1 ωC,r,Fq(i)m, r � |m;

(d) For any a ∈ Z>0, denote by ζa a primitive ath root of unity and set T = ta.
Then

a∏
i=1

ZC,r(ζ
i
at) = (PC,r,Fq(0))a · exp

( ∞∑
m=1

Nr,C,Fq(ma)
Tm

m

)
.

Proof. (a) and (b) are direct consequences of the functional equation, while
(c) and (d) are direct consequences of (a), (b) and the following well-known
relations

a∑
i=1

(ζ i
a)m =

{
a, a |m,
0, a � |m.

1.2.4. Proof of the functional equation. To understand the structure of
the functional equation explicitly, we decompose the non-abelian ξ-function for
curves. For this purpose, first recall that the canonical line bundle KC of C is
defined over Fq. Thus, for all n ∈ Z, we obtain the following natural Fq-rational
isomorphisms:

Mr(L) → Mr(L ⊗ K⊗nr
C ); Mr(L) → Mr(L

⊗−1 ⊗ K⊗nr
C )

[V] �→ [V ⊗ K⊗n
C ]; [V] �→ [V∨ ⊗ K⊗n

C ],

where V∨ denotes the dual of V . Next, introduce the union

ML
C,r := ∪n∈Z

(
Mr(L ⊗ K⊗nr

C ) ∪ Mr(L
⊗−1 ⊗ K⊗nr

C )
)

.

With this, clearly, we may and indeed always assume that

0 ≤ d(L) ≤ r(g − 1).

Furthermore, introduce the partial non-abelian zeta function ξL
C,r,Fq

(s) by
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setting

ξL
C,r,Fq(s) :=

∑
V∈[V]∈ML

C,r

qh0(C,V) − 1
# Aut(V)

·
(
q−s)χ(C,V)

, Re(s) > 1.

Clearly, then

ξC,r,Fq(s) =
∑

L

ξL
C,r,Fq(s)

where L runs over all line bundles appeared in the following (disjoint) union

∪d∈ZMC,r(d) = ∪L,0≤d(L)≤r(g−1)ML
C,r.

Here we reminder the reader that the vanishing result of Lemma 1.2.2.1 has been
used.

Therefore, to establish the functional equation for ξC,r,Fq(s), it suffices to
show that

ξL
C,r,Fq(s) = ξL

C,r,Fq(1 − s).

For this, we have the following:

THEOREM For Re(s) > 1,

(∗) ξL
C,r,Fq(s) =

1
2

∑
V∈[V]∈ML

C,r;0≤d(V)≤r(2g−2)

qh0(C,V)

# Aut(V)
·
[
(q−s)χ(C,V) + (qs−1)χ(C,V)

]

+

[
q(1−s)·(d(L)−r(g−1))

q(s−1)·r(2g−2) − 1
+

qs·(d(L)−r(g−1))

q(−s)·r(2g−2) − 1

+
q(s−1)·(d(L)−r(g−1))

q(s−1)·r(2g−2) − 1
+

q(−s)·(d(L)−r(g−1))

q(−s)·r(2g−2) − 1

]
· βC,r,Fq(L).

Here βC,r,Fq(L) :=
∑

V∈[V]∈MC,r(L)
1

# Aut(E)
denotes the Harder-Narasimhan num-

ber. In particular, (a) ξL
C,r,Fq

(s) satisfies the functional equation ξL
C,r,Fq

(s) = ξL
C,r,Fq

(1 − s); (b) the Harder-Narasimhan number βC,r,Fq(L) is given by the leading term
of the singularities of ξL

C,r,Fq
(s) at s = 0 and s = 1.

Proof. It suffices to prove (*). For this, set

I(s) =
∑

V∈[V]∈ML
C,r;0≤d(V)≤r(2g−2)

qh0(C,V)

# Aut(V)
· (q−s)χ(C,V)
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and

II(s) =
∑

V∈[V]∈ML
C,r;=d(V)>r(2g−2)

qh0(C,V)

# Aut(V)
· (q−s)χ(C,V)

−
∑

V∈[V]∈ML
C,r;d(V)≥0

1
# Aut(V)

· (q−s)χ(C,V).

Thus,

ξL
C,r,Fq(s) = I(s) + II(s).

So it suffices to show the following:

LEMMA. With the same notation as above:

(a) I(s) = 1
2

∑
V∈[V]∈ML

C,r;0≤d(V)≤r(2g−2)
qh0(C,V)

# Aut(V)
·
[
(q−s)χ(C,V) + (qs−1)χ(C,V)] ;

and
(b)

II(s) =

[
q(1−s)·(d(L)−r(g−1))

q(s−1)·r(2g−2)−1
+

qs·(d(L)−r(g−1))

q(−s)·r(2g−2) − 1
+

q(s−1)·(d(L)−r(g−1))

q(s−1)·r(2g−2)−1
+

q(−s)·(d(L)−r(g−1))

q(−s)·r(2g−2)−1

]

· βC,r,Fq(L).

Proof. (a) comes from the Riemann-Roch theorem and Serre duality. Indeed,

I(s) =
1
2


 ∑

V∈[V]∈ML
C,r;0≤d(E)≤r(2g−2)

qh0(C,V)

# Aut(V)
· (q−s)χ(C,V)

+
∑

V∨⊗KC∈ML
C,r;0≤d(V∨⊗KC)≤r(2g−2)

qh0(C,V∨⊗KC)

# Aut(V∨ ⊗ KC)
· (q−s)χ(C,V∨⊗KC)




=
1
2

∑
V∈[V]∈ML

C,r;0≤d(E)≤r(2g−2)

[
qh0(C,V)

# Aut(V)
· (q−s)χ(C,V) +

qh1(C,V∨⊗KC)

# Aut(V∨ ⊗ KC)

·(q1−s)χ(C,V∨⊗KC)
∑

V∈[V]∈




=
1
2

∑
V∈[V]∈ML

C,r;0≤d(V)≤r(2g−2)

qh0(C,V)

# Aut(V)
·
[
(q−s)χ(C,V) + (qs−1)χ(C,V)

]
.
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As for (b), clearly by the vanishing result,

Tr,L(s) =
∑

V∈[V]∈ML
C,r;d(E)>r(2g−2)

1
# Aut(E)

· (q1−s)χ(C,V)

−
∑

V∈[V]∈ML
C,r;d(E)≥0

1
#Aut(E)

· (q−s)χ(C,V)

=


 ∑

V∈[V]∈MC,r(L⊗K⊗rn
C );d(L)+rn(2g−2)>r(2g−2)

1
#Aut(V)

· (q1−s)χ(C,E)

−
∑

V∈[V]∈MC,r(L−1⊗K⊗rn
C );−d(L)+rn(2g−2)≥0

1
#Aut(V)

· (q−s)χ(C,E)




+


 ∑

V∈[V]∈MC,r(L−1⊗K⊗rn
C );−d(L)+rn(2g−2)>r(2g−2)

1
#Aut(V)

· (q1−s)χ(C,E)

−
∑

V∈[V]∈MC,r(L⊗K⊗rn
C );d(L)+rn(2g−2)>0

1
#Aut(V)

· (q−s)χ(C,E)


 .

But χ(C, V) depends only on d(V). Thus, accordingly,

II(s) =

[( ∞∑
n=1

(q1−s)d(L)+nr(2g−2)−r(g−1) −
∞∑

n=1

(q−s)−d(L)+nr(2g−2)−r(g−1)

)

+

( ∞∑
n=2

(q1−s)−d(L)+nr(2g−2)−r(g−1)−
∞∑
n=0

(q−s)d(L)+nr(2g−2)−r(g−1)

)]
·βC,r(L)

=

[
q(1−s)·(d(L)−r(g−1))

q(s−1)·r(2g−2)−1
+

qs·(d(L)−r(g−1))

q(−s)·r(2g−2)−1
+

q(s−1)·(d(L)−r(g−1))

q(s−1)·r(2g−2)−1
+

q(−s)·(d(L)−r(g−1))

q(−s)·r(2g−2)−1

]

·βC,r,Fq(L).

This completes the proof of the lemma, and hence the Theorem and the Functional
Equation for rank r zeta functions.

I.2. Global non-abelian zeta functions for curves. In this section, we
introduce new non-abelian zeta functions for curves defined over number fields
via the Euler product formalism, based on our study of non-abelian zetas for
curves defined over finite fields in the previous section. Our main result here is
about a convergence region of such a Euler product. Key ingredients of our proof
are a result of (Harder-Narasimhan) Siegel, an ugly yet very precise formula for



984 LIN WENG

our local zeta functions, the Clifford Lemma for semi-stable vector bundles, and
Weil’s theorem on the Riemann Hypothesis for Artin zeta functions.

2.1. Preparations.

2.1.1. Invariants α,β and γ. Let C be a regular, reduced, irreducible projec-
tive curve of genus g defined over the finite field Fq with q elements. As in I.1, we
then get (the subset of Fq-rational points of) the associated moduli spaces ME,r(L)
and MC,r(d). Recall that in I.1, motivated by a work of Harder-Narasimhan [HN],
we, following Desale-Ramanan [DR], defined the Harder-Narasimhan numbers
βC,r,Fq(L),βC,r,Fq(d), which are very useful in the discussion of our zeta functions.
Now we introduce new invariants for C by setting

αC,r,Fq(d) :=
∑

V∈[V]∈MC,r(d)(Fq)

qh0(C,V)

#Aut(V)
, γC,r,Fq(d) :=

∑
V∈[V]∈MC,r(d)(Fq)

qh0(C,V)−1
#Aut(V)

,

and similarly define αC,r,Fq(L) and γC,r,Fq(L).

LEMMA. With the same notation as above:
(a) for αC,r,Fq(d),

αC,r,Fq(d) =



βC,r,Fq(d); d < 0;
αC,r,Fq(r(2g − 2) − d) · qd−r(g−1), 0 ≤ d ≤ r(2g − 2);
βC,r,Fq(d) · qd−r(g−1), d > r(2g − 2);

(b) for βC,r,Fq(d),

βC,r,Fq( ± d + rn) = βC,r,Fq(d) n ∈ Z;

(c) for γC,r,Fq(d),

γC,r,Fq(d) = αC,r,Fq(d) − βC,r,Fq(d).

Proof. (c) simply comes from the definition, while (b) is a direct consequence
of Lemma 2 in 1.2.2 and the fact that Aut(V) � Aut(V∨) for a vector bundle V .
So it suffices to prove (a).

When d < 0, the relation is deduced from the fact that h0(C, V) = 0 if V is a
semi-stable vector bundle with strictly negative degree; when 0 ≤ d ≤ r(2g − 2),
the result comes from the Riemann-Roch and Serre duality; finally when d >
r(2g − 2), the result is a direct consequence of the Riemann-Roch and the fact
that h1(C, V) = 0 if V is a semi-stable vector bundle with degree strictly bigger
than r(2g − 2).
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We here remind the reader that this lemma and Lemma 2 in 1.2.2 tell us that
all αC,r,Fq(d),βC,r,Fq(d) and γC,r,Fq(d)’s for all d ∈ Z may be calculated from a
finite subset of them, that is, from αC,r,Fq(i),βC,r,Fq( j) with i = 0, . . . , r(g − 1)
and j = 0, . . . , r − 1.

2.1.2. Asymptotic behaviors of α,β and γ. For later use, we here discuss
the asymptotic behavior of αC,r,Fq(d), βC,r,Fq(d), and γC,r,Fq(0) when q → ∞.

PROPOSITION. With the same notation as above, when q → ∞:
(a) For all d,

βC,r,Fq(d) = O
(

qr2(g−1)
)

;

(b)

q(r−1)(g−1)

γC,r,Fq(0)
= O (1) .

(c) For 0 ≤ d ≤ r(g − 1),

αC,r,Fq(d)

qd/2+r+r2(g−1)
= O(1).

Proof. Following Harder and Narasimhan [HN], a result of Siegel on
quadratic forms which is equivalent to the fact that Tamagawa number of SLr is
1, may be understood via the following relation on automorphism groups of rank
r vector bundles:

∑
V:r(V)=r,det(V)=L

1
#Aut(V)

=
q(r2−1)(g−1)

q − 1
· ζC(2) . . . ζC(r).

Here V runs over all rank r vector bundles with determinant L and ζC(s) denotes
the Artin zeta function of C. Thus,

0 < βC,r,Fq(L) ≤ q(r2−1)(g−1)

q − 1
· ζC(2) . . . ζC(r).

This implies

βC,r,Fq(d) =
2g∏
i=1

(1 − ωC,1,Fq(i)) · βC,r,Fq(L)

≤
2g∏
i=1

(1 − ωC,1,Fq(i)) · q(r2−1)(g−1)

q − 1
· ζC(2) . . . ζC(r).
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Here two facts are used:
(1) The number of Fq-rational points of degree d Jacobian Jd(C) is equal to∏2g

i=1 (1 − ωC,1,Fq(i)); and
(2) a result of Desale and Ramanan, which says that for any two L, L′ ∈

Picd(C), βC,r,Fq(L) = βC,r,Fq(L′). (See e.g., [DR, Prop 1.7.(i)])
Thus by Weil’s theorem on Riemann Hypothesis on Artin zeta functions

[W1],

|ωC,1,Fq(i)| = O(q1/2), i = 0, . . . , 2g.

This then completes the proof of (a).
To prove (b), first note that (b) is equivalent to that, asymptotically, the lower

bound of γC,r,Fq(0) is at least q(r−1)(g−1). To show this, note that

γC,r,Fq(0) ≥
∑

V=OC⊕L2⊕...⊕Lr ,L2,...,Lr∈Pic0
(C),#{OC ,L2,...,Lr}=r

qh0(C,V) − 1
# Aut(V)

=
1

(q − 1)r−1

∑
V=OC⊕L2⊕...⊕Lr ,L2,...,Lr∈Pic0

(C),#{OC ,L2,...,Lr}=r

1.

Now, by the above cited result of Weil again, as q → ∞,

∑
V=OC⊕L2⊕...⊕Lr ,L2,...,Lr∈Pic0

(C),#{OC ,L2,...,Lr}=r

1 = O(qg(r−1)).

So we have (b) as well.
Just as in (a), (c) is about to give an upper bound for αC,r,Fq(d) for 0 ≤ d ≤

r(2g − 2). For this, we first recall the following:

CLIFFORD LEMMA. (See e.g., [B-PBGN, Theorem 2.1].) Let V be a semi-stable
bundle of rank r and degree d with 0 ≤ µ(V) ≤ 2g − 2. Then

h0(C, V) ≤ r +
d
2

.

Thus,

αC,r,Fq(d) ≤ q
d
2 +r · βC,r,Fq(d).

With this, (c) is a direct consequence of (a).
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2.1.3. Ugly formula. Recall that the rationality of ζC,r,Fq(s) says that there
exists a degree 2rg polynomial PC,r,Fq(t) ∈ Q[t] such that

ZC,r,Fq(t) =
PC,r,Fq(t)

(1 − tr)(1 − qrtr)
.

Thus we may set

PC,r,Fq(t) =:
2rg∑
i=0

aC,r,Fq(i)ti.

On the other hand, by the functional equation for ξC,r,Fq(t)(s), we have

PC,r,Fq(t) = PC,r,Fq

(
1
qt

)
· qrg · t2rg.

Hence, by comparing coefficients on both sides, we get the following:

LEMMA. With the same notation as above, for i = 0, 1, . . . , rg − 1,

aC,r,Fq(2rg − i) = aC,r,Fq(i) · qrg−i.

Now, to determine PC,r,Fq(t) and hence ζC,r,Fq(s) it suffices to find aC,r,Fq(i)
for i = 0, 1, . . . , rg.

PROPOSITION. (An Ugly Formula) With the same notation as above,

aC,r,Fq(i) =




αC,r,Fq(d) − βC,r,Fq(d), 0 ≤ i ≤ r − 1;
αC,r,Fq(d) − (qr + 1)αC,r,Fq(d − r)

+ qrβC,r,Fq(d − r), r ≤ i ≤ 2r − 1;
αC,r,Fq(d) − (qr + 1)αC,r,Fq(d − r)

+ qrαC,r,Fq(d − 2r), 2r ≤ i ≤ r(g − 1) − 1;
−(qr + 1)αC,r,Fq(r(g − 2))

+ qrαC,r,Fq(r(g − 3))
+ αC,r,Fq(r(g − 1)), i = r(g − 1);

αC,r,Fq(d) − (qr + 1)αC,r,Fq(d − r)
+ αC,r,Fq(d − 2r)qr, r(g − 1) + 1 ≤ i ≤ rg − 1;

2qrαC,r,Fq(r(g − 2))
− (qr + 1)αC,r,Fq(r(g − 1)), i = rg.
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Proof. By definition,

ZC,r,Fq(t)

=


r(2g−2)∑

d=0

+
∞∑

d=r(2g−2)+1


 ∑

V∈[V]∈MC,r(d),d≥0

qh0(C,V) − 1
#Aut(V)

td

=
r(2g−2)∑

d=0

∑
V∈[V]∈MC,r(d)

qh0(C,V) − 1
#Aut(V)

td

+
r∑

i=1

∞∑
n=2g−2

∑
d=rn+i

∑
V∈[V]∈MC,r(d)

qrn+i−r(g−1) − 1
#Aut(V)

trn+i

=
r(2g−2)∑

d=0

∑
V∈[V]∈MC,r(d)(Fq)

qh0(C,V) − 1
#Aut(V)

td

+
qr(1−g)

1 − (qt)r (qt)r(2g−2)
r∑

i=1

βC,r,Fq(i)(qt)i − 1
1 − tr tr(2g−2)

r∑
i=1

βC,r,Fq(i)ti,

by a similar calculation as in the proof of Lemma 1.2.4.(b). Now

r(2g−2)∑
d=0

=
∑

d=0,r(2g−2)

+
∑

d=1,r(2g−2)−1

+ · · · +
∑

d=r(g−1)−1,r(g−1)+1

+
∑

d=r(g−1)

.

Thus, by Riemann-Roch, Serre duality and Lemma 2.1.1, we conclude that

r(2g−2)∑
d=0

∑
V∈[V]∈MC,r(d)

qh0(C,V) − 1
#Aut(V)

td

=
r(g−1)−1∑

d=0

[
αC,r,Fq(d)

(
td + qr(g−1)−dtr(2g−2)−d

)
− βC,r,Fq(d)

(
td + tr(2g−2)−d

)]

+
(
αC,r,Fq(r(g − 1)) − βC,r,Fq(r(g − 1))

)
· tr(g−1).

With all this, together with Lemma 2 in 1.2.2 and the Lemma in 2.1.1, and by a
couple of pages of routine calculations, we are led to the ugly yet very precise
formula in the proposition.

2.2. Global non-abelian zeta functions for curves.

2.2.1. Definition. Let C be a regular, reduced, irreducible projective curve of
genus g defined over a number field F. Let Sbad be the collection of all infinite
places and those finite places of F at which C does not have good reductions. As
usual, a place v of F is called good if v �∈ Sbad.
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Thus, in particular, for any good place v of F, the v-reduction of C, denoted
as Cv , gives a regular, reduced, irreducible projective curve defined over the
residue field F(v) of F at v. Denote the cardinal number of F(v) by qv . Then,
by the construction of I.1, we obtain associated rank r non-abelian zeta function
ζCv ,r,Fqv

(s). Moreover, from the rationality of ζCv ,r,Fqv
(s), there exists a degree 2rg

polynomial PCv ,r,Fqv
(t) ∈ Q[t] such that

ZCv ,r,Fqv
(t) =

PCv ,r,Fqv
(t)

(1 − tr)(1 − qrtr)
.

Clearly,

PCv ,r,Fqv
(0) = γCv ,r,Fqv

(0) �= 0.

Thus it makes sense to introduce the polynomial P̃Cv ,r,Fqv
(t) with constant term 1

by setting

P̃Cv ,r,F(v)(t) :=
PCv ,r,F(v)(t)
PCv ,r,F(v)(0)

.

Now by definition, the rank r non-abelian zeta function ζC,r,F(s) of C over F is the
following Euler product

ζC,r,F(s) :=
∏

v:good

1

P̃Cv ,r,Fqv
(q−s

v )
, Re(s) � 0.

Clearly, when r = 1, ζC,r,F(s) coincides with the classical Hasse-Weil zeta
function for C over F [H].

2.2.2. Convergence. At this earlier stage of the study of our non-abelian
zeta functions, the central problem is to justify the above definition. That is to
say, to show the above Euler product converges. In this direction, we have the
following:

THEOREM. Let C be a regular, reduced, irreducible projective curve defined
over a number field F. Then its associated rank r global non-abelian zeta function
ζC,r,F(s) converges when Re(s) ≥ 1 + g + (r2 − r)(g − 1).

Proof. Clearly, it suffices to show that for the reciprocal roots ωC,r,Fq(i), i =
1, . . . , 2rg, of PC,r,Fq(t) associated to curves C over finite fields Fq,

|ωC,r,Fq(i)| = O(qg+(r2−1)(g−1)).

Thus we are led to estimate coefficients of PC,r,Fq(t). Since we have the ugly yet
very precise formula for these coefficients, i.e., the lemma and the proposition in
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2.1.3, it suffices to give upper bounds for αC,r,Fq(i),βC,r,Fq( j) and a lower bound
for γC,f ,Fq(0), the constant term of PC,r,Fq(t). Thus, to complete the proof, we
only need to cite the Proposition in 2.1.2.

Question. For any regular, reduced, irreducible projective curve C of genus
g defined over a number field F, does its associated rank r global non-abelian
zeta function ζC,r,F(s) admit meromorphic continuation to the whole complex
s-plane?

Recall that even when r = 1, i.e., for the classical Hasse-Weil zeta functions,
this is still quite open.

2.2.3. Working hypothesis. As in the theory of abelian zeta functions, we
want to use our non-abelian zeta functions to study non-abelian arithmetic aspect
of curves. Motivated by the classical analytic class number formula for Dedekind
zeta functions and its counterpart BSD conjecture for Hasse-Weil zeta functions
of elliptic curves, we expect that our non-abelian zeta function can be used to
understand the Weil-Petersson volumes of moduli space of stable bundles as well
as the associated Tamagawa measures.

As such, local factors for “bad” places are needed. Our suggestion is as
follows: for Γ-factors, we take those coming from the functional equation for
ζF(rs) · ζF(r(s − 1)), where ζF(s) denotes the standard Dedekind zeta function of
F; while for finite bad places, we first use the semi-stable reduction for curves
to find a semi-stable model for C, then use Seshadri’s moduli spaces of parabolic
bundles to construct polynomials for singular fibers, which usually have degree
lower than 2rg. With all this done, we then can introduce the so-called completed
rank r non-abelian zeta function for C over F, or better, the completed rank r
non-abelian zeta function ξX,r,OF (s) for a semi-stable model X → Spec(OF) of
C. Here OF denotes the ring of integers of F. (If necessary, we take a finite
extension of F.)

Question. Does the meromorphic extension of ξX,r,OF (s), if it exists, satisfy
the functional equation

ξX,r,OF (s) = ± ξX,r,OF

(
1 +

1
r

− s
)

?

Remark. From our study for non-abelian zeta functions of elliptic curves
[We3], we obtain the following “absolute Euler product” for rank 2 zeta functions
of elliptic curves

ζ2(s) =
∏

p>2;prime

1
1 + (p − 1)p−s + (2p − 4)p−2s + (p2 − p)p−3s + p2p−4s



NON-ABELIAN ZETA FUNCTIONS FOR FUNCTION FIELDS 991

=
∏

p>2;prime

1
Ap(s) + Bp(s)p−2s , Re(s) > 2

with

Ap(s) = 1 + (p − 1)p−s + (p − 2)p−2s, Bp(s) = (p − 2) + (p2 − p)p−s + p2p−2s.

Set t := q−s and ap(t) := Ap(s), bp(t) := Bp(s). Then in Z[t], we have the factor-
ization

ap(t) = (1 + (p − 2)t)(1 + t), bp(t) = ((p − 2) + pt)(1 + pt)

and

ap

(
1
pt

)
=

1
p2t2 · bp(t).

As pointed out to me by Kohnen,

1 + (p − 1)p−s + (2p − 4)p−2s + (p2 − p)p−3s + p2p−4s

is quite similar to Andrianov’s genus two spinor L-function. (See e.g. [We1].)

I.3. Non-abelian zeta functions and infinitesimal structures of Brill-
Noether loci. In this section, we study the infinitesimal structures of the so-
called non-abelian Brill-Noether loci for rank two semi-stable vector bundles
over genus two curves. As an application, we calculate the corresponding rank
two non-abelian zeta functions. During this process, we see clearly how Weier-
strass points, intrinsic arithmetic invariants of curves [We1], contribute to our
zeta functions among others.

In this section we assume that the characteristic of the base field is strictly
bigger than 2 for simplicity.

3.1. Invariants βC,2,Fq(d). Let C be a genus two regular reduced irreducible
projective curve defined over Fq. Here we want to calculate Harder-Narasimhan
numbers βC,2,Fq(d) for all d. Note that from the lemma in 2.1.1,

βC,2,Fq(d) = βC,2,Fq(d + 2n).

So it suffices to calculate βC,2,Fq(d) when d = 0, 1. For this, we cite the following
result of Desale and Ramanan:



992 LIN WENG

PROPOSITION. [DR] With the same notation as above, for L ∈ Picd(C), d = 0, 1,

βC,2,Fq(L) =
q3

q − 1
· ζC(2) − q

4∏
i=1

(1 − ωi) ·
∑

d1+d2=d,d1>d2

βC,1,Fq(d1)βC,1,Fq(d2)

qd1−d2
.

Here ζC(s) denotes the Artin zeta function for C and ω1, . . . ,ω4 are the roots of the
associated Z-function ZC(s), i.e., ωC,1,Fq(i), i = 0, . . . , 4 = 2 × 2 in our notation.

Thus, in particular, βC,2,Fq(L) is independent of L.

LEMMA. With the same notation as above, for d = 0, 1

βC,2,Fq(d) =
q3

q − 1
· ζC(2) ·

4∏
i=1

(1 − ωi) − qd+1

(q − 1)2(q2 − 1)
·

4∏
i=1

(1 − ωi)
4.

Proof. This comes from the following two facts:
(1) for all d,

βC,1,Fq(d) =
∏4

i=1 (1 − ωi)
q − 1

;

(2) the number of Fq-rational points of Picd(C) is equal to
∏4

i=1 (1 − ωi).

3.2. Invariants α & γ: Easy parts.

3.2.1. Infinitesimal structures: a taste. Here we want to calculate αC,2,Fq

(0). By the Lemma in 3.1, it suffices to give γC,2,Fq(0). So we are lead to study
γC,2,Fq(L) which is supported over the Brill-Noether locus

W0
C,2(L) := {[V] ∈ MC,2(L) : h0(C, Gr(V)) ≥ 1}.

(In general, as in [B-PGN], we define the Brill-Noether locus by

Wk
C,2(L) := {[V] ∈ MC,2(L) : h0(C, Gr(V)) ≥ k + 1}.)

Note that no degree zero stable bundle admits nontrivial global sections, so
W0

C,2(L) := {[OC ⊕ L]} consists of only one single point.
(a) If L = OC, then W0

C,2(OC) = W1
C,2(OC). Moreover, infinitesimally, V =

OC ⊕ OC or V corresponds to all nontrivial extensions

0 → OC → V → OC → 0
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which are parametrized by PExt1(OC, OC) � P1. Thus, by definition,

γC,2,Fq(OC) =
q2 − 1

(q2 − 1)(q2 − q)
+ (q + 1) · q − 1

q(q − 1)
=

q
q − 1

.

(b) If L �= OC, then, infinitesimally, V = OC ⊕ L or V corresponds to the
single nontrivial extension

0 → OC → V → L → 0.

Thus, by definition,

γC,2,Fq(L) =
q − 1

(q − 1)2 +
q − 1
q − 1

=
q

q − 1
.

Thus we have the following:

LEMMA. With the same notation as above, for all L ∈ Pic0(C),

γC,2,Fq(L) =
q

q − 1
.

In particular,

γC,2,Fq(0) =
q

q − 1
·

4∏
i=1

(1 − ωi).

3.2.2. Invariants αC,2,Fq(1). As before, it suffices to calculate γC,2,Fq(L) for
all L ∈ Pic1(C). Note that in this case, all bundles are stable, so Aut(V) � F∗q
and

W0
C,2(L) � {V : stable, r(V) = 2, det(V) = L, h0(C, V) ≥ 1}.

Moreover, by [B-PGN, Prop. 3.1],

W0
C,2(L) = {V : stable, r(V) = 2, det(V) = L, h0(C, V) = 1}

and any V ∈ W0
C,2(L) admits a nontrivial extension

0 → OC → V → L → 0.

On the other hand, any nontrivial extension

0 → OC → V → L → 0
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gives rise to a stable bundle. So in fact

W0
C,2(L) � PExt1(L, OC) � P1.

Thus we have the following:

LEMMA. With the same notation as above, for L ∈ Pic1(C),

W0
C,2(L) � P1, and γC,2,Fq(L) = q + 1.

In particular,

γC,2Fq(1) = (q + 1) ·
4∏

i=1

(1 − ωi).

3.3. Infinitesimal structures of non-abelian Brill-Noether loci. We next
calculate γC,r,Fq(2). In general, the level r(g − 1), which in our present case
corresponds to 2, is the most complicated one. So the discussion here is rather
involved.

Let us start with the structures of the non-abelian Brill-Noether loci W0
C,2(L)

and W1
C,2(L) for L ∈ Pic2(C). For this, recall the structure map π : C × C/S2 →

Pic2(C) defined by [(x, y)] �→ OC(x + y). Here S2 denotes the symmetric group of
two symbols which acts naturally on C × C via (x, y) �→ (y, x). One checks that
π is a one point blowing-up centered at the canonical line bundle KC of C. For
later use, denote by ∆ the image of the diagonal of C × C in Pic2(C).

Next, we want to understand the structure of sublocus W0
C,2(L)ss of W0

C,2(L)
consisting of nonstable but semi-stable vector bundles. By definition, for any
V ∈ [V] ∈ W0

C,2(L)ss, Gr(V) = OC(P) ⊕ L( − P) for a suitable (Fq-rational) point
P ∈ C. Thus accordingly:

(a) if L �= KC, then W0
C,2(L)ss is parametrized by (Fq-rational points of) C,

due to the fact that now h0(C, L) = 1. Write also L = OC(A + B) with two points
A, B of C, which are unique from the above discussion on the map π, we then
conclude that

W1
C,2(L) = {[OC(A) ⊕ OC(B)]}.

(b) if L = KC, then for any P, KC = OC(P + ι(P)) where ι : C → C denotes
the canonical involution on C. So

W0
C,2(L)ss = {[OC(P) ⊕ OC(ι(P))] : P ∈ C}.
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Therefore W0
C,2(L)ss is parametrized by P1. Moreover,

W1
C,2(KC) = W0

C,2(L)ss = {[OC(P) ⊕ OC(ι(P))] : P ∈ C}.

On the other hand, it is easy to check that every nontrivial extension

0 → OV → W → L → 0

gives rise to a semi-stable vector bundle W, and if W is not stable, then there
exists a point Q ∈ C such that W may also be given by the nontrivial extension

0 → OC(Q) → W → L( − Q) → 0.

Note also that the kernel of the natural map H1(C, Hom(L, OC)) → H1(C, Hom
(L(−Q), OC)) is one dimensional. So among all nontrivial extensions 0 → OC →
V → L → 0, which are parametrized by P Ext1(L, OC) � P2, the nonstable (yet
semi-stable) vector bundles are parametrized by (Fq-rational points of) C when
L �= KC by (a), or P1 when L = KC by (b). (See [NR, Lemma 3.1].) In this way,
we have proved the following result on non-abelian Brill-Noether loci for moduli
space of MC,2(L) with L a degree 2 line bundle on a genus two curve, which is
not covered by [B-PGN]:

LEMMA. With the same notation as above, W0
C,2(L) � PExt1(L, OC) � P2, in

which the locus W0
C,2(L)ss of semi-stable but not stable bundles is parametrized by

C or P1 according to L �= KC or L = KC. More precisely:
(a) if L = OC(A + B) �= KC with A, B two points of C, then W0

C,2(L)ss, as a
birational image of C under the complete linear system KC(A + B), is a degree 4
plane curve with a single node located at W1

C,2(L) = {[OC(A) ⊕ OC(B)]};
(b) If L = KC, as a degree 2 regular plane curve,

W1
C,2(KC) = W0

C,2(L)ss = {[OC(P) ⊕ OC(ι(P))] : P ∈ C} � P1.

Next, we study the infinitesimal structures of non-abelian Brill-Noether loci.
Set

W0
C,2(L)s := W0

C,2(L)\W0
C,2(L)ss.

Then the infinitesimal structure of W0
C,2(L) at points [V] ∈ W0

C,2(L)s is sim-
ple: each [V] consists a single stable rank two vector bundle with det(V) =
L, h0(C, V) = 1 and Aut(V) � F∗q.

Now we consider W0
C,2(L)ss: (a) L �= KC. Then there exist two points A, B of

C such that L = OC(A+B). Thus, for any V ∈ [OC(P)⊕OC(A+B−P)] �∈ W1
C,2(L),

V is given by an extension 0 → OC(P) → V → OC(A + B − P) → 0 due to the
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fact that for the nontrivial extension 0 → OC(A + B − P) → W → OC(P) → 0,
h0(C, W) = 0. Thus, each class [OC(P) ⊕ OC(A + B − P)] �∈ W1

C,2(L) consists
of exactly two vector bundles, i.e., V1 = OC(P) ⊕ OC(A + B − P) and V2 given
by the nontrivial extension 0 → OC(P) → V → OC(A + B − P) → 0. Clearly,
h0(C, V1) = h0(C, V2) = 1 and # Aut(V1) = (q − 1)2, #Aut(V2) = q − 1.

To study W1
C,2(L) = {[OC(A) ⊕ OC(B)]}, we divide it into two subcases:

(i) A �= B. Then there are exactly three vector bundles V0, V1 and V2 in the class
[OC(A) ⊕ OC(B)]. They are V0 = OC(A) ⊕ OC(B), V1 given by the nontrivial
extension 0 → OC(A) → V1 → OC(B) → 0 and V2 given by the nontrivial
extension 0 → OC(B) → V2 → OC(A) → 0. Clearly, h0(C, V1) = 2, h0(C, V1) =
h0(C, V2) = 1 and #Aut(V0) = (q − 1)2, #Aut(V1) = #Aut(V2) = q − 1.

Thus in particular,

γC,2,Fq(L) = (q2 + q + 1 − (N1 − 1)) · q − 1
q − 1

+ (N1 − 2)
(

q − 1
(q − 1)2 +

q − 1
q − 1

)
+

(
q2 − 1

(q − 1)2 +
q − 1
q − 1

+
q − 1
q − 1

)
.

Here N1 = q + 1 − (ω1 + . . . + ω4) denotes the number of Fq-rational points of C.
(ii) A = B. Then the infinitesimal structure at [OC(A) ⊕OC(A)] is as follows:

an independent point corresponding to V0 = OC(A)⊕OC(A) and a projective line
parametrizing all nontrivial extension 0 → OC(A) → V → OC(A) → 0. Clearly,
h0(C, V0) = 2, h0(C, V) = 1 and #Aut(V0) = (q2 − 1)(q2 − q), #Aut(V) = q(q − 1);

Thus in particular,

γC,2,Fq(L) = (q2 + q + 1 − (N1 − 1)) · q − 1
q − 1

+ (N1−2)
(

q − 1
(q − 1)2 +

q − 1
q − 1

)
+

(
q2 − 1

(q2 − 1)(q2 − q)
+(q+1)

q−1
q(q−1)

)
.

(b) L = KC. Then KC = OC(P + ι(P)) for all points P. Therefore for all [V] ∈
W1

C,2(L) = W0
C,2(L)ss, [V] = [OC(P) ⊕ OC(ι(P))]. Accordingly, two subcases:

(i) P �= ιP. Then there are exactly three vector bundles V0, V1 and V2 in the class
[OC(P) ⊕OC(ι(P)]. They are V0 = OC(P) ⊕OC(ι(P)), V1 given by the nontrivial
extension 0 → OC(P) → V1 → OC(ι(P)) → 0 and V2 given by the nontrivial
extension 0 → OC(ι(P)) → V2 → OC(P) → 0. Clearly, h0(C, V0) = 2, h0(C, V1) =
h0(C, V2) = 1 and #Aut(V0) = (q − 1)2, #Aut(V1) = #Aut(V2) = q − 1;

(ii) P = ι(P) a Weierstrass point, all of which are six. Then the infinitesimal
structure at [OC(P)⊕OC(P)] is as follows: an independent point corresponding to
V0 = OC(P) ⊕ OC(P) and a projective line parametrizing all nontrivial extension
0 → OC(P) → V → OC(P) → 0. Clearly, h0(C, V0) = 2, h0(C, V) = 1 and
#Aut(V0) = (q2 − 1)(q2 − q), #Aut(V) = q(q − 1).
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Thus, in particular,

γC,2,Fq(KC) = (q2+q+1−(q+1)) · q − 1
q−1

+(q + 1 − 6)

(
q2 − 1

(q − 1)2 +
q − 1
q − 1

+
q − 1
q − 1

)

+ 6

(
q2 − 1

(q2 − 1)(q2 − q)
+ (q + 1)

q − 1
q(q − 1)

)
.

All in all, we have completed the proof of the following:

PROPOSITION. With the same notation as above:
(a) For L �= KC, (i) if L �∈ ∆, γC,2,Fq(L) = q3+2q−3+N1

q−1 ; (ii) if L ∈ ∆, γC,2,Fq(L) =
q3−2+N1

q−1 ;

(b) if L = KC, γC,2,Fq(L) = q3+2q2−10q+5
q−1 .

In particular,

γC,2,Fq(2) =

(
4∏

i=1

(1 − ωi) − (q + 1)

)
· q3 + 2q − 3 + N1

q − 1

+ q · q3 − 2 + N1

q − 1
+

q3 + 2q2 − 10q + 5
q − 1

.

In this way, by using the ugly formula in 2.1.3, we can finally write down
the rank two non-abelian zeta functions for genus two curves, where degree 8
polynomials are involved. We leave this to the reader.

Chapter II. Non-abelian L-functions. While we may introduce general
non-abelian L-functions by using more general test functions as Tate did in his
Thesis where an abelian version is discussed, in this paper, we decide to take
a different approach using Eisenstein series. (We remind the reader that for the
abelian picture, Eisenstein series are not available.) Moreover, as for the integra-
tion domain, we use a much more general type of moduli spaces.

II.1. Epstein zeta functions and non-abelian zeta functions. To motivate
what follows, we begin this chapter with a discussion on non-ablian zeta functions
for number fields.

For simplicity, assume that the number field involved is the field of rationals.
A lattice Λ over Q is semi-stable, by definition, if for any sublattice Λ1 of Λ,

(Vol Λ1)rank Λ ≥ (Vol Λ)rank Λ1 .

Denote the moduli space of rank r semistable lattices over Q by MQ,r, then the
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lattice version of rank r non-abelian zeta function ξQ,r(s) of Q is defined to be

ξQ,r(s) :=
∫
MQ,r

(
eh0(Q,Λ) − 1

)
·
(
e−s)deg(Λ)

dµ(Λ), Re(s) > 1,

where h0(Q, Λ) := log
(∑

x∈Λ exp
(
−π|x|2

))
and deg(Λ) :=−log

(
Vol(Rrank(Λ)/Λ)

)
denotes the Arakelov degree of Λ. Moreover, note that the newly defined h0 has a
natural company h1 and that similarly as cohomology for bundles over curves, hi

satisfy the Serre duality and Riemann-Roch (for details, see [We2]). In particular,
as shown in [We2], (see also the calculation below for an alternative proof):

(i) ξQ,1(s) coincides with the (completed) Riemann-zeta function;
(ii) ξQ,r(s) can be meromorphically extended to the whole complex plane;
(iii) ξQ,r(s) satisfies the functional equation

ξQ,r(s) = ξQ,r(1 − s);

(iv) ξQ,r(s) has only two singularities, simple poles, at s = 0, 1, with the
same residues Vol

(
MQ,r[1]

)
, the Tamagawa type volume of the space of rank r

semi-stable lattice of volume 1.
Denote by MQ,r[T] the moduli space of rank r semi-stable lattices of volume

T . We have a trivial decomposition

MQ,r = ∪T>0MQ,r[T].

Moreover, there is a natural morphism

MQ,r[T] → MQ,r[1], Λ �→ T
1
r · Λ.

With this, for Re(s) > 1,

ξQ,r(s) =
∫
∪T>0MQ,r[T]

(
eh0(Q,Λ) − 1

)
·
(
e−s)deg(Λ)

dµ(Λ)

=
∫ ∞

0
Ts dT

T

∫
MQ,r[1]

(
eh0(Q,T

1
r ·Λ) − 1

)
· dµ1(Λ),

where dµ1 denotes the induced Tamagawa measure on MQ,r[1].
Thus note that

h0(Q, T
1
r · Λ) = log


∑

x∈Λ
exp

(
−π|x|2 · T

2
r

) ,
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and for B �= 0, ∫ ∞
0

e−ATB
Ts dT

T
=

1
B

· A−
s
B · Γ(

s
B

),

we have

ξQ,r(s) =
r
2

· π− r
2 sΓ(

r
2

s) ·
∫
MQ,r[1]


 ∑

x∈Λ\{0}
|x|−rs


 · dµ1(Λ).

Set now the completed Epstein zeta function, a special kind of Eisenstein series,
associated to the rank r lattice Λ over Q by

Ê(Λ; s) := π−sΓ(s) ·
∑

x∈Λ\{0}
|x|−2s,

then we have the following

PROPOSITION. (Eisenstein series and Non-Abelian Zeta Functions) With the
same notation as above,

ξQ,r(s) =
r
2

∫
MQ,r[1]

Ê
(

Λ,
r
2

s
)

dµ1(Λ).

Remark. Such a non-abelian zeta is indeed very beautiful: not only its con-
struction is so elegent, its structure is also very rational. Recently, Lagarias and
Suzuki [LS] have shown that the rank two zeta ξQ,2(s) for the field of rationals
satisfies the Riemann Hypothesis, i.e., the zeros are all on the line �(s) = 1

2 .

II.2. Canonical polygons and geometric truncation. We start with Weil’s
adelic interpretation of locally free sheaves on curves. Fix a smooth geometrically
connected projective curve X over a finite field Fq. Denote its function field by
F and identify the places of F with the closed points of X which we denote by
|X|. For each place x of F, set Fx the x-completion of F with Ox the ring of
integers, πx a local parameter, and κ(x) the residue field. Denote by x : F∗x → Z

the normalized valuation of Fx such that x(πx) = 1. Denote also by A the ring of
adeles and OA the ring of integers.

If E is a locally free OF-sheaf of rank r over X, denote by EF the fiber of
E at the generic point Spec(F) of X (EF is an F-vector space of dimension r),
and for each v ∈ |X|, set EOv := H0(Spec OFv , E) a free Ov-module of rank r. In
particular, we have a canonical isomorphism:

canv : Fv ⊗Ov EOv � Fv ⊗F EF.
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Thus, in particular, with respect to a basis αF : Fr � EF of its generic fiber and
a basis αOv : Or

v � EOv for any v ∈ |X|, the elements gv := (Fv ⊗F αF)−1 ◦
canv ◦ (Fv ⊗Ov αOv ) ∈ GLr(Fv) for all v ∈ |X| define an element gA := (gv)v∈|X|
of GLr(A), since for almost all v we have gv ∈ GLr(Ov). As a result, we obtain
a bijection from the set of isomorphism classes of triples (E;αF; (αOv )v∈|X|) as
above onto GLr(A). Moreover, if r ∈ GLr(F), k ∈ GLr(OF) and if this bijection
maps the triple (E;αF; (αOv )v∈|X|) onto gA, the same map maps the triple (E;αF ◦
r−1; (αOv ◦ kv)v∈|X|) onto rgAk. Therefore the above bijection induces a bijection
between the set of isomorphism classes of locally free OF-sheaves of rank r over
X and the double coset space GLr(F)\GLr(A)/GLr(OF).

More generally, let r = r1 + · · ·+rs be a partition I = (r1, . . . , rs) of r and let PI

be the corresponding standard parabolic subgroup of GLr. Then we have a natural
bijection from the set of isomorphism classes of triple (E∗;α∗,F : (α∗,Ov )v∈|X|)
onto PI(A), where E∗ := ((0) = E0 ⊂ E1 ⊂ · · · ⊂ Es) is a filtration of locally free
sheaves of rank (r1, r1 + r2, . . . , r1 + r2 + · · · + rs = r) over X (i.e, each Ej is a
vector sheaf of rank r1 + r2 + · · · + rj over X and each quotient Ej/Ej−1 is torsion
free), which is equipped with an isomorphism of filtrations of F-vector spaces

α∗,F :
(
(0) = F0 ⊂ Fr1 ⊂ · · · ⊂ Fr1+r2+···+rs=r) � (E∗)F,

and with an isomorphism of filtrations of free Ov-modules

α∗,Ov :
(
(0) ⊂ Or1

v ⊂ · · · ⊂ Or1+r2+···+rs=r
v

)
� (E∗)Ov ,

for every v ∈ |X|. Moreover this bijection induces a bijection between the set
of isomorphism classes of the filtrations of locally free sheaves of rank (r1, r1 +
r2, · · · , r1+r2+· · ·+rs = r) over X and the double coset space PI(F)\PI(A)/PI(OA).
The natural embedding PI(A) ↪→ PI(A) (resp. the canonical projection PI(A) →
MI(A) → GLrj(A) for j = 1, . . . , s, where MI denotes the standard Levi of PI)
admits the modular interpretation

(E∗;α∗,F : (α∗,Ov )v∈|X|) �→ (Es;αs,F : (αs,Ov )v∈|X|)

(resp.

(E∗;α∗,F : (α∗,Ov )v∈|X|) �→ (grj(E∗); grj(α∗,F), grj(α∗,Ov )v∈|X|),

where grj(E∗) := Ej/Ej−1, grj(α∗,F) : Frj � grj(E∗)F and grj(α∗,Ov ) : Ov
rj �

grj(E∗)Ov , v ∈ |X| are induced by α∗,F and α∗,Ov respectively.)
Denote by Eg the rank r locally free sheaf on X associated to g ∈ GLr(A).

Then,

deg(Eg) = − log (N(detg))
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with N : GL1(AF) = IF → Q>0 the standard norm map of the idelic group
of F.

With this, for g ∈ GLr(A) and a parabolic subgroup Q of GLr, denote by Eg;Q
∗

the filtration of the locally free sheaf Eg induced by the parabolic subgroup Q.
Now following Lafforgue [Laf], introduce an associated polygon pg

Q : [0, r] →
Q by the following 3 conditions:

(i) pg
Q(0) = pg

Q(r) = 0;

(ii) pg
Q is affine on the interval [rankEg;Q

i−1, rankEg;Q
i ]; and

(iii) for all indices i,

pg
Q(rankEg;Q

i ) = deg(Eg;Q
i , ρg;Q

i ) − rankEg;Q
i

r
· deg(Eg, ρg).

Then by Prop. 1 in I.1.1, i.e., the existence and uniqueness of Harder-Narasimhan
filtration, there is a unique convex polygon p̄g which bounds all pg

Q from above for
all parabolic subgroups Q for GLr. Moreover there exists a parabolic subgroup Q̄g

such that pg
Q̄g = p̄g. In particular, as a direct consequence, we obtain the following

well-known:

LEMMA. (See e.g. [Laf].) For any fixed polygon p : [0, r] → Q and any d ∈ Z,
the subset

{g ∈ GLr(F)\GLr(A) : deg g = d, p̄g ≤ p}

is compact.

Similarly yet more generally, for a fixed parabolic subgroup P of GLr and
g ∈ GLr(A), there is a unique maximal element p̄g

P among all pg
Q, where Q runs

over all parabolic subgroups of GLr which are contained in P. And we have:

LEMMA′. (See e.g. [Laf].) For any fixed polygon p : [0, r] → Q, d ∈ Z and
any standard parabolic subgroup P of GLr, the subset

{g ∈ GLr(F)\GLr(A) : deg g = d, p̄g
P ≤ p, pg

P ≥ −p}

is compact.

Moreover, let p, q : [0, r] → R be two polygons and P a standard parabolic
subgroup of GLr. Then as in [Laf], we say q >P p if for any 1 ≤ i ≤ |P|,

q(rankEP
i ) > p(rankEP

i )

where (r1, . . . , r|P|) denotes the partition of r corresponding to P. As usual denote
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by 1 the characteristic function of the variable g ∈ GLr(A). For example,

1(p̄g ≤ p)(g) =

{
1, if pg ≤ p
0 otherwise.

Then we have the following result of Lafforgue:

PROPOSITION. [Laf, Prop. V.1.c] For any convex polygon p : [0, r] → R, as a
function of g ∈ GLr(A),

1(p̄g ≤ p) =
∑

P⊃P0

( − 1)|P|−1
∑

δ∈P(F)\GLr(F)

1(pδg
P >P p).

Here P runs over all standard parabolic subgpoups of GLr.

II.3. Non-abelian L-functions. In this section, we introduce non-abelian
L-functions for function fields and study their basic properties.

3.1. Choice of moduli spaces. For the function field F with genus gX , and
for a fixed r ∈ Z>0, we take the moduli space to be

M≤p
F,r := {g ∈ GLr(F)ZGLr(A)\GLr(A) : p̄g ≤ p}

for a fixed convex polygon p : [0, r] → R. Also we denote by dµ the induced
Tamagawa measures on M≤p

F,r .
More generally, for any standard parabolic subgroup P of GLr, we introduce

the moduli spaces

MP;≤p
F,r := {g ∈ P(F)ZGLr(A)\GLr(A) : p̄g

P ≤ p, p̄g
P ≥ −p}.

By the discussion in II.2, these moduli spaces MP;≤p
F,r are all compact, a key

property which plays a central role in our definition of non-abelian L-functions
below.

3.2. Choice of Eisenstein series: first approach to non-abelian L-function.
To facilitate our ensuing discussion, we start with some preparations. For details,
please consult [MW], which is heavily used in this subsection. (The experienced
reader may skip this subsection, except for possible later reference about nota-
tions.)

Fix a connected reduction group G defined over F, denote by ZG its center.
Fix a minimal parabolic subgroup P0 of G. Then P0 = M0U0, where as usual
we fix once and for all the Levi M0 and the unipotent radical U0. A parabolic
subgroup P of G is called standard if P ⊃ P0. For such groups write P = MU
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with M0 ⊂ M the standard Levi and U the unipotent radical. Denote by Rat(M)
the group of rational characters of M, i.e, the morphism M → Gm where Gm

denotes the multiplicative group. Set

a
∗
M := Rat(M) ⊗Z C, aM := HomZ(Rat(M),C),

and

Re a
∗
M := Rat(M) ⊗Z R, Re aM := HomZ(Rat(M),R).

For any χ ∈ Rat(M), we obtain a (real) character |χ| : M(A) → R∗ defined
by m = (mv) �→ m|χ| :=

∏
v∈S |mv |χv

v with | · |v the v-absolute values. Set then
M(A)1 := ∩χ∈Rat(M)Ker|χ|, which is a normal subgroup of M(A). Set XM to be the

group of complex characters which are trivial on M(A)1. Denote by HM := logM :
M(A) → aM the map such that ∀χ ∈ Rat(M) ⊂ a∗M , 〈χ, logM (m)〉 := log (m|χ|).
Clearly,

M(A)1 = Ker( logM); logM (M(A)/M(A)1) � Re aM .

Hence in particular there is a natural isomorphism κ : a∗M � XM . Set

Re XM := κ(Re a
∗
M), Im XM := κ(i · Re a

∗
M).

Moreover define our working space XG
M to be the subgroup of XM consisting of

complex characters of M(A)/M(A)1 which are trivial on ZG(A).
Fix a maximal compact subgroup K such that for all standard parabolic

subgroups P = MU as above, P(A) ∩ K = M(A) ∩ K · U(A) ∩ K. Hence we get
the Langlands decomposition G(A) = M(A) · U(A) ·K. Denote by mP : G(A) →
M(A)/M(A)1 the map g = m · n · k �→ M(A)1 · m where g ∈ G(A), m ∈ M(A), n ∈
U(A) and k ∈ K.

Fix Haar measures on M0(A), U0(A),K respectively such that:
(1) the induced measure on M(F) is the counting measure and the volume of

the induced measure on M(F)\M(A)1 is 1. (Recall that it is a fundamental fact
that M(F)\M(A)1 is compact.)

(2) the induced measure on U0(F) is the counting measure and the volume of
U(F)\U0(A) is 1. (Recall that being unipotent radical, U(F)\U0(A) is compact.)

(3) the volume of K is 1.
Such measures then also induce Haar measures via logM to aM0 , a∗M0

, etc.
Furthermore, if we denote by ρ0 a half of the sum of the positive roots of the
maximal split torus T0 of the central ZM0 of M0, then

f �→
∫

M0(A)·U0(A)·K
f (mnk) dk dn m−2ρ0dm
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defined for continuous functions with compact supports on G(A) defines a Haar
measure dg on G(A). This in turn gives measures on M(A), U(A) and hence on
aM , a∗M , P(A), etc, for all parabolic subgroups P. In particular, one checks that
the following compactibility condition holds

∫
M0(A)·U0(A)·K

f (mnk) dk dn m−2ρ0dm =
∫

M(A)·U(A)·K
f (mnk) dk dn m−2ρPdm

for all continuous functions f with compact supports on G(A), where ρP denotes
a half of the sum of the positive roots of the maximal split torus TP of the central
ZM of M. For later use, denote also by ∆P the set of positive roots determined
by (P, TP), ∆0 = ∆P0 and W the associated Weyl group.

Fix an isomorphism T0 � GR
m and a place v0 of F and a uniformizer πv0 at

v0. The group πZv0
generated by πv0 can be identified with a subgroup of A∗ and

hence (πZv0
)R with a subgroup of T0(A). Thus there exists a W-invariant subgroup

of ZM0(A) which is isomorphic to a subgroup of finite index of (πZv0
)R. Fix such a

group once and for all and denote it by AM0(A).
More generally, for a standard parabolic subgroup P = MU, set AM(A) :=

AM0(A) ∩ ZM(A) where as used above Z∗ denotes the center of the group ∗. Then
AM(A)\M(A)/M(A)1 is finite. For later use, set also AG

M(A) := {a ∈ AM(A) :
logG a = 0}. Then AM(A) contains AG(A) ⊕ AG

M(A) as a subgroup of finite
index.

Note that K, M(F)\M(A)1 and U(F)\U(A) are all compact, thus with the
Langlands decomposition G(A) = U(A)M(A)K in mind, the reduction theory for
G(F)\G(A) or more generally P(F)\G(A) is reduced to that for AM(A). As such
for t0 ∈ M0(A), set

AM0(A)(t0) := {a ∈ AM0(A) : aα > tα0 ∀α ∈ ∆0}.

Then, for a fixed compact subset ω ⊂ P0(A), we have the corresponding Siegel
set

S(ω; t0) := {p · a · k : p ∈ ω, a ∈ AM0(A)(t0), k ∈ K}.

In particular, for big enough ω and small enough t0, i.e, tα0 is very close to 0 for all
α ∈ ∆0, the classical reduction theory may be restated as G(A) = G(F) · S(ω; t0).
More generally set

AP
M0(A)(t0) := {a ∈ AM0(A) : aα > tα0 , ∀α ∈ ∆P

0},

and

SP(ω; t0) := {p · a · k : p ∈ ω, a ∈ AP
M0(A)(t0), k ∈ K}.
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Then similarly as above for big enough ω and small enough t0, G(A) = P(F) ·
SP(ω; t0). (Here ∆P

0 denotes the set of positive roots for (P0 ∩ M, T0).)
Fix an embedding iG : G ↪→ SLn sending g to (gij). Introducing a hight

function on G(A) by setting ‖g‖ :=
∏

v∈S sup{|gij|v : ∀i, j}. It is well known that
up to O(1), hight functions are unique. This implies that the following growth
conditions do not depend on the height function we choose.

A function f : G(A) → C is said to have moderate growth if there exist
c, r ∈ R such that | f (g)| ≤ c · ‖g‖r for all g ∈ G(A). Similarly, for a standard
parabolic subgroup P = MU, a function f : U(A)M(F)\G(A) → C is said to
have moderate growth if there exist c, r ∈ R,λ ∈ ReXM0 such that for any
a ∈ AM(A), k ∈ K, m ∈ M(A)1 ∩ SP(ω; t0),

| f (amk)| ≤ c · ‖a‖r · mP0 (m)λ.

Now fix a place v0 of F, denote by G(A)v0 the inverse image of G(Fv0 ) in
G(A). Denote by z the Bernstein centre of G(A)v0 . The z acts naturally on the
locally constant functions on G(A).

By definition, a function φ : U(A)M(F)\G(A) → C is called automorphic if:
(i) φ has moderate growth;
(ii) φ is locally constant;
(iii) φ is K-finite, i.e., the C-span of all φ(k1 ·∗·k2) parametrized by (k1, k2) ∈

K×K is finite dimensional;
(iv) φ is z-finite, i.e., the C-span of all δ(X)φ parametrized by all X ∈ z is

finite dimensional.
For such a function φ, set φk : M(F)\M(A) → C to be the function defined

by m �→ m−ρPφ(mk) for all k ∈ K. Set A(U(A)M(F)\G(A)) be the space of
automorphic forms on U(A)M(F)\G(A).

For a measurable locally L1-function f : U(F)\G(A) → C, define its constant
term along with the standard parabolic subgroup P = UM to be the function
fP : U(A)\G(A) → C given by g →

∫
U(F)\G(A) f (ng)dn. Then an automorphic

form φ ∈ A(U(A)M(F)\G(A)) is called a cusp form if for any standard parabolic
subgroup P′ properly contained in P, φP′ ≡ 0. Denote by A0(U(A)M(F)\G(A))
the space of cusp forms on U(A)M(F)\G(A). One checks easily that:

(i) all cusp forms are rapidly decreasing; and hence
(ii) there is a natural pairing

〈·, ·〉 : A0(U(A)M(F)\G(A)) × A(U(A)M(F)\G(A)) → C

defined by 〈ψ,φ〉 :=
∫

ZM(A)U(A)M(F)\G(A) ψ(g)φ̄(g) dg.
Moreover, for a (complex) character ξ : ZM(A) → C∗ of ZM(A) set

A(U(A)M(F)\G(A))ξ
:= {φ ∈ A(U(A)M(F)\G(A)) : φ(zg) = zρP · ξ(z) · φ(g), ∀z ∈ ZM(A), g ∈ G(A)}
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and

A0(U(A)M(F)\G(A))ξ := A0(U(A)M(F)\G(A)) ∩ A(U(A)M(F)\G(A))ξ.

Now set

A(U(A)M(F)\G(A))Z :=
∑

ξ∈Hom(ZM(A),C∗)

A(U(A)M(F)\G(A))ξ

and

A0(U(A)M(F)\G(A))Z :=
∑

ξ∈Hom(ZM(A),C∗)

A0(U(A)M(F)\G(A))ξ.

It is well known that the natural morphism

C[ReaM] ⊗ A(U(A)M(F)\G(A))Z → A(U(A)M(F)\G(A))

defined by (Q,φ) �→
(
g �→ Q( logM (mP(g))

)
· φ(g) is an isomorphism, using

the special structure of AM(A)-finite functions and the Fourier analysis over the
compact space AM(A)\ZM(A). Consequently, we also obtain a natural isomorphism

C[ReaM] ⊗ A0(U(A)M(F)\G(A))Z → A0(U(A)M(F)\G(A))ξ.

Set also Π0(M(A))ξ be isomorphism classes of irreducible representations of
M(A) occurring in the space A0(M(F)\M(A))ξ, and

Π0(M(A)) := ∪ξ∈Hom(ZM(A),C∗)Π0(M(A))ξ.

For any π ∈ Π0(M(A))ξ, set A0(M(F)\M(A))π to be the isotypic component
of type π of A0(M(F)\M(A))ξ, i.e, the set of cusp forms of M(A) generating a
semi-simple isotypic M(A)-module of type π. Set

A0(U(A)M(F)\G(A))π
:= {φ ∈ A0(U(A)M(F)\G(A)) : φk ∈ A0(M(F)\M(A))π, ∀k ∈ K}.

Clearly

A0(U(A)M(F)\G(A))ξ = ⊕π∈Π0(M(A))ξA0(U(A)M(F)\G(A))π.

More generally, let V ⊂ A(M(F)\M(A)) be an irreducible M(A)-module with
π0 the induced representation of M(A). Then we call π0 an automorphic repre-
sentation of M(A). Denote by A(M(F)\M(A))π0 the isotypic subquotient module
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of type π0 of A(M(F)\M(A)). Then

V ⊗ HomM(A)(V , A(M(F)\M(A))) � A(M(F)\M(A))π0 .

Set

A(U(A)M(F)\G(A))π0

:= {φ ∈ A(U(A)M(F)\G(A)) : φk ∈ A(M(F)\M(A))π0 , ∀k ∈ K}.

Moreover if A(M(F)\M(A))π0 ⊂ A0(M(F)\M(A)), we call π0 a cuspidal repre-
sentation.

Two automorphic representations π and π0 of M(A) are said to be equiva-
lent if there exists λ ∈ XG

M such that π � π0 ⊗ λ. This, in practice, means that
A(M(F)\M(A))π = λ · A(M(F)\M(A))π0 . That is, for any φπ ∈ A(M(F)\M(A))π
there exists a φπ0 ∈ A(M(F)\M(A))π0 such that φπ(m) = mλ · φπ0 (m). Conse-
quently,

A(U(A)M(F)\G(A))π = (λ ◦ mP) · A(U(A)M(F)\G(A))π0 .

Denote by P := [π0] the equivalence class of π0. Then P is an XG
M-principal

homogeneous space, hence admits a natural complex structure. Usually we call
(M, P) a cuspidal datum of G if π0 is cuspidal. Also for π ∈ P set Reπ :=
Reχπ = |χπ| ∈ ReXM , where χπ is the central character of π, and Imπ :=
π ⊗ ( − Reπ).

Now fix an irreducible automorphic representation π of M(A) and φ ∈
A(U(A)M(F)\G(A))π, define the associated Eisenstein series E(φ,π) : G(F)\
G(A) → C by

E(φ,π)(g) :=
∑

δ∈P(F)\G(F)

φ(δg).

Then there is an open cone C ⊂ ReXG
M such that if Reπ ∈ C, E(λ · φ,π ⊗

λ)(g) converges uniformly for g in a compact subset of G(A) and λ in an open
neighborhood of 0 in XG

M . For example, if P = [π] is cuspidal, we may even
take C to be the cone {λ ∈ ReXG

M : 〈λ − ρP,α∨〉 > 0, ∀α ∈ ∆G
P}. As a direct

consequence, E(φ,π) ∈ A(G(F)\G(A)). That is, Eisenstein series E(φ,π) are
automorphic forms.

As noticed above, being an automorphic form, E(φ,π) is of moderate growth.
However, in general it is not integrable over ZG(A)G(F)\G(A). To remedy this,
classically, as initiated in the so-called Rankin-Selberg method, analytic truncation
is used. From Fourier analysis, we understand that the problematic terms are the
so-called constant terms, which are of moderate growth, so by cutting off them,
the reminding one is rapidly increasing and hence integrable.
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In general, it is very difficult to make such an analytic truncation intrinsi-
cally related with arithmetic properties of number fields. (See however, [Z] and
[Ar1,2].) On the other hand, Eisenstein series themselves are quite intrinsic arith-
metical invariants. Thus it is natural for us on one hand to keep Eisenstein series
unchanged while on the other to find new moduli spaces, which themselves in-
trinsically parametrize certain modular objects, and over which Eisenstein series
are integrable.

This is exactly what we are doing now. As said, we are going to view Eisen-
stein series as something globally defined, and use a geometric truncation for the
space G(F)\G(A) so that the integrations of the Eisenstein series over the newly
obtained moduli spaces give us naturally non-abelian L functions for function
fields.

As such, let us now come back to the group G = GLr, then as in 3.1, we
obtain the moduli space M≤p

F,r and hence a well-defined integration

L≤p
F,r(φ,π) :=

∫
M≤p

F,r

E(φ,π)(g) dg, Reπ ∈ C.

3.3. New non-abelian L-functions. However, in such a general form, we
do not know whether the latest defined integration has any nice properties (such
as meromorphic continuation and functional equations, etc.). It is to remedy this
that we make a further selection about automorphic forms.

Fix then a convex polygon p : [0, r] → R as in II.2 so as to obtain the moduli
space M≤p

F,r . Set G = GLr, fix the minimal parabolic subgroup P0 corresponding
to the partition (1, · · · , 1) with M0 consisting of diagonal matrices. Fix a standard
parabolic subgroup PI = UIMI corresponding to the partition I = (r1, . . . , r|P|) of
r with MI the standard Levi and UI the unipotent radical.

Then for a fixed irreducible automorphic representation π of MI(A), choose

φ∈A(UI(A)MI(F)\G(A))π ∩ L2(UI(A)MI(F)\G(A)) := A2(UI(A)MI(F)\G(A))π,

where L2(UI(A)MI(F)\G(A)) denotes the space of L2 functions on the space
ZG(A)UI(A)MI(F)\G(A). Denote the associated Eisenstein series by E(φ,π) ∈
A(G(F)\G(A)).

Definition. A rank r non-abelian L-function L≤p
F,r(φ,π) for the function field

F associated to an L2-automorphic form φ ∈ A2(UI(A)MI(F)\G(A))π is defined
by the following integration

L≤p
F,r(φ,π) :=

∫
M≤p

F,r

E(φ,π)(g) dg, Reπ ∈ C.

More generally, for any standard parabolic subgroup PJ = UJMJ ⊃ PI (so
that the partition J is a refinement of I), we have the corresponding relative
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Eisenstein series

EJ
I (φ,π)(g) :=

∑
δ∈PI (F)\PJ (F)

φ(δg), ∀g ∈ PJ(F)\G(A).

It is well known that there is an open cone CJ
I in ReXPJ

MI
such that for Reπ ∈ CJ

I ,

EJ
I (φ,π) ∈ A(PJ(F)\G(A)). Here XPJ

MI
is defined similarly as XG

M with G replaced
by PJ . Then we have a well-defined relative non-abelian L-function

LPJ ;≤p
F,r (φ,π) :=

∫
MPJ ;≤p

F,r

EJ
I (φ,π)(g) dg, Re π ∈ CJ

I .

Remarks. (1) Here when defining non-abelian L-functions we assume that φ
comes from a single irreducible automorphic representations, but this restriction
is rather artificial and can be removed easily: We add such a restriction only for
the purpose of giving the constructions and results in a very neat way.

(2) We point out that the following discussion for non-abelian L-functions
holds for relative non-abelian L-functions as well, with certain simple modifica-
tions in a well-known manner.

3.4. Meromorphic extension, rationality and functional equations. With
the same notation as above, set P = [π]. For w ∈ W, the Weyl group of G = GLr,
fix once and for all representative w ∈ G(F) of w. Set M′ := wMw−1 and denote
the associated parabolic subgroup by P′ = U′M′. W acts naturally on automorphic
representations, from which we obtain an equivalence classes wP of automorphic
representations of M′(A). As usual, define the associated intertwining operator
M(w,π) by

(M(w,π)φ)(g) :=
∫

U′(F)∩wU(F)w−1\U′(A)
φ(w−1n′g)dn′, ∀g ∈ G(A).

One checks that if 〈Reπ,α∨〉 � 0, ∀α ∈ ∆G
P :

(i) for a fixed φ, M(w,π)φ depends only on the double coset M′(F)wM(F).
So M(w,π)φ is well-defined for w ∈ W;

(ii) the above integral converges absolutely and uniformly for g varying in a
compact subset of G(A);

(iii) M(w,π)φ ∈ A(U′(A)M′(F)\G(A))wπ; and if φ is L2, which from now on
we always assume, so is M(w,π)φ.

Basic facts of non-abelian L-functions. With the same notation above:
(I) Meromorphic Continuation. L≤p

F,r(φ,π) for Reπ ∈ C is well-defined and
admits a unique meromorphic continuation to the whole space P;
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(II) Rationality. L≤p
F,r(φ,π) for Reπ ∈ C is a rational function on P;

(III) Functional Equations. As meromorphic functions on P,

L≤p
F,r(φ,π) = L≤p

F,r(M(w,π)φ, wπ), ∀w ∈ W.

Proof. This is a direct consequence of the fundamental results of Langlands
and Morris on Eisenstein series and spectrum decompositions. (See e.g, [Mor1,2],
[La] and/or [MW]). Indeed, if φ is cuspidal, by definition, (I) is a direct conse-
quence of Prop. II.15, Thm. IV.1.8 of [MW], (II) is a direct consequence of Thm.
IV.1.11 of [MW], (II) is a direct consequence of the proof of Thm. IV.1.12 of
[MW] and (II) is a direct consequence of Thm. IV.1.10 of [MW].

More generally, if φ is only L2, then by Langlands and Morris’ theory of
Eisenstein series and spectral decomposition, φ may be obtained as the residue
of relative Eisenstein series coming from cusp forms, since φ is L2 automorphic.
As such then (I), (II) and (II) are direct consequences of the proof of VI.2.1(i) at
p. 264 of [MW].

3.5. Holomorphicity and singularities. Let π ∈ P = [π] and α ∈ ∆G
M and

α ∈ R+(TM , G). Denote by n(α) the smallest integer n > 0 such that α∗nλ = 1
for all λ ∈ FixXG

M
(P) := {ν ∈ XG

M : π ⊗ ν = ν} with α∗ as defined at p.16-17

of [MW]. Define then the function h : P → C by π ⊗ λ �→ α∗n(α)λ − 1 for all
λ ∈ XG

M � aG
M . Set H := {π′ ∈ P : h(π′) = 0} and call it a root hyperplane.

Clearly the function h is determined by H, hence we also denote h by hH . Note
also that root hyperplanes depend on the base point π we choose.

Let D be a set of root hyperplanes. Then:
(i) the singularities of a meromorphic function f on P is said to be carried

out by D if for all π ∈ P, there exist nπ : D → Z≥0 zero almost everywhere
such that π′ �→

(
ΠH∈DhH(π′)nπ(H)) · f (π′) is holomorphic at π′;

(ii) the singularities of f are said to be without multiplicity at π if nπ ∈ {0, 1};
(iii) D is said to be locally finite, if for any compact subset C ⊂ P, {H ∈

D : H ∩ C �= ∅} is finite.

Basic facts of non-abelian L-functions. With the same notation above:
(IV) Holomorphicity. (i)When Reπ ∈ C, L≤p

F,r(φ,π) is holomorphic;

(ii) L≤p
F,r(φ,π) is holomorphic at π where Reπ = 0;

(V) Singularities. (i) There is a locally finite set of root hyperplanes D such
that the singularities of L≤p

F,r(φ,π) are carried out by D;

(ii) The singularities of L≤p
F,r(φ,π) are without multiplicities at π if 〈Reπ,α∨〉≥

0, ∀α ∈ ∆G
M;

(iii) There are only finitely many of singular hyperplanes of L≤p
F,r(φ,π) which

intersect {π ∈ P : 〈Reπ,α∨〉 ≥ 0, ∀α ∈ ∆M}.
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Proof. As above, this is a direct consequence of the fundamental results of
Langlands and Morris on Eisenstein series and spectrum decompositions. (See
e.g, [Mor1,2], [La] and/or [MW]). Indeed, if φ is a cusp form, (IV.i) is a di-
rect consequence of Lemma IV.1.7 of [MW], while (IV.ii) and (IV) are direct
consequence of Prop. IV.1.11 of [MW].

In general when φ is only L2 automorphic, then we have to use the theory
of Langlands and Morris to realize φ as the residue of relative Eisenstein series
defined using cusp forms. (See e.g., item (5) at p. 198 and the second half part
of p. 232 of [MW].)

As such, (IV) and (V) are direct consequence of the definition of residue
datum and the compatibility between residue and Eisenstein series as stated for
example under item (3) at p. 263 of [MW].

Chapter II.4. A closed formula for the Abelian part.

4.1. Modified analytic truncation. Let G = GLr and P0 = M0U0 be the
minimal parabolic subgroup corresponding to the partition (1, . . . , 1). Let P1 =
M1U1 be a fixed standard parabolic subgroup with M1 the standard Levi and U1

the unipotent radical.
For a function field F with A the ring of adeles, let π be an irreducible auto-

morphic representation of M1(A). Denote by A2(U1(A)M1(F)\G(A))π the space
of L2-automorphic forms in the isotypic component A(U1(A)M1(F)\G(A))π.

Then for a fixed convex polygon p : [0, r] → Q and any L2-automorphic form
φ ∈ A2(U1(A)M1(F)\G(A))π we have the associated non-abelian L-function

L≤p
F,r(φ;π) :=

∫
M≤p

F,r

E(φ,π)(g) · dµ(g), Reπ ∈ C

where E(φ,π) denotes the Eisenstein series associated to φ and C ⊂ XG
M1

is a
certain positive cone in 3.3 over which Eisenstein series E(φ,π) converges. Recall
that in 3.4, we showed that L≤p

F,r(φ;π) admits a meromorphic continuation to the
whole space P := [π], the XG

M1
homogeneous space consisting of automorphic

representations equivalent to π whose typical element is π ⊗ λ with λ ∈ XG
M1

.
On the other hand, for a suitably regular T ∈ Rea∗M , following Arthur, (see

[Ar1] and [OW],) we have the analytic truncation ΛTf for any continuous function
f on ZG(A)G(F)\G(A) defined by

(ΛTf )(g) :=
∑

P

( − 1)dim(AP/ZG)
∑

δ∈P(F)\G(F)

fP(δg) · τ̂P( logM mP(δg) − T).

(For unknown notation, which is commonly used in Arthur’s theory, please see
[Ar1,2] and [OW].) Apply this analytic truncation to the constant function 1,
by Prop 1.1 of [Ar1], we obtain a characteristic function for a certain compact
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subset in ZG(A)G(F)\G(A), which we denote by ΛT (ZG(A)G(F)\G(A)
)

. Thus, for
φ ∈ A2(M(F)U(A)\G(A)), we have a well-defined integration

LT
F,r(φ,π) :=

∫
ΛT(ZG(A)G(F)\G(A))

E(φ,π)(g) · dg, Reπ ∈ C.

Moreover, it is well known that for analytic truncations,

ΛT ◦ ΛT = ΛT

based on the following miracle—By Lemma 1.1 of [Ar2], the constant term of
ΛTφ(x) along with any standard parabolic subgroup P1 is zero unless �(H0(x) −
T) < 0 for all � ∈ ∆̂1. As a direct consequence,

LT
F,r(φ,π) =

∫
ZG(A)G(F)\G(A)

ΛT1(g) · E(φ,π)(g) · dg

=
∫

ZG(A)G(F)\G(A)
(ΛT ◦ ΛT )1(g) · E(φ,π)(g) · dg

=
∫

ZG(A)G(F)\G(A)
ΛT1(g) · ΛTE(φ,π)(g) · dg

since ΛT is self-adjoint. But this latest integration is simply

∫
ZG(A)G(F)\G(A)

1(g) · (ΛT ◦ ΛT )E(φ,π)(g) · dg

since ΛTE(φ,π) is rapidly decreasing and 1 is of moderate growth. That is to say,

LT
F,r(φ,π) =

∫
ZG(A)G(F)\G(A)

ΛTE(φ,π)(g) · dg.

One may try to apply such a discussion to geometric truncations as well.
For this, attach to a fixed concave polygon p : [0, r] → R with the property
p(0) = p(r) = 0 an element Tp = (t1

p, · · · , tr
p) ∈ a0 by the conditions

λi(Tp) = ti
p − ti+1

p := [p(i) − p(i − 1)] − [p(i + 1) − p(i)] > 0, i = 1, 2, . . . , r − 1.

Here as usual {λi = ei − ei+1}r−1
i=1 denotes the collection of positive roots of GLr.

Then one checks (see [We2] for details) that:
(i) Tp is in the positive cone of a0; and
(ii) τP( − H(g) − TP) = 1 ⇔ pg

P �P p.
Note in particular that in (ii), τP instead of τ̂P is used. In other words, positive

chambers rather than positive cones are used in geometric truncation. We should
also point out that this discussion is motivated by Lafforgue [Laf].
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Moreover, following Lafforgue [Laf], introduce a modified truncation with
respect to a polygon p by

(Λpf )(g) :=
∑

P

( − 1)dim(AP/ZG)
∑

δ∈P(F)\G(F)

fP(δ g) · 1(pδg
P >P p).

Denote thus obtained moduli space (from Λp1) by Λp(ZG(A)G(F)\G(A)). Then
essentially, the compact space Λp(ZG(A)G(F)\G(A)) is our moduli space M≤p

F,r by
Prop. II.2 and (ii) above. In this way, our problem becomes to study

L≤p
F,r(φ;π) :=

∫
Λp(ZG(A)F(F)\G(A))

E(φ,π) · dµ(g), Re π ∈ C.

4.2. A close formula when φ is a cusp form. For general φ, this turns to
be a very challenging problem. Our aim here is to see what happens for L≤p

F,r(φ;π)
when φ is a cusp form. Motivated by the result of Langlands-Arthur on the inner
product of truncated Eisenstein series [Ar1,2] (see also [OW]), we go as follows:

We begin with a formula for the truncated Eisenstein series. This then leads
to the consideration of constant terms of Eisenstein series. While it is difficult
to precisely describe constant terms of Eisenstein series E(φ,π) associated with
general automorphic form φ, it becomes rather easy when φ is cuspidal. Indeed,
for φ ∈ A0(U1(A)M1(F)\G(A)) and a fixed standard parabolic subgroup P = MU,
it is well known that

EP(φ,π)(g) =
∑

w∈W(M1,M)

∑
m∈M(F)∩wP1(F)w−1\M(F)

(M(w,π)φ(π)) (mg),

where W(M1, M) consisting of element w ∈ W such that wM1w−1 is a standard
Levi of M and w−1(β) > 0 for all β ∈ R+(T0, M) and R+(T0, M) denotes the set
of positive roots related to (T0, M).

Therefore,

ΛpE(φ,π) =
∑

P

( − 1)dimAP/ZG
∑

δ∈P(F)\G(F)

EP(φ,π)(δg) · 1(pδg
P >P p)

=
∑

P

( − 1)dimAP/ZG
∑

δ∈P(F)\G(F)∑
w∈W(M1,M)

∑
ξ∈M(F)∩wP1(F)w−1\M(F)

(M(w,π)φ) (ξδg) · 1(pδg
P >P p).

Now for any standard parabolic subgroup P2, set W(a1, a2) to be the set of distinct
isomorphisms from a1 onto a2 obtained by restricting elements in W to a1, where
ai denotes aPi , i = 1, 2 Then one checks by definition easily that W(M1, M) is a
union over all P2 of elements w ∈ W(a1, a2) such that (i) wa1 = a2 ⊃ aP; and
(ii) w−1(α) > 0, ∀α ∈ ∆P

P2
.
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Hence,

ΛpE(φ,π)

=
∑
P2

∑
w∈W(a1,a2),P⊃P2,w−1(α)>0,∀α∈∆P

P2

( − 1)dimAP/ZG

∑
δ∈P(F)\G(F)

1(pδg
P >P p) ·

∑
ξ∈M(F)∩wP1(F)w−1\M(F)

(M(w,π)φ) (ξδg)

=
∑
P2

∑
w∈W(a1,a2)

( − 1)dimAPw/ZG
∑

{P:P2⊂P⊂Pw,w−1(α)>0,∀α∈∆P
P2
}

( − 1)dimAP/APw

∑
δ∈P(F)\G(F)

1(pδg
P >P p) ·

∑
ξ∈M(F)∩wP1(F)w−1\M(F)

(M(w,π)φ) (ξδg).

where for a given w, we define Pw ⊃ P by the conidition that

∆Pw
P2

= {α ∈ ∆P2 : (wπ)(α∨) > 0}.

Therefore, since

1(pξδg
P >P p) = 1(pδg

P >P p), ∀δ ∈ P(F)\G(F), ξ ∈ P2(F)\P(F),

we have

ΛpE(φ,π)

=
∑
P2

∑
w∈W(a1,a2)

( − 1)dimAPw/ZG
∑

{P:P2⊂P⊂Pw,w−1(α)>0,∀α∈∆P
P2
}

( − 1)dimAP/APw

∑
δ∈P(F)\G(F)

∑
δ∈P2(F)\P(F)

(
1(pξδg

P >P p) · (M(w,π)φ) (ξδg)
)

=
∑
P2

∑
w∈W(a1,a2)

( − 1)dimAPw/ZG
∑

{P:P2⊂P⊂Pw,w−1(α)>0,∀α∈∆P
P2
}

( − 1)dimAP/APw

∑
δ∈P2(F)\G(F)

(
1(pδg

P >P p) · (M(w,π)φ) (δg)
)

=
∑
P2

∑
δ∈P2(F)\G(F)

∑
w∈W(a1,a2)

( − 1)dimAPw/ZG (M(w,π)φ) (ξδg)

∑
{P:P2⊂P⊂Pw,w−1(α)>0,∀α∈∆P

P2
}

( − 1)dimAP/APw 1(pδg
P >P p).
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Set now

1(P2; p; w) :=
∑

{P:P2⊂P⊂Pw,w−1(α)>0,∀α∈∆P
P2
}

( − 1)dimAP/ZG1(pδg
P >P p).

Then, we obtain the following:

LEMMA. With the same notation as above,

ΛpE(φ,π)(g) =
∑

P=MU

∑
δ∈P(F)\G(F)

∑
w∈W(M1),wM1w−1=M

(M(w,π)φ) (δg) · 1(P; p; w)(δg).

In the following calculation, we will pay no attention to the convergence:
One may justify our discussion using either the standard method in [Ar1], and/or
[OW], to first create a rapid decreasing function via pseudo-Eisenstein series or
the same wave packets, then apply the inversion formula, or regularized integra-
tions in [JLR]. Also if Λp were idempotent, we would have had no chance to get
an essential non-abelian part in our non-abelian L-function.

With these comments in mind, now we introduce what we call the abelian

part L≤p,ab
F,r of our non-abelian L function L≤p

F,r by setting

L≤p,ab
F,r (φ,π) :=

∫
ZG(A)G(F)\G(A)

ΛpE(φ,π)(g) dµ(g).

If Λp were idempotent, we would have had no chance to get an essential non-
abelian part in our non-abelian L-function. It is this abelian part which we are
going to calculate.

At it stands,

L≤p,ab
F,r (φ,π) =

∫
ZG(A)G(F)\G(A)

∑
P=MU

∑
δ∈P(F)\G(F)

∑
w∈W(M1),wM1w−1=M

(M(w,π)φ) (δg)

·1(P; p; w)(δg) dg.

From an unfolding trick, it is simply

∑
P

∑
w∈W(M1),wM1w−1=M

∫
ZG(A)P(F)\G(A)

(1(P2; p; w)(g) · (M(w,π)φ) (g)) dg

=
∑

P

∑
w∈W(M1),wM1w−1=M

∫
ZG(A)U(A)M(F)\G(A)

(1P(P; p; w)(g) · (M(w,π)φ) (g)) dg,

where as usual 1P(P; p; w)(g) :=
∫

U(F)\U(A) 1(P; p; w)(ng) dn denotes the constant
term of 1(P; p; w)(g) along P.
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To evaluate this latest integral, we decompose it into a double integrations
over

(
ZG(A)(ZM(F) ∩ ZM(A)\ZG(A) · Z1

M(A)

)
×
(

ZG(A)Z
1
M(A)U(A)M(F)\G(A)

)
=

(
ZG(A) · Z1

M(A)\ZM(A)

)
×
(
ZM(A)U(A)M(F)\G(A)

)
,

where Z1
M(A) = ZM(A) ∩ M(A)1. That is to say,

L≤p,ab
F,r (φ,π) =

∑
P=MU

∑
w∈W(M1),wM1w−1=M

∫
ZM(A)U(A)M(F)\G(A)

dg

·
∫

ZG(A)·Z1
M(A)
\ZM(A)

(1P(P; p; w)(zg) · (M(w,π)φ) (zg)) dz.

Note now that since XG
M1

has no torsion, there exists a unique element π0 of
P := [π] whose restriction to AG

M1(A) is trivial. This then allows to canonically
identified XG

M1
with P via λπ ∈ XG

M1
�→ π := π0 ⊗ λπ ∈ P. Hence without loss

of generality, we may simply assume that the restriction of π to AG
M1(A) is trivial.

Therefore,

L≤p,ab
F,r (φ,π) =

∑
P=MU

∑
w∈W(M1),wM1w−1=M

∫
ZM(A)U(A)M(F)\G(A)

(M(w,π)φ) (g) dg

·
∫

ZG(A)·Z1
M(A)
\ZM(A)

(1P(P; p; w)(zg)·) zρP+wπdz.

However as g may be chosen in G(A)1, clearly, the integration

∫
ZG(A)·Z1

M(A)
\ZM(A)

(1P(P; p; w)(zg)·) zρP+wπdz

is independent of g. Denote it by W(P; p; w;π). As a direct consequence, we
obtain the following:

A CLOSED FORMULA. With the same notation as above, for φ∈A0(U1(A)M1(F)\
G(A))π,

L≤p,ab
F,r (φ;π) =

∑
P=MU

∑
w∈W(M1),wM1w−1=M

(
W(P; p; w;π) · 〈M(w,π)φ, 1〉

)
.

GRADUATE SCHOOL OF MATHEMATICS, KYUSHU, UNIVERSITY, JAPAN



NON-ABELIAN ZETA FUNCTIONS FOR FUNCTION FIELDS 1017

REFERENCES

[Ar1] J. Arthur, A trace formula for reductive groups. I. Terms associated to classes in G(Q), Duke Math.
J. 45 (1978), 911–952.

[Ar2] , A trace formula for reductive groups. II. Applications of a truncation operator, Com-
positio Math. 40 (1980), 87–121.

[A] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen, I, II, Math. Z., 19 (1924),
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[DR] U. V. Desale and S. Ramanan, Poincaré polynomials of the variety of stable bundles, Math. Ann.
216 (1975), 233–244.

[HN] G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles
over curves, Math Ann. 212 (1975), 215–248.

[H] H. Hasse, Mathematische Abhandlungen, Walter de Gruyter, Berlin-New York, 1975.
[JLR] H. Jacquet, E. Lapid, and J. Rogawski, Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999),

173–240.
[Laf] L. Lafforgue, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson, Asterisque 243 (1997).
[LS] J. Lagarias and Suzuki, in preparation.
[La] R. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math.,

vol. 544, Springer-Verlag, NY, 1976.
[MW] C. Moeglin and J. L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts

in Math., vol. 113, Cambridge University Press, Cambridge, 1995.
[Mo] C. Moreno, Algebraic Curves Over Finite Fields, Cambridge Tracts in Math., vol. 97, Cambridge

University Press, Cambridge, 1991.
[Mor1] L. E. Morris, Eisenstein series for reductive groups over global function fields I: the cusp form

case, Canad. J. Math. 34 (1982), 91–168.
[Mor2] , Eisenstein series for reductive groups over global function fields II: the general case,

Canad. J. Math. 34 (1982), 1112–1182.
[Mu] D. Mumford, Geometric Invariant Theory, Springer-Verlag, NY, 1965.
[NR] M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surfaces,

Ann. of Math. 89 (1969), 14–51.
[NS] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann

surface, Ann. of Math. (2) 82 (1965), 540–567.
[OW] M. Osborne and G. Warner, The Selberg trace formula. II. Partition, reduction, truncation, Pacific

J. Math. 106 (1983), 307–496.
[Se] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Asterisque 96 (1982).
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