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Chapter I1.1. Grothendieck-Riemann-Roch Theorem

In this chapter, we will give the Grothendieck-Riemann-Roch theorem in algebraic
geometry and its proof. During the process, we introduce some concepts which will be
used in the arithmetic Riemann-Roch theorem. Later, we state and prove the a.nthmetlc
Riemann-Roch theorem in a similar way.

For any regular algebraic variety X, there is a Chow group associated with it, denoted
by CH(X), which is a quotient group of the free abelian group of algebraic cycles modulo
rational equivalence. By the Chow moving lemma, we can introduce a unique intersection
pairing on CH(X)q, and with this intersection pairing, CH(X)q becomes a commutative
ring. There are also two Grothendieck K-groups, denoted by Ko(X) (resp. K°(X)), which
are defined as the quotient groups of the free abelian group generated by vector sheaves
(resp. coherent sheaves) modulo exact sequences. Since every coherent sheaf over a regular
variety has a finite vector sheaf resolution, we know that the two Grothendieck K-groups
in fact are isomorphic. There is a natural multlphcatlon on K(X) and we know that there
is a natural isomorphism

ch: K(X)q — CH(X)q-

Furthermore, with respect to proper morphisms, there are functorial properties for the
objects defined above. One may now state the Grothendieck-Riemann-Roch theorem
in these terms as follows:

For any proper morphism f : X — Y of regular algebraic varieties, the diagram:

K(X) 2 CH(X)q
fx l | feu

E(Y) 8  CH(Y)q

is commutative.

In particular, if Y is a point, it becomes the remarkable Hirzebruch-Riemann-Roch
theorem: For any vector sheaf £ on a regular variety X, we have

X(X,6) = /; ch(£)td(X).
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§1I.1.1 Some Basic Concepts
We now introduce some basic concepts which will be used later.

II.1.1.a. Length and Order

Let R be a noetherian ring and M a finitely generated R-module. We say that M has
finite length if there exist a positive integer ! and a chain of submodules of M

M=MyDM;  D...0OM,=0,
and maximal ideals P; of R such that
M.\ /M; ~ R/P;

for all i. Then [ is the length of M as a R-module; more exactly, { = Ig(M). It is not
difficult to prove that [ is well-defined. The dimension of R is defined as the maximum of
the lengths of maximal ideals of R.

Now let R be an one-dimensional integral domain and K := Frac(R) the field of fractions
of R. Let f =ab~! € K* with a,b € R, then we define

ordr(f) :=p(R/aR) — Ip(R/bR)

and call it the order of f. This ia well-defined: In fact, the obvicus mapord: K* — Z is a
homomorphism from the multiplicative group K* to the additive group Z.

11.1.1.b. Torsion Modules

Let R be a Noetherian ring and M, N two R-modules. We define the torsion modules
TorP(M , N} as follows: For projective resolutions P. and Q. of M and N respectively,

Tor®(M,N):= H(P.©Q.).

I1.1.1.c. Intersection Multiplicity

Let X be a noetherian and separated scheme. We say that two closed integral sub-
schemes Y, Z of X intersect properly, if

codimx (¥ N2Z) = codimx Y + codimx 2.

In this case, we define the intersection multiplicity of Y and Z at apoint z€ YN Z to
be

ma(Y,2) = 3 _(=1)lox.,(Tory **(Oy,s, 0z,2))-
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It can be proved that this definition is compatible with the geometric definition in the case
of compact complex manifolds.

I1.1.1.d. Rational Equivalence and Chow Groups

Let X be a noetherian and separated scheme. For any integer p > 0, let X,y (resp.
X(P)) be the set of points of dimension (resp. codimension) p in M, i.e. for z € X(p) (resp.
X)), {z} is an irreducible closed subscheme of X of dimension (resp. codimension) p. Let
Zp(X) (resp. ZP(X)) be the free abelian group generated by X(;) (resp. X)), Usually,
we call the elements of Z,(X) (resp. ZP(X)) dimension (resp. codimension) p-algebraic
cycles; they are finite integer linear combinations of dimension (resp. codimension) p closed
integral subschemes of X. We say a pair of dimension (resp. codimension) p-algebraic cycles
Y,Z are rationally equivalent if there exist finitely many rational functions f; € k(yi)
with yi € X(p41) (resp. X(®=1)) auch that

Y-Z= Z'div(f,-),

where

div(f;) := > ordor.. (fi){z}.

€ X(,)(resp. X (P1)n{y;}

If Z is zero, we say that Y is rationally equivalent to zero. This equivalence relation is
compatible with the addition on algebraic cyeles. Hence, all elements which are rationally
equivalent to zero form a subgroup R,(X) (resp. RP(X)) of Z,(X) (resp. ZP(X)). The
p-th Chow homology group (resp. Chow group) is

CHy(X) = Z,(X)/Rp(X)

(resp.
CHP(X) := ZP(X}/RP(X).)

There is also a relative theory for the above concepts. Let Y be a closed subscheme.
Then we let Z% (X) be the set of codimension p-algebraic cycles with support contained in
Y, R% (X) the subset of elements in Z§ (X) which are rationally equivalent to zero, and

CHE (X) = Z3(X)/ R (X).
In a similar way, we have CH: (X).

II.1.1.e. Spectral Sequences

A spectral sequence consists of the following data:
(1) A family (EP'?) of objects of an abelian category, where p,q,r are integers and p,q >
0,r2> 1.
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(2) Morphisms
deaq ‘ Er'q — E‘]r)+r.1'-r+1‘

such that
d§+r.v-—r+ld£.¢ = 0.

(3) The objects £¥3, on the (r+1)* level are derived from those on the rt® level as follows:

P.¢ = Ker(dg‘q) .
r+l Im(dg—r,q+r:l)

If there is a family of objects £E™, n > 0, and for each E™ a filtration:

such that
E}/E] = ERTP,

where for each (p,q), there is an ro depending on (p,q) such that for all r > rg, ¥ =0 =
@®=T9+7=1 then we let

= P = — '
E?S = EPS = ... = EBS.

Usually, we denote this situation by

EP = E™,

The relation between E™ and the E5'? may be made explicitly for small n. In fact, we
have
E3-° = EY® = E°,

Then
E} = EL*= E;°, E'JE! = EY}! = Ker(d)").

Hence we have an exact sequence
1,0 04 43" 2.0 1,1 3,0
0—-Ey* = E' = By 2 E3Y = B — B3 — EJ°,
2 — 2 0,2
where E} = ker(E? — Ey°).

The most important fact for the present discussion is the following

Theorem. Let A,B and C be abelian categories. Assume that A, B have enough
injectives. Let F : A — B and G : B — C be left exact functors. If F' takes injectives
to G-acyclics, then there is a spectral sequence

(RPGYRF)(A) = R (GFYA)
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for any A € A°. In particular, we have the exact sequence
0— R'G(FA) — R (GF)A — G(R'F)A — R*G(FA) — ....
Furthermore, if F is e'xa.ct., then
RP(GF)A)~ (RFGYF A,

The proof of this theorem can be found in any starard book on homological algebra.
I1.1.1.f Simplicial Category
Let A denote the category of totally ordered finite sets with monotonic maps. That

is, the objects of A are the finite sets [n} ;= {0 <1< ... <n},n=1,2,3,..., and the
morphisms of A are generated by faces and degeneracies:

*y

8 :[n—-1]— [n]

and
o; :[n]—[n-1],

which are defined by

o i, if j <i
8i(j) = {J+ 1, otherwise;

and

- J3 ifj<i
oilj) = {] —1, otherwise,

For any category C, the simplicial category SC of C is defined as follows: The objects
of SC are contravariant functors S, § : A — C, and the morphisms are natural transfor-
mations. If A is an abelian category, we denote by C.A the category of chain complexes
asgociated with .A. There is a natural functor N, N : SA — CA: For any object S of SA
let

— So, ifn= 0;
(NS)n := {ﬂ?leer(d,‘ 1 8y — S;-1), otherwise,

Conversely, there is also a natural functor K, K : C.A — SA: For any object C in CA, let
(KC)p := Deen By Cy,
where 7 runs over all surjective monotonic maps 5 : {n] — [g]. It is not difficult to prove that

the functors KN and NK are naturally equivalent to the corresponding identity functors.
In particular, N and K are exact functors.
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II.1.1.g. K-Theory

In this subsection, we briefly give the definition for algebraic K-theory. For more details,
see [Qu 73], or Chapter 8 later.

Roughly speaking, a category £ is an exact category, if there exists an abelian cate-
gory A such that £ is a full subcategory of .4, which is closed under extensions, i.e. for any
exact sequence

0—Ey—Ey—E3—0
in A, E;, E3 € Ob& implies E; € ObE, .

Following Quillen, for any exact category £, we define the K-groups K,(€) by using
the classifying space of the Quillen construction of the category, BQE, and let

Km(€) := mm41(BQE),

the (m + 1)-th homology group of BQE. Note that K {£) does not depend on the choice of
A, and that Ky(£) is isomorphic to the Grothendieck group of £: The quotient group of
the free abelian group generated by the objects of £ modulo exact sequences.

Let X be a noetherian separated scheme and Y be a closed subscheme of X, then the
following are exact categories:

M(X): the category of coherent sheaves on X;

My (X): the category of coherent sheaves on X, supported in Y;

P(X): the category of vector sheaves on X.

For m € Z5¢, we let
K™(X) = Km(M(X)), K§¥(X):= Kn(My (X)), Kn(X):= Kn(P(X)).
It follows from the definition that
KP(X)~ K™(Y).

Also if Y is a closed subscheme of X with I/ =: X - Y, then there exists a natural exact

sequence
K%Y) — K%X)— KYU) —~ 0.

Examples. Let F be a field. It is known that
Ko(F) = Z;
K\(F) = F*;
KFY~F" @z F'/<z2@(l~2z):z€F" —{1}>.
More precisely, Ko(F) may be defined by: the generators are {z,y} for z,y € F* - {1};
and, the defining relations are
{z122,¥} = {z1, ¥} + {z2,9},

{z,n112} = {z,m} + {z, 52},
{z,1-z} =0.
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There is also a local-global long exact sequence in algebraic K-theory. To éxplain, we
need more terminology and notation. A category § is called Serre exact if there exists an
exact category £ such that S is a full subcategory of £ and for any exact sequence

0—'E1—+E2—‘>E3—»0

in&, Ey, E3 € obS is equivalent to Ez € §. For such a pair (S, £), there is a natural quotient
category £/S8 and there is the long exact sequence

= Kpgt(E/8) = Kp(S) = Kp(E) = Kp(E/S) = Kpo1(S) = ...

We will not go into greater detail, but instead, we give the following

Example. Let A be a Dedekind domain with field of fractions F', £ the exact category
of finitely generated A-modules, S the Setre exact (full subcategory) of torsion A-
modules. Obviously,

S ~ Upx0P(Spec{k(p))), £/S ~ P(SpecF).
Hence we have
= Kpyr(F) = @ppo Ky (K(P)) = KP(A) = Kp(F) — ...
In particular, the map K1(F) — @®ppoKo(k(p)) is the valuation mapping
F* — @pgoZ

defined by f — (vp(f)).

In general, if X is a regular scheme, Y a closed subscheme and M?%, (X) the category of
coherent sheaves F on X, supported on Y with codimx (Supp ) > p, then MY (X) defines
a filtration of the exact category My(X) by successive Serre exact subcategories.

Theorem. With the same notation as above, there exists a spectral sequence EF' (X)
with differential '

B4 5 BBI(X) — BT H(X),

which converges to K;;"~¥(X). In particular,

gt = [ Kopmg (MY (X)/ MG (X)), ifp20, and p+g20;
1y 0, otherwise,
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IL1.1h. A-Ring

A A-ring is & unitary ring with operations A?, AP : R — R, for each p € Z», which
satisfy the following conditions: B
(1) A° =1, A! = Idg, and A¥(1) =0 for all k > 1.
(2) M(z +1) = Tise ¥R)X ().
(3) M(zy) = Pe(Al(z),..., A (2); AL(y),. .., A¥(y)), where P. are certain universal integral
coefficients polynomials. '

(4) A (A(z)) = Pet(A(2), ..., A*!(z)), where P, ; are cgrtian universal integral coefficients
polynomials.

I we let
’ A(z) = Z AE(z)t*,
!
then by (2) we have
Az +y) = Ad2)Aely).
Further, if z = z) 4 ... + Zm with A*(z;) = 0 for £ > 1 and any {, we have

A(z) = H(l + tz;).
i=1

So one may easily find what are the universal polynomials P ;. Similarly we can also find
Pi. From this, we get the following

Verification Principle. If a universal relation among operations on a A-ring is valid
for the elements of the form z = z, + ...+ z, so that /\"(r;) =0 for any k > 0, 1, then
this relation holds in general.

Let

Y 21C))
¢_g(2) = —td,\—‘(z)—.

Then the Adams operations ¢*(z) on R is defined so that

Z ¢"(:)t" = ¢e(z).

E>1

The Adams operation is clearly a ring endmorphism of R.

§I1.1.2 Algebraic Intersection Theory

There are several ways to introduce algebraic intersection theory, but basically, they
have two roots: one is provided by the famous Chow moving lemma. The other is given by
a natural pairing induced from higher algebraic K-theory. The Chow moving lemma has
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the advantage that it gives a completely geometric picture; while the /-theory approach is
suitable to do everything algebraically and axiomatically. Further, the Chow moving lemma
only works for a restricted numbers of categories, while the K-theory method is valid for a
larger range of cases.

We consider first the algebraic intersection theory for a regular scheme X by using the
K-theory approach. We then discuss the Chow moving lemma approach at the end of the
chapter.

11.1.2.a. Main Theorem
In this subsection, we prove the following

Main Theorem. Let X be a regular scheme and Y be any closed subscheme. Then
(1) There is a decreasing filtration on K3 (X):

KY(X) = FOKY (X) D F'KY(X) D ... D PEmXOHKY (X) = 0;
& group isomorphism a,
a : CHE(X)q — GrPK{ (X),
such that for any morphism f : X — X/,
f P EY(X"a € FPKG (X)q.
(2) For any closed subscheme Z, which is not contained in Y, there is a unique product
FPKY (X) FIKE(X) C FPHEYM2(X),
such that under the natural map a, .if Z\, Z, intersect properly, then

[2:)[Z2] = Z me (21, Z2){z}).
:EZ;nZg
As an application, we then have the following

Theorem. Let X be a finite-dimensional regular scheme and Y,Z be closed sub-
schemes, then there exists a pairing '

CHY (X) ® CH%(X) — CH{LL(X)q
satisfying

(1) ®y,CH% (X)q is a commutative ring with a unit element [X].
(2) The ring structure is compatible with the change of supports Y’ C Y, 2’ C Z.
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(3) For [Y1] € CHY (X),{2\] € CH%(X), where Y1, Z; intersect properly, we have

vizl=[ ) me (Y1, Z1){z}).

eV NZ,n X (r+a)

Proof. By the main theorem, we know that there is a natural isomorphism a. With
the help of this isomorphism, we can define a pairing as stated above and the rest is trivial.

If Y = Z = X, there is a multiplication on CH{X)q = ®,CH?(X)q and under
this multiplication, CH(X)q is a unitary ring. Obviously, this multiplication is a direct
generalization of the usual intersection pairing.

Proof Of The Main Theorem. This will be achieved in four steps:

Step 1. Putting a A-ring structure on @y x K (X).
Step 2. Giving two different definitions of FPK} (X).
Step 3. Using a product from higher K-theory.

Step 4. Coincidence of two filtrations.

[1.1.2.b. The A-Ring Structure
Step 1. We start with the following

Lemma. Let X be a regular scheme. Then there exists a A-ring structure on the direct
sum @y cx KY (X) with the following properties:
(1) (Naturalness) A* maps K (X) to itself.
(2) (Functoriality) The A-ring structure is functorial.
(3) (Uniqueness) If X = Spec¢(R),Y = Spec(R/aR) with a € R, then for the class of
the Koszul complex

Kos(a):0 = R3 R —0,

we have ¢*([Kos(a)]) = k[Kos(a)).

Proof. First, we prove that there is a natural A-ring structure on Ko(X). Let M, be
the set of n X n-matrices and et H := Z[M,] be the associated Hopf algebra over Z, where
the coproduct g : H — H ® H is defined by

p(Xij) = Z Xit @ Xij.
x

Let
A(ld,):2" - HZ"

be defined so that, for the standard basis e;,

e; HZX.'J'@(ZJ'.
i
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This gives Z™ the structure of a left H-comodule. Denote the corresponding element in
Rz(M,) by A}(1d,,). Here Rz(M,) denotes the Grothendieck group of isomorphism classes
of H-left comodules, free and finitely generated over Z. Denote A%(1d,,) the corresponding
k-th exterior power of A'(Id,). We know that

Rz(M,) =~ Z{Al(1d,),. .., A%(Id,)],
and that there is a A-ring structure on Rz(My,): Indeed, by the theory of characters,
oy
RQ(GLn) = Z[AY(Ida), ..., A™(1d, ), A% (1d,) 1)

Hence we have the above isomorphism over Q. Now the result over Z is a consequence of a
global-local discussion. On the other hand, since Rz(GL,) is imbedded in the Grothendieck
group associated with the group of diagonai matrices of size n, and all representations of T,
are direct sums of one-dimensional representations, thus there is a natural A-ring structure
on Rz(M,).

Now, using the natural inclusion M, — M, ., we take
Rz(My) := limy,_ oo Rz(My).

Let A be a unitary ring. For any m = (m;;) € M,(A), the evaluating map defines a
homomorphism m : H — A. Hence for any representation p : V — H ® V, we obtain an
action p(m) on A® V. As an application, we get a natural action of Rz(Mx) on Ko(A):
For any projective A-module P, there exists an A-module @ such that P® @ = A" for some
n. Let p € M,(A) be the projection from A™ to P. And define

([Poo]:[P}) g [Imp,,(p)],

where p, denotes the restriction of po, to My. Obviously, this action is well-defined.

The above process may be made globally so that for any regular scheme X, there is
a natural action of Rz(My) on Ko(X). And hence, we can define the A-ring structure on
Ko(X) by letting poo = A*(Id); and for any [F] € Ko(X),

M ([FD) = PFd)(F)).

(Written in concrete form, we see that A*F is the usual k-th exterior power of ¥, which is
also the beginning of the A-ring theory.) '

We consider the relative situation and let F. be a finite complex of vector sheaves
over X, acyclic outside Y. Since A*(F.) may not be acyclic outside Y, we cannot simply
give the direct definition. However we can use the discussion in the simplicial category
of the last section to avoid this difficulty: For the category of vector sheaves P(X) and
A . P(X) — P(X) the k-th exterior power, we have M (F.) := (NA*K)(F.) induces
a homotopy preserving functor from CP(X) to itself. So we obtain the operators A on
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KY(X). Hence we get (1) and (2) of the lemma. Finally, we need to consider 3, the
uniqueness. In general, by definition,

(KC)n = R® (. E),

where 1; are the n surjecti‘ve monotonic maps from [n] to 1], given by

yn._J0, ifi<i .

’7’(‘7)'-{1, 5> (i=Q...,n).
If we write (KC)n = FO E,\ @ ...® E,, where E; is the copy of E belonging to 1, then by
the fact that- o '

, ™, lfiSJ) (i,])#(ﬂ,n);

Kwod =

0, ifl‘=1.j=0,01'i=j=n;
ni-1, otherwise,

we know that

(f +uler) ea,....en), ifj =0
di(fien,...ren) = ¢ (fren,- o eimn,ej +ejr,. .0 en), IT0<j<n;
(f+u(cl‘l)sel"-~,cn—l)’ ifJ =n.

Also, A*K C is given by the sequence

(VK =@ assystonms ANFRNE Q... AN E,,
(a,B1,....0 ) ENR+L

where the faces d; on A*KC are induced by the faces on K'C described above. Thus, we
get, by a direct calculation,

(NXKC), = Nz Ker(d;) = @( , ,+,5+5,,;‘,.+_,,ﬁ 0,\aF® ME ®..@ VP E,.
af1calfa EN® I'. i

Hence, since F = E = R, we have @ = 0,1 and §; = 1. Therefore, NA*KC = C[l — k], and
80

M{Kos(a)] = A*[C] = [NA*KC] = [C[1 - k]| = (-1)*7![C].

[n particular, (3) comnes from the fact that [Kos(a)]? = 0.

I1.1.2.c. Two Descriptions Of Filtrations

Step 2. In this step, we give two different methods to construct a filtration of K (X).
The first one comes from the A-ring structure for K} (X), from which the natural product
may be given easily; while the second one comes from the algebraic cycles with supports,
which gives a natural relation with the Chow groups. Finally, as one may imagine, once we
have proved that the two coincide, then we have the proof of the main theorem.



Chapter IL.1. 255

We begin with the first method. Since there is a A-ring structure on K} (X), thus for
a fixed k > 0 and i > 0, we naturally let the weight i-part of K¥(X) be

K¥ (X)) = {a e KY (X)q : ¢*(a) = k' a).
By the property of a A-ring, we know that this definition does not depend on k. Now we let

FPKS (X)q = @ixpKg (X)),

Next we introduce a product on FPK (X): If -
a=:) i € FPKY (X)q, B=:_B; € FIKZ(X)q,
i2p izg

are their corresponding decompositions, we define their product as follows:
afli= Z a; ;.
i
By the fact that o
¢* (i) = K a;;,
where i+ j > p + ¢, we know that '3 € FPHIKY"Z(X)q as desired.

But on the other hand, we do not know if this definition gives a filtration. So we
introduce another interpretation, which is based on the following very easy

Lemma. Let X be a regular scheme and Y a closed subscheme. There exists a short
exact sequence

0—Uu Im(Kg (X) — Kg (X)) —~ Kg (X)

J.{=b4
codim x Z>codimx Y +1

— @:eYnX(mFKc{tz}(ox.:) — 0.
Proof. Since there is the following exact sequence
K%2) = K°(Y) = K*Y - 2) =0,
and K°(Y) = KY(X), we get an exact sequence
0 — Im(KZ(X) = Ky (X)) — K§ — Kg "%(X —2)—0.

We take the inductive iimit over all closed subschemes Z C Y with codimx Z > codimxY +1,
to get the exact sequence

cr Im(K{ (X) — K5 (X)) — K7 (X)

0—-U 1
codim x Z >codimx Y +1

— lim zcy K¥=2(X -2)—0.
codim x Z >codimx ¥ +1
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Now the assertion comes from the fact that

lim ey K¥-%3(x -2)
codimx Z>codimx Y +1

~ lim cYy
codimx Z>codimx Y +1

= Breynxtm K“(m) >~ @zevnxtm)KF(ox,:)-

K%Y - 2)

We can now define a filtration of K (X) by letting

FPRY(X):=U  acv  Im(KZ(X)— K¢ (X)).
codimxZ2p

The advantage of this definition is that there is a natural map between it and the relative
Chow groups: Let Z € Z}(X) be a codimension p-cycle contained in Y, then there is a
finite vector sheaf resolution F. of the direct image of Oz on X. Define a map

a: CHY (X) — FPKJ (X)
by letting
a({2]) = [F].
Furthermore, taking the quotient, we have the map
aq : CHY (X)q — G K§ (X)q.
Thus the main theorem may be proved from the following
Theorem. (1) Let X be a regular scheme, Y a closed subscheme. Then
FPK§ (X)q = FPKg (X)q-
(2) aq is an isomorphism.
Proof. We only prove (1) here, and leave (2) for later.
We begin with a proof of the assertion
FPKY (X)q 2 FPKY (X)a

which is equivalent to: For a € F PKY(X)q, there exists a unique decomposition a =
Z'.)p a; so that qb”'(a.—) = k*a;. This can be proved by induction on the dimension of Y.

If the dimension i8 0, Y is a point z and
KiTHX) = KO({2}) ~ K°(k(z)) = Z.

So we have to show that the action of ¢* on a single non-zero element of Ké’}(X) =
FAmX g ¥(X) is multiplication by k%. For this, let R be the regular local ring Ox - with
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maximal ideal m = (a,,...,a4), where a;,..., a4 i8 a regular sequence, which gives a system
of parameters. We know that

Kos(ay, ..., as) = ®, Kos(a;)

is a resolution of R/m = k(z). So we get an element in Kér}(X). Thus the assertion is a
consequence of the lemma in step 1.

Now we assume the assertion is valid for all closed subschemes of dimension less than
d—m and consider the case with dimY = d—m. One natyrally tries to use the exact sequence
in the previous lemma. In fact, if p > m, then a € F'™ Y KY(X), ie. a € Im(KF(X) —
KY (X)) for some Z with codimz(X) > m+1. Hence, the desired decomposition comes from
the induction hypothesis. On the other hand, if p = m, we have the short exact sequence

0— F™HV R (X) = K¥ (X) 5 @peynxm K3 (Ox.0) — 0.

Hence,

#*(c(a)) = K™e(a).
That is, ¢(a) —k™a € F'mHKg’(X). By the induction hypothesis, we get a decomposition

for
#la) —kma = _ B

i>m
Thus we get a decomposition by setting
. { (K — k)16, ifi>m;
o =

a=3 ismai, ifi=m.

The uniqueness is rather trivial: Suppose we have another decomposition 3", a}, then
apply ¢* to each of them and find that

Y - ke = (K - k7)o
i>m i>m
By induction hypothesis, a; = af for i > m, and hence a,, = a},.

Now we consider
F?KY (X)q 2 FPK{ (X)a.

Ifa € FPKY (X)q with a € FUKY (X)q — F¥Y' KY (X)q, we have
Zﬂfi =a= Zﬁj,
< i2p jz2e

where 8, # 0. Hence a, # 0, s0 p < ¢. So we have the assertion.
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In order to prove that the natural map
aq : CHY(X)q — GrP K (X)q

is an isomorphism, we need another description of the Chow groups.

.

11.1.2.d. Completion Of The Proof

Step 3. Another Description Of Chow Groups via %-Theory.

By results from the algebraic K-theory in l.g, if X is a regular scheme, Y a closed
subschemne, then there exists a spectral sequence E?(.X) which converges to K;?71(X).
On the other hand, we know that

Km (Mg’ (X)/ng-l(x)) = GBr.EJJJ.'(J')nYK""l(k(z))-
Thus we can describe E;,7P(X) and E%;""P(X) precisely. In fact, by definition, we have
-1,- . —hL= 1 =
dy =&~ 7P BESVTR(X) — ERSP(X) — 0.
For a field F, Ko(F) ~ Z, K,(F) = F*, s0 we have
d]_ N @yex(p-l)nyk(y)‘ —_ Z;(X) b 0.
Then, by a local realization in the sense of Example 1.g, we have the following

Lemma 1. With the same notation as above,

B3P (X) = CHY(X).

In the same spirit, note that since
E?;*P(X) ~ @, xr-nny Ka(k(2)),
we have the natural morphism
dy : @ e xr-nny K2 (k(2)) = Dyexr-uny k(¥)".
We know that dy : K3(k(z)) — k(y)* is zero, unless y € Z = {z}. Ty € Z, d; may be
described as follows: First, if the local ring Oz, is regular, it is a discrete valuation ring

with a valuation v, the quotient field is k(z) and the residue field k(y). In this case, the
map d; is nothing but the tame symbol §,:

di({f,9)) = 3,({f.9}) := the class of (= 1)@ fg=vl1) v g € k(2)" - {1}.
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In the non-regular case, let W := Spec(0z,) with Oz, the normalization of Oz, inside
k(z) and denote by 11,...,y the preimages of y in W. Then

!

dl({f! g}) = H Nk(y.')/k(u)al’i({f» 9}),
. i=1

where v; I8 the corresponding valuation of y;. Therefore, by the fact that
CHYP~(X) = BV ~P(X) = Cokerdy,

we have

Lemma 2.

_ {(f JED x(;-lmrk(y)- : E div(f,) = 0}
pp—1 ~ ¥ vE ¥ v
CBY ) = 001 - ({017 7)) € Bre xtrmmy FaBT]

Step 4. Relation Of Two K-Theory Descriptions: aq Is An Isomorphism.
In this step, we prove the following
Lemma. There is a natural isomorphi;lm
Eg?(X)q = GrPKY (X)a.
Hence agq is an isomorphism.

To prove this lemma, we need still another description of Ky*(X). Denote by K the
Zarigki simplicial sheaf associated with the presheaf

U~ Z x lim=BGLa(T(U, Ox))* =: Z x BGL(I'(U, Ox))*.

By constructing flasque resolutions for Zariski simplicial sheaves, we obtain a cohomology
theory for them. In particular for K, we have

KP(X) ~ Hy™(X, K).

There is a big advantage for this description when we introduce the )-ring structure on
®m,y Ky (X). In fact, for all integers k, 0 < k < n, there are exterior power maps of
sheaves

AEGL,(Ox) — GL(2)(Ox)-
Then, we have a map of sheaves

M Z x BGL,(Ox)Y » K,
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which is compatible with the inclusion GL, «— GL,4,. Hence, there is an operation
MCH™ (X, K) = Hy™(X,K).

We know that these operations A* induce operations on the spectral sequence

T AR ERIX) - ERY(X),
which coﬂverge to the original operation

AR KGPTUX) — KyPTI(X).

In particular, for the isomorphism

o : Drextny Kop_q(k(2)) = ETY(X),

the Adams operations ¢* satisfy ¢*(i.f)) = kPi.(¢*(f)) for any choice of the element
f € @zextnny K-p—g(k(z)). Thus, we know that the operations ¢* act on EFJ(X) as
multiplication by k=Y for ¢ = —p,—p — 1.

Since the differentials d®~1'~P commute with the Adams operations ¢*, we have the
relation

("' = 1)de~t=? =0,

After tensoring with Q, this implies d?~1'~? vanishes. Therefore

B3P (X)q = E&Y ~ G K (X)q.

With this, the final result is a consequence of the fact that for a regular scheme X, if Y is
a closed subset, then
K3(X)~ K°(Y) ~ K¥ (X).

This completes the proof of the lemma, and hence the main theorem.

§I1.1.3 Grothendieck-Riemann-Roch Theorem

11.1.3.a. Algebraic Theory Of Chern Character

We have seen above that with a regular scheme X, we can associate a Chow ring and
a A-ring K{X). There is also a natural filtration on K(X)q, from which we construct
the associated graded ring GrK(X)q. After a local discussion, we know that there is a
natural isomorphism aq between CH(X)q and GrK{X)q, hence we have an algebraic
intersection pairing on CH(X)q. This intersection pairing coincides with the classical one.
In this subsection, we introduce a natural homomorphism from K(X) to GrK(X)q. The
composition of this homomorphism with the inverse isomorphism of agq is usually called the
Chern character.
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The Chern character
ch: K(X) — CH(X)q

is characterised by the following axioms. If X is a regular scheme:

(1) ch is a homomorphism of rings; ,
(2) If f: Y — X is a morphism of regular schemes, then f* och = cho f*.
{3) If £ is a line sheaf on X, then

ch[L] := exp(div(s)),
where s is a non-zero section of L.

There are several ways to define the Chern character. Here we adopt some algebraic
methods: Either projective bundles or Grassmannians can be used to describe them pre-
cisely. We do not discuss either here; instead, we give a construction from the A-ring
structure on K(X). Let £ be a vector sheaf on X. Define an operator ¥* on the A-ring
K(X), |

¥ K(X) — K(X)

by the series

1(z) = Atl(t-l)(z) = Z Ti(z)ti.

Then the 4'’s define another A-ring structure on K{X). In particular, with this new A-ring
structure, we have another description for FPK(X). That is,

F1K(X) := Ker(K(X) 2 2)

and FPK(X) = the Z-module generated by the elements y™ (z;)...7™*(z4) with z; €
FIK(X), ;i > n.

For any vector sheaf £ on X, we define the i-th Chern class ¢; by letting
ci(€) = [Y'([£] - tk £)] € GF K(X).

For example, we know that if £ is a line sheaf on X, then ¢,(£) = [[£] — 1] and &(£) =0
for i > 1. (In general, by the splitting principle, we know that ¢;(£) = 0 for i > rk€.)
Therefore, if we put

al)=1+ ic;(&')ti,
i=1

the induced map ) )
e K(X) = 1+ 82,Gr'K(X)t

is a group homomorphism,; since for any short exact sequence of vector sheaves

0—=& =& —86—0,
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we have

c1(E2) = ci(&1)ei(Ea).

Finally, if we let
rk€

. ci(€) == [T + as(E)),

i=1
then

ch(£) := ) exp(ai(£))

is a ring homomorphism
ch: K(X) - GrK(X)q.

We can also prove that chq is an isomorphism between K{(X)q to Gr(X)q. The inverse
map is defined by
g: Gl’(;‘()q — K(X)Q

with the relations
#*(9(z)) = p"g(2),

and
z = g(z) mod F™HK(X)q,

for any z € Gr™ K(X)q and p > 2. So finally, we get the Chern character. One may also
show that if X is a complex manifold, then the above definition coincides with that given
in Part 1.

With the help of Chern classes, we can define other characteristic classes by using
splitting principle. For the application to Grothendieck-Riemann-Roch theorem, we need
the following

Definition-Lemma. There is a unique natural map
td : K(X) — GrK(X)q
such that the following conditions are satisfied:

(1) td(zy + z2) = td(zy )td(z2).
(2) For any morphism f:Y — X,

tdo f* = f* o td.
(3) For any line sheaf L,

w(e]) = (S (1) Cl(f!)'- )y i(= I_CL(_E?(,;,)'

i=1
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We call td the Todd characteristic class.

I1.1.3.b. Push-Out And Pull-Back Morphisms For Chow Rings And Algebraic
K-Groups

-

A closed imbedding i : X — Y, where X, Y are schemes, is a regular imbedding
of codimension d if every point z in X has an affine neighborhood U in Y, such that if
A is the coordinate ring of U, 7 is the ideal of A defijping X, then T is generated by a
regular sequence of length d. A morphism f : X — ¥ of regular schemes is called a local
complete intersection morphism, i.c.i. morphism for short, of codimension d if f admits
a factorization into a closed regular imbedding, followed by a smooth morphism. By a local
discussion, we know that if f = go i is any factorization with i a closed imbedding and g
a-smooth morphism of a l.c.i. morphism f, then i is a regular imbedding. It follows that
certain properties do not depend on the chosen factorization.

We now give the definitions of the push-out morphism and the pull-back morphism of
the Chow rings and algebraic K -groups for algebraic regular varieties.

feu : CH(X)q — CH(Y)q, fCH:CH(Y)q — CH(X)q;

frk : K(X)—= K(Y), X K(Y) = K(X).

First, let us look at the push-out morphism. This is very simple. In fact, we can
go further. Say, we define the push-out for a proper morphism. (The choice of proper
morphisms is very natural. In fact, once we try to define the push-out morphism, the first
thing we need to know is that the morphism in question maps closed subsets to closed
subsets, which is the most important property of proper morphisms.) Then we make the
following definition:

fonlZ) = deg(Z/ {(2)F(2)],

where Z i8 a subvariety of X, and

deg(Z/f(2)) := {{]’i(z) K(f(2))], ifdimf(Z)=dimZ; .

otherwise.

It is not difficult to check that the definition does not depend on the representative we
choose. On the other hand, if f is proper, we know that for any coherent sheaf £ on X, its
higher direct images R’ f.(£) are coherent sheaves on Y [Ha 77]. Thus we may use them to
define fx by o

Ik(€) =3 (-1} R'.().

Now let us look at the pull-back morphism. The K-theory morphism is very simple: If
£ is a vector sheaf on Y, then

FEE) = £1(8).
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The morphisms for the algebraic Chow rings are slightly complicated. By the definition
of l.c.i. morphisms, it is enough to make the definition for regular closed immersions and
smooth morphisms respectively. For closed immersions, with the help of algebraic intersec-
tion theory, we naturally let i*([Z]) := [Z X] with Z X the algebraic intersection of Z and
X. For smooth morphisms, we can go slightly further: We may only assume that f: X — 2
is a flat morphism. Then we set

£12)) = @)

(Since f is flat, f~!(Z) is a pure dimension dimZ + dinff subvariety.) We know that all of
them are well-defined. Finally, for any local complete intersection morphism f: X — Y,
we get the corresponding morphisms by taking the composition. Usually, if there is no
risk of confusion, we let f, and f* denote the push-out morphism and pull-back morphism
respectively. There are several very important properties for these morphisms, such as the
functorial property, etc. among these, we recall the following

Projective Formula. Let f: X — Y be a l.c.i. morphism, then for a € CH(X), f €
CH(Y), we have

Llaf*8) = fula)B.

We end this subsection by noting the following properties for the pull back of relative
Chow groupa. Obviously, it is possible for us to consider slight further, i.e. those for regular
schemnes which are flat and of finite type over a fixed excellent regular noetherian domain
A in our discussion. (Later we usually assume that our schemes have such a property.) By
the definition, after a tedious discussion, we have the following

Theorem. Let f : X «— Y be a closed immersion of regular schemes. f T C Y is a
closed subset, there is a morphism

i* : CHR(Y) — CH%np(X)

such that
(1) If « € Z3(Y) is an algebraic cycle supported on T', then i*(a) is given by Serre’s
multiplicity formula.
(2) If g : Y — Z is another regular closed immersion with a closed subset S C Z, we
have

fr9" = (g f)" : CH5(Z) — CHsnx (X).
(3) Suppose that g : Y — W is a flat map so that S C W is a closed subset. Then if
either A = g o f is flat or g is smooth and h is a regular closed immersion, we have

h* = f* og" : CH3(W) — CHj-1(,)(X).
(4) Suppose that g : W — Y is flat and form the Cartesian square:

[’V x Y JY ﬂ IY
fol L f
w ENER ¢
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Suppose W xy X is of the type we want, then
g7 o f" =/ 09" : CHR(Y) — CH(y g )1y (W xv X).

(5) Suppose that D is a Cartier divisor on Y and that the support |D| meets both T
and X properly. Then if a € CHZ(Y),

[ ([P} = [f* (D)) f*a
in CHjpjnxnr(X). "
(6) The map f* : CH7(Y) — CH%qr(X) givess the same map

CHZ(Y)q — CHxnr(X)q
as induced by the isomorphism

CH7(Y) =~ GrK3(X)q.

With the above preparation, we may go to our main result in this chapter.

I1.1.3.c. Grothendieck-Riemann-Roch Theorem

Let f: X — Y be an l.c.i. morphism of reguiar varieties, Then there is a decomposition
of f given by a closed immersion i : X — P followed by a projectionp: P — Y. Here Pisa
P"-bundle on Y. We define the tangent element of f associated with this decomposition
as the element in K(X)

Ty =[i"T] ~ [M]
i.e. as the difference of the relative tangent vector sheaf of p and the normal vector sheaf

of the closed immersion i. (This is a very natural choice at this stage, since if f itself is
smooth, then we have the short exact sequence

Furthermore, by the fact that for any two decompositions of f as above, we may chose a
third one, which dominates the original two, then it follows that as an element in K(X),
the above Ty is well-defined.

The Grothendieck-Riemann-Roch Theorem. Let f : X — Y be an l.c.i. mor-
phism of regular varieties X, Y. Then we have the following commutative diagram:

Kx) 0T cn(x)q

fx | | fen

KY) 2  CH(Y)q.
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Proof. If we let

Eer(€, f) := feu(ch(&) td(T)) — ch(fk (£)),

the theorem states that, t:or any vector sheaf £ on X, Err(£, f) = 0. We prove this last
statement by the following steps.

Step 1. Prove Err = 0 for projective bundles.
Step 2. Prove Err = 0 for closed immersions.
Step 3. Prove Err = 0 in general.

As a remark, we first look at the properties of Err. By definition and the properties of
characteristic classes, we know that Err is compatible with any flat base change. That is, if
g is a flat base change, we have

¢"Err = Errg*.

On the other hand, if h : Y — Z is any l.c.i. morphism, then one can check that

Err(€,g 0 f) = Ert(fx(€),9) + gen(Err(€, )1d(T;)).

(Since the algebraic K group K(X) is generated by the f-acyclic vector sheaves, we only
need to check those properties for f-acyclic vector sheaves.) Thus, in the proof, we may
make any flat base change, and decompose the morphism f into several others.

Step 1. Projective Bundles.

Let p: P = Py(F) — Y be a projective bundle over ¥ with a vector sheaf F on Y of
rank . We prove the theorem in this situation by induction on the rank r. The basic idea
is to use the precise description for a P!-bundle and the deformation technique for algebraic
K-theory.

If r = 2, then P is a Pl-bundle. So K(P)q as a K(Y)q-module is generated by two
elements Op and Op(—1). Then, the theorem follows from the calculation for those two
elements by considering the following natural exact sequence

0—=0p—=p'€Q@0p(1)=T,—0.
The details are left to the reader.

Now let F be a vector sheaf with r > 2. Since Err is compatible with a smooth base
change, by the splitting principle, we may assume that F has a quotient vector sheaf F' of
rank r — 1, Consider i : P/ := P(F’) — P, the Cartier divisor of Op(l} on P. Then, as a
K(Y)q-module, K(P) is generated by K(P’) and Op(—1). If we can prove that

Eer(€,p') = Err(i. €, p)

for any coherent sheaf £ on P/, by induction, we only need to prove Grothendieck- Riemann-
Roch theorem for O, (—1) for p.
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We first prove that
Err(Op(—1),p) = 0.

For this, we need some more notation. Let FlagF be the flag scheme which classifies
complete filtrations

Y 0=FRCFRC..CF=F
There i3 a natural merphism

m:Flag€ — P,

which i3 a composition of the forgetting maps. Hence 7 is a composition of projective
bundles of rank at most r — 1. Since for any projective bundle, the direct image of the
structure sheaf upstairs is the structure sheaf downstairs, so by the projective formula, it is
enough to prove

Err(x*Op(-1),x0p) = 0.

To get this assertion, we use another decomposition of 7o p. Let Flag'F be the flag scheme
which classifies partial filtrations

O=FCFRC...CF =F,

where F; is of rank i. Then Flag F is a projective line bundle over Flag'F. That is, we have
the following commutative diagram:

FlagF © Flag'F
%] !
P X v

With respect to this projective line bundle, the canonical line sheaf Ofjagr(—1) is nothing
but 7*Op(—1). Therefore, by the case for r = 2, '

Err(z*Op(-1),Flag F — Flag'F) = 0.

On the other hand, we know that with respect to the projective line bundle, both terms
in the formal difference of Err for O(—1) are zero, hence the Grothendieck-Riemann-Roch
theorem holds for O(—1) in any case.

Now we come back to show that for the codimension one closed immersion 1 : P/ — P,
Err(F,p’) = Err(i. F, p).

This is a consequence of the following facts about the deformation to the normal cone: Let
i : X — Z be a closed immersion over Y with smooth structure morphisms f : X — Y,
9:Z —Y and let W := Bxy(o}Z x P! be the blowing-up of Z x P' along X x {o0}.
By 1.9.1, the fiber Wy of W over 0 is isomorphic to Z; the fiber Wo, of W over oo is a
union of two subschemes: W.,, which is isomorphic to P(N; © Ox), and a scheme W32,
which is isomorphic to the blowing-up Bx Z. Here N; denotes the normal bundle of X in
Z. Let I : X x P! < W be the canonical embedding. The fiber Iy of I over 0 is essentially
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ip : X «— Wpy, which is the original closed imbedding. The fiber at infinity, the morphism
I, is essentially the morphism i : X — WL, which is the zero section of P, by the fact
that X x P! does not intersect W2,.

Lemma. With the same notation as above, for the codimension one closed immersion
i, we have '
Ert(io.€, g0} = Brr(fooe €, goa )-

Proof. In fact, .

Ert(i0.€,90) — Err(icgs&, goo)

=g0s (ch(i0s £)td(Ty,)) = Goos (ch(iceE)td(Ty,, )

=G {jos (ch(i0.E)td(Ts, )) = Joos (ch(icosE)td(T6..)) },
since X x P! does not intersect WL. We know that if we let DE be the pull-back of £ to
X x P!, then i0.& = j§(1, DE). Furthermore, ch(l.DE) is supported on I(X x P!}, and
if T(—logoo) denotes the relative logarithmic tangent vector sheaf of W/P! along W, /o0,
le.,

T (—~logoo) := the dual of Q4 /Y{dlogWe )/ (dlog o0)),

then, near i5(.X), T(—logoo) is isomorphic to 7z. Similarly, near i (X), T(—logoo) is
isomorphic to Twy . Hence, the difference of two Err terms above is the G image of the
product of ch(Z, DE)td(7 (~logoo)) with the divisor of the rational function ¢ : W — P!

induced by the second projection. Thus, the lemma is a direct consequence of the fact that
the divisor of a rational function is rationally equivalent to zero.

Hence, we can always consider a codimension one closed immersion as the zero section
of a projective bundle. But, for the zero section of a projective bundle, we have the following

Lemma. Let f: X — Y be a smooth morphism. Let F be a vector sheaf on X of the
form Ox ® N. Denote by P the projective bundle Px(F) on X. Let i : X — P be
the codimension one closed imbedding corresponding to the morphism F — Ox. Let
p: P — X be the structure morphism. Then the Grothendieck-Riemann-Roch theorem
for p implies that

Err(€, f) = Err(i.€, fo p).

Proof. In fact, by definition, we have

Err(i€, f 0 p) = (f 0 p). (ch(iaE)td(Trep)) = ch((f 0 p)a (i2E)
= (f. 0 p.)(ch(i.6) p" (td(TNA(T,)) — ch(£.E).

By the assumption that the Grothendieck-Riemann-Roch theorem is valid for p and the fact
that p.Op = Ox, the projection formula implies that

Err(i.€, f o p) =f (ch(p.(i.£)) td(Ty)) — ch(f.E)
=f.(ch(&) td(7y)) — ch(f.£)
=Ert(&, f).
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Now we can finish the proof of the theorem for P"-bundles. It follows from the fact
that i : P’ < P is a codimension one closed immersion.

Step 2. Closed Immersions. We start with a special situation i : X — Z := Px(F):
As above, F has the form Oy @ A as a vector sheaf on X, and the closed immersion is
induced from F. — Ox — 0. That is, X is the zero section of P over X. (The motivation
for considering this special situation comes from the deformation to the normal cone.)

Lemma. For any vector sheaf £ on Z, we have =«

ch(in€) = i.(td(N:) ) ch(£)).

Proof. Let Q@ be the universal quotient bundle on Y. Let s be the section of Q
determined by the projection of the trivial factor in p*(N; & Ox) to Q, which vanishes
precisely along X. By 1.9.1, we know that the Koszul complex determined by s:

O—QAdQv—v,“—-»/\sz—»Qv—vOz—of.Ox-—vO

is a resolution of i,Ox. Therefore, for any vector sheaf £ on X, we have a concrete vector
sheaf resolution of i.£:

0o AQYRPE— ... oA QYRPE—-QVRPE-PE—LE—D.

Therefore,
d

ch(i.€) = ) (=1)7ch(A?Q") ch(p"E).

¢=0

On the other hand, by definition, we know that

Y (1P ch(APQY) = ciop(Q) (@)Y,

so that
ch(i.€) = crop(@) td(Q) ™! ch(p*E).

But, for any a € CH(Y), the projective formula gives us
i.(i"a) = ai.[X]

Thus, by the fact that i*Q = N; together with the definition that s is the section of Q
determined by the projection of the trivial factor in p*(N; ® Ox) to Q, which vanishes
precisely along X, we get

ail[X] = aciop(@),

which proves the lemma.
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In general, let £ be a vector sheaf on X, and DE = pi £, where p, is the first projection
from X x P! to X. Choose a resolution G. on W for L (DE):

0—=G, —=Gooy —...=Go— [LDE - 0.

Since X x P! and W are flat over P!, it follows that the restrictions of this exact sequence
to the fibers Wy and W, remain exact. Therefore j3G. is a resolution of jj(I.(DE)) and
josG. 18 a resolution of j3 (I.(DE)). Since jg(I.(DE)) = Ip.(t3(DE)) = I, (€}, on Z = Wy,
j4G. resolves Ip,£. Similarly, on W, 55, G. resolves [.&8. But [(X) is disjoint from W2,
hence k*G. resolves i.£ on WL = P(N; ® Ox) and {*G. is acyclic, where ! is the natural
morphism W2 — W. Therefore in CH(W)q, we have

Fou(ch(io.£)) =jo.(ch(j5G.))
=¢h(G.) jo.([2])
=ch(G.)(ka (W) + L(WE]),

since in CH(M), [Wo] = [Wx)], were k is the natural morphism W) — W. Thus by the
projective formula again, we have

Joe (ch(i0s€)) =k, (ch(k"G.)) + L. (ch(I*G.))
=k. (ch(ico.&)) +0.

In this way, we deduce the calculation on the section of a projective bundle. So, by the
lemma above, we have )

e {ch(igs€)) = k. (icoa (td(N; 1) ch(E))).

Now let ¢ : W — Z be the composition of the blowing-down from W to Z x P!, followed
by the projection to Z. We have qo jo = Idz and go kot = i. So applying g., we have

Theorem. In CH(Z)q,
ch(i.&) = i. (td(N:)~'ch(£)).

Step 3. L.C.I. Morphisms.

By the result above, we know that if we let f : X — Y be the composition of a closed
imbedding i : X — P and a projection p: P — X, then
fo(ch(E)td(Ty))
=p. (i.(ch(£) td(N;) " * (td(T;))))
=p. (i.(ch(£) d(N) ") td(;)
=p. (ch(i.£) td(T;))
=ch(p.(i.£))
=ch(f.£).
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This completes the proof.

All the results above are from algebraic geometry. In what follows, we will generalize
them to the arithmetic situation. Then, we can obtain an arithmetic version of the Riemann-

Roch theorem by putting the results in the corresponding arithmetic notation. That is, we
have the commutative diagram

KaX)q 0807 CHo(X)q
Ikl “l feu
ha,
Kar(Y)q LD CHar(Y)q.

§1I.1.4. Algebraic Intersection Theory: A Geometric Description

In section 2, we gave a K-theory description of algebraic intersection theory. Here we
give a more geometric definition, which is much more concrete. The price we pay for this is
that now we can only deal with non-singular projective varieties. We will not give all the
details, instead, we explain the basic idea behind the proof and also give the Chow moving
lemma at the level of K;.

Let X be a regular projective variety. If Y and Z are two integral subschemes of X,
which intersect properly in X, i.e. codimx (Y N Z) = codimyxY + codimyx Z, then there is a

natural intersection
Y1[2} =D melSi),
E

where Si is the irreducible component of Y N Z, and pu the intersection multiplicity of Y
and Z along S¢. This is not always true in general, since two algebraic cycles do not usually
have proper intersection. In order to deal with the general situation, we first note that for
any rational function f on a closed subscheme, the intersection of div(f) with any algebraic
cycle is zero. {In fact, even through it is very simple, this is the most important principle
in the intersection theory, e.g., for any meromorphic function f on C, the number of zeros
is exactly the same as the number of poles.) Therefore, for any two integral subschemes
Y, Z, there always exist rational functions f, such that Y + div(f) intersects Z properly.
Hence, we may get the algebraic intersection generally. Such an easy example give us the
motivation to introduce the foilowing

Chow Moving Lemma. Let X be a regular projective variety and a, algebraic
cycles on X. Then, there exists an algebraic cycle o', which is rationally equivalent to
a, such that o' meets § properly.

We may assume that a and § are prime algebraic cycles Y and Z, then one can prove
the moving lemma as follows: We need some further notation. For Y and Z as above, we
define the exceeds ¢(Y, Z) of Y with respect to Z by

e(Y,Z) := codimx Y + codiny Z — codimx (Y N 2).
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The proof is achieved by induction on e(Y,Z). Since X is projective, there is a closed
immersion i : X — P". Let L C P” be a linear subspace, and Y C P”" a subvariety for
which LNY = @. Then, there is a subvariety C(Y) C P", called the cone over Y with
the vertex L, viz. Cr(Y) := x7}(xL(Y)), where 7y, : P® — L — P" is the projection and
r + 1 is the codimension of L in P, We know that:
(a) For a generic L,+Cr(Y) meets X properly, and this intersection is generically
transversal along Y, i.e.

FCLY)] = Y]+ 7L,

where v, is a cycle on X which does not contain Y™
(b) If e(Y, Z) > 0, then for generic L,

codimx(T; N Z) > codimx(Y N 2),

where 71 := 3, n;[T;].

From these two results there is a clear way to make induction on e¢. Then, we can
deduce the Chow moving lemma from the fact that algebraic cyclesa on P® can be moved.
See Roberts [Ro 72] for more details.

The application to the arithmetic intersection theory requires a refined version of the
Chow moving lemma at the level of algebraic Ki-chains.

For a regular scheme X, let
R;,(X) = ®¢EX(‘)K _.-(k(z)).

For example,

Rp(X) = ZP(X), Rp™HX) =@ exe-vk(z)".

The elements of RE~'(X) are K)-chains, and we write a Kj-chain as f = 3", [fw], where
fw € E(W)* and W rtuns through a finite set of integral codimension p— 1 closed subschemes
of X. For each p > 1, we have a natural homomorphism

div: R-HX) — RR(X)=2P(X)
Swlfwl — S div(fw).

For any K)-chain f = 3", [fw], the support of f is the union of all W for which
fw # 1. We say that a K| chain f meets a collection of integral closed subschemes %
of X almost properly if for any element Z € }_, div(fw) meets Z properly, and that a
K-chain f meets 3 properly, if f meets ) almost properly, while each W, for which
fw # 1, meets 3 properly.

For any closed integral subscheme W of codimension p— 1 in X, we think of f € k(W)*
ag a K,-chain. The product of Ky-chains with algebraic cycles is defined as follows.
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(1) Let Z be a codimension g algebraic cycle of X, which meets W and div(f) properly.
Define a Ky-chain [f]Z as follows: Since W meets Z properly, we have

W1Z =3 mlSi].
k

By the fact that div(f) also meets Z properly, we have rational functions f|s, € k(Si)",

and hence can define
(12 = lf*1s,)-

(2) If Z meets div(f) almost properly, then (W]Z = 5", ue[Sk] + ¢, where W N |2Z{ =
SUT, with S is the whole proper part. Usually, ¢ is a class in CH}'*™!(X)q. Since fr is
a unit, we have a class [f}t € CHPY#P+9=1(X)q, and we can define

(A2 := Y _[f™Isi) + 1,

which is well-defined as an element of (R’;,'I(X)Q/d(Rg'z(X)))q. Obviously, by algebraic
intersection theory, we have
div([f]2) = div(f)Z.

(3) In order to introduce a product of K-chains with algebraic cycles in general, we
need the following

Chow Moving Lemma For K;-Chains. Let X be a non-singular quasi-projective
variety. Suppose that f € RE~!(X) is a K)-chain such that div(f) meets a finite
collection ¥~ = {Zi,...,Z,} of subvarieties of X properly. Then, there exists a K,
chain g, such that

(a) div(g) = div(f).

(b) g — f represents 0 in CHPP~'(X).

(c) ¢ meets Y almost properiy.

Surely, by this moving lemma and the definition in (1), (2), we have a product of
K y-chains with algebraic cycles.

Proof Of The Lemma. Let L, L C P", be a linear subspace, and Z, Z C P*, a
subvariety for which LN Z = @. If dimZ < r, then, there exists an open dense Zariski set
in the Grassmannian of all (n — r — 1) planes in P®, such that, for any L in this subset, the
map Z — xz(Z) is birational, and hence, there is a canonical inclusion k(Z) C ¥(CL(Z)).
Therefore if f € R';_H(P") and p > n —r + 1, then for a generic L, we have a well-defined
Ki-chain Cr(f) € REYTZ0 .1 (P™) and div(CL(f)) = CL(div(f)). Also, if f is supported on
a subvariety X ¢ P” with LN X = @, then C(f) meets X properly. Thus, by (a) and (b)
after the Chow moving lemma, there exist linear subspaces L,,..., L,, such that

F=Y (=1 C ()X + (-1 fe,

j=1
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where f. meets 3 almost properly. We can also find 7; € Aut(P") such that 7;Cr,(f;)
meets ) properly. Joining each 7; to Id in Aut(P™) by a rational curve, we obtain a family
ft of Ky-chains on X, parameterized by t € P!, such that fo = f, foo meets ) almost
properly, and for all but finitely many values t, div(f;) meets ) properly. That is, the
family f, forms a K,-chain Df = 3, [Dfv] on X x P! with each V flat over P! and Df
meeting div(t) properly. Since each V is flat over P! and meets div(t) properly, we have an
element

Y_{t, fw} € Bre(xxpiyo-n Ka(k(2)).
w

Under the differential

d: Do xxpryo-0 K2(k(z)) = B¢(xxprym Ki(k(2)),

we have

(it fw}) = div(t) DS ~ {t}div(DS),
w
which equals ‘
fo x {0} = foo x {00} = {t}div(DS).

Hence, for each Z € ¥, the K-chain [t]div(Df) meets Z x P! almost properly. Push-out
this element to X by the natural projection p : X x P! — X, and we see that p,({t}div(Df))
meets Z almost properly and

d(p.(Y_{t, fw D) = f = (foo + p.({t}div(D)))).
w

Therefore ¢ = foo + po({t}div(Df)) satisfies the conditions of the lemma above. This
completes the proof of the lemma.
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Chapter 11.2
Arithmetic Intersection Theory

We now generalize the results in the last a few chapters to the arithmetic situation.
Classically, this procedure was noticed by A. Weil and Russian mathematics school, guided
by Shafarevich. For dimension 1 case, A. Weil noted a certain analogy between function
fields of curves and number fields. For Russian mathematicians, they achieved this kind
of analogy by studying the famous Shafarevich conjecture, which deals with the relative
dimension 1 case, i.e. a curve over a function field or a number field. Since for a function
field, the model is 2 complex surface, which is complete, there is a classical procedure to
introduce intersection theory and corresponding results, such as the Riemann-Roch theorem.
However, for the object over a number field, the problem is rather difficult, since this model
is non-complete: We only consider the objects over the spectrum of the ring of integers,
which is affine. At first sight, we do not get a satisfactory theory for this model. A natural
idea is to complete this arithmetic model. One found that points in the function field case
correspond to valuations. Therefore, in order to complete the arithmetic model, one needs
to include also the archimedian valuations. There is then another problem: To find a local
intersection theory which is valid for both finite valuations and Archimedian valuations.
In order to solve this problem, mathematicians spent almost thirty years. By the work
of Néron, we can define the intersection for the relative model by a purely local method.
Parshin and Arakelov were the first to solve the Shafarevich conjecture for function fields
at the beginning of 1970’s. After that, Arakelov obtained a good analogy for the concept
of the p-adic distance at infinity, the Arakelov- Green function, by choosing the so-called
Arakelov metric at infinity on the corresponding Riemann surfaces. Hence one knows how
to introduce the local intersection at infinity. In western countries, it was Faltings who
first gave a systematic treatment of the theory for arithmetic surfaces. But this was almost
ten years after Arakelov introduced his wonderful idea. With the Arakelov theory, at that
time, Faltings also proved the Mordell conjecture for number fields. Soon after that, Deligne
developed a more general theory for arithmetic surfaces with an arbitrary metric at infinity.
Several important ideas are introduced in [De 86]. Now we follow Gillet and Soule to define
a higher dimensional arithmetic intersection theory [GS 91].

This chapter consists of seven sections. In section one, we discuss arithmetic varieties.
After this, we know that there are two well-organized parts in the theory of an arithmetic
variety: The finite part and the infinite part, which correspond to the model over the
spectrum of the ring of integers and the model over archimedian valuations, respectively.
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For the finite part, there is a natural local intersection, which comes from the algebraic
intersection theory. For the infinite part, since we may associate with a complex manifold.
Thus, we have to discuss certain objects in complex geometry. All this is basically the
contents in section 2. In section 3, we introduce arithmetic Chow groups and their homology
properties. In section 4, we use the result in section 2 and the results from algebraic
intersection theory to give the arithmetic intersection theory. In section 5, we discuss the
functorial properties for the arithmetic intersection theory. In section 6, we give a few
concrete examples. Finally, in section 7, we give a generalization of arithmetic intersection
theory, i.e. we give a cap product between arithmetic Chow cohomology and homology. The
reader is advised to skip this final section in the first reading.

$11.2.1 Arithmetic Varieties
11.2.1.a Arithmetic Rings.

Even through we restrict ourselves generally to the varieties over number fields, we
can go slightly further. Instead of number fields, we introduce a more general concept of
an arithmetic ring. We say a triple (4,Z, F) is an arithmetic ring, if A is an excellent
regular noetherian integral domain, X is a finite nonempty set of monomorphisms ¢ ; A — C
and F, : CE — CZ is a conjugate linear involution of C-algebras, such that the diagram

§

A = CE
Ida | | Fo
A L cr

commutes. Here § is the natural product map induced by the family of maps {¢: A — C:
ceL}.

Examples.

(1) Let A be a ring whose field of fractions is a number field £, let & := Hom(A, C) be
the set of all embedding of A into C and let F,, be the usual Frobenius on C > CQq F
induced by complex conjugation.

(2) Let A = C. There is an isomorphism C @p A =~ C x C sending z ® w to (2w, 2d).
The composition of this map with the natural map A — C ®r A sending a to 1 ® a is the
map & : a — (a,d). Therefore (C, {ldc,c}, Fu) i8 an arithmetic ring. Here ¢ : C — C is
complex conjugation and Fo(a,b) = (b, a).

We say a pair f = (f1, f2) i1s a homomorphism of arithmetic rings,
fi(AL Fo) = (AT, F),

if fi : A — A’ is a ring homomorphism, f; : CE — CT¥isa homomorphism of C-algebras,
such that f26 = &' f; and fi Feo = F., f2. Obviously, Z as an arithmetic ring is an initial
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object in the category of arithmetic rings. More generally, if E/F is an extension of number
fields, then the natural homomorphism

Of < Og

induces an homomorphism of arithmetic rings.
I1.2.1.b Arithmetic Varieties

Let (A, X, Fo) be an arithmetic ring. We say (X.;r' : X — § := Spec A) is an arith-
metic variety over A, if 7 is projective, of finite type, and X is smooth. Here F denotes
the fraction field of A and X is the generic fiber of X. Usually, if s € S we denote by X, the
fiber of X over s, while if ¢ € I, we write X, := X ®, C and Xg := ,exX, = X ®,4 CT.
Finally, we also denote by X, := Xg{C) the analytic space associated with the scheme Xg.

It follows that an arithmetic variety consists of two parts: One is the flat finite type
scheme X over S, while the other is its associated infinite part Xg(C). In the next section,
we deal with the aspect of X at infinity, which is a complex manifold.

$11.2.2 Green’s Currents

We consider the Green current on a complex manifold, which is needed to introduce
the arithmetic intersection on an arithmetic variety.

11.2.2.a Currents
Let X be a complex compact manifold of dimension d. Denote by
AN(X) = Bpg=nAPI(X)
the space of differential forms of degree n on X. There are natural boundary morphisms
8 : API(X) = APTLI(X), §: API(X) ~ APFH(X)

and d : A®(X) — A"!(X) is the usual differential. We say that a linear function T
on A"(X) is a current, if T is continuous in the sense of Schwartz: for any sequence
{w,} C A™(X) with the supports contained in certain fixed compact subset K, then T(w,) —
0 if all the coefficients of w, together with their derivatives tend uniformly to zero for
r — 00. The set of currents forms a topological dual space A(X)* of A(X). We denote by
D, (X) := A™(X)". There is a natural decomposition of D, (X):

Dn(X) = ®p+q=nDp.q(X);
where Dy, o(X) is the dual of A?7(X). It is convenient for us to let

DP(X) = Da-pa-g(X).
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The morphism 8,8, and d induce morphisms from the space DP4 to the following spaces
of currents DPY14( X)), DP+1(X) DP+L9+1(X) respectively. We denote them by &,8', d',
e.g. we have

(0'T)(a) := T(da).

Examples. (1) There is a natural inclusion

APX) — DPI(X)
w — fw]
where

[wi(e) :=/Xw/\a

for any o € A%~P9-9(X), We say that a current T is smooth if there exists a smooth form
w such that T = [w]. In particular, if p+ ¢ = n, it follows by Stokes’ theorem that

[dw](ar) = / dw A a
X
=/ d(w A a)— / (-1)"w Ada
x x
=(—l)”“/ wAda = (-)"*Ydw])(a).
- Jx
Therefore, if we let 8,8, d on the currents be (= 1)1, (=1)"*+1§&, (—1)"*'d’ respectively,

and let @° := ;2-(8 — 8). Then
dd° = — =00
271

is a real operator, and we have the following commutative diagram:

API(X)  —  DPI(X)
a1 18
APHLI(X) «  DPHLI(X)

ete..

(2) Let i : Y — X be an irreducible subvariety of codimension p. We get a current
Sy € DPP(X) by letting
by (a) :=/ o

for any a € A%~P9-P(X). Here Y™ denotes the non-singular locus of Y. We call this current
the Dirac symbol of Y. By one of Hironaka’s theorem, another equivalent definition is
that there exists a resolution of singularities Y of Y with the following properties:

{(a) Y is smooth;

(b) The exceptional divisor £ is a divisor of ¥ with normal crossings;

(c) The natural morphism x : ¥ — E — Y™ is an isomorphism.
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Then we have

Ey(a)zj‘_,rr'(i‘a).

We end this subsection by the following basic

Theorem. (1) With the boundary morphisms 8, 8, d, there exist natural isomorphisms
between the cohomologies of X in the sense of differential forms and currents.

(2) Let v be a current on X such that dd®y is smooth, Then there exist currents w, a, £
such that v = w + 8o + 88, with w smooth.

(3) As a current, if w is smooth and w = du + Jv, then there exist smooth currents
o, B such that w = fa + 88.

(4) If X is a Kahler manifold, and 5 € D"4(X), p, ¢ > 1, is d-closed and is either
d, 8, 8 exact. Then there exists ¥ € DP~19=1(X) such that

dd®y = 1.

In particular, if p = 0, we may choose ¥ = w + da + 03, where w is a harmonic form.

. Proof. (1) Just as in the situation for de Rham complex
0—QF — AP0 . — AP? 0,

we have a complex
0 QP = DPO L DPd 0,

Here D denotes the sheaf of currents and we note that the sheaves D admit partitions of
unity, so that H¥(X,DP9) = 0 for k > 0. Therefore, by the proof of de Rham theorem and
Dolbeault theorem, (1) i8 a consequence of the exactness of the above complex for currents.
We have to establish the 8-Poincaré lemma for currents. Since this is a local problem, we
may work over C%. For any two complex manifolds M, N with local holomorphic coordinates

z and w, let
AP (M % N)

be the C*-forms having the type (p,q) with respect to z and (r,s) with respect to w. We
set

0(6) = d{l A .../\dfd,

@i(6) = (=1)""6dE\ AL  AdE A . A dEa,
and define the Bochner-Martinnelli kernel on C¢ x C?¢ by

3 ®i(z — w) A B(w) '

k(z,w) :=Cy4 7= ol

Thus .
k(z,w) € @, LOD4=P)(C? x €, loc),
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and k(z,w) is a local integrable form. Thus there is a natural morphism
K : AQ9(CY) — A%71(CY)

defined by

(k8= [ Haw)Adw)

weCH

With this definition, we know that

K8+ 6K =1d.

The above homotopy formula now can be used to prove the 8-Poincaré lemma, and
hence completes the proof of (1). In fact, if we only consider the situation for smooth
forms, then, for a §-closed form ¢ € A%9(U), where U C C" is an open set, we may find
a relatively compact open subset V' C U and bump function p € C®(U) with p=1o0n V.
Then p¢ € A%4(C™), and

(p#)(2) = 8(Kpg)(2) + K (B(p$))(2)-

Restricting to V, we get _
#(z) = 8(Kps)(2)

for ail z € V. With this, we easily see that the above process works also for a compactly
supported current T, if we define KT by

KT(¢) =T(K¢),
for all ¢ € A'c""""l(C). Indeed, we see that for any test form p € A2"~¢(C"),
(B(KT)) () + (K(BT))(p) = (KT(dp) + (8T} K )
=T(K8p + 0K¢) = T,.

So, the homotopy formula above even makes sense for compactly supported currents. Hence,
we get (1).

(2) is a direct consequence of (1). In fact, as a smooth form dd*y =: 5, we have
n = d(3g) for a certain current g, i.e., n is a d-exact form. Thus, by (1), there exists a
smooth form ¢ such that n = d¢. In particular,

d(By ~¢)=0.

Hence, by (1) again, we know that there exists a closed smooth form a and a current .5 such
that )
dy—¢=a+dS.
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That is, _
fy=a' +dS

with o' smooth. So, there exists an expression
. Oy =¢'+ 85, + 85,
where ¢', 8S), 0S5, are smooth. But then, from (1),
S =m +5u_, S = az * v

with ay, oz smooth. With this, we get

Sy =¢" +00(u —v)
with ¢/ smooth. Equivalently,

By +B(u —v)) = ¢".
Therefore, using (1) once more, we get

7=z + 0w+ 0(u—1v),
with z smooth, which completes the proof of (2).

(3) is a consequence of (1) and (2). Indeed, dw = §8u is smooth. So, by (2),
u=a+ 8z +dy,

where o is smooth; and hence )
du = da + 80y.
Similarly, _ - _
Ov =08+ 062
with g smooth. Therefore )
w=8a+ 88+ 88(y - 2).

By (2) again, y — z = ¢ + 85 + 8¢ with ¢ smooth. So, we have
w = 8(a + 5¢) + 88,
which completes the proof of (3).

(4) may be deduced from the Hodge theorem. In fact, if  is smooth, we obtain an
explicit solution of 88y = 5 by :I:B‘EG%U, where G is the Green’s operator associated with
the §-Laplacian, which is a smooth form. Since the operators 8*, §* and Gj extend to
currents, the same expression also gives a solution of the equation when 7 is a current. Now
the assertion comes from the Hodge decomposition theorem.
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[1.2.2.b. Green’s Currents

Let Y be a codimension p analytic subvariety of X. We say that a current g €
DP=1P-1(X) is a Green’s current of Y if

b dd’q = [w] - by
for some w € APP(X). The main result for Green’s currents is the following

Theorem. If X is a Kahler manifold, then *
(1) Green’s currents exist on X.
(2) If g, and g; are two Green’s currents for Y, then

n1—g2=[n]+ 085 + 88;,

where n € AP~1P-1(X).

(3) (The Poincaré-Lelong equation.) Let (L,p) be & hermitian line sheaf on X and s
a non-zero meromorphic section of £. Then —log|s|3 € L'(X), and hence induces a
distribution [—logjs|?] € D°®(X). We then have

ddc[“108|3|§] = [eu(£, p)] = bdiv(a)-
That is, [-log|s|?] is a Green’s current of div(s).
Proof. Note that by Stokes’ formula, we know that déy = 0. So, by the fact that
§ — {w] = da,

which is a consequence of (1) of the theorem in the last section, we see that (1) and (2) are
consequences of (4) and (3) of the theorem in the last subsection respectively.

(3) By definition, we know that
—dd°logls|; = e1(L, p)

on X —div(s). Thus we only need to consider the equality over div(s). Let {U,...} be a finite
open covering of div(s) such that Ly is trivial and on U, div(s) is defined by the equation
zy = 0, where z = (z1,...,z4) i8 & local coordinate of U. By the Weierstrass preparation
theorem, we may assume that div(s) N I/ does not contain any singular point. Thus it is
sufficient to prove that for any w € 494-14-1(X),

j logls|3 dd*w = —f cai{Lly,plv) Au+/ w.
v U div(s)NU-

Now note that since ¢,{L|y,pu) = 0 and s = z; h for some non-vanishing holomorphic
function A, it is enough to prove

‘/log]zl|2dd‘w=.[ w.
v U,z,=0
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On the other hand,
lim,..o/ log|z) |*dd*w = / log|z; |dd‘w.
Ulz1|2¢ U

So the final assertion is obtained by using Stokes’ theorem for the left hand side.

From above, we see that for a given closed subvariety Y of X, there exist many Green’s
currents associated with ¥. We also know how to measure the difference of two different
Green’s currents. On the other hand, we can give an explicit Green’s current for a divisor.
In the intersection theory, there is a general principle, which says that if certain objects
can be constructed for a divisor, then we can deduce the general situation from this specxa.l
situation. With this in mind, we introduce the next subsection.

[1.2.2.c Green’s Currents with Logarithmic Growth

In this subsection, we give a generalization of the Poincaré-Lelong equation for higher
codimension subvarieties.

We always assume, from now on, that X is a (quasi)-projective complex manifold. For
any irreducible subvariety Y, we say a smooth form a on X — Y has logarithmic growth
along Y, if there exists a proper morphism 7 : X — X such that E := x~1(Y) is a divisor
with normal crossings, « : X —E~X-Y and a is the direct i image of a form 3 on =& by
7 with the following property: e

Near each z € X, let z; ...z = 0 be a local defining equation of E. Then, there exists

d-closed smooth forms a; a.nd a smooth form ¥ such that

: k
8= E a;log|z.-|2 +7.

i=1

Obviously, such an a is always locally integrable on X, and hence defines a current [¢],
which is the direct image by = of the current [f].

By the definition, we easily have the following properties of forms with logarithmic
growth.

Pull-Back Property. Let f: X' — X be a morphism of smooth projective varieties,
and let a be a form on X =Y of logathmic growth along Y. If f~!(Y) does not contain
any component of X’, then the form f*(«) is of logarithmic growth along f~!(Y).

Push-Out Property. Let f : X — X’ be a morphism of smooth projective varieties,
and let & be a form on X — Y of logathmic growth along Y. If f is smooth outside Y’
and f(Y) does not contain any component of X', then the form f,(a) is of logarithmic

growth along f(Y) and f.([a]) = {f.(a)}.
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As a generalization of the Poincaré-Lelong equation, we have the following

Theorem. For every irreducible subvariety Y C X, there exists a smooth form gy on
X — Y with logarithm growth along Y such that [gy] is a Green’s current for Y.

Proof. We prove thi¢ theorem by the following steps.

Step 1. Suppose Y is an irreducible codimension-1 subvariety. In this case, we may
associate Y with a line sheaf £. Since X is projective, there is a natural metric on £,
one induced by the pull-back of the Fubini-Study metri¥. Now the result follows from the
Poincaré-Lelong equation in subsection b.

Step 2.- Let i : Y — X be an irreducible subvariety of X of codimension p. Then,
by Hironaka’s theorem, there exist a smooth projective complex variety X and a proper
morphism 7 : X — X such that X — E ~ X — Y, where £ = U;E; := »~1({Y) is a divisor
with normal crossings. Consider the cycle [Y] € CHY (X): we have

7*[Y] € CHE,(X) ~ CHP~Y(E) = @:CHP~}(E)).

Hence =*{Y] = };[m] with 5 € CH(E;). Therefore, we see that the corresponding coho-
mology class 7*cl(Y) € H%P(X,R) decomposes as 3, jia(cl(a;)), where a; is a closed
form of AP~1P-1(E}), and j; : E; — E is the natural inclusion. Therefore, the result is a
consequence of the following lemmas.

Lemma 1. With the same notation as above, we have

Sy =Y mu(jiafail).

i

Lemma 2. Let X be a complex manifold and let i : Y — X be a closed immersion of
a codimension-p smooth submanifold Y. Then, for any closed form a € A™"(Y), there
exist a form g on X —Y, which is of logarithmic growth along Y, of type (n+p—1,n+
p— 1) and a smooth (p + n,p + n)-form G, such that

dd®[g] = {8] - i.[a],

Proof of Lemmma 1, Consider the resolution of singularities Ziof Z; = m(E) C X,
we have the following diagram

E; Z;
%l lpe
E. = z <& X,

[y

where g; is birational and £; smooth. Hence

Tu(Gio[ai]) = jo(pin(Fia[gi @i]))-
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Note that if codimy Z; > codimx Y, then pi.(7:.[¢] ai]) = 0, so we have Z; = Y and
codimy Z; = codimyY.
Therefore .

2 T {ielai]) = po(S)

for p: ¥ — Y a resolution of singularities of Y and Sve D%O(Y) is a closed current. In
particular, we know that an S is a constant multiple of §;. Hence

k
m () jila)) = aby
i=1

for some @ € R. But aé represents z.(x*[Y]) in HF(X,R). So, by the fact that = is
birational, (and hence x,(x*[Y]) = [Y],) we have a = 1. Thia gives the proof of Lemma 1.

The second lemma is a consequence of the following more general

Lemma 3. Let f:Y — X be a holomorphic map of complex manifolds of dimension
&, d respectively. Then, for the graph I'(f) := {(y,2) : 2 = f(y)} C Y x X, there exists
a logarithmic growth Green’s current gr along I for T.

Step 3. Proof of Lemma 3.

The basic idea here is to transform the situation to the divisor situation by a blowing-up
process and then use the Poincaré-Lelong equation.

Let W := Br(Y x X), then we have

i

E e~ w
LN A
I < ¥YxX
r\ < \up2
Y X

with E the exceptional divisor. We claim that there exists a € A9~14~}(W) such that
ﬂ.(ﬁEA[a]) = br. ’ .

In fact, the cohomology class cl(I') is an element of Hg'd(Y x X, R}, hence
x*c(T) € HE4(W,R) ~ HY-L4-1(E,R).

But
E = P(Nyxxr) = P(i*(p37x)).
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Hence @, HP?(E,R) is a free module over ®, H”?(I',R) with basis £°,... €%V and € =
i"cl(E) is the first Chern class of the tautological line bundle 71 '(i*(p37x)). Hence we have

(M) Nel(W) = 3 mi(a)€,

where a; € H4-!1-%4-1=i(' 'R). Thus, by the fact that =* = j*7*p*(pp)~!, if we let
be = 7 0 ((pr) ™ (@1)) € HO-I=54--1 (W, ),

-

*cl(D) Nel(W) = 5°(D _ bicl(E)).

we have

Now set a := [3_, b cl(E)*] and by the projective formula, we have the claim.

Since E is a divisor on W, it follows by the Poincaré-Lelong equation that
dd*{logs|2a] = —[B A a] + 6 A [a],

for some section s of the line sheaf O(E). By the claim above, we know that [§Ac] represents
the cohomology class x*cl(T"). Taking w € A%4(Y x X) such that ="w represents »*cl(I'),
we know that there exists ¢ € A4~19=1(W) such that

dd°¢ = BAa—r"w,

Let r := —(log|s|*a+¢) and denote by gr the form corresponding to gr via the isomorphism
W-E~Y xX~T. Since

dd*[(log||sf|*)a + 8] = —[F A a] + 6 A o] — [*"w],
by the claim above,
dd®(gr] = -7 (6 A [o] — {7"w]) = [w] - ép.

So we only need to check the logarithmic growth condition. But then it is a direct conse-
-quence of the push-out property listed previously.

Step 4. The Proof of Lemma 2.

For the closed immersion i : Y — X is a closed immersion, from the proof of Lemma
3, we have a Green’s current gr for I' with logarithmic growth in Y x X. In particular, the
form g := pr1.(9r A p3c) is smooth on X — Y of type (n+p—1,n+ p—1). Here p; denotes
the projections of Y x X to its factors. Furthermore, by the push-out propetty listed above,
g is of logarithmic growth along Y. On the other hand, for all 7 of approciate degree,

P1.(8r A {p3a])(n) = (8¢ A [p30])(Pr.n)
=/rp5m\p{n=frpf~a/\ﬁn
= [anGiripin= [ anry
=[a](i"n) = i.[a](n).
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Here pr = p2|r : T = Y. Therefore, we finally get
dd*[g] = dd*[p1.(gr A p30)] = [p1.dd"(gr A p3a))
={p1.(dd°gr A p3a)] = p1.(dd®[gr] A p3ar)
=p1.(([w] = 6r) A [p3a]) = [8] — iu[e].
Here 8 := p;.(wr Apja) € APP™ PP X)), This completes of the proof of Lemma 2 and hence
the theorem.

The use of forms with the logarithmic growth singelarities has many advantages. For
example, we have the following

Proposition. Let X be a smooth projective complex variety and Y a closed analytic
subset. Suppose that « is a smooth form on X —Y which has logarithmic growth along

Y, then
da) = {da].

Proof. This is a local problem and we may assume that X is the polydisc
Adi={zr=(z1,...,24) €C%:)z5| < 1}
and Y = U}, Y, with ¥; := {z € A?: z; = 0}. Forany £ > 0, let
Ue :={z € X :inf}|z;]| < €},
Wi:={z€X :|zjl =€z} > €,k £ j}, and
We := U5 W!

which is the boundary of U,. By Stokes’ theoremn, we have

(dla] — [da])(w) = lim._.o'/a aAw= —liny_.g/ alAw.

(X=U,) .
Hence, by the logarithmic growth condition,

aAw= Z:(a.'dzl + b;df.') H dz,- A dfj,
" i
where

lail, lb:] < €IS loglz; {?(*
J

for some positive constant C. Therefore
[ anols [ (lalds o+ bda) [T dss nds,
wi lzil=¢ A

b14
< 2Ce / / 1> " loglz; | + €?1*do; [ ] dz: A d2; = O(e),
L T i



288 Arithmetic intersection Theory
where 8; is arg(z;}. This completes the proof.

In general, if a is a smooth form on X — Y such that a and da are locally integrable
on X, then we call the difference

. dla] - [da]

the residue of @ and denote it by Resy (a). The above proposition may now be stated as
follows:

Proposition’. If a has logarithmic growth along Y, then its residue is zero.

We need the following technical lemma, which will be used in the arithmetic intersection
theory.

Lemma 4. Let Y = U;Y; be a divisor of a smooth complex projective variety X with
normal crossings. Suppose « is smooth over X — Y and a is O(r~!) near Y. Then

Resy(a) = 3 T3,

where T} is'a current of order 0 supported on Y;; i.e. if {U} is an open covering of
X such that U is isomorphic to some open subset of C4 and U is compact, and A is
a positive constant, then there exists a positive constant B such that for any smooth
formw of X with wly = 3 ; froudzr AdZs, |f1au] < A, we have [T(w)| < B.

Proof. This is also a local problem. We let X and Y have the forms as in the last
proposition. With the same notation, we have

Resy (a)(w) = —lim,_.gZ/ aAw.
i oW

Since
aAw = (adz +b:dz) [ [ dz; A dzj,
i J# '

where |a;|, [b;]| < Clz1...2a|"" for some constant C, we have

i -
dz; A dz;
|/'a/\w|S2C/ / dﬂ.-ll—z;z’ II dzi Adz < co.
wi o Jadmr iy |2 E>ntl

Now it is sufficient to prove the existence of lime_g fwj aAw. Choose a C™ cut-off function
h? on A9 such that

(8) 0< A<

(b) hf =0 for |z;| > §;

(c) hS =1 for|z| < 6/2.
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We claim that lims—oRes (a)(uhj) exists. In fact, if 6, > &, > 0, and € < 6,/2, then
on Wi,
o Au(h;' - h;’) =0,
and for k # j,

N / a /\w(hj‘ - h;’) = O(6y — 62),
we
which is independent of €. Therefore lims_.oRes (a)(wh;) exists, say Tj(w).

For € < 6/2, we have

a/\wh‘-:/ aAw+ / aAwhd.
/, 7w, 2 Wi g

£j
So

f aAth‘-—/ aAw=0(8).
We w?

Thus the assertion follows by noting that

[ anw-T0)

<] _aAw—j aAwh;|
w! w, .

4+ a A wh} - Rwy(a)(wh;)l
W,

+ |Resy (a)(wh]) - Ti(w)l.

We end this section with the following observation: Let X be a non-singular quasi-
projective variety over C and Y a codimension-p algebraic cycle on X, then we may ap-
proximate an L' Green’s form (C* on X — |Y|) for Y by a C* forms as follows: Choose a
locally finite open covering of X by coordinate sharts and, for each £ > 0, let p, be a C*
real valued function on X such that

LO0<p )
2. p. = 1 outside the neighborhood N,(Y') of radius £ of |Y| in each coordinate charts;
3. p. =0 in some open neighborhood of |Y|.

Then we have the following

Lemma 5. For each £ > 0, let g}, = p,gy with gy a Green’s current of Y. Then

(a) g5 is a C™ form on X;

(b) dd°g}, = wy —w} with w}, a C* form supported in the union of the closures of the
N (Y); '

(c) timeo[gy] = [ov];

(d) lime—o[w}] = by.
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The proof of this lemma which is easy is left to the reader.

§11.2.3 Arithmetic Chow Groups
[1.2.3.a Arithmetic Chow Groups
We introduce now the arithmetic Chow groups and their cohomological properties.

Let X be a regular arithmetic variety over an arithmetic ring (A4, £, Fo ). The conjugate
linear automorphism F,, of CT induces an orientation reversing continuous involution on
. Since X i8 a smooth variety, X, is a complex manifold. We define

AP9(X) 1= AP (X), DPI(X) = DPH(Xoo);

APP(XR) = {a € APP(X) : Fow = (—1)Pw);
DPP(XR) := {a € DPP(X) : Fg(a) = (-1)fwh;
A?P(Xg) := APP(XR)/(Imd + ImB); A(Xn):= @pAPP(XR);
DPP(XR) := DPP(XR)/(Imd + Imd); D(Xm) := @, D**(Xn).

Similarly, if X is projective, we let
HP?(XRp) ={a € HPP(X): Fa={(-1)a}.
Since dd° is a real operator, we know that dd® is compatible with all of these definitions.

Let Y be a codimension-p integral subscheme of X, then Y, i8 a F,-invariant analytic
subspace of X,. Hence, integration over Y, defines a current in D”(XR) and we denote
this current also by dy. We say that an element (Z gz) € ZP(X) @ DP~1P~Y(XR) is an
arithmetic p-cycle if gz is a Green’s current of 7, i.e.

dd®g; = w(Z,9z) — 8z

for some wz := w(Z,gz) € APP(Xg). We denote by Z4 (X) the abelian group generated -
by arithmetic p-cycles.

Next, we define arithmetic rational equivalence among the arithmetic cycles. Let i :
Y < X be an integral subscheme of codimension p— 1. There is a resolution of singularities
of Yoo, m: Yoo — Yo with = proper. For any rational function f € k(Y')*, define a rational

functlon f on Yo such that Ioglfl2 is L' on Y.. Hence f is contamed in D% °(Y) Let
: Yoo — Xoo be the natural induced morphism, then

1. {log| f|*] € DP~1P7(X),
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and is independent of the choice of Y. We denote it by i.[log|f|?]. Since f is Feo-invariant,
by the Poincaré-Lelong equation, we know that

divac(f) = (div(f), —i.[loglfI*]) € Z&,(X).

We say that such an arithmetic cycle is arithmetically rationally equivalent to zero.
Let R} .(X) be the subgroup of Z% (X) generated by diva.(f) for f € k(W)", with W a
codimension-(p — 1) integral subscheme. We define the p-th arithmetic Chow group,
denoted by CHY, (X), to be the quotient group Zir(X)LRPAr(X). Let

CHa((X) == &,CHS, .(X).

We define in a similar way the p-th homology group CH:'(X). In order to define the
arithmetic intergection, we first need to define a product among Green’s currents, which is
what we will do in the next subsection.

11.2.3.b The *-product of Green’s Currents

" Let X be a smooth projective complex variety, Y C X a closed irreducible subset and
f : Z — X a proper morphiam of irreducible projective varieties over C such that f(Z) ¢ Y.
There exists a differential form gy of Y such that gy is smooth on X —Y and has logarithmic
growth along Y; that is, there exists a proper birational morphism 7 : X — X such that X
is smooth and projective, E := #~!(Y’) is a divisor with normal crossing, = : X-E~X-Y
and the form 7"gy is O(jlogr?|**) near E, while x*dgy is O(r~!) near E. In this case,
we denote the associated current by [gy]. Thus by resolving the singularities of Z, we can
construct a commutative diagram

z 4L 0z
pl Ng I~
z L x,

such that D = j~!(FE) is a divisor with normal crossings, Z is projective and smooth, and p
is birational. (In fact, we may choose Z as the resolution of the singularities of the Zariski
closure of Z — Y embedded in Z x X as the graph of f.) Obviously ¢*gy on Z has the same
growth as gy on X, so, if Z is smooth, it makes sense to define

f*lov) = plg’gv) € D*"1""1(2).

Also, if f 22 < X is a closed immersion, we define a current [gy] Adz = 6z A [gy] in
Dm+n-1,m+n-l(x) by

lov) A bz := ¢.[q"gv].
Furthermore, if gz is an arbitrary Green's current of Z, we define the *-product of [gy] and

gz by
gy} * 9z :=[gy] A bz + [dd°gy + by] A gz.
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Theorem. Let X be a smooth projective variety over C, and let Y = 3", a;{Yi] be a

codimension-n cycle on X such that gy;, a Green’s form of Y;, has logarithmic growth.

Then

(1) If Z = 3_; b;(Z;] is a codimension-m cycle on X such that Z; ¢ |Y| for all j, and
gz a Green's current for Z, then

dd*([gv] * 92) = [wy Awz] = (D mebs, +1).
x

Here [Y|N|Z]| = SUT, where S is the unich of the components Sy,...,5; of

codimension-(m+ n), T is the union of the components of codimension < (m+ n).

That is,

' [Y]I2) =D meSe +,
E

and ¢ is a current supported 6n T which represents the homology class of 7.
(2) For any two Green’s currents gy, gy of Y with logarithmic growth, as an element
of D(X), we have

lovl* 9z = [9¥] * 92

for any Green'’s current gz. Hence, we may also define the *-product among Green’s
currents.
(3) Let Y, Z be two algebraic cycles with Green'’s currents gy, gz, then

gy *gz =gz *gv.

(4) Let Y,Z and W be algebraic cycles of X with Green’s currents gy, gz and gw,
respectively, we have

(gy * gz) *gw = gy *(9z * gw).

Proof. (1) We may assume that Y and Z are prime cycles, i.e. irreducible subvarieties
of X. With the notation as above and by the result about residues, we have

d*([gv] * 92) = dd*(q.[¢"gv]) = ¢.dd°[¢" gv]
=q.Resp(d°gy)+ 6z Awy = R+ 6z Awy,

where R := q.Resp(d®gy) is a current of order zero supported on Y N Z.

On the other hand, cl(Y) € H"(X) is represented by (§y,0) € D')"(X)eaDz"‘“l( X) and
also by (wy,(—1)**1dgy). Similarly, for Z, we know that cl(Z) € H™(X) is represented
by (6z,0). Since 8z A d°gy extends to a current d°(6z A [gy]) on X, hence cl([Y][Z]) =
(Y)Uel(Z) € HITE™(X) is represented by (wybz,(—1)"™+"+1d¢(5; A [gy])), which is
also represented by (R,0), where R represents cl(Y Z) in HZn3"(X).

If T =49, (1) is a consequence of the following
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King’s Lemma [Ki 74). If Y and Z intersect properly, R = 3", piés, .

Otherwise, we consider the restriction of R on .X — T, Obviously, we have

k
. Rlx-r = El-‘i‘sS;IX—T-

i=1

Hence t = R + ZL, p#ids, is a current of order zero supported in T, which necessarily
represents the cohomology class of —r € H2™+2”(X). Hgnce we have the assertion with the
help of King’s lemma. The proof of King’s lemma is not really complicated: One may use
the smooth approximation to deal with it. We leave the proof to the reader.

For the proof of (2), (3), (4), we first give equivalent statements. We start with (4). By
(1), we know that ~
lov] * ([92] * gw) = [gv] * gzyiw)
=gy Abzpw) +wy Agz Adw +wy Awz Agw.
On the other hand, by the C® approximation at the end of the last section, we have
(lov]* [92]) * gw
=time—o([gy] * [92]) Awly +wy Awz A gw
=lim, _ogy A Sz Awly + lim,_owy A gz Awly +wy Awz Agw
=lime_ogy Abz Awly +twy Agz Abw +wy Awz Agw .
=(gy Abz Aww — lime_ogy A bz Add°gly) +wy Agz Abw +wy Awz Agw
=gy Abz Aww — lil‘l‘k..oddc(gy /\63) Agw +twy Agz Abw +wy Awg Agw
=gy Abz Aww — lim,..o(—é[y][z] Agiy +wy Abz Agw)+wy Agz Abw +wy Awz Agw
=gy Abz Auw — (—6[y][z] +wy Abz)Agw +wy Agz Adw +wy Awz Agw.

Therefore, in order to prove (4), after interchanging Z and W, it is enough to show the
following :

Claim.

lov] A (Y mbs, +t) +wy Aloz] Abw = fyyw) A gz + 9y Awz Abw.
P

Here S; is the proper part of the intersection of Z and W.
But this formula also gives the proof of (3), since for that case, we may let W = X.

Proof of the claim. The details are rather formal and tedious. By Hironaka’s theorem
1I [Hi 64], there exists a diagram

W
pl \h
w 4 x
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such that
(1) W is non-singular and quasi-projective;
(2) p is birational;
(3) The inverse image of Y UZ,Y,Z,Y N Z of h are all divisors with normal crossings;
(4) h*gy, h*gz have logarithmic growth near the inverse image of Y, Z, respectively;
(5) For each irreducible component E of A~!(Y N Z), there exists a commutative

diagram _
' ) BrX
hr /LS

- h 3

w = X

AN

X.

Here X is smooth, A(E) is contained in a smooth subvariety T C X of codimension
at least p + q + r and f is thé blowing-up of X along T.

Hence h*gy and h° gz have logarithmic singurities near h=!(Y) and A~!(Z) respectively.
On the other hand,
dd*(h.[h*gy]) = wy A bw — §pyywy,

and
dd*(h.[h*gz)) = wz A bw — (3 mibs, +1).
. k

Also h*(gy A Bgz) is O(r~'{logr?[*) near h~!(Y U Z), hence it is an L' form on W. Now
by a local calculation, we have

O(ha[h*(gy ABgz)] = hu[h*(Bgy ABgz)] — 21i(Sw Agy Awz — gy A(D_ nibs, +1)).
k

Interchanging 8 and 8, Y and Z, we have
8(h.[h*(gz A Bgy)] = hu(h"(Dgz A Bgy)] — 2ni(Sw A gz Awy — gz A Syiw)).-

Therefore in DPH+r=1p+4+7=1(X) we have

[gy] A (Z prbs, + 1) +wy Algz] Abw = 6[YI[W] Agz + 9y ANwzAw,
k

which proves the lemma.

So we have (3) and (4). Now (2) can be proved as follows. We know that in D(.X),
any Green’s current may be represented by a Green’s current with the logarithmic growth.
Thus by <
gy *gz — gy * 9z = (9y — gy) A bz.

But gy —gy =0 in D(X), so the fact that §7 is closed implies (2).
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I1.2.3.c Cohomology Properties Of Arithmetic Chow Groups

We study now the cohomology properties of arithmetic Chow groups. For this purpose,
we need several morphisms involving CHa (X)), viz.

(1) ¢ CHA(X) — CH(¥), (Z,02) Z.
(2) a: AP~VPY(XR) — CHA(X), aw~(0,a).
(3) w:CH, (X) — APP(XR), (2,97} dd°gz +67.

(4) p: CHPTIP(X) — AP=1P=1(X),  (fy) = T, —[laglfyl?)-

(5) c: CH?(X) — HPP(XR), the cycle class map;

(6) h: ZPP(X) — HPP(XRm), where ZPP(X) := the closed forms in AP?(Xg), sends a
closed form to its cohomology class.

Theorem. The above morphisms are well-defined. Furthermore, there are two exact
sequences

(1) ... — CBP-YP(x) & gr-t»=)(X) & CH(X) “S”) cwP(X) © 2PP(XR) =
HPP(Xg) — 0.

2) ... — CHP-1P(X) & Ap-1p-1(X) 2 CH, (X) S CHP(X) — 0.
Ar

Proof. (a) Clearly, the last morphisms ¢ — h, { in the sequences (1) and (2} are
surjective.

(b.)Exactness at CHP(X) @ ZP?(X):
We have
(e = h)([2),w) = 0 & 3g € DP~1P=Y(X) : dd’g = [w] = 67 & (¢, ~w)([(Z, 9)]) = ((Z],w).

(c) Exactness of CH%, (X). For (2), we have

(([Z,92]) =0 Z = div(fy), f; € k(y)*,y € XD,
Y .

That is,
(Z,92)) = (3 div(fy), 92)] = [0, 92 + 3 _lloglfy )]
v v
Let § = g7 + 3, [log|fy[*] € CH}(X) and we have
dd*j = [wg],
Hence there exist n € AP~*P~1(X), 5, € DP~?P~1(X), S; € DP~1P=%(X), such that
- §=[n+85 +85:.

Thus
(([(Z,92)])) = 0 [(Z,92)] = [(0,§)] = {(0, [n])} = a([n]).
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For (1), we note that in addition,
dd°§ = 0.

Then 7 is a closed form.

(d) Exactness at AP=1P=1(X) (resp. HP=1?=1(X)): In fact,
a(n) =0&(0,[n]) = Z(div(fy): —[loglfyi*)) + (0,05, + 85,) € Z§ (X)
v

&y div(f,) =0, and [1] = Y —~[loglfy '] + 8S1 + 8S3 & p((f;)) =n.
v ¥

(e) Finally, we need to prove that p is well-defined. By the definition in 1.4, we know
that

CHP~'P(X) = BEx (X)) = {(fy) € ®yexo-nk(y)" : Y div(fy) = 0}/Imd,
v

where -
di : B¢ xtr-2 K2(k(2)) — Byexo-nk(y)”

is given by the tame symbol. Thus it is sufficient to prove that pod, = 0. If X is a smooth

projective complex variety, Z C X an irreducible subvariety of codimension-(p — 2), then
for f,g € C(Z)*, we shouid have

podi({f,g})=0.

For this, we first reduce the problem to the situation in which div(f) U div(g) is a divisor
with normal crossings. In fact, we have the following fact:

Let 7 : Z — Z be a resolution of singularities of div(f) U div(g) with 7 proper and
D = 7~ }{div(f) U div(g))

a divisor with normal crossings. By the functoriality of aigebraic /{-theory, we have the
commutative diagram:

Ky(C(Z)) = By 20 C(¥)° % DYMNZ)
| m | 7.
K3(C(2)) = @,ez0Cly)* & D"'(2).

Thus d; o p = 0 will follow from d; o p = 0, which is an immediate consequence of the
following
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Lemma. With the same notation as above, we have

podi({f,g)) = —5=(0le] + BI8)),
where a = log|g|> A dlog|f|? and 8 = log |fI2 A dlog lgf?.

Proof. The problem is a loca! one, we may assume that Z = A™; and by the linearity
of the symbols {f, g}, we are reduced to the following two cases:

(a) f = z; = g. By definition, we have -
di({z,21)) = (2100070 <
SO -
podi({z1,21}) = —[log| - 1] = 0.
On the other hand, we have

(8[e] + 818))(w)
- / (0a+ 86) Aw
A'l

=lim,_¢ j (a+p)Aw.
|Z1)=¢
If we write z; = re’®, a + 8 becomes 2/rlogr? dr, and hence the integral vanishes when

e—0.

(b) div(f) and div(g) intersect properly. By definition, we have

podi({f,g}) = +[og |fI*] A baiv(g) — [log 1g]*] A baiv(s)-
So
podi({f g}) = —[log|f|* * [log |g|*] + {log |¢{*] * [log | /*].
Now the result follows from the more refined -

Claim. Let Y and Z intersect properly, and let gy, gz be Green’s forms for Y and 2
with the logarithmic growth along Y and Z respectively. Then we have

lov]+ls2] - ls2] * ov] = 5-(0lay A Boz] + Bloz A dav)).

Proof of the claim. In fact, by definition

[av] * (9z] — [92] « [gv¥]
=[gy] A bz + [wy] Algz] — [92] A by — [wz] Algy]
= —[gy] A ([wz] = 62) + [92) A ([wy] — by)
= — [gy] Add®[gz] + [92] A dd°[gy]

= =(0(lov] A lsz]) + B(lsz] A dlov]))
=#(3[gy A dgz) + dlgz A dgy)).
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§11.2.4. Arithmetic Intersection Theory

In this section, we obtain an arithmetic intersection theory for arithmetic varieties by
using the results in the previous sections.

Let X be an arithmetic variety over an arithmetic ring (A, I, Foo). Let
Z8(X) ={Z € Z°(X): ZN Xp = 0};

CHE,(X) =25, (X)/ < div(f) : Vf € k(y)%y € X~V = Xp >;
28 (Xr):={(Z,92): Z € Z°(XF),gz Green's current for Z}.

Then there is a natural morphism:
divac : erexl(',_.ik(z)‘ — CHE,(X)® 25 (XF)

which is given by
divac(f) := (div(f), ~[log|fI*]),
where div(f) = Z, + 2y, 2, € 2§ (X) and Z; € ZP(XF). Then we have proved

Lemma. With the notation as above, there is an exact sequence:

B, ¢ xo-nk(z)” 2 CHE,(X) @ 25, (XF) — CHR(X) — 0.

Suppose that Y and Z are integral subschemes of X with codimensions-p, ¢, respec-
tively, and that Y, Z intersect properly on Xp. Note that [Y][Z] is not necessarily well-
defined as a cycle on X, since Y and Z may not intersect properly on X. However {Y][Z] is
well-defined as a class in CHYTY,(X)q. On the other hand, there is a canonical morphism

CHy (X) — CHE(X) ® Z§,.(XF),

where W is a closed subscheme of generic codimension-p. So [¥][Z] may be thought as an
element of
CHEH(X) @ 2749 XF).

If gy, gz are Green’s currents of Y, Z, respectively, we define
(Y], 9v)([2), 92) := ([Y)[Z], 9y * 92),

which is an element of (ZP*9(Xr) ® CHAYY(X))q ® DP+e-1P+e=1(Xg). By the result for
the *-product of Green'’s currents, we have the following

Fact. If Y and Z intersect properly on the whole of X, then

(Y] 9v)(12),92) = ([Y1(2], gv + 92) € Z};7(X).
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Now we may state basic facts of arithmetic intersection theory in the following

Theorem. Let A = (A, L, F,) be an arithmetic ring with field of fractions F. Suppose

that X is an arithmetic variety over A which is regular and has a quasi-projective generic
fiber Xp. Then

(1) For each pair of natural numbers (p, ¢), there is a pairing

CHL(X) ® CH{(X) ~—_ CH*(X)q

a®p — af.

The pairing is uniquely determined by the following property: If ¥ and Z are
integral subschemes of X which intersect properly on Xr, and gy and gz are

" Green’s currents for Y and Z, then ([Y), gy )([Z], g2) is given as above.
(2) The product above makes CHa (X )q := &,CH . (X)q a commutative, associative

Q-algebra.
(3) The natural morphism

¢ : ®pCHL(X)q — @(CH?(X) ® 27P(X))q

is a Q-algebra homomorphism.

Proof. Let ([Y],gv) € CH, (X) and ([Z],gz) € CHL(X). To define the arithmetic
product, we assume that Y and Z are irreducible. If Y and Z intersect properly on Xp, we
atready have the definition for the intersection. Therefore, we need to deal with the situation
when Y and Z do not intersect properly on Xr. By the Chow moving lemma, we know

that there are rational functions f, € k(y)*,y € XI(.?_U, such that (Y + 3_ div(fy))r and
Zp intersect properly so we can reduce to the generic proper intersection case. It remains
to prove the following

Claim. If g, € k(y)*,y € X};-P_l) is another choice of rational functions such that
(Y + Eu div(gy))r and Zp intersect properly, then

(O divar(fy) — D divac(9y))(Z,92) €< divac(f); (0,Im8 + Im&))q C Z31*(X)q.
¥ v

By the Chow moving lemma for K-chains, there exists an element
u€ Q,Exj(:—':) Ka(k(2))
such that if (hy) := (fyg;') + di(u), then the K)-chain (hy} intersects Z almost properly,

i.e., div(h,) meet Z properly for all Y, even through (fyg;!) does not have this property.
Note that since divod, =d? = 0, we have

Y div(hy) =) _ div(f,) — div(gy).
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Furthermore, since pod; = 0, we have

> fogl 1" = 3 _Nlogley ] = 3 lloglhy*]
v v ¥

modulo Imé + Im@. Theredore, it is sufficient to prove the following

Lemma 1. With the same notation as above, we have that diva (h;)(Z,gz) lies in

< divar(£);(0,Im8 + ImP) >q -

Proof. Since arithmetic intersection is a natural generalization of algebraic intersection,
we may neglect the finite part. Hence, without loss of generality, we may assume that
Zan = 0. Also, we will simply write h as h,. Now if W := Supp(h), then |Wr|n|Z¢| = SNT,
where codimx, S = p+¢— 1 > codimy,T. In CH5 3" (Xp)q, we have

[WrliZF] = Z pe(Se] + 7.

Here Si are the irreducible components of S, u; the Serre intersection multiplicities, and
r € CHEY*"!(XF)q. Since (div(h))r intersects Zp properly, by the fact that (div(h))r
does not have -a component of codimension-(p+ ¢ — 1), we know that h|s, € k(S;)*; and by
the fact that (div(h))p NT = @, we have h|r is a unit. With this, by the definition of the
algebraic intersection of a K)-chain and an algebraic cycle in 1.4, we know that

hZ =] (hls.)" (hlr 1) € &, ¢ xgrse-v Kr(K(v)),

where t € Z2¥97!(Xr)q is a representative of 7 and the product (A7 t) has to be understood
in K-theoretic terms. Also by the fact that h Z is only defined up to Imd;, so by the fact
that dived, = 0, pod; = 0 of the cohomological properties of arithmetic Chow groups,
we know that divac{(h Z) is well defined. In particular, we see that the claim is a direct
consequence of the following

Lemma 2. With the same notation as above, we have
divar(h) (Z,9z) = divar(k Z) mod(0,Imé + Imd).
Proof. First consider the part for algebraic cycles. Let H € k(X)* be such that

H|w = h. Then
div(H) W = div(H|w) = div(h).

Furthermore, we have
div(h) Z =(div(H) W) Zp = div(H)(WFr ZF)
=div(H) (Y wiSi +1) = ) midiv(H|s,) + div(H|,)

=) widiv(hls,) + div(h|r t) = div(h 2).
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On the other hand, for Green’s currents, the left hand side becornes

(~[log|h|®]) » 9z =gz * (~logjh*)
=~ gz Abgiv(n) + [wz] A (—[log|k[*]) mod (Im& + Imd).

While for the right hand side, we have

floglH2() A bw 2

~ [log|H?[} * (9w * 92) = gz *(—[log|H*[) * gw)

= — 92 Abgiviyw + [wz] A (~[log|H?[} » gw)

= — g2 Abgiviny + [wz] A ([logl H?{] A bw)

= — gz Abaiy(n) — [wz] A (—(log]~?]])) mod (Imd + Imd).

~[loglh Z17]

Here, in the last step, we use the following discussion. Since —log|f|? is a Green’s current

for div(f),
log1f|* A6z = log|f|* * gz,

for any choice of gz. Thus
log |f[* A8z = log|f* Aw — baiv(s) A 9z
If f is chosen so that flw = f, then

112D = FwW1i2) = £ malSil +1),
k

for [W){Z] = 3, #&[Se] +t. Hence

2 _1..1F13
log|fz|" =log |fI" A (65~ (5,1 +61)
=log|f|2/\wz Adw —5div(j)/\92

=log |fI* Awz — baiv(s) A 9z
=log|f|* A é3.

With the above definition CHa (X )q is a commutative associative Q-algebra, since we
know that the *-product is associative and commutative.

§11.2.5. Functorial Properties.

Once we have the definitions for arithmetic intersection theory, we can establish the
properties of it with respect to morphisms of arithmetic varieties. This is what we discuss
now. As usual, in order to give a good definition for the pull back morphisms, we need
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certain condition on the fibers, which allow us to assume that the morphism is flat since we
only need the pull back morphism. On the other hand, we should also have a natural pull
back with respect to closed immersions. Naturally, once we discuss the push out morphism,
we need to know that the image of a closed subset should also be a closed subset. So,
when we talk about push out morphisms, we shall assume that the morphism for arithmetic
varieties is proper. :

Theorem. Let f : X — Y be a morphism of regular arithmetic varieties over an
arithmetic ring A. Then

»

(1) If f is flat, there is a pull-back morphism
f* = fH . CHA (Y) — CHA (X)q.

(2) If f is proper, fr : Xy — Yp is smooth and X, Y are equldlmenmonal then there
is a push-out morphism

fo = feu : CHY (X)) — CHLLT(Y).

Here r denotes the relative dimension of f.
(3) Where the notation makes sense, we have the projective formula

J(f(@)B) = af.(B).

Proof. (1) Let [(Z,gz)] € CH, (V). We assume that Z is irreducible. If it happens
that codimx, (f~'(Z)r) = p, then we have f*[Z] € CH;_.(Z)(X)Q, and we also denote the
image of f*([Z]) under the map

CH-v(z)(X)q — CHE(X)a® Z})—l(z),.(XF')Q
by f*([Z])- This is the definition for the algebraic cycles. Since f*gz is defined, we may put
' l(Z,92)) :=(f"[2], " 9z2)] € CHY (X)q.

Obviously, this is well-defined. In general, if we do not have the exact codimension relation,
we may use the moving lemma to achieve the required result; this has the same pattern as
in 2.4. The details are left to the reader.

(2) We first construct a map from Z4_(X) to Z{;"(Y) as follows: Let (Z,gz) € Z§(X),
with Z irreducible, 1.e. Z = _{-z_} with z the generic point of Z. As in section 1.3, we set

fo(2) = {%’C(Z) k(F()){F@)), if dim f(z) = dimz;

otherwise.

Then, for Green’s currents, we know that for any n € A4mY(C)-pdim¥(C)-p(x(C)),

(f-bz)(n) =62(f"n) = /z f'n= / f (nlyczcen)

{deg(Z(C)/f(Z(C))) ff(Z(C)) 7, if Z(C) ~» f(Z(C)) is finite;
0, otherwise,
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Hence f.6z = §;,(z), and
dd*(f.gz) = [fowz] = b5.(2)

That is, f.gz defines a Green’s current of f.(Z). Therefore we may put

fu(2,92) = (f.Z,f.92) € Z}TT(Y).

Furthermore, it is not difficult to check that this definition is compatible with the arithmetic
rational equivalence, and hence we get a push-out morphism f, for arithmetic Chow rings.

(3) The proof here comes from the fact that the projective formula is valid for both
algebraic cycles and Green’s currents.

Next, we define the pull back morphism for regular closed immersions. This may
be done formally by the arithmetic intersection theory. Let ¢ : X — Y be a regular
closed immersion of arithmetic varieties over an arithmetic ring A. If Z is a codimension-p
cycle in Y, which meets X properly on the generic fiber, then there-is a well defined cycle
i*[Z) € ZP(XF) ® CHE,(X). Since Zr meets X7 properly, let gz be a Green’s current for
Z on 'Y, then i*gz is a Green’s current for i*[Z] by a slight modification of Theorem 2.3.c.
We can define

i"(Z2,9z) = (i"[2),i"9z) € Z4.(X) @ CHE, (X).

Suppose now that ¢ € Rg'l(Yp) is a Kj-chain such that div(¢) meets Xp properly. By
the Chow moving lemma for K-chains, there is a Kj-chain ¢ such that div(¢) = div{yp)
and ¢ meets Xy almost properly. Furthermore, ¢ — ¢ represents zero in CH?~"?(Yp).
Hence, loglp|? = log |$|?, and therefore divar(p) = divar(¢) € Z% (Y) ® CHE (V). If
Z :=Supp(div(y)), i*(y) is well defined in CHP~!P(X — (X N Z)). By the theorem above,
we have i*divar(p) = divar(i*®). So i* induces a map CHa, (Y} — CHa(X).

In practice, the situation is as folows: We may first try to use the cohomological
properties of the arithmetic Chow groups. Since we have the definition and properties for
algebraic cycles in 1.3.b, we now consider the situation for K;-chains. We assume that we
work with regular schemes which are flat and of finite type over a fixed excellent regular
noetherian domain A. '

If ¢ € R271(Y)is a Ky-chain, we let Z := Supp(¢), T := Supp(dw(:ﬁ)) andU :=2Z-T,
then ¢ determines, and is determmed by the class {¢} € CH"' "™(Y = T). Furthermore, the
image of {¢} under the boundary map

8 :CHy ™ "™(Y - T) — CHR(Y)
is the class of div(¢), where 8 is the boundary map induced by the exact sequence of
complexes:
0— Ra(Y)r — R, (Y)z — Ry (Y ~ T)y — 0.
Here we use the following notation: for V C W,

R(W)y := Ker(Ra(W) — Ry(W - V),
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and CH‘J(W) = H‘(R‘(W)y) Now, for the proof of the fact that the definition above is
well-defined, we need to use the deformation to the normal cone. Let Al = Spec Aft], Al =
Y XAAA, and let W be the blowing up along X x {0} C A‘ Ifp: W— Ah is the projection
map, p~'(0) is the union of two divisors, P(Nx(Y)® 1), whlch i3 the projective completion
of the normal bundle from X to Y, and to Y, which is the blowing up of Y along X. Define
W :=W — Y. We have

(1) The projection p: W — Al, is flat;

(2) Wo :=p~'({0}) = Nx(Y);

(3) W—-Wo~Y x G =Y x4 Spec(Aft, t71]);

4) f: X — Y induces amap f : X x Al — W, suchthatfort—O X x {0} =W, =

Nx(Y) is the zero section,while for t £ 0, X x G — Y x Gy, is the map induced by
the base change from f: X — Y.

Observe that ¢ is a unit on W—Wy, so that ¢ defines a class {t} in HO(W-W,, K,(Ow) =]}

w ). For the construction of f*{4}, it is convenient to consider the deformation to the nor-
mal cone construction for the inclusion of X — (X NY)in Y —T. We write f': X' — Y’
for this inclusion, and W’ for the corresponding scheme flat over Al. Since p’ : Y’ x G, =
W' — W'y — Y’ is flat, there is a pull back map

T RLY) = RAUY % Gm),
and hence a map .
P’ CHy V™ (Y') — CHE L& (W — Wo).
Associated with the short exact sequence
R (Wo)[1] = R (W) — Ry (W' = W5),

we have a long exact sequence

.. — CHY (W) — CHF' (W) — CH T (W - W) 2 CHYFY (Wy) —

Here I is the Zariski closure of U x G, in W’ and V = U N W} = Cynx+(U) is the normal
cone of U N X’ in U. By [Gi 81], there is a natural product for any noetherian scheme S,

Rom.s ® Ka(Os) = R yn s(—nl,
where R}, ¢ is the complex of sheaves U +— R} (U) on 5. Hence there are products

HOW' — W3, K1(Ow») = Ojy) ® CHIZ0 (W — W) — CHIZLT (W — W),

By the fact that V C #~!(X’ N U), we may combine the boundary map and the product,
and get a map

o : CHy™'™(Y') — CHY™“"(W§) — CHI\ %y (Wo)

{6} = ({t} + {¢}).
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We observe finally that

7" CHY D (X') = CHIZ! gy (Wo)

is an isomorphism. Composing this with the map ¢y above, we get a map

ft - (ﬂ_-)—]. oay: CH;—l,n(yl) — CHEF]}\}?(X’)

305

Theorem. Suppose that f : X — Y is a regular clsed immersion. If ¢ € RA-YY)is

a K-chain with support Z, Supp(div(¢)) =T and U = Z - T, then we have
(1) 8(f*{¢}) = f°(8{¢}) € CHY (X)) where 8 is the boundary map

CHR_¢"(A - C) — CHZ(4)

for CC BCA.

(2) If ¢ = 3 [gw] meets X almost properly, with g regular at the generic point's of S,

and div(g) N T is empty, then

Flawl = mlowls ]+ gw 7,
; 7

and f*(¢) = > f*lgw]. Here p; is the intersection multiplicity of Z and W
at the generic point of the irreducible component S; of S, and 7; is the cycle
class on the connected component T; of T representing the component of f*[W]
in CH{,‘;I(X) C CH357(X). The product gw 7; is defined since gw is a regular

function on Tj.

Before proving the theorem, we need the following

Lemma. Let S be a noetherian écheme, A and B closed subschemes, and C .= AN B.

Let D C S be any closed subset. Then the square

CHLJ—Dn(AuB)(S - (A U B)) = CHEF_J.;_;')nD(S - A),
al 1o
i 1 8 42,5
CHpnia—c)(S — B) - CHZE(S)
is commutative up to a factor —1.

Proof. This is a direct consequence of the following diagram

R;(S)enp — R;(S)anp — RS- ‘?)A-CnD
1 |

R;(S)pap — R;(S)p —  Ri(S-B)pns-n)
l | |

R;(S)B-cynp — R}(S—A)s-anp — R;(S—B)p-(auB)np-
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Proof Of The Theorem. In the lemma above, let S = M, D be the Zariski closure
of Z x G in W, A the Zariski closure of T x Gy, in W and B = Wy. Then C = Crax(T)
and C is contained in DN Wy = Cznax(Z). We have the diagram

CHy™'"(v") 2 CH3(Y)
M g Iy
CHYZ\ (Y x Gm) = CHP_y1)(Y X Gp)
{t}=() 1 1 L{t}+()
CH;‘:J(';;”(Y' XxGm) = CHYFIL(Y x Gm)
o1 11 18
n—-1,n a n
CHprws (W) =  CHgppy(ry(Wa)-

In this diagram, square I is commutative because p is flat. It can be checked at the level
of complexes that square II is anti-commutative, while square III is anti-commutative by
the lemma. It follows that if ¢ € CH"'™(Y”), then do,(¢) = o.(84) € CHZ- rnx){(Wo),
which gives (1). For (2), suppose ¢ = [gw] for g € k(W)*, and let § € k(Y)* be a rational
function which is regular at the generic point of W and X, and is such that §|lw = g. Write
D = div(g), so that DN W = D. Then ¢ = {§} [W] under the product
HO(Y — D, K\(Oy)) ® CH ' (Y) — CHY 12 (Y - D).

One can see from the construction of

f*: CBy_p(Y = D) = CHy i - p)(X N (Y = D))

that if « € H'(Y — D, K.(Oy)), and 8 € CHy_ (Y — D), then f*(af) = f*(a) £*(8),
where f*(a) is the pull back on the sheaf cohomology induced by the pull back on the
K-theory. Hence, if X W =3, ui[Si] + 2 73,
Flowl =£{3} /W] = (31x 3 mlSil+ 30 m)
i )
=Y wildls]+Y_ = mlgls.]+d_ o7,
i j i j

which completes the proof of (2) of the theorem, and hence justifies the discussion above
for the closed immerstons.

§11.2.6. Examples

In this section, we consider some examples which explain the general discussion in a
more concrete way. Let X be a regular scheme, projective and flat over Z. Then we have

(a) CH?\r(X) = CHO(.X) = Zxo(X)
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(b) Denote by Picar(X) the group of isomorphism classes of hermitian line sheaves on
X. Then we have

Proposition. There is an isomorphism

ciart Picard(X) — CH} (X)
(L, p) = [(div(s), —[log]s|3])],

where s is a non-zero section of .

Proof. We need to construct the inverse map:

[(Z:gZ)] = CI(OX(Z)rP)-

where the metric p is given locally by the formula
|1|: =e~ i,

Here 1 is the section of £ with Z as its divisor. The other properties are obvious.

(c) We may consider X = Spec(OF) as an 1-dimensional arithmetic variety, where Op
is the ring of integers of a number field F'. In this special case, classically, we have

CHY(X) =O%;
A%0(X) =A%°(X) = @,exR;
CH'(X) =Cl(OF).

The cohomological properties of the associated arithmetic Chow groups give the exact se-
quence

v = Op LR S Pica (X)) S CIOF) — 0.

Notice that p is, up to a factor, the classical Dirichlet regulator map, hence Ker p = up, the
roots of unity of F. Furthermore, we get a arithmetic degree morphism

degAr: PicAr(X) — PiCAr(Z)=R,
ji3
dA(L,p) — log(tlzsplt),

where s is a non-zero section of £. Thus the compactness of Picy(X),
Pic§(X) := Ker degar

is equivalent to the finiteness of the ideal class group Cl{OF) together with the Dirichlet
unit theorem, i.e. p(O%) is a lattice of rank r; + 72 ~ 1 in R™*+"2. We know finally that
vol(PicS,(X)) = hr Rp, where hr is the class number of F and R the regulator of F,
respectively.
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Dually, we have- the following exact sequence in terms of cohomology theory:
{1} = w(F) — O £ R+72 2 CH}(X) £ CUOF) — 0.
Here pu(F) denotes the group of the roots of unity in F. Hence, we may also have the

identification .
CHL(X) = F\J(F)/UFr,

where J (F‘) denotes the ideal group of F and U is the maximal compact subgroup of J( K).

In this content, the arithmetic degree is given by .
dega: : CHJ,(Spec(OF)) . R, I
(Z=TimilPi)gz = {90}oex) — log#(2)+ 1 [x 9 :=log L ni#(Or/Pi)+ 3 T e 90

(d) We now discuss the Arakelov varieties. As we stated at the beginning of this
chapter, Arakelov introduced his theory for certain admissible metrics at infinity. We call a
pair (X, go) an Arakelov variety if X is a regular acheme, projective and flat over Z, and
go i3 a Kahler metric on X (C), invariant under F,,. (Arakelov only considered the situation
when X is an arithmetic surface, and gg 18 given by

i -
EZM,‘ Aw;,
]

where g is the genus of X(C), and wy,...,w, form an orthonormal basis of the space of the
holomorphic 1-forms on X, I‘(X(C),er(c)), whenever the symbols make sense.}

By the Hodge decomposition theorem, we have
APP(X)=HPP(X)®ImI D ImI™,

where HP?(X) := Ker(A4) C APP(X) denotes the space of real harmonic forms on X(C)
of type (p, p), invariant under F, up to the factor (—1)”. Recall then that there are maps

¢ : CHar(X) — CHP(X) @ ZPP(X)

given by (([(Z,9z)]) = ([Z],wz). We denote the second component by w, i.e. w(gz) = wz.
Now we may introduce the Arakelov Chow group by letting

CHam(X, g0) = w ™ (HP?(X)) C CHa((X).

There is also a Hodge decomposition for currents
DPP(X)=HPP(X)® Im8@®Ima",

and we denote by H : DP?(X) — HPP(X) the orthogonal projection. We have the following
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Proposition. With the notation as above,

(1) CHara(X, 90)  (Z7(X) ® HP=1P=1(X))/ < div(f), — HlloglfI?] > .
(2) CHarm(X, go) is a direct summand of CHa(X).

(3) There is an exact sequence

.. — CHP™IP(X) & yP=1p=L(X) & CH? (X, g0) > CHP(X) — 0.

§IL.2.7. Arithmetic Chow Homology Groups

We now show that the arithmetic intersection above may be extended to give a cap
product between arithmetic Chow cohomology and homology. These cap products are de-
scribed somewhat in the style of Fulton’s operation formalism.

First notice that the real vector space A(Xg) is a contravariant functor from arithmetic
varieties to rings without unit, where we consider the *-product: ¢.¢ := ¢ A dd*(yp) on
A(Xn). Given aclass z € CHQ"(X) and ¢ € A(Xg), we define their cap product

- ¢Nz=¢6N(2 9z) = (0,¢.92) = a(¢'w(z)).

Here we have written z = (Z, gz) and - for the product

APP(XR)® Dyri1,g-r41(Xm) — DG-P.-"+1.¢-P-r+l(XR)

which is induced by the wedge product of forms with distribution coefficients. Naturally,
we have the following '

Theorem. Given a map f : X — Y of arithmetic varieties with Y regular, there is a
unique cap product:

CHY.(Y)® CHAT(X) — CHQIP(X)Q
ye=z — vz

which we also denote by y N z, or more simply by y'z if X =Y, such that

(a) w(y.sz) = f*w(y) Aw(z), and, for any n € A(Yr), a(¢).yz = a(f*¢)Nz.

(b) CHA*(X)q is a graded CH; (Y )g-module.

(¢) fg:Y — Y’ is a map of arithmetic varieties with Y’ regular, ¥’ € CHY, (Y”’) and

Ar —(a* '

z € CHZ™(X), then v/, .z = (¢°(v'))-s=.

(d) If A : X' — X is projective, and smooth over Xg, then, after tensoring with Q,
the push-out map h. is a map of CHy (Y )q-modules.

(e) f A : X' = X is flat and smooth over F, or an l.c.i. morphism, then, after
tensoring with Q, the pull back map h* is a map of CH,, (Y)q-modules.

(f) Let i: D — X’ be the inclusion of a principal effective Cartier divisor, h : X — X’
a morphism which meets D properly, and ix : A~!(D) — X the inclusion induced
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by i. Then for any z € CHA"(X) and y € CHAY(Y), the following holds in
CHAY(|A=Y( D)) :
Yroixi () = i"(y-s2).

Proof. First we offer the definition for y.yz. Without loss of generality, we may suppose
that Y is equidimensional of dimension n.

Let £ = (V,gv) € CHq"“'(X), with ¥ an algebraic prime cycle on X. By the Chow
moving lemma, we may assume that y = (W = 3 . n;W;,gw) € CHir(Y), where each
F~Y(W;) meets V properly on the generic fiber Xr. So, to define the cap product of
arithmetic cycles, it will be sufficient to define an algebraic cycle [V].;[W] € Z,_,(X),
together with a Green's current for it. Here Z,(.X) denotes the quotient of Z,(X) by the
subgroups consisting of all div(f) for which f is a rational function on a (p+ 1)-dimensional
subvariety W C X such that W N Xg is empty.

First let us look at the algebraic cycle side. We may use the K-theory description
discussed in the first chapter: In practice, we shall produce this cycle in the group CH,_,(VN
f~Y(IW)))q, which maps naturally to Z,_,(X), since each f~!(W;) meets V properly on
the generic fiber Xp.

Since Y is regular, [Ow,] € K¥(Y), and hence f* [Ow_.]'e K;,nf—l(w‘)(X). So we have
£ [Ow.]N[Ov] € K%V N f-1(W;)). But by Chapter 1, we know that

K°(V 0 f~1(Wi))q = @r20CH(V N £~ (Wi))a,

where
CH.(V N f~Y(Wi))q = Gr. K (V N 71 (W)))q.

Thus it is sufficient to show that
FOw]N[Ov] € Fp KOV N f7H(Wi))q.

For this, by the fact that X is quasi-projective, we can factor f as 7oi, where 7 : U — Y is
the smooth projection from a Zariski open subset U of P%, and ¢ is a closed immersion. By
the associativity of the tensor product, f*[Ow,] N [Ov] can be calculated in the K-theory
with supports of U, i.e. via the isomorphism FN~ KY¥(U)q ~ F.Ko(V)q, where N is the
dimension of U, and F" is the filtration induced by the codimension support as in Chapter
1. The assertion about the cap product cycle now follows from the multiplicativity of the
filtration by codimension of supports on K-theory with rational coefficients for a regular
scheme stated in Chapter 1.

Next, we consider the construction of the associated Green's current. Let 17(C) be a

resolution of singularities of V(C), and let & : V(C) — X(C) be the map induced by the
inclusion V « X. Then, as before, since W; meets f properly over F, the current

bv A f*(gw.) == k((f oK) (gw.))
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is well-defined if we choose for gw, a Green’s form with the logarithmic growth along W;(C).
By section 2, such a choice always exists after adding an element of the form &(u) + 8(v).
We now set

(Vigv)- 1 (Wi gw.) := ([V]1[Wi], 8v A [ gw, + gv Aww),

which is an arithmetic cycle.

As usual, once we have a definition, we need to check that if it is well-defined. In
this case, just as in section 4, we have to consider the problem at the K, level. Suppose
that z = (V,gv) with V a subvariety of X, as abovesand that (W,gw), (W' gw') are
arithmetic cycles on X, representing the same class y € CH, (Y} and both meeting Vr and
fr properly. Then, there is a K;-chain ¢, which meets Vr and fp almost properly, such
that

(W, gw) — (W', gw+) = divac(¢).
Furthermore, we may assume that ¢ = [Z] {¢} with ¢ a rational function on Y, the divisor
of which meets Vp and fr properly, and which is a unit on any component of f~!(Ve)NWpr
for which f~}(Vr) N Wr has the excess dimension. Thus (V,gv).sdivac(¢) = divar(e),
where ¢ is the K)-chain on X which is equal to ([V].;[Z]) f*(&).

Similarly, if (V,gv), (V’,gv+) are representatives of z, we can write

(Vr gV) - (V'.gv') = diVAr(¢),

where ¢ i8 a K;-chain on X. By the Chow moving lemma for Kj-chains and the fact
that the cap product is independent of the choice of representative for y, we can choose a
representative y = (W, gw ), with Wr meeting fr and ¢p properly on the fiber over F. As
before,

((Vigv) = (V' gv1))-1 (W, gw) = divac(é.,[W]),
where the Ki-chain ¢.;[{W] is defined by the cap product

K'(1¢] - [div(8)) ® K5 (V) — K ((I¢] = ldiv(e) ) n =1 (1W])).
Hence we see that the cap product above is weil-defined.

Now we turn to the proof of the properties. Almost all of them are direct consequences
of the definition. Here we give only a rough sketch, and leave the details to the reader.

First, (a) follows immediately from the definition. For (b), we assume that z, y and ¢/
are represented by arithmetic cycles (V,gv), (W, gw) and (W', gw) respectively, such that
W and W' meet properly on Yp, meet fr propertly, and f~}(W), f~1(W’) meet V properly
on Xp. Then the required associativity is a consequence of two facts: First, we have the
following identities in D'(Xg)

gv * [ (gw xgw:) = gv « (f" (9w ) * f" (9w 1)),

and

gv + (f (gw) * £ (gw)) = (gv * f*(gw)) * f*(gw ).
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Second, the product on K-theory with support is associative, which follows from the asso-
ciativity of the tensor product.

The proof of (c) for Green’s current comes from the fact that if we represent the classes
z and y by arithmetic cycles (V, gv) and (W, gw) for which the associated algebraic cycles
intersect properly, then the pull-back (f’ o f)*gw and the product gy * (f' o f)*gw are
both defined using pull-backs and wedge products of smooth forms with the logarithmetic
growth, and hence are functorial and associative. For the cycles, we just appeal again to
the associativity of the tensor product.

For (d), the proof for cycles uses the projection formula for A-theory, while for Green’s
currents, assuming proper intersection and representing Green’s currents by forms with the
logarithmetic growth, we are reduced to the projection formula for the integration of smooth
forms over the fibers of a proper smooth map. So it is rather natural.

To prove (e), we suppose first that A is flat. Let z = (V,gv) € CH"(X) with V a
prime cycle, and let y = (W, gw) with W a prime cycle meeting Vg properly. It follows that
W also meets h~!(Vr) properly. The equality h*(gv) * f*(gw) = h*(gv) * (f o h)*(gw)
follows from Theorem 5, and the fact that the pull-back does not destroy the property of
being of logarithmetic growth, so that (f o h)*gw = A* o f*gw at the level of forms. Next
we check that there is equality of cycles

h*({V]1[W]) = (A~ H(V)]. sen[W)
in CHy—pya (A~ (V)N (fo h)‘l(W))q. This is obtained from
K (OvIN £ [Ow]) = (Ol N(f 0 h)*[Ow] € Fopra K (A1 (V)N (fo h)™H(W)) g
by the associativity of the tensor product and the flatness of h.

If h is an L.c.i. morphism, since a smooth map is flat, we only need to consider the case
of a regular immersion A ; X’ — X. Again the equation of Green’s currents follows from
the regular case, since X and Xp are smooth. For cycles, we use the compatibility of the
pull-back on cycles via deformation to the normal cone with products on K-theory, which
may be verified by embedding the whole deformation of the normal cone family in a regular
variety.

Finally, by definition, with a process as above, we have (f).

As expected, we also have a projective formula for this cap product.

Proposition. Let f: X — Y be a map of arithmetic varieties with Y regular, and
suppose p : P — Y is a proper smooth map of arithmetic varieties of relative dimension
d. Then if we write f, : X xy P — P and py : X xy P — X for the projections, i.e.

XxyP &5 p
psl lp
X Ly

k)
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we have, for all @ € CHA'(X), v € CH}(P),

pr+(Py(a).4,7) = asp.(7).

Proof. Suppose that o (resp. 7) is the class of the arithmetic cycle (Z,gz) (resp.
(W,9w)), where Z and W are prime cycles which are flat over the base. (If not, the
statement is purely algebraic, see below.) We assume that gz and gw have logarithmic
growth along Z(C), W(C), respectively, and by the Chow moving lemma, that the closed
sets fP_I(Wp) and p;l(Zp) meet properly in (X xu P).p. When dimp(Wr) # dim (Wr),
the cycle p.(W) is zero by definition of p. on cycles. Then any fiber of the natural map
p: W — p(W) has positive dimension, and hence the same is true for any fiber of the map
pr: p;l(Z) N fp‘l(W) — Z N f-YW). It follows that in this case the cycle component of
both py .(p} (a)-7,7) and c.;p.(7) vanish for the choice of representatives of a and y. On
the other hand, when dimp(Wr) = dim (Wr), by the transversality assumption we know
that any component of p;l(Zp) N f;'(Wr) is generically finite over its image, and that
the component of py (p}l(Zp) N f;Y(WF)), which is just Zp N f~1(p(WF)), has the same
dimension. Furthermore, their muiptiplicit.iai are equal by the Tor formula and the projection
formula, since p; and p are smooth. Thus, for the algebraic cycle side, we need to show that
the cycle classes p;y.(p}[Z] ;,[W]) and [Z] ;p.{W] are equal in the algebraic Chow group
CH.(ZN f~Y(p(W)))q. Since the cap product on Chow homology is defined using algebraic
K-theory, this follows from the identity of the derived functors Lf* Rp. = Rq. Lg*, i.e. the
base change for direct images in K-theory with supports, say Proposition I11.9.3 [Ha 77].

For the current side, we only need to note that the equality of currents

pr«(p3(92) * f;(gw)) =ps.(p}(62) f; (gw) + P} (92) f; (ww))
=6z py(f(aw)) + 9z 97 (f; (ww)) = 92 * ps o (f; (gw)),

when tested on compactly supported forms of the appropriate degree, is an equality of indef-
inite integrals on the open set X(C) — (Z(C) N f.‘l(p(W(C)))), except when p(W(C)) =
M(C), in which case the statement is easily checked. Thus, the projective formula stated

in the proposition follows from the fact that integration of forms along fibers of p and p;
commutes with the base change by the map Z(C) — M(C). This completes the proof.
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Chapter I1.3 ~
Arithmetic Characteristic Classes

In this chapter, we will introduce arithmetic characteristic classes by certain axioms,
which are very similar to the axioms for characteristic classes in algebraic geometry. As one
may imagine, the corresponding concept in arithmetic geometry for vector sheaves is that
for hermitian vector sheaves. The arithmetic characteristic classes attached to an hermitian
vector sheaf are the arithmetic cycles in the arithmetic Chow ring.

However, for hermitian vector sheaves, since the corresponding characteristic form as-
sociated with an exact sequence in complex geometry usually gives the classical Bott-Chern
secondary characteristic form, and the Chern characteristic class gives the natural isomor-
phism between the algebraic K-group and the algebraic Chow group, thus it is quite natural
to define the hermitian K-theory as the quotient group of the free abelian group generated
by hermitian vector sheaves and smooth {p, p) forms by a subgroup generated by exact se-
quences and cortesponding classical Bott-Chern secondary characteristic forms. We prove
that the arithmetic K-group also providea a A-ring structure which is isomorphic to the
arithmetic Chow ring, but with Q coefficients. If we only consider complex manifolds, all
of this may be thought as a refined version of the corresponding results at the level of
differentials. Essentially, this chapter comes from [GS 91b].

§I1.3.1 Arithmetic K-Groups

Let X be an arithmetic variety over an arithmetic ring A = (4, L, F). A hermitian
vector sheaf on X is a pair (£, p) where £ is a vector sheaf on X, and p is an Fo-invariant
hermitian metric on the pull-back vector sheaf of £ over X(C). Then we define the arith-
metic K-group Ka.(X) as the group of the free abelian group generated by ((£,p), n),
where (£,p) is a hermitian vector sheaf on X and € A(XR) is an Fep-invariant C*° form
on X(C) modulo the subgroup generated by the following relations: For any short exact
sequence of vector sheaves on X,

E.: 0—‘81-—'82"*53—'0,
let p; be F -invariant hermitian metrics on the pull-back of & over X(C), then

((€1,01),m) + ((E3,p3), m3) = ((E2,p2), ~chBc(E., p1, P2, p3) + M1 + M3)-
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Here chpc(€, p1, p2, pa) denotes the classical Bott-Chern secondary characteristic form as-
sociated with the hermitian vector sheaves complex on X(C) corresponding to the exact
sequence £. on X with respect to ch.

The aim of this chapter is to define an arithmetic Chern characteristic class
char : Kac(X) — CHAr(X)q

and to introduce a A-ring structure on Kar(X ) such thawchy, is a ring-isomorphism. To do
80, we first need to introduce the concept of arithmetic characteristic classes for a hermitian
vector sheaf on X, which will be constructed by using certain axioms and the universal
property of Grassmannians.

As an example, recall that at the end of the last chapter, we introduced the first
arithmetic Chern class for a hermitian line sheaf: Let (£, p) be a hermitian vector sheaf
on an arithmetic variety X. Then for any non zero section s of £, by the Poincaré-Lelong
equation, we know that (div(s), —[log|s|3]) is an element of CH} (X). Define car,1(L,p) as
the class of this element in the arithmetic Chow ring. In general, by the universal properties
of Grassmannians, we may split any vector sheaf. Thus, by functorial properties, and hence
define the arithmetic characteristic classes.

I1.3.2 Axioms For Arithmetic Characteristic Classes

Let B be a subring of real number field R, and let ¢ € B[[T}, ..., T]] be a symmetric
power series. The arithmetic characteristic class associated with ¢ will satisfy the following
axioms:

To every hermitian vector sheaf (£,p) of rank n on X, there exists an arithmetic
characteristic class

éar(€,p) € CHAL(X)B
such that

(1) Functoriality: For any morphism f : Y — X of arithmetic varieties,
f‘(¢Ar(£v P)) = d’Ar(Jﬂgv f‘P)-

(2) Summation Rule: If (£,0) = (£1,21)® ... ® (Ln,pn) 18 an orthogonal direct
sum of hermitian line sheaves,

¢Ar(£yp) = ¢(0Ar,1(51.P1), ves scAr,l(Cmpn))-
(3) Product Rule: Let ¢; be defined by

JN+T,... . To+T) =) &(Ty,..., To)T
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Suppose that {£, 7) is a hermitian line sheaf on X, then

.¢Ar(£ ®LPA®T) = Z ¢i,a:(€, p)car (L, 7).

(4) Forgetful Rule: In A(XRr), we have -

w(¢Ar(£! P)) = ¢(£00 ' P)

The first main result in this chapter is

Theorem. With the same notation as above, there is a unique way to define ¢ (€, p)
which satisfies axioms 1-4.

There are several methods to prove this theorem, all of which have their roots in -
algebraic geometry. But basically, to do this, we need a kind of splitting process. Just at
this stage, we may have its diversity: we may use the Grassmannians, or we may use the
projective bundles. For the first, we need to take the pull back; while for the second, we
need to consider the push out. Here we shall only discuss the first method, as it is more
in keeping with the axioms. We will give a brief discussion later of the second method in
terms of arithmetic Segre classes.

The proof will be given in the following several sections. The basic idea is as follows:
Let f: X — Y be a map of complex manifolds, and £ a vector sheaf on Y. Then the pull
back f*£ is a vector sheaf over X. As a consequence, if the Chern classes of £ vanish, so
do those of f*£ by the functoriality. Thus we may think of the Chern classes as & measure
of the twisting of a vector sheaf, and we show that the pull back "dilutes” a vector sheaf,
i.e. makes it less twisted. One extreme example is when f is constant, in which case, f*£ is
trivial. Another example is the flag construction Flag{£) of £. (In this case, the pull back
of £ on Flag(€) splits as a direct sum of line sheaves.) Now naturaily, one may ask if there
exists a vector sheaf that is so twisted that every vector sheaf ig a pull back of this universal
vector sheaf. Such a vector sheaf does exist, at least for manifolds of finite type: it is the
universal quotient vector sheaf on the Grassmannian.

From this later discussion, we may first define the arithmetic characteristic classes for
the universal quotient bundle on the Grassmannians. Then we use the universal properties of
this data to deal with the general situation by the pull back. This is quite natural following
Axiom 1. Finally, we have to prove that the definition does not depend on the data we use
in the construction.
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§I11.3.3. The Construction On Grassmannians

I1.3.3.a. The Definition Of The Grassmannian In The Complex Case.

Let V be a complex vector space of dimension m 4 n. The Grassmannian G(n,V) is
the set of n-dimensional linear subspaces of V. We write G, , for G(n, V); obviously, Gm n
is a complex manifold. By the Plicker imbedding, we know that in fact Gom » is a projective
complex manifold.

Let C™*" x Gm n denote the trivial vector bundle of rank m + n over G . We define
the universal subbundle § — G, ,, whose fiber at each point A € Gmn is just the
subspace A C V. Then S is clearly a holomorphic subbundle of C™*" x G, 1. The quotient
Q = (C™*" x G, n)/S is also a vector bundle, which is called the universal quotient
bundle of G n-

Proposition. Let £ be a vector sheaf of rank n over a complex manifold X. Suppose
there are n + m global sections of £ which span the fiber at each point. Then there is
a map

f: X = Ga(C™™),

such that € is the pull back of the universal quotient bundle @ via f,i.e. £ = f*Q.

Proof. Indeed, if sy1,...,8,4+m are n spanning global sections of £, we let V be the
complex vector space with basis 81, ..., 8,4m. Then, for each point z € X, the evaluation
map

eve: V — &,

is surjective. Hence Ker ev, i8 a codimension-k subspace of V', and the fiber of the universal
quotient bundle Q at the point Kerev, of the Grassmannian Gi(V) is V/Kerev, = &.. If
the map f : X — Gg(V) is defined by

f:z— Kerev;,

then the quotient bundle @ is a pull back to £.

11.3.3.b. The Algebraic Aspect Of The Grassmannians

Let A be an arithmetic ring. For any two positive integers m,n, let G = G pn =
Grass,,(O’S"pt& 4)) be the Grassmannian over Spec(A) representing the functor which asso-
ciates with each Spec(A)-scheme T the set of rank n locally free quotients of OF*".

We consider some properties of G. Assume m = ¢n with ¢ > 1. Let P := (G,,1)"” and
u: P — (G be the map given by the direct sum. There is a natural action of the symmetric
group S, on P by permuting the factors.

Lemma. 1. Assume p < ¢, then p induces an isomorphism

u* : CH?(G)q — CHP(P)g .
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2. If we endow the natural U/(m + n)-invariant metric on G,(C), then as Arakelov
varieties, we have a natural isomorphism

u 1 CH(G)q — CHYL(P)Y-

Proof. We may assume that A is Q by the universal coefficient principle. In fact, for
any Grassmannian G over Z with dimG > 0, there exist Grassmannians G’ and G" such
that dimG’ < dimG > dim G” and there is a closed immersion ' C G such that G = G’ is
an affine bundle over G”. Thus we may use induction on the dimension to prove that, for
any product of Grassmannians X, the morphism *

CH(Xz) — CH(Xq)
is an isomorphism; that the canonical morphism
CH(Spec(4))q ® CH(Xz)q — CH(Xz ®z A)q
is an isomorphism, and that the canonical morphism
Bp>1CHPP~}(Spec(A))q ® CH(Xz) — @p»  CH P~ (X7 xz A)q
is an epimorphism. Therefore, we may assume that A is Q.

The first assertion is a consequence of a direct calculation. Let £, be the line bundle on
P defined by the pull-back of the universal quotient bundle on Gy 1 by the a-th projection,
Zo = ¢1{Laq) € CH'(P) and let ¢; be the i-th Chern class of the universal quotient bundle
of rank n on G, then

CH(P) = Z{z\,...,z.}/(23",. .., 28t)
and
CH(G) = Z[cy,...,cnl/Z,
where the ideal I is generated by elements of degree greater than q. Now by the fact that

p*(c;) is the i-th elementary symmetric function of the z,’s, we have the first assertion.

For the second assertion, we use the five lemma applied to the exact sequence associated
with the Arakelov Chow groups.

[1.3.3.c. The Construction of ¢a:(Qmn,pPmn).

Let Qm . be the universal quotient bundle on G = Gm,n, endowed with a U(m + n)-
invariant hermitian metric. Suppose that m = gn and ¢ > deg¢. Let u: P = (Gy1)" = G
be the direct sum morphism. Then the pull-back of (Qm n, pm ) by ¢ splits as an orthogonal
direct sum '

P.(Qm.mﬂm.n) ={(L1,p)® ... 8 (Ln,pn)-
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Since w(car,1(La,Pa)) = ¢1(Laco,Pa) 18 Sn-invariant, ¢(car1(L1,p1), ... car1{(Ln,pn)) of
CHpa(P)pg lies in CHA,,(P)g". By base change, we may assume that A 18 Z. Note that
since the degree of this element is at most q, therefore by Lemma b, there exists a unique
class,

¢Ar(Qm,n;Pm,n) € CHAm(Gm,n)81

such that
P‘(‘#Ar(Qm,um.n)) = (b(cAr,l(LlaPl)s veey CAr,l(LmPn))-

So we have a construction of ¢ar(Q@m.n,Pmn)- "

Before going further, let us consider some properties of ¢ar(Q@m.n, Pmn)-
Properties. (1) Let i : Gmn “* Gmyn,n be the canonical inclusion. Then
‘.’(¢Ar(Qm+n,n;Pm+n,n)) = ¢Ar(Qm,um,n)-

(2) Let 4 : Gm,ny; X Gmany — Gmn be the direct-sum map, where m; = ¢n;, mg =
gna, m = my + mg, and n = n; 4+ ny. Define ¢, o by

$(Th,.... Ta) =D balTr, .., Tn)Pa(Tnst1, - -, Tn)-

We have

P. (¢‘Ar(Qm.n s Pm.n)) = z ¢a,Ar(Qm1,ﬂl y Pmy 0y )‘Pa,Ar(Qm,,n, ' Pm,,n,)-

(3) Let m" =mm’+nm'+nandlet v:Gmpn X Gty = Gy be the map induced
by the tensor product. Then .

V.(¢Ar(Qm”,n)) = Z ¢i,Ar(Qm,n ’ pm,n)cAr,l (Qm‘,l 1 Pmt 1 )‘-

i20
(4) Let g € GLm4n(A). Then

g‘ ¢'Ar(Qm,um.n) = ¢Ar(Qm,um,n) + ¢BC(Qm.n; Pm,n, Q'Pm,ﬂ)v

Proof. The first three properties come from the following commutative diagrams:

(Gen)® = (Gggr))"”
Bl ln
Gm,n - Gm-i-n,n;

(Ge1)™ X (Ge)™ B (Gea)”
pxpl I p
Gmyny X Gmging 4 Gm,n;
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and _
(Gq.l)n x Gm’,l = (G!',l)ﬂ
px1] lp
Gm.n X Gm‘,l i’ Gm“,n-

Here we let r:= gm’ +n’ + 1. vskip 0.30cm For (4), let

C(g) = ”Q‘QSAr(Qm,m Pm,n) + d’Ar(Qm,m Pm,n) + ‘f’BC(Qm,rﬁ Pm,mg.Pm,n)-

Since g acts trivially on CH{G, »), we see that z(c(g)) 2 0 and w(e{g)) = 0. Thus c{g) lies
in the image of @, H??((Gm n)r). On the other hand, for any two elements g, g,, we have

c(g192) = c(g1) + gy c(g2).

Since the action of GL on the cohomology is trivial, we have

c(g192) = c(g1) +c(g2).

But c is trivial on the commutators, so we have ¢ = (.

11.3.3.d. The Construction In General.

Let X be an arithmetic variety over an arithmetic ring A. Let (£, p) be a hermitian
vector sheaf on X. Since X is quasi-projective over Spec(A), there are ample line sheaves
on X. In particular, there exists a line sheaf £ on X such that F := £ ® £ is spanned by
its global sections. Let { : OF*™ — F be an epimorphism with m = gn,q > deg(¢). By
Proposition a for G n and @m n, we know that there exist a morphism

f: X — Gm.n
over A and an isomorphism
I (Qmun) = F.

Choose an arbitrary metric 7 on £ and let p' be the metric coming from the isomorphism
E > [*(Qmn) ® L. We define

¢Ar,£,1’,{(£s p) = 2 f‘(¢i,Ar(Qm,n| Pm,n))cAr,l(Cy T)i + ¢BC(gocyP,| 7).

i0

In the following, we prove that the above construction does not depend on the choice
of (£, ) and {. In fact, this is a consequence of the properties of ¢a-(Q@mn,omn) listed in
subsection c.
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§11.3.4. The Independence Of The Construction

I1.3.4.a. The Independence of (L, p).

First note that since the Picard group of X is generated by these line sheaves which
are spanned by their global sections, it is sufficient to check the assertion for them.

Let £' be another line sheaf on X and let {’ : 0}"“ — L® (L)' be an ‘epi-
morphism. By definition, there are the morphism f' : X — G, and an isomorphism
L'~ (f)(Qm:1)"' ® L. Choose a metric on L' such that the above isomorphism is an
isometry. Let ' = F ® L® (L')~!. Then { ® {’ dominates F’ and defines an isomorphism

}" = (f ® f')'(Qm",n)-
Here f @ f' is the composition of the morphism v defined in the proof of Property (3) in
subsection ¢ with the direct product f x f’. Choose the metric on F’ so that the above

isomorphism is an isometry. Then, by a similar process, we have the construction for
Sar,ce,r (o (£,p). Next we prove that

¢Al‘,£",‘r',{@{'(£v P) = ¢Ar'£‘f|{ (g, p)

Since F ® L ~ F' ® L' is also an isometry for the associated metrics, we may assume that
£ = F ® L even with metrics. Thus, we have

¢Ar,£‘,r’,{®{'(£v P) = E({ ® {’)-(¢t’.Ar(Qm",mPm“,n))(cAr,l(Acfy f’))'

i20

Thus, by axiom 3, which may be checked independently, we have

¢Ar,£",‘r',{®{'(£’p) = 2 f‘ (¢l'jAr(Qm,nvPm,n))(fh(cAr,l(Qm',l'Pm'.l)))jcAr,l(‘C'spl)‘-

120

Here ¢;; is defined by

(T +T,.... Ta+T) =Y ¢ij(Th,..., To)T’.
j20

Thus we have,
$(Ti+T+U,... Ta+T+U) =) &(T1,.... T) T+ V)
i
=S (M +T,..., T, + T)U'

= Z ¢ij(Th, ..., Ta)TVU".

1,20
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But
car1(L,7) = cart (L") + [ (cac1(Qms 1, pmr 1))
It follows that

¢Ar,£’,r’,{®{’(£y P) = Zf"ﬁiAr(Qm,n:pm.n)(cAr,l(Lv r))i = ¢Ar,£,f,{(£,p)'

Finally the dependence of the metric T may be checked directly.

»

11.3.4.b. The Independence of {.

With the same notation as above, let {’ : O}"“‘”" — F be an epimorphism with m’ =
¢'n,q¢' > deg¢. Then we have a morphism f' : X — Gpnn and an isomorphism F =~
(f').(Qm",n)- We show that

Barc,((€:0) = darc,((€,p)-

First, we have

Zf.(é‘.Ar(Qm,nvpm,n))cAr,i(cy T)" - ¢BC((£: P) nd f.(Om,n'pm,n) ® (‘:, 7'))

i>0

=" £(65,a(Qmins P in))cara(£,7)° = $BC((E, ) — £ (Qmin, Prmin) ® (£,7)).

i20

By the result about classical Bott-Chern secondary characteristic forms in 1.1.4, we know
that

¢BC((£vP) - f.(Qm,um.n) o (E, T)) - ¢BC((£vP) - f.(Qm.nan.n) @ (ﬁ, T))
=¢BC(f,.(Qm'.mpm'.n) ® (£s T) - f.(Qm,m Pm,n) ® (‘c, T))

= 3 é8c(f"(Qmins Pt in) = F(Qmn, Pmin))er(L, 7).

i>0
Hence it is enough to prove
f.(¢Ar(Qm.nvpm.n)) = f'.(¢Ar(Qm’.nt Prn'.n)) + ¢BC(I'(Qm,um.n) - f'.(Qm‘,nva',n))‘

To do this, we use properties 1 and 4 for ¢ar(@m n; Pm.n) in subsection c: Since O}”’" and
O *" are free, we may choose morphisms

i/ !
a: Ot Ot 3.0t — Op*"

such that { = {{oa and {! = {0 8. Thuson O%*" @ O;""", the automorphism

_(1-pa B
=('2 )
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and the composition of the projective morphisms
(:optreoptr woptr L r

c(ioptrgoptt —opt L
satisfy the equality
(og={(.

Let m' = m + m' 4 n, then we have

Gm,n i Gm",n

ft &/ 1
X g
P SN !

G R - G e
Therefore, we have

f‘(¢Ar(Qm,nvpm,n )) - f“(qt’Ar(Qm’.m Pm'.n))

=h.f- (¢Ar(Qm“ Y Pm“,n)) - h'*f'.(‘ibAr(Qm“,m Pm“,n))
=h*(¢nc(9))
=¢BC(f.(Qm,m Pm,n) - f“(Qm‘,m Pm".n))-

So far, we have already shown that the arithmetic characteristic class associated with ¢
defined in subsection 3.d does not depend on the various data used in the definition. Hence,
we may denote it by ¢ar(€, p).

We next check the axioms step by step.

§I1.3.5. Checking The Axioms

I1.3.5.a. The Functorial Property.

Let ¢ : Y — X be a morphism of arithmetic varieties and let (£, p) be a hermitian
vector sheaf on X. With the same notation as in the definition, we have

¢Ar(‘p'(£y P))
=Y (fo9) ($iac(@mn: pmin))eari (" (£, 7))

i>0

—éBc(P'(E,p) = ©"(F, " pmn) ® ¢*(L, 7))

Thus the result now follows from the functorial properties of ca(,1 and ¢nc.
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11.3.5.b. The Additive Rule.

Let (£,p) = (£1,71) ® ... ® (Ln, 7). Choose a hermitian line sheaf (£, 7) such that
forevery j=1,...,n, £; ® £~! is spanned by its global sections. Choose epimorphisms
{;: 08" — L£; ® L. Then

. L;i®L !~ fi(Qq)-

So F :=@;L; @ L is classified by f = po(f;), where
p:(Ge)" = GCGmpn »
is the direct sum morphism. Taking the associated metrics, we have

¢Ar(£sp) .
=3 £ ($iac(Qmin, Pmn))ear1 (£, TY = 8Bc((€,0) = (F, f pmn) ® (£,7)).

i>0
But

f—Qsi,Ar(Qm,n,Pm,n) =(.fj‘)f~“ ¢i,Ar(Qm,n|Pm,n)
=(fj.)¢i(CAr,l(Qq.lu Pa1)s--- :cAr.l(Qq.lqu.l))
=@i(car (L1 ® L7, f1pga )1 Cart(Ln @ L4, frpg))-

By definition,

Z¢i (cart{Ci® L7 fypai)r---rari(La ® LY, frpga))car1(L, )

i>0
=¢(car (L1 @ L7, f1pg1) + cart(£,7), -« cae1(Ln ® L71, fapgn) + carn(L,7)).

Note that since

cart(£; ® L1, f]pga) + caca(£,7)
=car1 (L ® L™ L, f{pg1 ® 7)
=car1(£j,75) +c1pe((L5,75) = (L @ L7 ® L, [ pg1 ® 7)),

we have

Blear1(Cr @ LY, fipg 1) - reart(La ® L71, frpen))
=¢(car1(L1,71)s- -1 car1(Lny Tn))

+ Ztﬁ(m(ﬁl,n).---,61(51-1-Ti—l):Ct,BC((‘Ci,T;‘) = ((£;®LY®L f{pe1®T7)),
: ‘

a1 ((Ej-H @ C—lr fj‘-i-lpq,l) ® (’C! T))v v €1 ((Eﬂ ® E-lv f;Pq,l) ® (cv T)))
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The properties of the classical Bott-Chern secondary characteristic classes in 1.1.4 again
show that .
¢(CAI‘.1(£1 @ L~ 1 fl-pq.l)v s CAr (cn ® 5-1) f;Pq.l))

=¢(car1(L1,71),- - cari(Ln )
+¢8c((£,p) = (FRL,®;f{pe1 ®T)).
Therefore, we have

¢Ar(8, P) = ¢(CAI‘,1(£1|T1)1 - :cAr,l(Ern T'n))-

[1.3.5.c. The Product Rule.

Let £ and £ be the same as in Axiom 3. We assume first that 7 = £® £~} is spanned
by its global sections. We have

dar(,p) = Z:(ﬁi,.\r(f, S pmun)eart(L,7) — ¢c((€,p) = (F. £ pmn) ® (L,T)).
But
¢BC((81F’) - (}'x f-Pm,n) ® (L‘»T)) = Z:¢i,BC((£1P)® (E, T)-l - (f) f.Pm,n))cl(‘ClT)i‘

Hence, we have

dac(€,p) = Z $iac((€,2)® (£,7)"earn (L, )
as required.

In the general case, we choose a hermitian line sheaf (£’,7') such that £ ® £L @ £'~!
is spanned by its global sections. Now applying the result above to £ ® £ and £, £ and
L ® L', respectively, we have

oar((£,0) 8 (L,7) = T binrl(E.) @ (£,7) @ (£, 7) enra(L) )

and

¢i,Ar((£| P) @ (l:, f) ® (E’: T’)-l) = z ¢l’j,Ar(£: P) CAr,1 ((‘Cv T) ® (E'v T')-l)j'
i

Thus, as in 3.4.a, we have

$ac((£,9) @ (£,7)) |
= 3 biarl,0) (eans ((£,1) @ (€,7) ) + eara(L', 7))

= Z i,ar(€, pYeara (L, 7).
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[1.3.5.d. The Forgetful Rule.

Since

W (¢'Ar(0m,n ) Pm,n)) = ¢(Qm,n ) Pm,n):

we have
w(dac(€,p)) = Z F 6i(Qmn, pmin)er (L, 7) + dd*dpc(E; 0, f™pmn @ T)

=¢(f-(Qm,m PM.n) & (['; 7')) + da.quC(g; 2 f‘Pm.n ® T)
=¢(¢, p)-

I1.3.5.e. Uniqueness.

Since ¢ar(Q@m,n,pm,n) is unique, hence the uniqueness is a direct consequence of the
following

¢Ar(£y P) - ¢Ar(8rp’) = ¢BC(£;P;P’)'

This will be proved in establishing some further properties of arithmetic characteristic classes
in the next subsection.

11.3.5.f Properties of Arithmetic Characteristic Classes.

The most important properties of arithmetic characteristic classes are found in the
following

Theorem. (1) z(a:(€, p)) = 6(€) € CH(X)5.
(2) Let
E: 0—=& —E—E—0

be an exact sequence of vector sheaves on X. Put F,-invariant hermitian metrics
pion & fori=1,2,3. Then

Pac(€3,p2) = dac(&1 @ €3, p1 B pa) + a{dec(E., p1, P2, p3)).

(3) Let n = ny + n; and define ¢,, v, by

$(T1, . Tni Uty Uny) = D 8alTh, .., Ta)PalUts -, Uny)-

Then
dac(&1 @ Fa,p1 @ pa) = Z¢a,Ar(51,P1)¢a,Ar(53,Pa)-
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(4) Let n = niny and define ¢5, pp by

ST+ UL, T+ Uz, Tny +Uny) = D 8p(Th, .., T )@s(Us, -, Uny).
B

Then .
PAcE1 ® E2,01 @ p2) = D _ 8p(E1, p1)p5(E2, p2)-
5

The proofs of (1), (3) and (4) can be deduced from the definitions. For (2), we use
the Pl.deformation technique. By the construction of the classical Bott-Chern secondary
characteristic form associated with £. in [.1.2.b, with the same notation, we have

iad’m(Dgz, Dpz) - 3';°¢Ar(D£2. DP?) = a(_ /Pl w(d’Ar(gmﬁ?))]og‘z]z)-

Therefore, we have our result by the functorial property .

§11.3.6. Arithmetic Chern Characteristic Classes.

11.3.6.a. Main Results

We prove in this section the fact that cha, induces an isomorphism between the arith-
metic K-group and the arithmetic Chow group, but with Q-coefficients. The result is the
following

Main Theorem. Let X be an arithmetic variety over an arithmetic ring (A, E, F,).

Then there is a natural A-ring structure on K. (X) such that if we denote by K 2’2 (X)
the eigenspace of the associated Adams operator ¢* with eigenvalues k7, then,

char : KP)(X) — CHR (X)q
is an isomorphism for all p > 0.

The basic idea to prove this theorem is to use the five lemma. We know by Chapter 1
that there exists an exact sequence

.. = @p3 1 CHP?~1(X)q — A(XR) — CHar(X)q — CH(X)q — 0.
Therefore it is natural for us to prove the following

Theorem. For any arithmetic variety X over an arithmetic ring (4, Z, o), there is a
natural exact sequence

.. = Ki(X)q — A(XR) = Ka(X)q — K(X)q — 0,
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and a natural local Chern character
ch : K1(X) = @51 CHP?~}(X)q,
such that the following diagram is commutative:
o Ki{X)q — A(XR) — KadX)q — KX)q — 0
: ch | ] char | ch |
.= @p»1CH?P Y (X)q — A(Xn) — CHalX)q — CH(X)q — 0.
In particular, we see that cha, is an isomorphism.

We prove this in the following several subsections: It is a direct consequence of the
exact sequence of the higher K-theory associated with a fiber space.

11.3.6.b. The Construction of A Fiber Sp_ace

We consider an exact sequence for the arithmetic K-group. Let P(X) be the category
of vector sheaves on X. Define a simplicial set G(X) as follows:

Let {n] be the standard ordered set with n + 1 elements,
[nl:={0<1<...<n}

We view [n] as a category. Let Ar[n] be the category of maps in [n}. Denote by F(X), the
set of functors
P : Ar[n] — P(X)

such that:

(1) For every i < j <k, the sequence

0 — P(i,j) — P(i,k) = P(j,k) — 0

18 exact;

(2) If i > 0, P(i,i) = 0.

We may think of P € F(X), as a sequence of inclusions

Po— P —...— Py,

where P, = P(i,0) and P(i,j) = P;/P; in P(X).

Now define-G(X), as the set of pairs

(P|Q)= ((P01QO)_'(P1|Q1)-’--‘_‘(Pnson))
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in F(X),, together with isomorphisms
P(i,j) = Q(,7),¥i > 0

which are compatible with'the maps

P(i,j} — P(k,1), QG,j) — Q(k,1),
for i < k and 0 < 7 < I. There are natural face maps
dy : G(X)n — G(X)n-1s
and degenerate maps
51 G(X)n-1 — G(X)n,

for 0 € k € n,1 <1< n—1. The direct sum gives a composition law on G(X). Thus one
can check that x,,(G(X)) gives another description of K,(X) in the sense of Quillen [GG].

We now formulate an arithmetic analogue Ga{X) of G(X). Put an Fg invariant
hermitian metric on every vector sheaf in P(X). Let Gx.(X), be the set of triples (P, @, n)
with (P, Q) € G(X)n and N

n= (rmr ce+s7n) € A(XR)H-H:

such that, foralli=1,...,n,
-1 — 1 =chpc(0 = (Pie1,pi-1) = (Pi, i) = (Pic1i, pi-1,6) — 0)

— chpe(0 = (Qi—1, 1) — (Qiy 1) — (Qi-1,iy Tic1,i) — 0)
= chpc((Pi-1,i) Pi-1,i) = (Qi-1,is Tim1,3))-

The face map
di : GAr(X)n - GAr(X)n—l

sends (P,Q,n) to (ds(P,Q),de(n)) with

(Ul'---.ﬂn)v lfk=0;
de(nmo, ... 1) = ¢ (Moy -y T + Met14o o ), ?f0< k < n;
(')01"-rnn-~1)1 if £ =n.

Similarly, the degenerate maps 8; : Gar(X)n—1 — Gac(X)n are defined by

3!(’70»---:%—1) = (nﬂa"'lmrmv--';nn-l)'

It is not difficult to show that these maps are well-defined. The simplicial set Ga-(X) has
a composition law defined by

(P.Q+(P.Q . n)=(PaP.QaQ n+7).
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Furthermore, the natural forgetful map Gar(X) — G(X), defined by sending (P,Q,1) to

(P,Q), is a covering space with the group A(Xgq). Indeed, we may define a action of A(XRr)
on Gac(X) by

a+(P,@,(m,.... 1)) = (P,Q,(m+a,....,nm +a)),
which is free on each Gar(X)n. Now the assertion follows from the fact that for a given
(P,Q) € G(X)n, an element (P,Q,n) is determined by the choice of o € A(XRr).
[1.3.6.c. The Exact Sequence for Arithmetic K-Theory

With the same notation as above and by a general fact from algebraic K-theory, we
have the exact sequence

o= Ki(X) = A(XR) = mo(Gar(X)) — K(X) — 0.

To go further, we need the following

Lemma. In the exact sequence above, mo(Gae(X)) = Kar(X) and the morphism
Kar(X) — K(X) is defined by sending [((£,p),n)] to {£].

Proof. The group 7o(Gar(X)) is generated by triples (Po, Qo,70) with Po, Qo in P(X)
and ng in A(XRr), and satisfies the following relations: For every

(((Fo, Qo) — (P1,@1)), (m0,m)) € Gac(X 1,

{Po,Qo,m0) is equivalent to (P, @1, m). Furthermore, in mo(Gac(X)),

(POa QOI’M) + (Pc’):QE): 'h’)) = (Pl 8] PévQU le]pqO + 7]6)

Define a map
‘,'I'o(GAr(X)) nad KAI-(1Y)

by sending (Po, Qo, 7o) to {{Po, po)] — [(Qo, 70)] + 0. Conversely, we can define a map
Kar(X) = mo(Gar(X))

by sending ((P,¢'),n) to (P,0,n + chpc(P, p,p’)). It is easy to check that these two maps
are well-defined and that they are isomorphisms. The naturality follows easily from the
definitions above. In this way, we have a natural exact sequence for arithmetic f-groups.
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11.3.6.d. A-Structure on K4 (X)q

For regular arithmetic varieties, there also exists a natural A-ring structure on the
arithmetic K-group. We give the definition and leave the simple proof to the reader.

We start with the fact that any ) ring structure on any group is uniquely determined
by its Adams operators, and for any graded algebra A = @A, there i8 a canonical A-ring
structure defined by: The Adams operator ¢* which acts on A* as k*. In this sense, there
exist canonical A-ring structures on Z(Xn) and Z{Xr)@& A(XRr), for any arithmetic variety
X over an arithmetic ring (A, X, F,). By the definition, we also know that in Z(Xg), we
have -

ch(A*(£,p)) = A*(ch(€, ).

The first A-ring structure comes from the wedge product. In fact, this is an easy consequence
. of the splitting principle.

We can now define a A-ring structure on K s, by the following:

’\k((ga P), n) = (’\k(“;! P), [Ak(Ch(Ei P)r n)])

The only nontrivial part is to show that this is well-defined. For this, let
E. 0= =& —E—0

be a short exact sequence of vector sheaves on X with F,-invariant hermitian metrics p;
on &; for i =1,2,3. Then the reader has to complete the proof of the following equality:

XE((&2, p2), —chpe(€.,p.)) = (A (&1 ® &3, p1  p3),0).

11.3.6.e. The Proof of The Theorem.

In this subsection, we show how to 'complete’ the proof of the main theorem.
First, by above discussion, we may have the following diagram:

K\(X)q — A(Xr) — KalX)q — KX)q — 0
¢h | Id} char | ch |
@p>1CHPP~}(X)q — A(Xr) — CHa(X)q — CH(X)q — 0,

except for the morphism ch on K;. But this is an algebraic morphism, which may be
naturally defined in algebraic K-theory. (See Chapter. Usually, we call it the local Chern
character.) By the naturality of this theory, we expect that all squares of this diagram are
commutative. Even through this may be done, it is rather complicated and tedious, so we
do not give the proof here. Instead, we shall assume that there is this natural local Chern
character, which makes the above diagram commute. Hence by the five lemma, we know
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that cha, is a group isomorphism of Kar(X)q and CHa(.X)q. This completes the proof of
the theorem.

We can also introduce a multiplication on Ka,(.X):

((Ep)m@((E, /) n) = (E@E,p® '), [(ch(E,p), 1) * (ch(€",0'), 7))
Moreover, on the real vector space Z(Xg) @ A(Xg), with Z denoting the closed forms, we
can define a pairing by letting

(w,n) *+ (W, 7)) = (WwAW ,wAG + A +ddn A 7).

It is not difficult to show that the above definitions make K a.(X) a commutative, associative
and unitary ring. (As an iilustration, if

8.20—‘51—>52—'£3—*0

is an exact sequence of vector sheaves on X with F -invariant hermitian metrics p; on &;
for i = 1,2,3, then, we have

((£1,1),0) ® ((£',0),7') + ((£3,03),0) ® ((£',0),7)
— ((€3,p3), —chnc(€.,p.)) ® (£, "), 7')
=((£&1 @&, ®p'),ch(Er,p) AY) + (£ ® £, pa ® ), chi(Es, p3) A ')
—((£2® &, p1® '), ch(&3,p2) A7) + chpc(€.,p.) Ach(E', p’) — dd°(chpc(£.,p.) A T')
=((£19E,p1®0),0) + (E3® €, © §),0)
—((&20¢,p2® '), —¢thac(£.,0.) Ach(E, "))
=((&1 @&, p1®p),0)+ ((£a® &, p3®),0)
—((£2®@&,p2®p'), —chpc(E.© & p.® p))
=0.
Therefore, the definition makes sense. The checking for others is very similar.)

We then have the following

Theorem. The arithmetic Chern characteristic class
char: KAr(X)Q - CHAr(X)Q
is a ring isomorphism.

Proof. It is enough to prove that cha, preserves multiplication. In fact, by definition
and Theorem 5., we know that

chac(((£,0),m) ® ((£',0),7))
=chac((€,7) @ (£',6)) + ((ch(€,p),1) * (ch(€', 1)) )
=chae(€, p)char(E',p") + ch{€,p) An' + nACch(E,p') +dd°n AT
=Ch,9“-(£, P)ChAl‘(g'l P’) + "‘)(Chﬂl'(ga P)) A 77' +7A U(ChAr(E', P')) + w(ﬂ) A ’7'
=(char(€, p) + ) (chac(€', 0" +1').
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§11.3.7. Cap Product: A Dual Version

In this section, we give a dual version of the result in section 2.7. More precisely, we
have the following

Theorem. There is a biadditive pairing
K3(X)®CHAT(X) — CHA(X)q
oz — shac(a)Ne

with the following properties:
(a). If f: X — Y is a morphism of arithmetic varieties, with Y regular, a € Ka.(Y)
and z € CHAT(X), then

char(f*a) N z = chac(a).sz.
(b). If (0, ) € Kac(X) and z € CHAT(X), then
chac((0,7)) Nz = a(nw(z)).
(c). If & € Kae(X) and z € CHAY(X), then
w(chas(@) N z) = ch(a) Nw(z).

(d). The pairing makes CHAT(X)q into a K (X)-module.
). If f: X = Y is proper, and smooth over Y, let a € Ka.(Y) and z € CHAT(X),
then

f. (chA...(f'cx) Nz) = cha(a)N f.(z).

(f). If f:Y — X is flat and smooth over F, or a l.c.i. morphism, let o € K,,(X) and
z € CHA"(X). Then

F*(chac(@) Nz) = cha(f*a) N 7 (2).

(g). Let i : D — X be the inclusion of a principal effective Cartier divisor, f: Y — X
a morphism which meets D properly, iy : f~}(D) — Y the inclusion induced by
i, and (&, p) a hermitian vector sheaf on Y. Then for any z € CHAT(X), we have

char(iy (£, 9) Ni(2)) = i* (charlE, p) N 7).

Proof. We only make the definition, and do not give the proof of the properties, since
all of them can be deduced in a standard way. Take a generator a = {(£,7),7) of K (X).
Since we assume that all the varieties are quasi-projective over A, there exists a vector
sheaf ¢/ over an arithmetic variety G, with G smooth over A, a map u : X — G, and an
isomorphism 8 : £ — u*lU. Fix an arbitrary Fy,-invariant hermitian metric p on /. Then we
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have an arithmetic Chern character cha (¥, 7) € CHy (G)q. Given z € CHA™.(X), consider
the class
chaclld, p).uz + a(chac(f,ps)) Nz +a(n)Nz.

We claim that this is independent of the choice the triple (u, (i, p),#): In fact, if another
choice is (u', (U, p'),8"), let Iso(U’,U) be the variety, smooth over A, which parameterizes
isomorphisms U’ — U. There are projections p : Isofld', i) — G and ¢’ : Iso{td’,U) — G,
and an isomorphism ¢ : p*d — p’"U’. By the definition of Iso({{’, i), there is unique map
§ : X — Iso(l’,U) such that pod =u, poé =u' and 6‘!(,9) is the isomorphism 6'(6)~!. So
given z € CHAT(X), we get
3~uChAr(u: P) - :-u’ChAr(ulv P')

=3-p06ChAr(u. P) - 3-p'oGChAr(ufv P’)

=z.5(p*char(U,p) — p'"chac(U, p))

=2.5 (a(chac(p (. 0}, 8" U', ), #)))

=z 16" (a(chac(p" U, ), 0" (', ¢}, 9)) )

=21 (a(choc(u U, ) " @', ), 00) )

=z N (G(CbBC((S, T))p’.(u,$ p’)v 9)) - G(ChBC((gl T)r p‘(uv P), 9’)))
as desired.

Since the cap product is biadditive, this pairing is additive in z. In order to show that
we get a map Kar(X) ® CHAT(X) — CHA"(X)q, it suffices to show that for any exact
sequence

E:00& —E—E—0

of vector sheaves on X with F.-invariant hermitian metrics p; on &;, we have

(chac(£2, p2) — chac(£, p1) — char(£a, p3)) Nz = a(chpe(£.,p.)) N 2.

This can be deduced as follows: Choose triples (u;, (Ui, i), 0;) representing the correspond-
ing terms (&;, p;) in the exact sequence. There i3 a variety P, smooth over A, which param-

eterizes exact sequences
0—‘”1 —>UQ ﬂu:a —PO.

That is, there are projections ¢; : P — (; and a universal exact sequence
U0 — qily — qlds — q3ls — 0

with the obvious universal property. In particular, there are a map f : X — P such that
g; o f = u; and an isomorphism of exact sequence f*(¢*U.) ~ £.. Since P is smooth over
A, by 1.4, (the axiom for classical Bott-Chern secondary characteristic forms,) or better by
I1.3.5.1, (the property of arithmetic characteristic classes,) we know that

3 (char(ld,m2)) — qf (chac{lhr, 1)) = q3(chac(ids, m3)) = a(chpc(q."U.,q".7)).
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From the biadditivity of the cap product CH, (M) ® CHAT(X) — CHAT(X)q, we see that
(char(&2,p2) ~ chac(£1, p1) — chac(€3, p3)) Nz
=char (U2, 72)-us £ — chac (U, 1) w, T — char(ldz, Ta)-u, =
+ a(chsc((E2, 02), u3(Uz, 12);62)) Nz
— a(chpc((£1, 1), 41Uy, 71);61)) Nz — a{chpe((Ea, pa), u3(Us, 73); 03)) Nz
=char(g2(U42,72)) s = — char(q] (U1, 7)) s = — char(g3(Us, 73)) s 2
+ a{chpc((£2, p2), u3(Uz, m2);02)) Nz *
— a(chpc((&1, 1), w1 (U1, 71);61)) Nz — a{chpc((€a, p3), u3la, 7a); 03)) N =
=f (a(chnc(q'll-,q‘-t))) Nz
+ a(chgc (€2, p2), u3 (U2, T2); 9;)) Nz

~ a(chec (€1, 1), i (U1,m1);61)) Nz ~ a(choe (5, p3), u3WUs, 75); 63) ) Nz
=a(chpc(£.,p.)) N=.

So we have the assertion.

Remark: The same method may be used to define other arithmetic characteristic
classes, for example, the arithmetic Todd characteristic class td4 (£, p)Nz for any hermitian
vector sheaves from the regular case. For more details, see section 8.

§11.3.8. Arithmetic Todd Classes

11.3.8.a. A Technical Lemma

From the Grothendieck-Riemann-Roch theorem in algebraic geometry, we know that
the Todd character and its inverse should be very useful in the theory of arithmetic Riemann-
Roch theorem for l.c.i. morphisms. In this section, we list the properties without proof.
As a hint, we observe that the Todd character is a multiplicative character, and hence, the
reader may use the techniques developed above, such as the Pl-deformation technique, to
prove the assertions made here.

First notice that for a given exact sequence
E.:0=& -6 —8—0

of holomorphic vector sheaves on a complex manifold X, endowed with arbitrary hermitian
metrics, the following equality holds in CHA(X):

tdgé(f.,p.): ~tdpc(£.,p.) td= &1, m) td'l(&,p:) td~!(&3, p3).

To check this, note that both sides have the same image by dd°, then depend functorially
on €., and vanish when (€., p.) is split. Therefore they coincide by I.1.
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Lemma. (1). Let

l

>

=
l

S— Qr—e—n—o
1

S g—W—Wn—o

be a commutative diagram of vector sheaves on X, with exact lines and columns. Call
these respectively Cy, Cz, Cs and Ly, L3, L3 (from the left to the right and from the
top to the bottom). Choose arbitrary metrics on all vector sheaves. Then the following
identity holds in A(X):

tdac(La, pr,) td(A, pa) td™H(C, pc)td™ (D, pp) + tdsc(Ca, pc,) td™ (D, pp)
=tdsc(La, pr,) td™' (D, pp) + tdac(Cl, pc, ) td ™ (C, pc)-

Similarly, we have

tdpc(La, pr,) td(B, pr) + tdpe(Ca, pc,) td (D, pp)
=tdac(La,pL,)td ™ (C, pc) td™(Q, p) + tdBc(Ch, pc, ) td™H(C, pe).

(2) Let
0 0
| l
S = §
i !
0 — 8 — A = B = 0
I | l
0 - § — C - D —- 0
1 |
0 0

be a commutative diagram of vector sheaves on X, with exact lines and columns. Call
these respectively Cy, Cp, Ca, L1, L3, L3 (from the left to the right and from the top
to the bottom). Choose arbitrary metrics on all vector sheaves. Then the following
identity holds in A(X):

tdac(La, prs) td(4, pa) td™ (C, pe)td = (D, pp)td (S, ps+) + tdBc(Ca, pe, td™H(C, Pc)I
=tdpc(L2, pr,)td™ (D, pp)td™ (S, ps') + tdec(Cs, pey )td (D, pp).
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(3) Let
0 0 0
i ! !
0 - Sl —_— El —_ Ql —_— 0
l l l
* 0 = S, = E; — @ =~ 0
1 i l
0 — S3 — E3 — @3 — 0
! L
0 0 0

b

be a commutative diagram of vector sheaves on X, with exact lines and columns. Call
these respectively Cy, Cz, Ca and Ly, L;, L3z (from the left to the right and from the
top to the bottom). Choose arbitrary metrics on all vector sheaves. Then the following
identity holds in A(X):

tdac(La, pr,) td(Q1, 0q,) td™ (Qa, pq,) td( By, pE,)
+ tdBC(lePL.)td_l(QlaPQJtd_l(Qa.Pos)td(Ea,PE;)
+ (tdBc(Ly, pr, ) * tdBe(La, pLy)) td™H(Q1, g, ) td"1(Q3, pg,)
~ tdpc(L2, p1,) td ™1 (@2, 0q,)
=tdsc(C1, pc,) — tdac(Ca, pc,) td ™ (@1, pg, ) td™1(Q3, pQs)
+ tdec(Ca, pe,) * tdge(Cs, pe,)) — tdpa(Ca, pe,) td(Er, pE, ) td(Ba, o, )-

11.3.8.b. The Arithmetic Tangent Elements For L.C.I. Morphisms

We now make the definition of arithmetic tangent elements for certain l.c.i. morphisms
and their associated arithmetic Todd characteristic classes. This definition is motivated by
the Grothendieck-Riemann-Roch theorem in algebraic geometry.

Recall that, in defining arithmetic characteristic classes, we always assumed that the
arithmetic K-group is generated by hermitian vector sheaves among others. In algebraic
geometry, we know that if the variety is regular, then the algebraic K-group has two different
expressions: One is given by the vector sheaves, while the other is given by coherent sheaves.
So naturally, we can consider the parallel situation in arithmetic geometry. There is no
problem for algebraic cycles. But for Green's currents, we do meet an essential problem:
How can one attach a metric to a coherent sheaf? So far nobody knows how to deal with
this ambiguous object. One possible way is to take a vector sheaf resolution of the coherent
sheaf in question and then put hermitian metrics on the vector sheaves, and finally to define
the arithmetic element associated with this coherent sheaf as the alternating sum of the
hermitian vector sheaves but with a modification by a 'Bott-Chern secondary characteristic
current’ associated with the above resolution. This sounds good, but how to get a very
interesting Bott-Chern secondary characteristic current is far from being understood. Now
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we know only a few examples; the situation for closed immersions for instance. But this
idea suggests us the following approach: First, we should extend the arithmetic K-group
to include certain kinds of currents, which properly includes the smooth (p,p) forms, the
relative Bott-Chern secondary characteristic currents with respect to closed immersions;
secondly, one needs to re-examine the classical logarithmic short exact sequence in the sense
of hypercohomology. With this, now we can define K£7(X) as the quotient group of the free
abelian group generated by the elements ((F, 7),7) but under the same relations as before.
Here F-is a coherent sheaf on X such that the pull back of F at infinity is a vector sheaf on
X(C), and p an Fo,-invariant hermitian metric on this pull back, while n € D(Xgr). So in
this sense, it is natural to make the following restriction on morphisms between arithmetic
varieties: The corresponding infinite part of the morphism is smooth.

Next we use the results in the previous section about arithmetic Chow homology groups
and cup products to give the the arithmetic tangent elements for l.¢.i. morphisms.

Let f: X — Y be an l.c.i. morphism of arithmetic varieties, which is smooth over the
generic fiber Yr over an arithmetic ring A. Choose an F,-invariant hermitian metric on
the complex relative tangent vector sheaf Tj,. In the following, we attach this data to an
arithmetic Todd character tda.(f, 7).

Since X is quasi-projective, we can imbed X in a projective space PY andleti: X —
X x4 PY = P be the product of this imbedding with the map f: We get a factorization of
f as goi, where g : P — Y is the first projection. Furthermore, i is regular by the fact that
[ is an l.c.i. morphism. Denote by N = Nx;p the normal bundle of X in P and by T the
relative tangent bundle of g. Choose Fo-invariant hermitian metrica on N and T,. Then
there ia an exact sequence of vector sheaves on X(C):

Tpi:0 o Tpg —i*T,, — N — 0.

Hence there is an element tdsc(7y,,p7,;) € A(Xg_), the classical Bott-Chern secondary
characteristic forms associated with the above exact sequence. Now let

tdaa(£/9,p4/4) = tdnc(Tpir p1,.5) AN, pa) ™" € A(XR),

and we have
dd°tdsc(f/9,0114) = td(Tye, p1;, ) — td(i* Ty, pinT, ) td(Ne, pa) ™"

So, for any a € CH"'.(X), we can make a natural definition of tda.(f, py) by the following
formula:

tdAr(f: p!)na .
i=tdac(i* Ty, pie7,) N (WdR1 (N, p4) ™" N @) + tdBc(f/9,p77) N @ € CHAT (X)q.

If Y = Spec(A), we also write tda.(X) instead of tda.(f, py), and tdpc(X/P, px;p) instead
of tdec(f/9,py/4)- Furthermore, if X and Y are regular, we have the following

tdar(f, ps) = tdacli* Ty, pie1, W51 (N, pa) + tdBc( /9, £174) € CHAT.(X)q.
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Proposition. (1) The class tda.(f, p;) depends only on the choice of the metric on
Tjc , and not on the choice of 1, g, nor on the choice of metrics on A and 7j.

(2)Let f: X —Y and ¢g: Y — Z be two maps of regular arithmetic varieties X, Y.
Assume that f and g are smooth over F' and choose F-invariant hermitian metrics on
Tyc) Tge and Tizop) respectively. Then the following identity holds in CHA™ (X):

tdar(g o f, pgoy) = tdac(f, py) £ (tdac(g, pg)) — a(tdpc(T ., p.)),

where 7. is the exact sequence
-

0— 7 _'T(ﬂf)c = ["Tyc — 0.

Proof. (1) For any two factorizations f = g; 0 i; = g; 0 i3 as above, we may consider
the fiber product P; Xy P, and the diagonal imbedding. So we are led to consider a diagram

x & p 4op
SN lg ¢k
%

’

where g and h are smooth. We need to show that, for arbitrary choice of metrics,

tdac(i* Ty, pin7,) N (td s W/ P, PNy ) ™! N @) + tdBc(f/9,0474) N
=tdac((§ 0 )" Th, P(joi) 1) N (tdar (Nx P11 PN i)™ N @) + tdBc(f /B, pyn) N

Since there is an exact sequence on P:
0—T,—j"Th = Npjpr =0,
therefore by subsection 5.f, we have
tdar(Ty, p7,) N @ = tdar(3* Th, pjo7a) N (Y3} (Np/ Pty PN gy i) N 0) + tdBc(9/ B, pgsn) N

On X(C), we have a commutative diagram with exact rows and columns

0 0
! |
Tyo = 7}0

l ! _

0 = T — (GoifThe = Npeyrie) — 0
l !

0 — Nx(cl)/P(C) - Nx(cifr'w) — "Npcypicy — 0
0 0 ,

Thus by Lemmma a.(1), we have the assertion.



340 Arithmetic Characteristic Classes
(2) is & consequence of Lemma a.(3). In fact, since f and g are l.c.i. morphisms, by a
standard argument, there exists a commutative diagram

x & o douM

N e lq

. Y i MH
g\ Ur

Z,

in which p, g and r are smooth, {, j and k are regudar immersions, and the square is
Cartesian. Let us write Ty, Ty, Tr, Troq, Ni, Nj, Ni and N for the relative tangent
bundles and normal bundles respectively of the maps p, ¢, , ,roq, i, j, k and joi. Note
that Aj ~ p* Ny, while T, = j*T,. We choose arbitrary metrics on these bundles, except for
the condition that the two isomorphisms we have just mentioned are isometries. On X(C),
we get the following commutative diagram with exact lines and exact columns:

0 0 0
l l : l

0 — T, — T, — Ni — 0
| l |

0 — Ty — 5Ty — Nji — 0
| | l

0 — fT, = f*T — fMe — 0
l l |
0 0 0

We have the assertion by Lemma a.(3).

There are similar results for tdsc(f/g,pys,). We leave them to the reader.

§I1.3.9. Arithmetic Segre’s Classes
We end this chapter by introducing the arithmetic Segre classes, which give an alter-

native way to define the arithmetic characteristic classes in general.

Let X be an arithmetic variety and (&, p) & hermitian vector sheaf of rank r on X.
Denote by P := P(£) the projective bundle of £ in the sense of Grothendieck, i.e. the
bundie which represents all rank one quotients of £, and p : P — X the projection. There
is a canonical universal exact sequence on P

UN:0—S8—p£—0(1)—0,

where (1) is the tautological line sheaf. We equip p*£ with the metric p*p, and S (resp.
(1)) with the induced (resp. quotient) metric. For every integer k > 0, define

tAr'k(g, p) = p. (CT:’A:.-I(O(I), po(l))) e CHBA['(‘Y)'
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Also, for each k > 0, define an element Ry € A*~}*~!(X) as follows: Let UNY. be
the dual of UN. and UNV(}). := UNY. ® O(1). For the obvious choice of metrics, let
cr,Bc(UNY (1), punv(1).) € A""1"=}(P) be the classical Bott-Chern secondary characteris-
tic class of this exact sequence with respect to the r-th Chern class ¢.. Then R; is the k-th
coefficient of the formal power series

Zerk

k>0

=(3 2. (701, po1)) e B(UNY (1), punvi )2 ) (3 5 (€. p)(=2)

k>0 izo

where we have used the module structure of A (X) on the ring A'(X).

Now we define the arithmetic Segre’s class s, 4-(£, p) € CHX (X), k > 0 by

P 1, ifk=0;
sear(€,p) = trac(€,p) +a(Ry), if k> 0.

The relation between the arithmetic Serge classes and the arithmetic Chern classes is
expressed in terms of this definition by the following

Theorem. With the same notation as above,

D ciacl& o)) = (3 sear(€,p)t*) ™

i>0 £20

Proof. From the exact sequence.
UNY(1): 0= Op —p*(£Y)(1) = S¥(1) — 0,

by the additivity of Chern classes and the behavior under tensoring by a line sheaf, note
that the rank of £ is r, we get

G(Cr BC(UNV(I)vaNV(l))) =Cr Ar(OP 52 Sv(l)l Popeé‘"(l)) - C"Ar(p‘(g' p)v(l))
= - CrAr(p.(glp)v(l))

== 35 (ciarl(€,0)")) iR (O(1), pogyy)
j20

==Y " (-1 ciarl (£, ) 122(01), poy(1))-

j2e

On the other hand, if we apply the morphism a to the defining equation of R} above, then,
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by the projective formula, we have

> a(Ry)zt

E>0
=~ (Z P. (Cf,}lr(o(l)‘n P0(1))P‘((‘l)jCjAr((EnP)))C:;{(O(l),PO)(l)))xk)
i
(3 cjacl&,p)Y (~2¥) ™!
jao -
=- (E ciac(€, p)(—z) (Z Pc(cjf;{.“_l(o(l),90(1))3"'j)) (z ¢ acl€,p)(=2z¥ )~
i>0 £>0 i20

Therefore, by the fact that f,(c7,(O(1), poq1))) = 0 unless n > r — 1, we have

Z a(R;)z" = —E tr ac(€, P)zk + (z Cj Ar(E»P)(_”)j)ﬁl-

k>0 £20 i>0
This completes the proof.

Remark. It follows from this theorem that arithmetic Segre’s classes provide an al-
ternative way to define arithmetic Chern classes. Hence we may define alternatively all
arithmetic classes of hermitian vector sheaves, rather than using the splitting principle as
before.
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Chapter 1I.4. Arithmetic Riemann-Roch Theorem
For Smooth Morplisms

In this chapter, we prove an arithmetic Riemann-Roch theorem for smooth morphisms
of regular arithmetic varieties f : X — Y, which was first given in [Fa 92]. To do so, the first
problem we meet is how to define a push-out morphism for arithmetic K-groups. It is at
this stage that we have to use the relative Bott-Chern secondary characteristic forms with
respect to smooth morphisms at infinity induced by f developed in Part I. We are going to
give this definition in section 1. In section 2 we state the arithmetic Riemann-Roch theorem
for smooth morphisms. Finally, in section 3, we use the axioms for the relative Bott-Chern
secondary characteristic forms with respect to a smooth morphism to prove the arithmetic
Riemann-Roch theorem stated in section 2.

§I1.4.1. The Push-Out Morphism of Arithmetic K-Groups.

We now make a natural definition of the push-out morphism of arithmetic K-groups
with respect to a amooth morphism f : X — Y of regular arithmetic varieties:

Jr: KAr(X) — KAr(Y).

_ Since K ac(X) is generated by f-acyclic hermitian vector sheaves and elements in
A(Xm), it is sufficient to give a definition for both of these elements and to check the
compatibility with the equivalence relations among these objects.

I1.4.1.a. For f-Acyclic Hermitian Vector Sheaves

Let f: X — Y be a smooth morphism of regular arithmetic varieties X, ¥ over
an arithmetic ring (A, I, F). Let (£,p) be an f-acyclic hermitian vector sheaf on X.
There is a natural element (f.€, fup) in Ka(Y). On the other hand, by the Riemann-
Roch theorem in the algebraic sense, it is quite natural to consider another element in
Kar(Y), which corresponds to the element feu(char(€,p)tdar(f,p7)) via the isomorphism
char between Kar(X) and CHo((X)q. In Part I, we introduced the relative Bott-Chern
secondary characteristic form with respect to the above data, which is supposed to be the
object measuring the difference in K.(Y) between (f.£, f.p) and the element corresponding
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to foul(char(€, p)tdac(f, ps)) (see 3.5.f). Therefore, by the definition of Green's currents,
we make the following definition:

fK(g,P) = (f‘glf‘p) + ChBC(glp;fl Pj)

iL.4.1.b. For Differential Forms

Since the arithmetic Riemann-Roch theorem is sup;)oaed to be a generalization of the
classical algebraic Riemann-Roch theorem, we make the following definition: For any ele-
ment w € A(Xn),

frx(w) := fo(a(w) tdac(f, pr))-

I1.4.1.c. General Situation.

We are now ready to give the definition of fx for general elements. By linearity, it is
enough to give the definition of fi for a hermitian vector sheaf (F, 7).

There exists an f-acyclic vector sheaf resolution for F: In fact since f is proper, there
exists a relative sufficient ample line sheaf £ on X. Therefore for any free resolution of
F® L™, we can get an f-acyclic vector sheaf resolution

E. 0o & =& = E—F—0,
where £; are f-acyclic vector sheaves. Now put hermitian metrics p; on &;, and let
fr{F 1)y = > (1) fx (& pi) = fr(chpe(£., pi, 7))
i=0
We need the following

Proposition. Let f : X — Y be a smooth morphism of regular arithmetic varieties
over an arithmetic ring (A, E, o). Then
(1) fx is well-defined;

(2) fx is a group morphism.

11.4.1.d. Proof of The Proposition.

It is sufficient to show that for any short exact sequence of f-acyclic vector sheaves

£.:0-&8 =& —8—0
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on X and any F,-invariant hermitian metrics p; for i = 1, 2,3, we have

Fr(€r,00) + fr(€a,p3) = fx(€3,p2) — fr(chpc(E.,p.)). (*)

In fact, suppose we have this assertion, then fg is well-defined, since for any hermitian vector
sheaf (F, ), any two f-acyclic vector sheaf resolutions are dominated by a common third
one, and hence the proposition comes from a very simple relation between the associated
classical Bott-Chern secondaty characteristic forms, say, Theorem 1.1.2.c.

The proof of (*) is also very simple. In fact, in Ka.(Y), we have

(f‘gllf'pl) + (f‘£3!p3) = (f‘£2v Pﬂ) - ChBC(f‘g'! ftp)
Here, we let
J .10 L6 = L6 — fLE3— 0
be the image of the exact sequence £.. Thus, we have to show that

chac(€, p2; fopg) — chee(€r, p1; fopy) — chee(Es, p3; £, p1)
=f.(chpc(E., p td(f, ps)) — chec(f€., fop.),

which is nothing but Axiom 3 of relative Bott-Chern secondary characteristic forms with
respect to smooth morphisms in 1.2.

11.4.2. Arithmetic Riemann-Roch Theorem for Smooth Morphisms

In this section, we state and explain the arithmetic Riemann-Roch theorem for smooth
morphisms.

However, before stating the theorem, we need to introduce some more notation: Let
B be a subring of R, and let P(z) € B[[z]] be any power series. Then for any hermitian
vector sheaf (£, p), by the splitting principle, there exists a unique additive characteristic
class P(£) € H*'(X), where H*'(X) is the even homology of X. We define the modified
arithmetic Todd characteristic class with respect to P by letting

Td} (€, ) 1= tdac(€, p)(1 - a( P(E))-

With this, we have the following

Arithmetic Riemann-Roch theorem For Smooth Morphisms. (Faltings [F 92])
There exists a unique power series R(z) such that for any smooth morphism of regular
arithmetic varieties f : X — Y over an arithmetic ring (A, £, Fio) with an Feo-invariant
hermitian metric p; on the relative tangent sheaf of f, the following diagram is com-
mutative:

Chay F,\l '
Kad(X) ha ()Tl.(l pr) CHAr(X)Q
fxl N } fen
Kad(Y) fas) CHar(Y)q.
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Here TdR denotes the modified arithmetic Todd characteristic class with respect to R.

Next, we prove this theorem.

[1.4.2.a. Several Intérmediary Results,

With the same notation as above, for any power series P, for any smooth morphism
f i1 X =Y of regular arithmetic varieties over an arithmetic ring (4, L, F,), any f-acyclic
hermitian vector sheaf (£, p) on X, let

Err(€,p; f,p1; P) := chac(f& (£, ) — feu(chac(€, p)TdR. (£, py))-

To prove the theorem, it is sufficient to show that there exists a unique power series R(z)
go that

Ecer(E,p; fips; R) = 0.

For this we need some intermediary results.

Proposition 1. Let f: X — Y be a smooth morphism of regular arithmetic varieties
with an Fe-invariant hermitian metric p; on the relative tangent vector sheaf of f.
Then for any short exact sequence of f-acyclic hermitian vector sheaves

£.:0=-86 o8& -8 —0,
with Fo-invariant hermitian metrics p; on & for i = 1,2, 3, we have

Ere(&1,p015 £, ps5 P) + Erx(€3, p3; f, py; P) = Exx (€2, pa; £, py4;5 P).

In particular, Ect(£, p; f, py; P) does not depend on the metric p. Furthermore, we have
that Err(£, p; f, py; P) lies in the a-image of harmonic forms.

Proposition 2. Let f: X — Y and ¢ : Y — Z be two smooth morphisms of regular
arithmetic varieties which have Fio-invariant hermitian metrics py, p, and pgey on the
relative tangent vector sheaves of f, g and go f respectively. Let (£, p) be an f-acyclic
hermitian vector sheaf on X such that f.€ is g-acyclic. Then

Err(€,p;9 0 f, pgop; P) = Err(£.£, fop; g, pgi P) + gu(Exx(€, p; f, py; PYTdirc(9,4))-
In particular, Err(€, p; f, py; P) does not depend on the metric p;.

Remark. Because of these two propositions, we denote Err(&,p; f,py; P) simply by
Err(&; f; P).

Proposition 3. There is a natural morphism

Err: K(Xp) — H(YR)/P(CHU'O)(Y))Q'
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such that Err(€; P) = Err(E, f; P).

Proposition 4. Let f: X — Y be a smooth morphism of regular arithmetic varieties
with an F-invariant hermitian metric p; on the relative tangent vector sheaf of f.
Then, for any flat base change ¢ : Z — Y, we have

g"Err(&; f1 P) = Err(g}E;f,;P).
Here we use the following diagram

Zxy X L x
fol Lf
Z 4Ly

Proposition 5. There is a unique power series /2(z) such that for any P*-bundle
p: X =Py(F)—Y,
Err(€;p R) = 0.
Finally, we consider Err for closed immersions. In this case, we have to introduce a

new Err term. That is, let i : X < Z be a closed immersion with the smooth structure
morphisms f: X — Y and g: Z — Y of regular arithmetic varieties, then we define

Err(£;4; P) := Ere(E; f; P) — Ere(in €5 g; P).

By Proposition 3, this definition makes sense, even through i.£ is usually only a coherent
sheaf:

Proposition 6. Let i : X — Z be a codimension-one regular closed immersion of reg-
ular arithmetic varieties over an arithmetic variety Y with smooth structure morphisms
f: X —-Yandg:Z —Y Let (£, p) be an f-acyclic hermitian vector sheaf on X such
that i,£ is g-acyclic, then

Err(£;4,P)=0.

11.4.2.b. The Proof of The Propositions.

Proof of Proposition 1. Since the independence of Err with respect to the metric is
a consequence of the first assertion, it is sufficient to prove that Err is additive and is in the
a-image of harmonic forms. '

We go back to the definition, and have

Ere(€1,p1; f,ps; P) + Ere(€3,p3; f, Py P)
=char(fx (€1, 01)) = fou(char(&r,p1) TR (f,01))
+ chac(fx (€3, p3)) = fon(chac(&s, p3)Tda (£, p1)).
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On the other hand, by Proposition 4.1.2, we know that

Sfu(€1,m) + fx(€3,p3) = fr(€2,p2) — fK(chBc(E.,p.)).
Hence by the fact that

chp&(€.,p.)
=char(£3, p2) — char(€1, p1) — chac(€3, p3),
and that the image of a is a square zero ideal, we have .
Ere(£1,p1: f,p1i P) + Ert(€3, p3; 043 P)
=char(fx (€2, p2)) — fx(chpc(€.,p.))
~ fou(char(€1, 1) TdR.(f, £y)) — fou(chac(Ea, p3)Td} (. p1))

=chac(fx (€3, P2)) = fon(chac(E2, p2)TdR (£, £))

=Err(£3, p32; f1 013 P).

Now we prove the third assertion. That is, Err lies in the image of harmonic forms.
This assertion has two aspects. First, for algebraic cycles, note that the arithmetic definition
is a natural generalization of the algebraic one, and the arithmetic Riemann-Roch theorem
is a natural generalization of the classical theorem. We know that the image of Err, via
the forgetting map on algebraic cycles, is zero. Secondly, for currents, under the natural
morphism ‘ _

W CHA,(Y)Q — A(YR),

which sends ((F,7), @) to ch(F, 1) + dd°a, we know that
w(Ere(€, p; £, 045 P))
=ch(f.&, fop) — f.(ch(&, p)td(f, py)) + dd°chnc (€, p; £ py).

Thus by Axiom 1 of relative Bott-Chern secondary characteristic forms with respect to
smooth morphisms in 1.2, we have

w(Ere(E,p; f.p7; P)) = 0.

So we may complete the proof by considering the structure of the homology exact sequence
associated with the arithmetic Chow groups in 2.3.c .

Proof of Proposition 2. By putting ¢ = Idy, we find that the second statement of
this proposition is a consequence of the first one.

Now we prove the first statement. The result for Err is equivalent to

chac((g 0 £)o€,(g0 f)ap) + chBc(E,p:9 0 f,pgor) = (9 0 fon(char(€, p) Tdi (9, 0f, pgor))
=gcu(char(f.€, £.p) Tdh(g,05)) + gculchne(E, p; £, p7) TdR (9, pg))
— (g0 f)cu(char(€,p) TdRe(f; ps) £ (TdRc(g, £5)))
+ chac((go f)aE.(g0 f)ep) + chpec(f.E, fopig.pg)
— gen(char(fo&, fop) Tdi (g, py))-
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By definition, this equation is nothing but

chpc(€,p;9 0 f,pgog) — chpc(fu€, fupi 0, py) — go{chnc(E, p; £, pr) td(g, py))
=(g o f)cu(chac(€, p)(TdR (g © £, pg0s) — Tdi (£, ps) f*(Tdh(g,0,))))-

We see that the image of a is a square zero ideal, and

t'dBC(frgl go f) = t'dAl'(g ° f’ P.n)') - t'dAl'(fl p!) f-(t'dAr(ga pﬂ))

So the previuos assertion is a direct consequence of Axiom 4 of relative Bott-Chern secondary
characteristic forms with respect to smooth morphisms in 1.2,

Proof of Proposition 3. By Proposition 1, 2, it is sufficient to prove that Err may
be descended to K (X ). Consider the relation:

Ker(K(X) — K(X(F))) = Im(K(X)an — K(X)),

where K(X)an = @, K*7(X) is the Grothendieck group of X with support in finite fibres.
We also have the commutative diagram

K(X)an — K(X)
Ch()l . IChAr
CH(X)an — CHac(X),

where i(z) = (z,0). So the assertion is a consequence of the classical Grothendieck-Riemann-
Roch theorem with supports.

Proof of Proposition 4. Note that everything in the expression is compatible with
a flat base change, so we have the assertion.

Proof of Proposition 5. This is a consequence of Proposition 3 and a direct calcula-
tion. As a K(Y)-module, K(X) is generated by Ox, and Ox(-1), so by Proposition 3, it
is sufficient to show that Err is zero for both of these two elements: We prove this by using
the functorial property of Ere. Since Err does not depend on the metrics, we can normalize
the metrics as follows: Take an Feo-invariant hermitian metric p on F and put the induced
metric on O(1). (Since we have the universal exact sequence

p'FY = 0x(1) = 0.)
Then we have an induced metric on O{n) for any integer n. By the exact sequence
0—0x —p"FR0x(1) = Txyy — 0,

we have Tx;y = (det F) ® Ox(2). In particular, we can take the metric on Tx;y such that
the algebraic isomorphism is an isometry.
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Let Y, := Ga,» denote the Grassmannian of rank 2 subgroups of Z"+2, and let
Xn =Py (Sh)— Y,

be the projective bundle associated with the universal subbundle S, (which is a PY-bundle).
By the universal property ‘of Grassmannians, the natural map a on H*(Y;) is an injection,
and by a standard argument, say Prop. 23.2 [BT 82], we know that

lim- H(Ya) = R{[ci(F, p), c2{F, p)]].

So we may prove the proposition by the following argument. First, the arithmetic Riemann-
Roch theorem for projective morphisms holds up to an error term in H*(Y,). Secondly,
these error terms correspond to each other with respect to n under the natural injection
Y, — Y,41 (by the definition) and remain unchanged if we tensor S, with a line sheaf.
(See also 3.3.) Thus, we obtain universal classes in lim_, H(Y,) so that for any rank two
vector bundle F, which is generated by its global sections, these classes define the errors in
arithmetic Riemann-Roch theorem for Py (F) — Y once and for all.

Now we determine these etrors. Note that the direct image of the structure sheaf is the
structure sheaf below. Let A = ci{O(1), po(1y) + 1e1(F,p). Then

1
ey (Txyv,p1) =24, A= —co( F,p) + ;'31(3"—,.‘9)2

and

f‘Aﬂm = 01 f.A2m+1 = (A2)mf..A = (A2)m

for all positive integer m. If we tensor S, with a sufficient very ample line sheaf, we will see
that the error term for Ox is given by a power series in cf(F, p) — 4ca(F, p). The same is
true for Ox(—1) if we multiply the error term by exp(iei(FY, p¥)).

Finally, in order to complete the proof of the proposition, we have to show that one
may adjust P uniquely such that both errors become zero. Obviously, if we change P by §,
then the error of arithmetic Riemann-Roch theorem expression for Ox changes by

Fo( sz 8(24))

and similarly for Ox{—1), (up to exp(%cl(f"’,pv),) the error changes by

24e~4

TR b(24).

e

In the second expression, the factor before § has a series in even powers. So, we may choose
the odd part, §°9¢, such that the error vanishes for Ox (—1) uniquely. Hence, we may assume
that & is even, and try to cancel the error for Qy. But, for Ox, only the odd part in the
power series matters, that is, we have to consider

F.(A6(24)).
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Again this is unique. This completes the proof.
Proof of Proposition 6. We prove this proposition as follows:

(a) Consider the special situation with codimension-one closed immersions as the zero
sections of a P!-bundle;

(b) Reduce the general codimension-one closed immersion to the zero section of a Pi-
bundle by the deformation fo the normal cone technique.

(a) Suppose i) : X — Z is a zero section of a P!-bendle. Then, we have the following
diagram )
Y & P}(F)
Idy N\,  n
Y.

Hence, for any vector sheaf £ on X,
Err(€,4,) = Err(€,1d) — Err(i1.€, ;).

The arithmetic Riemann-Roch theorem is clearly valid for the identity morphisms. So we
have
Ert(€,1d) = 0.

On the other hand, since p, is a natural projection from a Pi-bundle, by Propaosition 5, we
know that
Err(i1.€,m) = 0.

Therefore, we get
Err(€,1,) = 0.

Hence, if we can reduce any codimension-one closed immersion to the zero section of certain
Pl.bundle, we have proved the proposition.

(b) Now we make the reduction required by the last statement in (a). Throughout this
part, we must know that now we are working with a special closed immersion, i.e. a closed
immersion of codimension one.

Recall the diagram from the deformation to the normal cone from 1.9.2.a. We have

X — Xx{oo} & PWN@Ox)+BxZ=We — {oo}

| ! Joo | |
x & xxp' & ByyoZxPlzw A P!
1 1 _ jo1 t
X — Xx{o} & Zx {0} =W - {0}

Lemma. With the same notation as above, we have

Err(€,4p) = Err(€, i)
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Obviously, the proposition is a direct consequence of the lemma.
Proof of the lemma. First, by definition, the equation may be read as follows:
Err(E,fg) — Err(i0.€, go) = Err(€, foo) — Etr(icoef, goo)-

Now the difficult is that i{.£ is usually only a coherent sheaf One may get rid of this
difficult by the natural exact sequence

0—IE—=E—2i -8

Since i is a codimension-one closed immersion, so in fact 7 £ 18 a vector sheaf. Formally we
may consider in the arithmetic K-group that i.£ as the summation of the hermitian vector
sheaves associated with T £, £, and the relative Bott-Chern secondary characteristic current
with respect to 1. Thus, by the facts that the arithmetic Riemann-Roch theorem is valid for
forms, or better currents (just by the definition), and that X x P! does not intersect W3,
in W, we know that, to prove the above lemma, it is sufficient to show that

Err(io.€,90) = Ert(ic0al, goo)-

Indeed, we know that the Err has nothing to do with the associated metrics, and could be
descent to the algebraic K group, so the above formal process makes sense. In particular,
we see that the latest assertion is equivalent to the following

Lemma’. Let £.:0 — Iy p1 E(W3) — £(W2) be an exact sequence on W. Then
Err(£.10, 90) = Err(€ oo, 90)-

Proof of the lemma’. By definition, the equality in the lemma’ may be written as

go«(char(E-]0,-10) TAR:(g0. Pg0)) = Foos (chac(€-loas £-|c0) TdRe(F00: Pgen))
=chac(g0.(€-l0, £.l0) + chpc(€ lo, £-lo; 90, Pgo)
— char(gooe (€ Joos p-1o0)) — chpc (€ |, P-|m%gompym))'

We first study the difference on the right hand side by using the deformation theory for
the relative Bott-Chern secondary characteristic forms with respect to smooth morphisms
in 1.9.2: On one hand, from the proof of Proposition 3.5.f.2 (via the P!-deformation), by
the fact that

divae(z) = ((0) - (c0), —[log|z|*]),

where z is the usual coordinate of P!, we know that

ChAr(gD-(S-!Clv p-lO)) - ChAr(goo*(s'L:O' P-}m))

offers the classical Bott-Chern secondary characteristic forms with respect to the change of
the metrica from 0 to co for F., which is defined by the direct image of the exact sequence
of

0—=IxE—¢&
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on Y. (Remember that X x P! does not intersect W2 .) That is,

char(go.(€-|0,p.[0)) — char(geos (€ 1oos p.loa))
=, [ h(F.pz) gl
Pl

Hence, by the axiom for the Bott-Chern ternary charactertistic forms with respect to the
smooth morphisms in 1.9.2.a, we see that the right hand side is

jp w(chno(£.p5Gpe)) g2

We claim that this is just the element given by the difference of the left hand side above.

To prove the latest claim, we need first note the fact that w(chgc(€.,p.; G, pg)) gives
the difference

G.(ch(£., p) td(Tg{—logmo), pc)) — ch(G.E.,G.p.).

Therefore, by the fact that [log|z|?] has total mass zero on P!, we see that the right hand
of the Err relation above only offers the G-direct image of the element

(o, /P ch(£., ) td(To(~logeo), pc) logl<l?).

Thus by the Axiom 1 for the relative Bott-Chern secondary characteristic forms with respect
to the smooth forms in 1.2, or better, the proof of Proposition 3.5.£.2, we see that lemma’ is
implied from the following

Sublemma. With the same notation as above, for all t € P!

har(E-ler 210)) TARe(90, p3.) = i3 (chac(E . p.) TR (Ta(=logoo), o)),
where go denotes the restriction of Goo on W,.

In fact, suppose the sublemma is proved, then we have

gos(char(€.-lo, p-Jo) TR (90, £ga)) — Geor(har(€ oo, £-Joo) TdZs (G001 £5en)
=G.(chac(€.,p.) TdR (Ta(~logeo), pc))((0) — (c0),0)

=(0,Gu( [ DoglsFleh(E.,p.) T™(Te(~loge0), ).

So we have the lemma’, hence complete the proof of Proposition 6.

Proof of the sublemma. The proof is rather formal but standard. The key point
is that now X x P! does not intersect W2 . So, in the discussion, essentially, we may pay
no attention on that part. Also we may let the tangent bundle Tw, (resp. Twy ) is the
restriction of the logarithmic tangent bundle, and put a metric on the logarithmic ralative
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tangent sheaf, such that outside a neighborhood U of 8W,, the restriction for the relative
tangent bundle offers an isometry over each point ¢ € P'. More precisely, in practice, we
may go as follows:

First, introduce a relative arithmetic Chow group CHf;W'U(Z) as the quotient of
of group generated by arithmetic cycles cycles (Z,gz) with Z C X, Supp(gz) C W - U,
modulo the arithmetic divisors of rational functions on cyeles in X, together with the forms
da +8p, where o and # are currents with support in X. Then for any hermitian line sheaf
(L, 7) of X we can introduce the action of ¢; o¢(L, ) on CH{;W'U(X) in a natural way.
Any two ¢1 a{L, 7)’s actions commute. Furthermore, if we have two embeddings X — 2,
and X — Z3, such that there are Zariski open neighbourhoods V) respectively V3 of X
and an isomorphism V; =~ V3, which fixes X so that if U, C Vj ¢ and U; C Vi ¢ are the
corresponding open neighborhoods, then naturally,

CHYM1=0(2)) = CHE Y0 (2y).

Moreover, this isomorphism is compatible with the action of ¢) (L, 7)’s, if there is an
isomorphism L1y, = L3|v, which is an isometry over W) — U; ~ Wy — U,.

We now discusa the above action for any hermitian vector sheaf. Naturally, by the
splitting principle, we may have an action. That is, we may have the following situation:
Suppose that we have two hermitian vector sheaves £, and £, which are isomorphic over a
Zariski open set V C X and isometric over W —U C V. Let (A, g4) be an arithmetic cycle
in CHﬁ‘w'U(X). Denote by Z; (resp. Z;) the complete flag varieties of £; (resp. &;), by

#; : Z; — Z the natural projections and V; = 7 !(V), etc.. Then we have the corresponding

arithmetic cycles 77 (A4, g4) in CH;"W"U‘(X.-) fori = 1,2. In particular, =} (&;) splitson Z;,

so there is a complete filtration by line sheaves £; ; for this splitting. Any polynomial in the
c1,ar(L;,i)’s operates on the arithmetic cycles, and obviously the two actions for # = 1, 2
correspond to each other via the natural isomorphism on the relative arithmetic Chow
groups introduced above. So, in the later discussion, we may neglect the above difference.
In particular, we can use the splitting principle to introduce a multiplication by cha,-class,
and hence have similar results. In fact, if P(c; ac(€,p)) is a polynomial in the arithmetic
Chern classes of (£, p), we can find an operator Q(c1,a-(L;))+Ron CH{;’W‘-U‘(Z;), with Q
a polynomial in arithmetic Chern classes, and R multiplication by the classical Bott-Chern
secondary characteristic form, such that in CHa(Z),

P(ejae() (A,94) = i ((@(r,ac(£0) + R) 73 (4, 9).

It follows that both for £, and &£;, the left hand sides can be obtained from the same class in
CH:;’W"O‘(Z.-), by first projecting them to CHf;W‘U(g) and then mapping to CHa.(Z).
Thus the operations on cycles with support in (X, W — U) of P(c; ar(&)) coincide.

As a consequence of the above general discussion, by the fact that cha (€., p.) is of the
form (M, gar), where M is an algebraic cycle supported in X x P! and gas a Green’s current
supported in W — U/, we get the assertion in the sublemma.



Chapter 1.4, 355

11.4.3. The Proof Of Arithmetic Riemann-Rocil Theorem
For Smooth Morphisms

Now we use the propositions stated and proved in the last two sections to show the
arithmetic Riemann-Roch theorem for smooth morphisms.

For simplicity, we let 'p, denote the projection from the P"-bundle, and let #; denote
the codimension-one closed immersion.

It is enough to prove Err’s are zero for both closed immersions and projections from
P"-bundles. For this, we use the trick of Faltings to reduce the problems for Err to those
for just p; and #;. If it is 8o, then the main theorem is a direct consequence of Proposition
2.5 and Proposition 2.6. In practice, we use the induction step for p, to reduce the problem
to that for py and #,, while for any closed immersion, we use the deformation to the normal
cone technique to reduce the problem to p, and {,, using Proposition 3 above.

[1.4.3.a. Projection Cases

We start the induction on n. If n = 1, by Proposition 2.5, we know that

Err(€;m) =0.
Suppose that for any m < n, we have

Err(€,pm) = 0.
We shall prove that

Err(€,pa) =0.

In order to prove this, consider the generator of K(X) for X = Py(F), where F is a rank
n + 1 vector sheaf on Y. Note that by Proposition 2.4, everything above is compatible with
flat base-change, so by the splitting principle, we may assume that F has a rank 1 sub-line
sheaf £ such that F/L is also a vector sheaf. Now, it is an easy observation that we may
have the following simple but very important

Fact. As a K(Y)-module, K(X) is generated by Ox(—1) and the direct image of
t.{K(Py(F/L))). Here
i:Py(F/L)— Py(F)

is the natural codimension-one closed imbedding.

In order to prove the main theorem, we need only to show that, for Ox(—1) and the el-
ements in i. (K (Py(F/L))), Err is zero. We deal first with the element in i, (K (Py (F/L))).
" For this purpose, we need to use Proposition 2.6. In fact, since

i1 Py(F/L) — Py (F)
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is a codimension-one closed imbedding, we have Err(a, ;) = 0 for a € K(Py(F/L)). But
by definition,
Err(a,i) = Err{a, pn—1) — Ere(i, o, ps).

Here pn_1 (resp. pn) denotes the natural projection from Py (F) (resp. Py(F/L)) to Y.
Moreover, by the induction step,

Err(a,pn-1) =0,

hence we have

Ere(i.a,pn) =0,
which exactly means that the arithmetic Riemann-Roch formula is valid for the elements in
the direct image of K(Py(F/L)).

Now let us consider the term Err(Ox(—1),pn). For this special purpose, we need some
more notation.

Let Flagy (F) be the Flag variety of F on Y. That is, the variety which classifies
complete filtrations of F:
0=f0CF[C~~~C}-n+1 =]::

where the succesive vector sheaf quotients are of rank i. There is a natural morphism
from Flagy (F) to X which is just the composition of the forgetting maps. Hence the
morphism from Flagy (F) to X is a composition of P™-bundles with m < n. Therefore, by
Proposition 2.2 and the induction hypothesis, the arithmetic Riemann-Roch theorem holds
for the morphism Flagy (F) — X. On the other hand, we can consider the pull-back of the
line sheaf Ox(—1) over Flagy (F). It is well-known that the push-out to X of this pull-back
line sheaf on Flagy (F) is just Ox(—1) itself. Thus, if we can prove that, for the natural
morphism Flagy (F) — Y that Err of the pull-back of Ox(—1) is zero, then Err of Ox(—1)
with respect to X — Y is also zero by Proposition 2.2.

In order to deal with the morphism Flagy (F) — Y, we introduce another decomposi-
tion: Let Flagy F be another flag variety which classifies the following partial filtrations of
F:

0=}.0Cfgc...c.7:"+l=}-,

where the rank of F; is k. Then the natural morphism from Flagy F to Flagy F, followed
by the natural morphism from Flagy, F to Y, is just Flagy(F) — Y. But, the morphism
from Flagy F to Flag} F is a P!-bundle. Therefore, the arithmetic Riemann-Roch formula
is valid for the pull-back of Ox(—1) on Flagy F, with respect to the morphism from Flagy F
to Flagy F, by our Proposition 2.5 for P!-bundles. On the other hand, note that both sides
of the arithmetic Riemann-Roch formula for the P!-bundle case, with respect to the pull
back of the line sheaf O(—1), consist only of forms over Flag)y, F. So, by the fact that the
arithmetic Riemann-Roch formula for any smooth form with respect to any morphism holds,
we know that Err for the pull-back of Ox(—1) on Flagy F with respect to Flagy (F} — Y
is zero. In this way, we know that Err(iy) = 0 and Err(p,) = 0 implies Err(pn) = 0 for all
n.
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11.4.3.b. Closed Immersions

Next we deal with a regular closed immersion via the deformation to the normal cone
technique. Here the aim is to reduce the general immersion case to the following situation:

(1) The zero section of a projectivised affine bundle;
(2) Codimension-one closed immersions.

Let us now suppose that we can reduce the problem with respect to a general closed
immersion to the case (1) and (2) above, then by Proposition 2.6, we solve the Err problem
i.e. Err=0, for (2). Also by the above result about projections, we solve the Err problem
for (1), since the composition of the zero section immbedding and the projection is the
identity map, and the arithmetic Riemann-Roch theorem is of couse valid for the identity
map. (See part a of the proof of Proposition 1.6.) Hence we have a proof for the arithmetic
Riemann-Roch theorem with respect to smooth morphisms.

To reduce the case of an arbitrary closed immersion to (1) and (2) above, we use
deformation to the normal cone theory as usual. For this, we recall the following basic fact
concerning the theory of deformation to the normal cone

Fact. With the same notation as in (*) of 1.9.2.a, the following two morphisms

XS PxNoox)Sw
and i '
X AN Wo AN w

induce the same morphism for K-groups.
In this way, by Proposition 2.3, we see that

Err(£, joo 0100 ) = Err(€, jo 0 10).

But by definition, we know that
Err(€, joo 9 tc0) = Ert(€, i) + Err(icoe £, joo)

and
El‘l‘(g,jo [} fo) = El‘l‘(g, io) + Err(io.g,jo).

Thus to complete the proof, it is sufficient to prove that
Err(€,ix) =0,

El'l'('l-ooog.joa) = 01
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and
El‘l‘(‘io.f, Jo) =0.

Note that each of the three closed immersions, iy, jo and j, is either codimension-one
closed immersion or the zero section of a P"-bundle, it follows that it is sufficient to deal
with the zero sections of projectivized affine bundles and codimension-one closed immersions.
These are just the situations in (1) and (2) above. It is in this way that we complete the
proof of the arithmetic Riemann-Roch theorem for smooth morphisms.

We end this chapter with the following remark. As e stated in Chapter II.1, we hope
that the arithmetic Riemann-Roch theorem can be obtained by replacing the concepts in the
Grothendieck-Riemann-Roch theorem by the corresponding arithmetic concepts. However,
it seems to be the case that our final arithmetic Riemann-Roch theorem does not have this
form, since we have to modify the arithmetic Todd characteristic class with a power series
of R. But, this may be easily removed by changing the push-out morphism for arithmetic
K-theory: Instead of defining fx (£, p) by

fx(€,p) == (f.€,f.p) + choec(€,p: £, py)

for an f-acyclic vector sheaf £, we define f3(£, p) by

FR(E,p) ==(£.E, fop) + chBc(E, 0 f,01)
+ f'(ChAf(gr P) tdAr(TI: P!) G(R(']},p!))).

Since chp, is an isomorphism which maps forms to forms, we see that the above definition
makes sense. Also, since R is unique, if there is no risk of confusion, we can also denote f2
by fx. Thus we get a perfect situation:

The Arithmetic Riemann-Roch theorem For Smooth Morphisms’.

Let f : X -+ Y be a smooth morphism of regular arithmetic varieties X, Y over an
arithmetic ring (A4, X, F), with an Fi,-invartant hermitian metric p; on the relative
tangent sheaf of f. Then we have the following commutative diagram

d‘m()m_;\:(f.ﬂ])

Kac(X) CHa(X)q
fx | fen
KalY) 20 CHu(Y)q.

Now one may say that historically, for Hirzebruch to find his famous Riemann-Roch
theorem, he actually did show that the Todd genus is the only one which makes the Riemann-
Roch theorem hold, by checking certain concrete examples. But here, at the last minute, we
have changed our direction. Well, we may argue that this last change makes the arithmetic
Riemann-Roch theorem totally similar to the Grothendieck-Riemann-Roch theorem. So,
even philosophically, this change makes sense.
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Chapter II.5 Arithmetic Riemann-Roch Theorem
For Closed Immersions

We now use the relative Bott-Chern secondary characteristic currents with respect to
closed immersions to prove the arithmetic Riemann-Roch theorem for a special kind of closed
immersion, which was first given in [BGS 91].

§I1.5.1 An Arithmetic Riemann-Roch Theorem For Closed Immersions

Let A = (A, L, Fy) be an arithmetic ring and let

X — Z

I\ 79
Y

be a closed immersion of regular arithmetic varieties over Y with smooth structure mor-
phisms f and g. Put F-invariant hermitian metrics on the relative tangent vector sheaves
and on the normal vector sheaf of i.

Let (£, p) be a hermitian vector sheaf on X and F. — i{,£ — 0 a vector sheaf resolution
of i.€ on Z. By the results in 1.7, we know that there exist Fio-invariant hermitian metrics
7. on F. such that Bismut condition (A) is satisfied with respect to py and p. As before,
we let @ : A(Xr) — CHar(X) and w : CHap(X) — A(XR) be the morphisms defined by
a(a) = (0,a) and w(A, ga) := dd°gs + 64, respectively.

In order to obtain the arithmetic Riemann-Roch theorem for closed immersions, we
first recall the Grothendieck-Riemann-Roch theorem in this situation. By Lemma 1.3.c, we
know that in CH(Z)q,

ch(i,£) = i.(td" (V) ch(E)).

As this is only valid at the level of cohomology classes, we need to be more careful when
we deal with the arithmetic Riemann-Roch theorem for closed immersions, since this is
supposed to be a refined version of the classical Grothendieck-Riemann-Roch theorem at
the level of differential forms (say, for complex manifolds). Generally speaking, to find
such an arithmetic Riemann-Roch theorem with respect to closed immersions, the first
difficulty is that i,& is usually only a coherent sheaf on Z. Nevertheless, this difficulty
can be avoided by introducing the combination of a hermitian super-vector sheaf (F., 7.}
and chpc(€,p;1, pi; F.,7.), the relative Bott-Chern secondary characteristic current with



360 Arithmetic Riemann-Roch For Closed Immersions

respect to the closed immersion ic. On the other hand, if we do things in this way, we know
that this element is not in Kar(Z), which is assumed to be generated by hermitian vector
sheaves and smooth forms. Indeed, we may in principle handle this by the introduction
of the relative theory of arithmetic Chow groups, arithmetic K-theory, etc. for closed
immersions. However, this is tedious and we will not do it here. We hope that we may
come back to this point. (In fact, basically, we may do it as follows: First discuss the
situation for codimension one case to get a good feeling, then use the deformation theory
via MacPherson’s Grassmannian graph construction to give the theory in general.) For our
present purpose, we can go around, i.e. to consider the product of these elements with any
element in ¥ € CH,.(Z), and push them out to the base arithmetic variety Y. In this
sense, the left hand side of the arithmetic Riemann-Roch theorem for closed immersions
would become

ge(char(F., 7.)¥) + g.{(a(chc(&, pii, iy F-, 7 )w(¥)).
So we may state the following

An Arithmetic Riemann-Roch Theorem For Closed Immersions. ([BGS 91])
For any ¥ € CHx((Z), the following identity holds in CHA.(Y)q

ga(chac(F.,7.)¥) + g, (a(chgc(s, g pii F., r.)w(\Il)))
=fu(tdar (M, pa) chac(€, p)i*()). |

We prove this theorem in the following sections.

§I1.5.2 Several Intermediate Results

The basic idea to prove the above arithmetic Riemann-Roch theorem with respect to
closed immersions is as follows: First we give an explanation for the element g.(chgc(F., 7. )¥)f
via the deformation to the normal cone technique. Then note that at infinity, the new closed
immersion is just the zero section of P(N @ 1), therefore we may use the Koszul complex to
calculate it precisely. Sutely, during this process, we have to use the deformation theory for
the relative Bott-Chern secondary characteristic curtent with respect to closed immersions,
which was developed in Chapter 1.9.

11.5.2.a Deformation to the Normal Cone

We use the deformation to the normal cone technique to give another expression for
the term g.(chpc(F.,7.)¥). In order to do so, we recall the following diagram for the
deformation to the normal cone with respect to i : X «— Z:

X — Xx{o} < PWNOOx)+BxZ=Wex — {oo}

{ | Joo | !
X 2% xxpt & BxxeZ X Pl = W B pt
I i Jol i

X — Xx{0o} & Z % {0} = Wo ~ {o).
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Let
TW—=2Z m:W-P!
and
px X xP' =X p:P=PyWol)—=X
be the natural projectionss Then W, = w{l(oo) has two components: W2, the projective

space P = Px(N@®l1) over X, and W2, the blowing-up Bx Z of Z along X. Let DE := px (£)
and let DF. — I.DE — 0 be & metrized vector sheaf resolution of I, D€ such that, on
Wo = 11'5'1(0), DXF. coincides with F.. By the results in 1.9.1, we can assume that the
metrics on DF. are compatible with the mettics on th€ normal bundle of X x P! in W,
which is nothing but A (—-1) := N ® O(—1). Furthermore, the restriction of DF. to BxZ
is gplit acyclic even as a complex of hermitian vector sheaves.

We then have the element

char(DF., Dr.) := 3 (~1)'char(DF;, D7) € CHar(W)q.

i>0

Moreover, we can measure the difference of the restrictions of this element to the fibers of
m over {0} and {oo} by the classical Bott-Chern secondary characteristic forms in the sense
of Theorem 3,5.e.2. More precisely, the difference

ge(char(F ., 7)¥) = fu(pa(char(Feo., Teo ) }i"F)

is measured by an associated classical Bott-Chern secondary characteristic form. The con-
struction of the classical Bott-Chern secondary characteristic forms in 1.1.4 shows that it is
defined as an integrate of Chern characteristic forms with respect to log|z|? over P!. With
this in mind, we need the following

Propaosition. For any element ¥ € CH(Z), in CHA(Y)q
go(chac(F., 7)¥) = fu(pe(char(Foo., Too )i ¥)
—a (g.(w.(ch(pf.,Dr.)LogizP)w(w))).

Proof. The proof below shows that
dd°g. (v. (ch(DF, D )Loglz *)w(¥))
is smooth and hence the current
g. (7. (ch(DF ., Dr.)Loglz*)w(¥))

is in A(YR). So the equality in the proposition makes sense.

Now let cha(DF., D7) be an arithmetic cycle (A,g4). Since DF. is acyclic outside
X x P!, we may assume that, A is supported on X x P! up to the rational equivalence,
and that A = p%(T)+ S x {1}, where S, T are two cycles on X.
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Since
0 = divar(z) = (div(z), =Log|z[*),

we have

g. (7. (cha( DF., Dr) divar(2))¥) = 0.
But by definition and the fact that S x {1} does not intersect div(z) = Wy — W, we have

char(DF., Dr)diva.(z) .
=(T x {0} - T x {0}, 9alw, — 94lw., — ch(DF., Dr.)Log|z|2).

The fact that the restriction of DF. to Bx Z is split acyclic {even as a hermitian complex)
shows that g4|p,z = 0. Hence

0 =g. (TI’. (char(DF., Dr.) divac(2)) ‘I’)
=g.(chac(F.,7)¥) - f. (p. (chA,(]’m.,rw.))i‘(‘I’))
~ 9. (. ((0,ch(DF., Dr))Log|z*)w(¥))..

This compietes the proof.

[1.5.2.b A Calculation Via The Koszul Complex

For the proof of the arithmetic Riemann-Roch theorem for closed immersions, we need
to use the Koszul complex. Then, by 1.9.3, we need only know the arithmetic Euler class
for a hermitian vector sheaf.

Let X be an arithmetic variety over an arithmetic ring A. Let (E,p) be a hermitian
vector bundle of rank r on X. Then there exists a section s of E over X such that, at
infinity, s is chosen as in chapter 1.9.3.e. Namely, if £ € X(C) is such that sc(z) = 0,
and d(sc) is the differential of s¢ at z, then Im[dsc(z)] = E. Denote by Ap € Z7(XF)
the zero set of s at a generic fiber Xz of X. Hence by the result in 1.9.3.¢, we know
that g4 := —sg{epc(E,p)) is a Green’s current for Ap. On the other hand, viewing s as
an imbedding of X in the total space XE, we see eqn(E) := s*([X]) € CHj,(X). Here
[X] € CHY,(XE) is the part of the zero section supported only on the special fibres, i.e.
those fibers over the non-Archimedian places. Since CHf (X) is a quotient of the group

Cﬂgn(X) @ Zp(:(F') e Dp-l'P_l(;{R),

by the result in Section 2.4, it follows that the triple (ean, Ar, ga) defines a class e (£, p; 8)
in CH}.(X). We call it the arithmetic Euler class of (£,p). (Note that in algebraic
geometry, the Euler class may be realized as the top Chern class.) We have

Proposition 1. With the same notation as above,
(a) ear(E, p; s) does not depend on the choice of s and we denote it simply as ea.(E, p);
(b) In CH’, (X), we have

cear(E.0) = eac(E, ).
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Proof. One can show directly that if ¢ : X¥ — X is the natural projection and sq is
the zero section of ¢, then

ear(E, pis) = 85 (ear(q” E, 9" pi 50)).
On the other hand, as an element in CH (X £),

ear(¢"E,q"p;s0) = (80(X), ~enc(g"E. ¢ ).

-~

So ear{E, p; 8) does not depend on s.

Indeed, just as for ¢, ac( £, gF), (by definition,) it is easily shown that ea.(E, 9E;5) has
the following properties:

Functorial Rule. Let f: M -+ X be a morphism of arithmetic varieties over A, then
[ eac(E,p;is) = ear(f°E, f*p;8y).

Product Rule. ex (E® E',p & ¢'; (8,5')) = ear(E, p; s) ear(E', p'; 8).

Forgetful Rule For Morphism a. The a-image of es.(E, p;8) in CH™(X) is the
Euler class of E.

Forgetful Rule For Morphism w. w(ear(E, p;s)) = e(E, p).

Uniqueness Rule. Let (L, 7) be a hermitian line bundle, then

ear(L, p; 8) = s3(div(y), —Loglyl*),
where y is the tautological section of p*L on XL and sq is the zero section.

By a similar process to that in the proof of the arithmetic Riemann-Roch theorem for
smooth morphisms, i.e. using the P!-deformation technique, etc., we can show that the
difference

Err(E, p; 8) := ear(E, pi8) = crac(E, p)

is in the image of a. It may be first decreased into the ordinary K-theory, since there are
similar properties; the downstairs rule, the functorial rule, the uniqueness rule, for example.

In order to prove that Err is zero, we use an induction on r. When r = 1, it follows by
the uniqueness rule that Err is zero. In general, we consider the problem on P(E). By the
functorial rule, we know that it is sufficient to show that Err(p* E;p*s) = 0. But this is a
consequence of the fact that on P(E), there is a canonical exact sequence of vector sheaves

0-S—p'E—0(1)=-0.
Hence (b) follows easily and so does (a).

We next discuss the Koszul complex. For the notation and the results, we ask the
reader to consult 1.9.4.

Let
H = Ker(p" (N7 @ N5, p1) = Op(1)),
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asgociated with i*F., then we have two short exact sequences of vector sheaves;
0 — 2 — "F; — B; — 0
0 — Bj+1 nd Zj nd 'Hj(t']:) - 0.

Let H be the associated vector bundle of 2 on P. Then by the natural associated inclusion
H—p (Nx/z ® Nz, /p1), there is an induced metric py on H. On K; = A H, we put the
metric induced from pu. A standard argument from the definition va.rlﬁes

Proposition 2. With the same notation as above,,

chac(K, px) = ceac(H™ pre W3 (H, pre) = ecac(H™, pie 0d3H(H®, pare),
where r is the rank of H.

(In fact, the equality is a direct generalization of the fact that at the cohomology level,
ch(K) = e, (H*)td™'(H*).)

With this, let o be the canonical section of H* and let o*(epc(H*,¢%")) be the pull-back
of the corresponding Euler-Green current on P by 1. 9 3.e. For each j > 0, we have the exact
sequence of complexes of vect.or sheaves:

4 :0=p L. =k DF. - K.Qp € —0,

where ;
[_',j = (Bj-H ®.N2°/pl) D (BJ /P‘ )'

and k is the natural inclusion of P in W. Let L. be the associated vector bundle of (..
Then we may put the orthogonal direct sum of the induced metrics, so that the complex L
attached to £. becomes split acyclic as a complex of hermitian holomorphic vector bundles.
In this way, we can metrize the complex A;: We get a classical Bott-Chern secondary
characteristic form chBC(A,-,pA,.) on P. In particular, we see that

char(Foo, Too.) = chac( K. @ p*E,px. ® P"p) + O _(—1Y a(chc (4, p4;))-
§20

Here, we use the fact that cha, for £ contributes nothing. Hence, by the projection formula,
we have the following

Proposition 3. With the same notation as above,

D (ChAr(}-oo--TOO'))
=p.(charlK. ® p"E,pk. ® ")) + D _(—1) a(p.(chnc(4;,p4;)))
i20
=p. (ChAr(KwPK.)) chac(€,p) + Z(—l)ja (P- (ChBC(AijA;‘)))‘

i20
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§I1.5.3. The Proof Of The Theorem.

We can now complete the proof of the arithmetic Riemann-Roch theorem for closed
immersions. We have to show that

go(chac(F., 7)¥) + g. (a(ﬁhgc(g, pii, pi; F., T)w(‘p))) = f. (t'd;:(Nr pn)char(€, P)"‘(“I’)) .
But by Proposition 2.a, we know that
9+ (char(F . 7)¥) = £ (pa (char(Foo oo ))i" ¥) = a(gv(vr.(ch(DJ-'., Dr.)Loglz/?w(¥))).

So by the expression for char(Feo., Teo-) in terms of the Koszul complex (K, pg ) at the end
of the last section, it remains to prove that

fo(tdZ} (N, on) chad(E, p)i* (V)
=f. (P (char(K..px)) chas(€.p)i"(¥))

+ Z(—l)ja(p. (ChBC(AjaPA,-))) i(¥)

i20
+ (9. (0, mu(ch(DF., Dr)Logle|))w(¥)) )
+ (a(chnc(f,m i,p'; F., r-)w(‘l’)))-
On the other hand, by Theorem 1.9.4,
0 =chpc(£,p;i, ¢'; F.,7.) + 7. (Log|z|*ch(DF ., Dr.))

m

= (P (d™ (B 6" )" (epc(H", g7 N)h(€,p) + . (3_(~1¥ chrc(45, 4,)) ) bx.

j=0
Hence, it is enough to prove that
tdz} (N, pn) chac(€, p) — pa (char(K:, px.)) cha:(£, p)
=a(p.(td™ (", pu-) 7" (enc(H*, pu-))) ch(E, p) )

From Proposition 2.b.2, we know that

char(K.,px.) = e Al H, pre )yt (H", par+),
so it is sufficient to show that

tdxs (N, pw) chae(€, p) = pulerar(H*, pu-) tdz: (H*, pa-)) char(€, p)
=°(P- (td™'(H*, pn-)o" (ec(H", pu-))) Ch(f,P)) :

By Theorem 3.5.f.2, this last assertion is a direct consequence of the facts that ear(H*, ppr-)

is the class
(X x {oo},—c"(epc(H", pH-))

in CHa((P), and that the restriction of H* to X x {oo} coincides with N.
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Chapter I1.6.,
Arithmetic Riemann-Roch Theorem
For L.C.1. Morphisms

In this chapter, we will give the main result for this part; that is, the arithmetic
Riemann-Roch theorem for l.c.i. morphisms of regular arithmetic varieties, By chapters
4 and 5 of this part, it seems to be the case that we already have had such a theorem,
as we have given the arithmetic Riemann-Roch theorems for both smooth morphisms and
closed immersions. However, the situation here is much more complicated: E.g., for closed
immersions, we have assumed that the structure morphisms are smooth even at the finite
part, which is in general not true. The effort to remove the assumption of the smoothness
has so far only reached its first stage: We only have the result for a l.c.i. morphism of
arithmetic varieties, which is smooth at infinity. As we stated as earlier as in 3.8.b, the
main difficult is that we do not know what a hermitian K-theory for coherent sheaves should
be. In algebraic geometry, which usually deals with everything at the level of cohomology
classes, the coherent sheaves are essentially the vector sheaves (both of them correspond
to algebraic cycles). This latest statement is no longer true in arithmetic geometry, which
treats everything at the level of differential forms, or better, at the level of currents. To
avoid this difficulty up to certain degree, we now assume that our object in the finite part
concerns coherent sheaves, while at infinity, the object is only concerned with vector sheaves.
So we may introduce a concept for hermitian coherent sheaves: These are coherent sheaves
in the finite part, while their pull backs at the infinity are hermitian vector sheaves. Hence
we may attach them with arithmetic cycles. In the same spirit, in the sequel, we shall only
deal with l.c.i. morphisms of arithmetic varieties which are smooth at infinity.

This chapter consists of two sections. In section one, we give a natural definition for the
push-out morphisms of arithmetic K-groups with respect to l.c.i. morphisms, and also the
arithmetic Riemann-Roch theorem for l.c.i. morphisms. In section two, we reduce the proof
of the arithmetic Riemann-Roch theorem for l.c.i. morphisms to an arithmetic Riemann-
Roch theorem for closed immersions, which is similar to the one proved in the last chapter,
but without the assumption that the structure morphism are smooth. We leave the complete
proof of this theorem to the next chapter, after making certain natural generalizations of
the theory.
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§11.6.1. The Arithmetic Riemann-Theorem For L.C.I. Morphisms

We give a definition of the push-out morphism of arithmetic K-groups for l.c.i. mor-
phisms of regular arithmetic varieties, which are smooth at infinity. As was stated in the
introduction, the definition of a push-out morphism of arithmetic K-groups for l.c.i. mor-
phisms of reguiar arithmetlc varieties will include the classical Bott-Chern secondary charac-
teristic forms, the relative Bott-Chern secondary characteristic forms for smooth morphisms
and the relative Bott-Chern secondary characteristic currents for closed immersions.

Let f: X — Y be an l.c.i. morphism of regular arithmetic varieties. We then have a
decomposition: A closed immersion i : X — P followed by a projection g : P — Y. That
is, we have the following commutative diagram:

X < P
N 79
Y

To define a morphism
fx : Kar(X)q — Kar(Y)q,

we need introduce the push-out morphism of arithmetic K-groups for the closed immersion
1, since we have already had a good definition for the smooth morphism g in chapter 3.
Even through this can be done in principle: We need a theory for a relative arithmetic
intersection theoty and a relative arithmetic K-theory for closed immersions. Since we do
not want to develop the relative theory here, we give a direct definition.

Note that since the arithmetic K-group Ka,(X) is generated by f-acyclic hermitian
vector sheaves and smooth forms, we need only to make the definition of fx for each of
them, and then prove the compatibility.

For the decomposition of f, since fc is smooth, we have the following short exact
sequence: _
NZO_"']}C _’i.q;c _’M|C_’0‘

With this, in subsection 3.7.b and for any T € CHa(X)q, we define

tdA-l'(fl Pt )‘r =
= tdac(i*T;, i*p) (LR (Ni, o) T) + tdc(£/9, 47,)T € CRAT(X)q.

Here tdpc(f/g,py/,) denotes the intersection of the classical Bott-Chern secondary char-
acteristic forms associated with the short exact sequence N above and td~!(N;,p;). (See
Section 3.7.)

If @ € A(XR), it is natural to let

fr(a) = fo(a tdac(f, p1)).
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Next we give the definition of fx for f-acyclic hermitian vector sheaves. Let (£, p) be
an f-acyclic hermitian vector sheaf on X. From [.7, we know that there is a resolution of
vector sheaves on P for i.£ :

0—-Fon—=.. = F—=Fp—i.E—~0

Let F; be equipped with Fio-invariant hermitian metrics ;, which satisfy Bismut condition
(A), then we make the following definition:

>

fK(g: P) =:QK(}--1 1'.)
+ 9. (a(ChBC(gsP; i) Pis f"l 1’.)) tdAr(%r Py))
+ 1. (chac(€, 0) a(tdnc(f/9,01/4)) )-

As in Chapter I1.3, for any g-acyclic hermitian vector sheaf (F, ), we have

9, ) =(9.F,9.7) + choc(F, 7:9,55)
+ 9. (chaclF, ) tdacl Ty, p5) a(R(T,)) ),

where R is the unique power series defined in the arithmetic Riemann-Roch theorem for
smooth morphisms. We also use the isomorphism chsr between K, and CHa q and think
of the element

Ga (a(cth(S,p. i, Pi))t-dAr(Tg; Pg)) + f. (ChAr(gv ) “(tdBC(f/Q;P!/f)))

in CHarq as being in Karq: Since they are in the image of a, the meaning of this element
in Kar is clear.

As usual, once we make a definition, we need to show that it is well-defined. So we
need the following

Proposition. With the above definition for smooth forms and f-acyclic hermitian
sheaves, we have a well-defined group morphism

fr : Kace(X) — Kar(Y)q.
Here one may ask how fi depends on the with various data. This may be deduced (by

3.7.b) from the following

Arithmetic Riemann-Roch Theorem For l.c.i. Morphisms. With the notation
above, for any element T € Ka.(X)q, we have

char(fx(T)) = fon(char(T) tda(f, p1)).
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Remark: Actually, in this definition, we need the cup product for the arithmetic
intersection in the sense of arithmetic Chow homology. But since it is rather formal, and
one can understand the above formula without it, so we will not give more attention to this
formalism, but leave congideration of it to the next chapter. The serious reader may first
wish to look at that chapter, and then go on with this chapter. We treat matters in this
way so that the reader may get a feeling for why a certain formalism is necessary for ”the”
general theory.

Now we return to the dependence of fx on various data. By Proposition 3.7.b, we
know that tda;(f,ps) depends only on the choices of metric on 7., and not on the choice
of i, g, nor on the metrics on A; and 7,. Therefore, we know that fx also depends only on
the choice of the metric on 7}, and not on the rest.

§11.6.2. The Proof Of The Results

In this section, we give the proofs of the results stated in the last section using a direct
generalization of the arithmetic Riemann-Roch theorem for closed immersions in Chapter
5. The proof of this generalization is not to be given until the next chapter.

The Arithmetic Riemann-Roch Theorem For Closed Immersions.
Let A = (A, L, Fy) be an arithmetic ring and let

X — ‘Z
N 79
Y

be closed immersions of regular arithmetic varieties over Y with f proper, fc smooth,
and g smooth. Put Fe,-invariant hermitian metrics on the relative tangent sheaves and
the normal sheaf of i. Let (£,p) be a hermitian vector sheaf on X and F. = i.& =0
a vector sheaf resolution of 1,£ on Z. Put F-invariant hermitian metrics 7. on F.
such that Bismut condition (A) is satisfied with respect to px and p. Then, for any
¥ € CHa((Z), the following identity holds on CHA((Y )q

£ (td3; (N, pn) char(E, p)i" ()
=g, (char(F.,7)¥) +9. (a(chpc(€,p3i, %5 F., T (W) |

Now we give the proof of the proposition stated in section 1.

Proof of the proposition: By the proof of Proposition 4.1.d, it is sufficient to prove
that for any short exact sequence of f-acyclic hermitian vector sheaves

£:0=& & —E—0,
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with F,-invariant hermitian metrics p¢ on &,

Fre(Ea,p2) = Fic(E4,p1) = Fic(E, p3) = frc(chac(E-, p.)).

This equality can be proved by using Axiom 3 of relative Bott-Chern secondary characteristic
current for the closed immersion case and the arithmetic Riemann-Roch theorem for closed
immersions. First take a vector sheaf resolution of i,(£.)

Fr. — i.(E),) -0, "
so that we have a short exact sequence
.7'-.,' :0—*.7:1]' —“.'ng —'.7'.31‘ — 0.

Equip the corresponding terms with F-invariant hermitian metrics such that Bismut con-
dition (A} is satisfied. Then, by definition, we know that

fx(&,m2) — fx (€1, p1) — fr (&3, p3)
=gk (F2.,7.) + g (a(chac(£z,pz; i,pi; F2.,72.)) tdAr(Tgrpg))
+ fu (chAr(52= p2) ﬂ('-dac(f/y.m/g)))
~ g (From.) = g, (alchuc(&r, o131, i3 Fr 1)) tdar(Ty 24))
- I (CbAr(gl,Pl)a(tdBC(f/g’:P!/y)))
- 9x(F3.,73.) — g. (a(chnc(&'a.ps; i,pi;Fa.,73.)) tdAr(’J},p,))

~f. (chm(ﬁa. p3)a(tdac(f/g, P!/s)))-

By the arithmetic Riemann-Roch theorem for closed immersions stated above, and Axiom
3 for relative Bott-Chern secondary characteristic currents for closed immersions, we know

that
Tx(&a,p2) — fx(E1,m) — fx (&3, pa)

=fer()_(~1)*chac(€e, 1) td7 (N, pn) i"tdac( Ty, £5))
k

+ 1o (=1 char(€r, pr) altdvc(f/9,p5/5)) )

&
=fen(alchpc(€.. p)) RN, on) i*1dac(T; . £5))

+ fa (a(chgc(&, p.)) altdsc(f/9, Pfly)))

=f. (a(chnc(f., p.)) tdac(f, P!))
=fx (chac(€.,p.))



Chapter I1.6. 371
as required.

We end the chapter by proving the arithmetic Riemann-Roch theorem for l.c.i. mor-
phisms.

Proof of the arithmetic Riemann-Roch theorem for l.c.i. morphisms. The
proof comes from the arithmetic Riemann-Roch theorems for both smooth morphisms and
closed immersions. It is clearly sufficient to prove the formula for f-acyclic hermitian vector
sheaves. Let (£, p) be such an element. We have

char{fx(€,p)) = feu(char(€,p) tdac(f,p)))

=D (- chac(gx(F;, 7)) + 9. (ﬂ(chac(f. Py, pi)) tdAr('I;»Pa))
j=0

+ fo (chac(€, p)tdBc(f/9,P114)) — fon(chac(€, p) tdar(f, py))-

By the arithmetic Riemann-Roch theorem for the smooth morphism g, the above combina-
tion of terms is equal to

D (=1Y gou(char(Fy, 75)tdacl(Ty, py)) + 9. (chc(€, pi i, pii F. 7 )td ar(9, £g))
j=0 M

+ fo(chac(€, P)tdBc(f/9,0114)) — fon(char(€,p) tdac(f.py)).

On the other hand, by the arithmetic Riemann-Roch theorem for the closed immersion i,
the last quantity is equal to . :

fu(char(E, P)tdBC(f/9,p175) + chacl€, p)tdar™ (M, o) i"tdac(g, 5)
- chAr(g, P)tdAr(f» PJ))v

and this is 0 by definition. So we have proved the assertion.

We end of this chapter with the following remark: Since we assume that f at infin-
ity 18 smooth, it makes sense to talk about the associated relative Bott-Chern secondary
characteristic forms with respect to fo,. As a corollary, we may give a direct definition for
the push-out morphism of arithmetic K-groups, without using any decomposition of f as
above. More precisely, if f : X — Y is an l.c.i. morphism of regular arithmetic varieties
over an arithmetic ring (A, o, Fy, ), which is smooth at infinity. Directly define the push-out
morphism f&° : K§(X) — K{T(Y) by letting

TR (E,p) =(S.€, f.p) + chnc(E,p; f,py)
+ o (charl€, ) tdar(Ty, p) 6 (R(T))))

for any f-acyclic hermitian vector sheaf (£, p) as in Chapter I1.4, where R is the unique power
series defined in the arithmetic Riemann-Roch theorem for smooth morphisms. Then, we
have the following
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Arithmetic Riemann-Roch Theorem For l.c.i. Morphisms’. With the same
notation above, for any element T € Kar(X)q, we have

chac(fx(T)) = feulchad(T) tdac(f, ps)).

We leave the proof of this theorem in Chapter 11.7 too. As a consequence of this theo-
rem, we can give the relation between various Bott-Chern secondary characteristic objects.
Indeed, from the equalities in the above two arithmetic Riemann-Roch theorems for 1.c.i.
morphisms, we find that the right hand sides are just*the same. Thus, by the fact that
cha, is an isomorphism between Ksrq and CHa:q, we see that the two definitions about
fx should be the same. So, with the same notation as above, we find that for f-acyclic
hermitian vector sheaf (£, p),

(fo&, fop) + chnc(€,p; frpp)
+ 1. (chae(€, ) tdae(Ty, py) a(R(T)) )
=gx(F., 1)
+ ge (a(chac(é‘. p;i, pi; F.,7.) tdA,(T,,p,))
+ 1. (chacl€, p) a(tdnc(F/9,11,))).

In particular, we now have the uniqueness of the relative Bott-Chern secondary characteristic
currents with respect to closed immersions, since in the latest relation, all others are unique
for a fixed decomposition of f = goi.
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Chapter 117 .
Grassmannian Graph Construction In Arithmetic Geometry

We now prove the arithmetic Riemann-Roch theorem for closed immersions stated in
6.1. During this process, (in fact, even at the very beginning, in order to understand
the theorem), we need to introduce the arithmetic Chern character with supports in the
language of arithmetic Chow homology groups. As one may imagine, the Grassmannian
graph construction of MacPherson is very useful. Here we will follow [GS 92} to expose the
whole theory.

This chapter consists of the following four sections. In section one, we introduce the
Grassmannian graph construction. In section two, we introduce the arithmetic Chern char-
acteristic class with supports. In section three, we complete the proof of the arithmetic
Riemann-Roch theorem for l.c.i. morphisms, and give a more direct definition for the push-
out morphism for arithmetic K-groups. Finally, in section four, we give a more general
discussion.

§I1.7.1. The Grassmannian Graph Construction

In this section, we will give MacPherson’s Grassmannian graph construction. This is a
generalization of the deformation to the normal cone theory for a regular closed immersion
and has its root in homotopy theory: How to find an easily handled object in a homotopy
class?

11.7.1.a. Deformation To The Normal Cone

We recall the deformation to the normal cone theory for a regular closed immersion
and consider what are the most important facts concerning it. Let i: X < Z be a closed
immersion of regular varieties. Then we have the following commutative diagram:

X ~ Xx{o} S PWNOOx)+BxZ=Wep — {0}
1 | Joo } !
x 2% xxpP' & ByuwZxPlzw 3 P!
1 li Jjol i
X

- Xx{0}) & Z x {0} = Wo - {0}
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with the following properties:

(1) The fiber of I over 0 is i.

(2) The fiber of I over oo is the union of Bx Z and Px(N & 1) and they intersect transver-
sally along the exceptional divisor of Bx Z; the imbedding of X x {oo} in W, is just
the zero section of P(N & 1).

(3) The I image of X x P! does not meet BxZ in W.

(4) The projection W — P! is flat.

Since we have the above properties, if F. is a vector sheaf resolution of the ¢ direct
image of a vector sheaf £ on Z, then with this deformation, we can use the natural associated
Koszul complex to make a certain precise calculation. For more details, see 1.9, I11.1 and
I1.5. Next, we generalize the above basic properties to a more general context by using the
Grassmannian graph construction, which comes from the following vivid observation for the
deformation to the normal cone:

Assume FE is a vector bundle on Z, and s is a section of E whose zero-scheme is X.
Then for each acalar A, the graph of As is a line in £ @ 1. So we get an imbedding

ZxA'«-+P(E®1)x P!,

by the natural map (z,A) — (graph of As(z),[l : A]). In this way, we may find that the
deformation space W is in fact the closure of Z x A! in this imbedding.

I1.7.1.b. The Grassmannian Graph Construction

Let X be an integral scheme. Let £. be a chain complex of vector sheaves on X. Denote
by C. := C(£.) the split acyclic complex with C; = & ® £, and differential d; : C; — Ci_y
being di(z,y) = (y,0). Obviously, C(£.) is an additive functor of graded vector sheaves £..
Furthermore, there is a natural morphism of complexes

y: £ — C(&)
z +— (z,d(z)),

which is the inclusion of a subvector sheaf in each degree. This construction is also com-
patible with the morphisms between complexes: If ¢ : £. — F. is a morphism of complexes,
then C(4) o v¢. = vr. 0 ¢. If ¢ is quasi-isomorphic to zero, or equivalently, null-homotopic,
i.e. if there exists h such that ¢ = d A+ hd, then C(¢) is also null-homotopic. In fact, there
is a map
C(h) L&l — FieFi
(z.y)  — (h(z),—h{y) + é(2)).

So, on C(£.), C(¢) = do C(h) + C(h)od and this homotopy is compatible with the natural
transformation v, t.e. C(h)ove. =y oh.

We suppose now that & = 0 for i < 0. Let P! be the projective line over Z, and
Op1 (ico) the line sheaf of meromorphic functions on P! which have poles of at most order i
along the divisor oo and are regular on the affine line Al = P! - {c0}. Naturally, Op:(ico)
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18 contained in Op:((i + 1)oo). By a pull-back along the projection X x P! — X, we
may view £. as a complex of vector sheaves on X x P!, Let DC. := DC(£.) be the C-
construction applied to the graded vector sheaf @;&;(i), where £(i) := £ @ Op1(ico) is the
twisted vector sheaf. We know that the sheaf & is a subsheaf of &£(i) and that they are
equal on X x A!. Hence, via the map v¢_, £;|xxa: is a subvector sheaf of DC(E.)|xxal. -
Let # : G — X x P! be the product of Grassmannian bundle G(n;, DC;) parameterizing
the rank n; = rank(C;) subvector sheaves of DC; over X x P! for all i. Over X x A!, the
map g, defines a section s of x. Thus, following Baum, Fulton and MacPherson [BFM 75],
we define the Grassmannian graph of £. as the Zariski closure W := W(£.) of (X x A!)
in G. Next we look at properties of this construction. *

First, since 7 is proper so is its restriction to W, which we shall also denote by #. Since
X x A! is integral, so is W. By the construction, = is an isomorphism on X x A!. However,
the effective Cartier divisor W, := 7 1(X x {c0}), cut out by W at infinity, may not be
isomorphic to X. There is also a subvector sheaf D& C n*(DC;) which coincides with &;
over X x A!. Indeed, this later property characterizes D; as a subvector sheaf of #*(DC;),
since W is integral.

Second, if the restriction of £. to a nonempty open subset U C X is acyclic. Then there
is a canonical splitting of x over U x P!. Denote by X the closure in W, of the image of
U x {oo} by the section s. Then the cycle Z = [W.] —[X] is supported in the inverse image
by x of X — U, and the restriction of DE. to X is split acyclic.

Finally, we look at how this construction generalizes the above deformation to the
normal cone theory for closed immersions. Let i : X «— P be a regular closed immersion.
Let F be a vector sheaf on X, and let £, — i, F — 0 be a finite vector sheaf resolution.
Then, by a direct calculation, we see that W(£.) is isomorphic to the total space W of the
deformation to the normal cone construction stated in subsection 7.1.a. Hence,

(1) Woo = P(Nxyp® 1)U P. Here, P is the blow-up of P along X.

(2) The immersion X x P! <& P x P! induces a closed immersion [ : X x P! — W,
such that DE. is a resolution of I, F.

(3) |Z} is the projective completion P(Nx;p & 1) of the normal bundle of X in P.

(4) There is an exact sequence on |Z|

0— Q — D“"'lp(”x/pQU - K(H)@ﬁ'.(}-) s 0,

where G. is acyclic and K (M) is the tautological Koszul complex on P(Nx;p @ 1),
which is a resolution of Ox when X is imbedded in P(Nx,p @ 1) by the zero section.

11.7.1.c. Additional Properties
We consider how W(£.) depends upon £.. For this, we need the following
Lemma 1. DE. is a subcomplex of #*(DC.).

Proof. Since DC. is a complex, it is sufficient to show that dpe (D&) C D&—,.
By definition, we know that this is true on the dense open subset X x A!' C W. But
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W is integral and, by the definition of the Grassmannian, D&;_; is a subvector sheaf in
7*(DCi-1). So we deduce the assertion from the following easy

Sublemma. Let V be an integral scheme, and suppose that 4 C £ and B C F are
vector subsheaves of vector sheaves. Then we have

(1) If ¢ : A — B is a homomorphism which vanishes on a Zariski open dense subset of
V, then ¢ vanishes oo the whole of V;

(2) If B C F is a subvector sheaf, and ¢ : £ — F is a morphism such that, over a
Zariski dense open subset of V, ¢(A) C B, then ¢(.A) C B over the whole of V.

Proof of the sublernma. We have the first assertion since B is a torsion free module.
Applying (1) to the induced map A — F/B, we have (2).

Before we go to the most general case, we look at a very special Grassmannian graph
construction.

Proposition 1. If £. is a complex as above, but with the homology sheaves being
vector sheaves, then W(£.) ~ X x P!,

Proof. We know that the complex £. breaks up into two short exact sequences:

0 - 2 - & % B, - 0

0 —- B — Z — Hil&) — 0,

where Z and B denote the subsheaves of £ consisting of cycles and boundaries respectively.
Since we assume that the H;’s are vector sheaves, it follows by induction on i that all the
sheaves in the above exact sequences are also vector sheaves, From this, we introduce a
natural morphism

Bio(f)®&ai(i-1)
Bili-1)

&)@ Ea(i-1)—

as follows: n; maps (u,v) to the class of (du,v). Here Bi_i(i — 1) is mapped diagonally into
B;.1(i)®&i—1(i— 1) by the inclusions B;_1{i ~ 1) C Bi_y{i) and B;_1(i—-1) C Zi-1(i—-1) C
&i-1(i — 1). So by the fact that the sheaves in the above exact sequences are all vector
sheaves, we know that the image of 7; is also a vector sheaf, and hence so is its kernel. On
the other hand, over X x A!, the homomorphism 7; is equivalent to the map

E() @ Ei(i=1) = &1 (i~ 1),

which sends (u,v) to v — du. So the restriction of Ker (1;) to X x A! is isomorphic to the
inclusion of & into & @ & via z — (z,dz). Thus the subvector sheaf Ker(n) C DC;
defines an extension of the section s : X x A! — G(n;,C;) over X x P!. Therefore,
W(E.) =X x P!,

We now consider the functorial property of the Grassmannian graph construction.

Proposition 2. Let £. be a complex of vector sheaveson X, and let f:Y — X be a
flat map. Then W(f*£.) =Y xx W(E.).
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Proof. By definition, obviously, we have D(f*£.) = (f x Idp:)"(DC(£.)). Hence
"W{f*£.) is the Zariski closure of ¥ x A! in Y x G, which is equal to the Zariski closure of
F~1(s(X xA!)). On the other hand, by the fact that f is flat, we know that f is open and f~!
preserves the operation of taking Zariski closure. So W(f*€.) = f~'(W(£.)) = Y xx W(E.).

For the dependence of W(£.) on £. in general, we have the following

Proposition 3. Let ¢ : £. — F. be a morphism of complexes of vector sheaves on X,
such that ¢ is a monomorphism and Coker (¢) is an acyclic complex of vector sheaves.
Then W(£.) = W(F.) and ¢ extends, from X x A!, to a uniuqe morphism of complexes
D¢ : DE. — DF.. Furthermore, Coker(D@) is acyclic, and split acyclic over {co}.

Proof. By definition, we know that X x A! is dense in W, so we can get at most one
isomorphism W(&.) ~ W(F.) such that its restriction to X x A! is the identity. Now, we
define one. Since we may work locally on X, we assume that X is affine and therciore that
the complex F. is the direct sum of £. with an acyclic complex G.. (This can be shown by
induction on the degree.) Therefore DC(F.) ~ DC(£.) ® DC(G.). Let m;, n; and p; be
the ranks of &, F; and G;, respectively. Then we have a closed embedding

G(m;, DCi(£.)) xxxp: G(pi, DCi(G.)) — G(ni, DCi(F ),

which is compatible with the section on X x Al. By Proposition 1, W(G.) = X x P!, hence
under the embedding above, W(£.) ~ W(F.).

Other assertions come from the following facts: On W(£.) ~ W(F ), there is an exact
sequence

0— DC(£)— DC(F)— DC(G.)— 0.
Hence the induced sequence
0— DE.— DF.— DG.—0
is exact, since this is true locally.
As an immediate consequence of this proposition, we have

Corollary 1. Let ¢ : £. — F. be a quasi-isomorphism between bounded complexes
of vector sheaves on X. Then W(E.) = W(F.), and the complexes D{. and DF. are
quasi-isomorphic as complexes on W (£.).

If we apply the result to a regular closed immersion, we get

Corollary 2. Let P be an integral regular scheme, and i : X «— P a closed subacheme.
Let W(X/P) denote the Grassmannian graph construction for any vector sheaf resolu-
tion of 1.0x on P. Then, given a vector sheal 7 on X, any resolution £&. — i.F — 0
by vector sheaves on P may extend to a complex of vector sheaves on W{X/P) which
is a complex of subvector sheaves of DC(£.).

Proof. By Corollary 1, we know that W does not depend on the choice of the resolution.
On the other hand, locally on X, £. is quasi-isomorphic to a direct sum of copies of such a
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resolution F.. By Proposition 3, F. and any finite direct sum F.®N extends to a subcomplex
of DC(F.2") ~ (DC(F.)®")on W. Now W = UW(X NU/U) as U runs through any open
cover of P. If we choose the open cover so that, on each U, £. is quasi-isomorphic to a
sum of copies of ., then £. extends as a subcomplex of DC(£.) on each W(X NU/U), and
hence, by the uniqueness of such extensions, it extends as a subcomplex on the whole of W.

As a matter of fact, we also have the following

Proposition 4. If £. and F. are chain complexes of vectorbsheaves on X, the identity
map on X x A! extends to a unique map from the ZJariski closure W(£.,F.) of X x A!
in W(E) X xxpt W(f) to W(g e F).

Proof. On the variety W(£.) xxxp1 W(F.) by a pull-back from the two factors, we
obtain subvector sheaves DE. of DC(E.) and DF of DC(F.) extending £. and F. from
X x A! respectively. The direct sum DE. DF. is a subvector sheaf of DC(£.)® DC(F.) ~
DC(€.® F) and hence is classified by a map from the fiber product W{(£.) x x xpr W(F.) to
the Grassmannian of subvector sheaves of DC(£.® F). This map agrees with the standard
section s over X x A!, and hence maps W(E.,F.) to W(£.& F.).

So, together with sublemma 1, we have the following

Corollary 3. (a) Any map ¢ : £. — F. of chain complexes of vector sheaves on X
extends to a map D¢ : DE. — DF.on W(E.,F.). The operation ¢ — D¢ is additive.
(bYIf¢:E — F.and ¢ : F. — G. are maps of chain complexes of vector sheaves
on X, then on W(&.,F.,G.) ( which is defined analogously to W(£.,F.)), we have
D(p o $) = Dy o D§.

Next, we simplify temporarily our notation, and write W for W (£.,F.). Let W, be the
inverse image of X x {oo} under the projection  : W — X x P!. It follows from Proposition
1 that (W] = Z + {)E'] The map |3 : X — X is birational, and the support |Z] of Z
is contained in the inverse image of the proper closed subset of X, where the homology
sheaves H(£. @ F.) are not vector sheaves. By definition, if U is the complement of this
closed subset in X, X is the closure in Wy, of the image of U x {co} by the section of =
over U x P! obtained in Propaosition 1.

Proposition 5. Let ¢ : £. — F. be a morphism of complexes of vector sheaves on X
and let A be a null homotopy of ¢. Then ¢ extends uniquely from X x A! to a null
homotopy Dh of D¢ on W. Furthermore, the restriction of Dh to W, depends only
on ¢ and not on the choice of A; it is additive in ¢; And the restriction of Dh to |Z]
depends only on the restriction of ¢ to =(]|Z|) and is additive.

Proof. We can define a map on X x P!
DCi(h) : &) ® Ei-1(i— 1) = Fopi (i + 1) & Fi(d)

by (z,y) — (h(z),—h(y) + ¢é(z)), where we use the embedding of Op1{ioco) naturally into
Op1((i + 1)o0). By the sublemma, we see the existence and the uniqueness of Dh, since



Chapter I1.7. 379

DC(h) restricted to the dense open subset X x A! C W is a null-homotopy of C(¢). On
the other hand, on W, we have the commutative diagram

D& — &M@ &-o1(i—-1)
Dhl L he
. D}-H-l - £+1('. + 1) @fi(i)!

ho = (hﬁsl) —ho(l))

and A(1) : &(i) — Fiq1(i + 1) is the composition of h with the natural inclusion F;4, (i) —
Fit1(i+1). Since the restriction of this inclusion to X x {oo} vanishes, so does the restriction
of h(1). Hence the restriction of Dh to infinity does not depend on the choice of A, it depends
on the restriction to £. of the map

0 0

¢ 0

from DC(E.) to DC(F.). Therefore, at a point w € W, it depends linearly on the map ¢
at the image of w in X. This completes the proof.

where

I1.7.1.d. A Technical Result

We finish this section by considering the relations that hold between various complexes
associated with the Grassmannian graph construction, and wiil be used later.

Let X be an integral scheme, quasi-projective over a regular noetherian integral domain
A. Suppose that j: X — M and i : X — P are two immersions of X into regular varieties
M and P, and that there is a smooth map p: P — M, such that poi = j. Then we have
the following diagram: _
x L Xxxyp & p
dN pl i
x 4 oM

Here f = (Id,{) is the induced map by the Cartesian product. So f is a regular immersion.
In particular, the direct image by f. of any vector sheaves on X has a finite global resolution
by vector sheaves on X xps P. (This is a standard fact: Being regular, f is perfect and
since X x s P is quasi-projective, we can apply II. Prop. 2.2.9.b [SGA 6].)

Let V. — f.Ox — 0 be a vector sheaf resolution on X xps P. If F is a coherent sheaf
on X, f.Ox and p;F are Tor-independent {p; is smooth), and so V. ® p}F is a resolution
of f.F by coherent sheaves. Now let £. — j.F — 0 be a vector sheaf resolution of j,F on
M, and let W := W(£.) be the corresponding Grassmannian graph construction.

Choose a resolution of jp.(V. ® pj F) on P by a double complex G.. of vector sheaves
so that, for each i, G;. = 7. (Vi ® 'p;-}') — 0 is a resolution: We proceed by induction on
i, using the fact that this is true when V. has length one. By Corollary c.2, since each ;.
is a resolution of a vector sheaf on X, it extends as a complex Dg;. to W((X xp P)/P).
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Now observe that the horizontal component d’ of the differential on G.. can be viewed as
determining for each ¢ a map of complexes d' : G;. — G;_., where the differential on G;. is
(—1)d. Hence by Proposition 1.c.4, we get a map Dd’ : DG;. — DG;_,., such that Dd’? = 0.
So we have a double complex DG.. on W(X/M) x s P.

Therefore, by the congtruction, we see that the double complex DG.. has the following
properties: If 7 : W x3 P — P! x P is the projection, then for each {, DG. is acyclic on
7~ 1P x(P-p~1(X))). Over {0} € P!, DG..~G... Over {co} € P!, if we define M C Wi,
as before, Weo xpr P = (ZU M) xp P with #(Z) C X xp P C P. So the restriction of the
double complex DG.. to M x s P has split acyclic columns DG;. and Tot DGIMX“P, the
associated total complex, is therefore acyclic.

Let |Z| be the support in W of the algebraic cycle Z = [We] — [M], denote by v :
|Z] xm P — X xum P and py : |Z| xp P — Z the projections induced by = and p
respectively, and by £.Z the restriction to | Z| of the canonical extension of £. to W, we have
7(}Z]) = X and the following

Proposition. There is an isomorphism in the derived category of bounded complexes
of vector sheaves on |Z] xps P:

Tot(Dg..||z|pr) ~v" (V) x p;°(£.z).

Proof. The proof of this proposition follows from two lemmas in homological algebra.

Lemma 1. Let £. and F. be bounded complexes of sheaves of abelian groups on a
topological space X. Suppose that there is a finite open cover {U,} of X and quasi-
isomorphisms

Pa - E.luu hand .7:.|Un,

such that on each intersection U, N Us, 9. and pg are homotopic, i.e. there exists a
map

Ypa : Euanu, = Flu.nu,

such that,
Pp — Pa =dopga +ppaod,

and such that, on each triple intersection U, NUgNU,,

VYoo — Pya +wyp = 0.

Then £. and F. are isomorphic in the derived category of bounded complexes of sheaves.

Proof. Consider the complex C*({Ug}, F.) of sheaves on X with sections over each
open subset I/ which consist of the total complex of the Cech bi-complex C*({Ua} NV, F.).
Then the natural augmentation g : F. — C*({Uq}, F.) is a quasi-isomorphism. Thus it
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suffices to show that there exists a quasi-isomorphism £. — C*({Us}, F.). We define such
a map ¢ as follows: ¢ 1= @p*, where ¥ : & — @1, =iC*({Us}, F1) is given by

BaPa, k=0,

ot = {e,,wap, itk =1;

0, ifk>1.
It is straightforward to check that ¢ is a map of complexes. To see that ¢ is a quasi-
isomorphism, we may work locally and assume that X = [, for some «. Then np, and ¢

are homotopic. So by the fact that ¢, and n are quasi-isomorphisms, it foliows that ¢ is
too. .

Lemma 2. Suppose that £.. and F.. are double complexes in an abelian category with
d’ and d" the first and second differentials, respectively. Assume that .. is a map of
bigraded objects such that

(a) For each k, . : &. — . 18 a quasi-isomorphism of complexes.

(b) For each k, [, there exists a map x4 : Egr ~— Fi—1141 such that

dopr. —pp_1.0d = (—l)k—ld" oXk. + (—l)i,‘(p. od”,

(c) &' ox+ xod vanishes.
Then the map ¢ + (—1)*x on £;. induces a quasi-isomorphism between the total com-
" plexes of £.. and F...

Proof. We check that ¢ := ¢ + (=1)*x on &. induces a chain map on the total
complex Tot(£..). Let D = d’ + d” be the total differential. Then, Do ¢ = ¢ o D: In fact,
by definition, we see that

D¢~ ¢D = (d'p — pd') + (d"p — pd") + (= 1)* (d'x + xd) + (~1)*(d"x - xd").
But the second and the third terms on the right hand side of this equation vanish by (a)

and (c¢), while the other two terms have sum zero by (b).

On the other hand, for any given double complex X.., we can introduce ita associated
filtration by letting F; X.. := @i<i Xi.. Thus ¢ preserves this filtration on £.. and F... Thus
the induced map on the associated graded objects is the sum of the quasi-isomorphisms ;.
and hence ¢ itself is a quasi-isomorphism.

With these two lemmas in mind, we can prove the proposition by, first, constructing
the morphisms as in the lemmas above and then checking the conditions there.

For every integer k, since each V; is a vector sheaf on X xp P, there is a small open
set where V; is trivial of rank r, and we get that

Jo eV @ piF) = Jpu (P F)™* =" (3. F)™

has a resolution by p*£.7. It also has a global resolution by Gi.. Hence there exists a locally
finite affine covering {U.} of P, and for each Uy, an isomorphism 8, : Vi — O%,, p on
UaN(X xp P), and a chain equivalence ¢ : £.™ — Gi., on Uy, resolving the isomorphism

Jpa(0a® 1) : jpu(Ve ® P} F) — Jpu(pj F)™.



382 Grassmannian Graph Construction

In particular, on Uq N Ug N (X xas P), there is a transition matrix épa = 0_,59_;1 for Vi,
which we may lift as an r; x r, matrix of functions 8g4 on U, N Up.

Now consider the two maps ¢, and ¢g{fs, @ 1) from £.7* to Gi.: The decompositions
of these maps with the quasi-isomorphism from G. to j,.(Vi ® p; F) are the same, and
hence, since £7%. 13 a complex of vector sheaves, these maps are homotopic over the affine
open subset U, N Us. So we may choose homotopy morphisms dg, such that

d(¢ﬂa) = ¢ﬁ(gﬂa ® 1) — ba.
By Proposition c.4, the map ¢4, @3, fp and ¢, extend to the inverse images of the open
subsets U,, Ug, and Us N U in W xpr P, respectively. We denote these extensions by
D¢, Dig, Dlga and Dggq. Notice that Dfgy is the inverse image by = of 8., we see

that its restriction to |Z| x» P coincides with v'(ﬂ_gc,)_= v*(85) v*(831). On the covering
{IZ]| xm Uq}, we consider the trivialization D8, = v*(84) of v*(Vi) and the maps

Pa = Déa(D0a ® 1) : v* (Vi ® Poo(E-2)1z1xm(Pva) = DGr-Nzixm(PUa):
On the intersection |Z| X a (Us N Ug) the map
¥pa = Déga(D @ 1)

is a homotopy between g and ¢,, since

d‘Pﬂa =d(D¢,ﬁu)|[Z|qu(DBa ® 1) = (D¢3Doﬂa - D¢a)|lleuP(Doa ® 1)
=D¢s|121xn P (V" (F5a)v"(02)) ® 1) = Déalizix, p(v"(8a) ® 1)
=Dés(DBp ® 1) — Da( Dl ® 1) = pp — Pa.

Furthermore, by Proposition ¢.5, Dégal)z|x ,, p depends only on the restriction of ¢pfpa —da
to X x ps P. Therefore, on |Z| xp¢ (U NUs N U7),

Ppa = Pra + Py = 0.

Indeed, (ppa — Pya + Py8)(D8a ® 1)~ 1 is the restriction to |Z| of the extension to W of a
null homotopy of

(¢paﬁa - d’a) - (¢70‘m - ¢a) + (¢79~rﬂ - ¢p)n

whose restriction to X X ¢ P is zero since
Oy60pa = 9_79_5155521 = bya-

Hence, by Lemma 1 above, the family {¢qa, s} defines a quasi-isomorphism of complexes
of sheaves on |Z] xp P:

v (V) ® plo(€.7) — ToUC™({Ua}, DGe.)).
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On the other hand, the differentials di : Vi — Vi, can also be lifted locally to maps of
comnplexes dy o : £;* — E.*7}, over each U,. After composition with the augmentation from
Gr—1.t0 jpa(Vio1 ®p;-.7), the two maps df 0 ¢ and ¢, o dp— coincide. Hence these maps
are homotopic.

Finally let ¢/, be the h‘omotopy and let x, be the restriction to |Z|x aps P of the canonical
extension of ¢/, to W xar P. Restricting to |Z] xas P, there is over each I/, a diagram

Vi@ DE. B Dg,.
d ] td
Vic1®DE. %3 DG_,.

Here the first d’ is just d}: ® 1 and dpa — pad’ = (=1)¥"1d"x, + (—1)")(.,(1 ® dpe). From
the equality
d(d'¢a — ¢ad') + (d'¢a — dad')d' =0

on X X P, we get, by Proposition ¢.5, that d'x, + xod = 0. Hence, by Lemma 2 above,
#a + (—1)¥xo defines a quasi-isomorphism

Tot(v*(V ® ple(DE.)) — Tot(DG..)

on U,. Thus we are led to consider
@ = {pa + (=1 xa,Ppe} : Tot(v"(V ® p (E2.)) = Tot(C ({Ua}, DG..)).

Obviously, the proposition is equivalent to saying that & is a quasi-isomorphism, which can
be proved by using Lemma 2 once more: For this the only identity left to be shown is
d9pa — ppad = (—1)*(xp — Xa). This follows from Proposition ¢.5 by an argument as
above, where we compose both sides of this equality with (D, ® 1)~! and notice that d’
commutes with so ® 1on X xp P.

§I1.7.2. The Arithmetic Chern Character With Supports

In this section, we use the results in the previous section to define the arithmetic Chern
character with supports, which will be used in the next section to prove an arithmetic
Riemann-Roch theorem for general closed immersions stated in 6.2.

Let P be a regular arithmetic variety (over an arithmetic ring A), and let i : X — P
be a closed arithmetic proper subvariety, with a choice of Fi,-invariant hermitian metric
on the normal bundle to X(C) in P(C). Suppose that £. is a bounded complex of vector
sheaves on P, acyclic off X over the generic fiber Pp, which is a resolution of a hermitian
vector sheaf (F,7) on Xp. Then we can define an arithmetic Chern character with supports,

cha, ¥ (£.) € CBAT(X)q, as follows:

Let * : W < P x P! be the Grassmannian graph construction_associated with the
complex £.. As in section 1, we consider the cycle Z = {W] — [P] and write |Z| for
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its support. Let DE. be the extension of £. to W, and £.7 its restriction to |Z|. Since
£.Z is a resolution over |Z|F of the direct image of 7, we can equip the bundles £7 with
Feo-invariant hermitian metrics which satisfy Bismut condition (A). By 1.8, there is the
telative Bott-Chern secondary characteristic current chpc(€ Zz pe.z) of this complex with
respect to the corresponding closed immersion. Now we change the notation a little bit.
We write 7% : |Z| — X for the projection induced by the map 7 : W — P. Hence
dd®(7Z (chpc(£.2, pe.s)) is smooth on X and hence a(xZ(chpc(€.2, pg 1))) is an element
in CHAT(X). Furthermore, by the dimension reason, we know that the cycle Z can be
viewed as giving a class in CHé\i;(Z)('ZD = CHdim(Z)(IZ.D-

With this, we may define the arithmetic Chern character of (£., p.) with supports
in X by

chacp (E.,p.) := 77 (chac(€.2, pe.3) N Z) + a{m(chpc(€.2, e 5)).

We shall sometimes write ch} (£.,0.) rather than cha. 5 (£.,p.). As usual, we now need to
check that the definition makes sense: We claim that the class depends on the choice of
metrics on F and on the normal bundles to X{C) in P(C), but it is independent of the
choice of metrics on £.Z. In fact, this is a special case of the following proposition with
Ei.=6.=E.

Proposition 1. If £ : £,. — £;. i8 a quasi-isomorphism which, induces a morphism of
resolutions of F over F, then

ChArg(t‘:l-‘Pl-) = chmﬁ(fz-,pa-)'

Proof. Replacing the quasi-isomorphism by its mapping cone, if necessary, we may
assume that k is injective in each degree. By Proposition c.3, we know that W(£,.) = W(&;.)
and that the map k induces a map &% : £Z. — £Z. which is a monomorphism with cokernel
a split acyclic complex of vector sheaves. We now choose arbitrary F,-invariant hermitian
metrics on the complexes £Z., £Z., which satisfy Bismut condition (A), and make a choice
of Fy-invariant hermitian metrics on the quotient complex compatible with the splitting.
By Theorem 3.7,

(chae(EF . pes.) = chacl€f ., pes ) — chaclEF JEL . pex 1e3)) N Z
= a(z(—l)mChBC(O - “:lzm - g’.'zm - gzzm/glzm - 0:9‘121:1))-

m

However, by axioms of the Bott-Chern secondary characteristic objects, the last expression
is nothing but

a(chac(€f,pe.3) — choc(EF pe.z) — choc(E] /€7 pe.3 je.3))-

With this, the assertion comes from the fact that £.Z /£.Z is split acyelic.
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Corollary 1. Let (F,7) be a hermitian vector sheaf on X and suppose that P is
regular. For any vector sheaf resolution £. of F by a complex of vector sheaves on P,
the class chx.(£.,p.) € CHAT(X) is independent of the choice of the resolution. We
shall denote this class by ch’ (F, 7).

Next, we give a few down-to earth properties of chAr,’f(E.,p.).

Proposition 2. With the same notation as above,

(a). w(ch® (£.,p.)) = ch(F,r)td™ (N, hy).

(b). If two metrics h, and hz are given on the normal bundle of X(C) in P(C), then

the difference of the associated arithmetic Chern characters with supports is given
by the formula

chX(E.,p)1 = ch¥ (€., p.)2 = a{ch(F, ) tdpc " (N by, h3)).

(c). Let
.A:O—"*(‘:l.—’gg.—*ga.—‘o

be a short exact sequence of complexes of vector sheaves, which on the generic
fiber is a resolution of a exact sequence of hermitian vector sheaves:

0—'.7:1 —b]"z —’.7'-3—00.
Then

chXe(E2., pes.) — chA((€1., Pe,.) — chAe(€3., pey.) = a(chac(A, pa) td ™ (N, b))

Applying this construction to Ka,(X), we immediately get the following

Corollary 2. Assume P is reguiar, then the map
(F.7)7) = bRl F, 7) + a(y)
defines a homomorphism of abelian groups
K3'(X) — CHA(X)q.

Here K27(X) is generated by hermitian coherent vector sheaves, i.e. the coherent sheaf
on X, but with a vector sheaf pull back at infinite places, and so on.

We end this section with some more properties, which are quite natural.

Property 1. (Module Property) If G is a vector sheaf with an Fo,-invariant hermi-
tian metric on P, then

charE (E-® i°G, pe givg) = chacp (€., p.) ichar(G, 7).
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Proof. By the fact that W(£. ® G) = W(E.), and that on this scheme, we have
D(E.®G) ~ DE.®G. So by the restriction to |Z]|, we have

(£.96)7 =£2. @ 22",

Now observe that
chac(EZ. @ 72°i*G, pes graeieg) = chac(EZ., pez ) 72%i*ch(G, 7).
The assertion follows by the projective formula for currents.

Property 2. Let i : X < P be a closed immersion of arithmetic varieties which is
proper over an arithmetic variety Y and with the structure morphisms f and g that
are smooth at infinity. Suppose that (£.,p.) is a complex of hermitian vector sheaves
on P, acyclic off X, which on the generic fiber Pp is a resolution of hermitian coherent
vector sheaf (F,7) on X satisfying Bismut condition (A). Then in CHA(Y)q

fo(chacB (€.,p.)i@) = gu(char(€.,p.) N a) + a(g.(chpc(£., p.)) w(a)),
where o = cha(z) for some z € Ko (P)q, or P is regular and a € CH, (P).

Proof. We fix an F-invariant hermitian metric on the normal bundle of X x P! in
the Grassmannian graph construction W = W(£.) via the natural isomorphism

Nxypiyw = p"Nx p(—00),
where p is the projection from Y x P! to Y.

Note that at infinity, the map # = go 7 from W to Y x P! induces a proper map of
complex manifolds. Choose Fo.-invariant hermitian metrics on DE. such that the restriction
to 0 coincides with the one on £., the restriction to P is spht acyclic, and the restriction to
|Z| satisfies Bismut condition (A)

Then, we consider the class
T (CbAr(Dg., ppg.).,a) + a(i’.chgc(DS.,ng,) q'w(a))

in CHAT(Y x P')q, where g : W — P is the projection. The restriction of this class to {co}
is the left hand side of the equation of this property, while the restriction to {0} is the right
hand side. Thus by Axiom 1 for the classical Bott-Chern secondary characteristic forms, or
better, by Theorem 3.5.f, the difference of these two elements is

/P 7. (w(char(DE -, ppe.) +alchno( DE.,ppe.))) 4" w(a) ) da[~loglz[,

where z is the parameter on P!. However, by Axiom 1 for the relative Bott-Chern secondary
characteristic currents with respect to closed immersions,

w(char(DE. ppe.) + a(chpc(DE., ppe.)))
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is equal to j. (ch(F,r) td_l(Nxxpllw)), where j : X x P! «<» W is the natural inclusion,
Applying the projection formula for the integration over the fiber, the assertion comes from
the fact that

- log]z|2ch(p'Ny/p(—oo),pP-M,/P(,_m))) =0.

Property 3 (Uniqueness Rule.) (a). Suppose that i : X — P is a regular closed
immersion and (F, ) is a hermitian vector sheaf on*X. For any vector sheaf resolution
£ — i.F — 0on P, we have

chX(£.,p.) = char(F,7) 00 (tdac ™ (N, i) N[X]).

(b). Suppose that both X and P are regular. Then for any hermitian coherent vector
sheaf (F,7) on X,

ch¥ (£.,p.) = char(F,7) Ntdar™ (M, pi).

Proof. We only need to prove (a), since then (b) is a direct consequence.

The inclusion ¢ : X — P is a regular immersion, the cycle Z at infinity is irreducible
and is equal to P(N @ 1), with N = Nx;p. Let S be the tautological codimension-one
sub-vector sheaf of N @ 1 on P(N @ 1). Then the Koszul complex K.(S) is a resolution of
8.Ox, where g is the zero section. Hence K.(§)®7*(F) is a resolution of s, F. Furthermore,
we know from the consturction and Theorem 1.9.1.¢, that there is a quasi-isomorphism

¢: £~ K(S)® " (F)

for which ¢ is an epimorphism with a split acyclic kernel. We equip K.(S) with the F,-
invariant hermitian metric induced by thinking of S as a sub-vector sheaf of A" @ 1, then
with the induced metrics, K.(S) ® #*(F) satisfies Bismut condition (A) as a vector sheaf
resolution of s, F. Hence, as in Property 1,

a(chpc(€.2, pe.2) — chac(K.(S) ® 7*(F), pr.(s)95+(F)))
=(chac(£.2,p.2) — char(K(S) @ 7*(F), pi.(s)01+(5))) N [2]:

So we have the assertions by the proof of Theorem 5.1.
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§I1.7.3. Completion Of The Proof Of Theorems In Section 6.2
In this section, we are going to prove two theorems in Section 6.2.

11.7.3.a. The Proof Of The Arithmetic Riemann-Roch Theorem For Closed
Immersions.

In this subsection, we will give a proof of the following

Arithmetic Riemann-Roch Theorem For Clofed Immersions.
Let A =(A,Z, Fy) be an arithmetic ring and let
e 4 Z

N 79
‘ Y

be closed immersions of regular arithmetic varieties over Y with f proper, fc smooth,
and g smooth. Put Foo-invariant hermitian metrics on the relative tangent sheaves and
the normal sheaf of i. Let (£,p) be a hermitian vector sheaf on X and F. — {,£ — 0
a vector sheaf resolution of {,£ on Z. Put F-invariant hermitian metrics p. on F.
such that Bismut condition (A) is satisfied with respect to py and p. Then, for any
¥ € CHa (Z), the following identity holds on CHa(Y )q

£ (RHN, o) chac(€, p)i* (V)
=g.(chac(F.,p.)¥) +g. (a(chgc(f,',p; i,ph F p.)w(\Il))) i

First, from the fact that the closed immersion i : X < P ig regular, the Grassmannian
graph W = W(F.) is isomorphic to the deformation to the normal cone, and |Z| = Px(N &
1) (see 1.b). Let DF. be the extension of F. to W, and F.Z its restriction to |Z|. Choose
Fo-invariant hermitian metrics on DF. whose restriction to P(C) is split acyclic, and which
satisfy Bismut condition (A). Define

J¢] :=/ llog|z|*)ch{DF., ppr.)
W(C)/P(C)

in A'(Pgr). By the same proof as in Proposition 5.2.a, we have

g.(ChAr(-'F-, P-) N l.[l) =f.0 P-(ChAr(}--zu p_;_-_z) np. © l‘.(")) + a(g*(ﬁ w(‘l’))),

where p: Px(N ® 1) — X is the smooth projection. Moreover, the right hand side of the
equality may be computed as in the proof of Theorem 5.1, i.e. by comparing F.Z with the
Koszul complex K.(H) ® p*£ considered in 5.2.

More precisely, we need to have

'P‘(chAr(K(H) @ p €, Pk (nygpee) NP° 0" (¥))
=p.(chac(K.(H), px.(2)) N p" 0i"(¥}) Nchar(€, p),
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which follows from Theorem 3.7.e, the projection formula. With this, next we use the the
cap product formalism to make the corresponding changes.

In fact, as in the proof of Theorem 3.8, we can choose a map h : X — M, where
M is regular, and a vector bundle N’ on M such that there exists a metric on N’ with
(N,p) = h*{(N’,pn+). Note that for the proof of the arithmetic Riemann-Roch theorem for
closed immersions above, it is enough to have a proof for just one metric on N. Hence, we
assume that there exists an Fo,-invariant hermitian metric such that

(N:p{v) = ht(NlipN"l-

We consider the canonical hyperplane bundle H' C p'*(N') @ 1 on Py(N' & 1), where
7 : P(N'@& 1) — M is the projection, and the Koszul complex K.(H’) has the metric
induced by par. Using the projection formula in Proposition 2.8, we may get

po(cha(K.(H),pr (y) N p* 0 i (¥)) = " (¥).ap', (cha(K.(H), px.(11)))-

With above, we then complete the proof by replacing the corresponding relations in the
proof of Theorem 5.1.

[1.7.3.b. The Proof Of The Arithmetic Riemann-Roch Theorem For L.C.I.
Morphisms’
First, we recall the arithmetic Riemann-Roch theorem for l.c.i. morphisms’.

Let f: X — Y be a l.ci. morphism of regular arithmetic varieties over an arithmetic
ring (A4, 0, F), which is smooth at infinity. Define the push-out morphism f2° : K#7(X) —
K§¥(Y) by letting

FRE(E,p) =(f.£,9.0) + choc(£, p; [, py)
+ £ (cbar(€, p) tdar(Ty 1) a(R(T))))
for any f-acyclic hermitian vector sheaf (£, p) as in Chapter 11.4, where R is the unique

power series defined in the arithmetic Riemann-Roch theorem for smooth morphisms. In
particular, we have the following

Arithmetic Riemann-Roch Theorem For lc.i. Morphisms'. With the same
notation above, for any element T € K.(X)q, we have

char(fx(T)) = fou(chac(T) tdar(f, py)).

This theorem is very similar to the one in Chapter 4. The difference is that now we do’
not assume that f is smooth: We only have the condition that f is proper and f at infinity’
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is smooth. So, we may imitate the proof of the main theorem in Chapter 4 to offer a proof
here.

More precisely, we consider the difference of two sides of the relation in the theorem.
As before, we call it as Err. Then, by the fact that the part for algebraic cycles is just the
Grothendieck-Riemann-Roch theorem for i.c.i. morphism, so we only need to consider the
part for the associated Green currents. Then, we may also know that Err is compatible with
the composition of morphisms, is compatible with flat base change, and has nothing to do
with the associated metrics, etc.. Allin all, we see that the only difficulty is associated with
the deformation to the normal cone theory, as now f at the finite place is not smooth: We
use it to show that for any codimension one closed immersion, all could be deformed from 0
to these on just one component at co. (One might also worry about the arithmetic tangent
elements. But this could not create any more problems, since we have already taken care of
them in the corresponding results of 3.8.b.)

For the deformation to the normal cone, essentially, there should have no problem
neither, since now only the infinite part matters: By our assumption, fc is smooth as before.
That is, if we replace the deformation to the normal cone theory by the generalized theory
about the Grassmannian graph construction associated with the vector sheaf resolution of
i.£, then, by the corresponding result from algebraic geometry (see [BFM 75]), the algebraic
cycle part could be deformed from the original (codimension one) closed immersion to the
corresponding part over a section of a projective vector bundle. But then, once we shift to the
infinity part of our arithmetic varieties, by 1.b, we see that at infinity, the Grassmannian
graph construction is isomorphic to the deformation to the normal cone construction at
infinity. Furthermore, we see that at infinite, the arithmetic tangent element defined by
using the decomposition of f as goi in 3.8.b is just the same as the relative tangent vector
bundle for the smooth morphism fc. Thus, if we replace the proof of Sublemma 4.2.b by
the discussion in Section 2, we know that, in the proof of Theorem 4.1, everything works
well here. This completes the proof.

We end this subsection by the following remark: Actually, one may still go slightly
further. Instead of assuming that f at infinity is smooth, we may only assume that the
logarithmic relative tangent vector sheaf at infinity exists, e.g. [De 70]. But then we need
to use Melrose’s b-calculus to build up the foundation for Part I.

§11.7.4. The Construction Of 74,

So far, we have already proved the arithmetic Riemann-Roch theorem for l.c.i. mor-
phisms of arithmetic varieties under the additional assumption that the induced morphisms
are smooth at infinity. In order to remove this assumption, as one may imagine, we need to
give a hermitian theory for coherent sheaves, together with an arithmetic analogue of the
Riemann-Roch transform used by Baum, Fulton and MacPherson in proving the singular
Riemann-Roch theorem in algebraic geometry. Though we do not know how to obtain a her-
mitian theory for coherent sheaves, we can provide the arithmetic Riemann-Roch transform.
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More precisely, if K#7(X) denotes the arithmetic K group generated by hermitian coher-
ent vector sheaves, (i.e. coherent sheaves such that the pull-backs at infinity are hermitian
vector sheaves, and so on,) then we have a map

Tar : KAT(X) — CHA"(X)q,

which depends only on the*choice of an F,-invariant hermitian metric on the tangent bundle
to X(C).

Motivated by the situation in algebraic geometry, we are led to the following

Theorem. Let X be an arithmetic variety over an arithmetic ring A. Put an Foo-
invariant hermitian metric on the tangent coherent vector sheaf of X at infinity. Then
there is a unique natural morphism, the arithmetic Riemann-Roch transform,

Tar : K§T(X) — CHA(X)q,

which satisfies the following properties:
(1) For any hermitian coherent vector sheaf (F,7) on X,

w(rpac(F, 7)) = ch(F, 1) td(X(C), px(c))-

{2) Tar only depends on the Feo-invariant hermitian metric on the tangent coherent
vector sheaf of X at infinity.
(3} Tar induces a canonical isomorphism of Q-vector spaces

Tar : K§'(X)q — CHA"(X)q,

which maps the class of ((F, 7),1) to 7a:(F,7) +a(ntd(X, px))-
(4) For any z € K&(X) and y € Ka((X),

Tae(z N y) = 7ac(z) Nchar(y).
(5) If X is regular, for any z € Kar(X) =~ K{(X),
Tar(z) = char(z) tdar(X)
in CHy,(X)q = CHA"(X)q.

The rest of this section is devoted to a proof of this theorem. First, we give a definition
for Tar. It is sufficient to give the definition for a hermitian coherent vector sheaf {(F,7) on X.
Let i : X — P be a closed immersion of X into a regular irreducible arithmetic variety P. Fix
F-invariant hermitian metrics on the normal bundle of X(C)/P(C) and related tangent
bundles. Then by Corollary 2.1, we get from these data a class cha,p (F, ) € CHAT(X)q.
In addition, we fix Fo-invariant hermitian metrics on the tangent bundles of X(C) and
P(C). We define

TP A(F,T) = chm‘g(.‘F, 7)-itdac(P, pp) + a(cb(f', ) tdpc(X/ P, px,p)).



392 Grassmannian Graph Construction

We clearly have (1) above.

Next, we check (2): For a given (F,7), the arithmetic class defined above only de-
pends on the choice of the metric on the tangent bundie to X. Hence we must show the
independence of all other choices we made. To prove this, we proceed as follows:

From the definition, we easily see that

Lemma 1. The class rp 5.(F, 7) does not depend on the choice of the metrics on 7p
and Ny/p.

It now only remains to show the following

Proposition. The class rp ar(F, 7) does not depend on the choice of the embedding
of X into the regular integral variety P and we denote it simply 75 (F, 7).

Proof of the proposition. We divide the proof into several steps.
Step 1. We start with a special situation.

Lemma 2. Let j: X — M and k£ : X — P be two closed immersions of X into regular
integral varieties M and P, and suppose that there is a smooth map ¢ : P — M such
that go k = j. Then

TP Aac(F,T) = g ac(F, 7).

Step 2. From Lemma 2, we see that 5. (F,7) is independent of the embedding & :
X — P for P smooth and integral. Indeed, given ¥ : X — P and j : X — M two closed
embedding of X into smooth varieties, we can consider the product embedding i : X <
P x M and apply Lemma 2 to the two projections from the product. This leads to

Step 3. The study for the situation in general. Given a closed immersion j : X — M
with M regular and integral, we choose a closed immersion f : M — P with P smooth and
integral. Let N = Npy/p be the normal bundle of M in P and let s : M — P(N @ 1) be
the zero section. Note that P(N @ 1) is regular, and that the projection ¢ : P(N@ 1) — M
is smooth. Then by Lemma 2

to.ac(F, 7) = pven)ac(Fi T,

where we embed X into P(N @ 1) via soj. So to complete the proof of the Proposition and
verify (2) in the theorem, it suffices to prove the following

Lemma 3. With the same notation as above,

TP.Ar(}-:T) = TP(Nel),Ar(}-l 7).

Obviously, once we have these lemmas, we have the Proposition. The other assertions
in the theorem may be deduced similarly from the construction in a quite standard way.
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Proof of Lemma 2. We are in the situation of Proposition 7.1.d. So, there is a complex
DG. = Tot(G..) over W xp P and the restriction G.% to |Z| xas P is quasi-isomorphic to
v* (V) ® pio(€.%) by that proposition.

Choose hermitian metrics on vector bundles in question. The normal vector sheaf of X
in X xXp P coincides with*k*7p;pr, and

|Z|(C) = P(Nx(c)sp(c) ® 1).

The normal vector sheaf of X(C) in |Z|(C) xpu P(C) is-isomorphic to

Nx(cym(c) ® ¥* Tricym(c)-

We endow it with the original direct sum of the two corresponding metrics and write
tdgé(X, P, M) for the classical Bott-Chern secondary characteristic forms associated with
the characteristic class td™" with respect to the exact sequence of vector sheaves on X(C):

0 — k*Tp(cym(c) — Nx(cyp(c) = Nxcyim(c) — 0.
We now have

Sublemma 1. If Y C |Z| x s P is the support of the homology of G.Z, and h: Y — X
is the projection, then, for the above choice of metrics on normal vector sheaves, we
have

ChAr.‘g(}-: T) = Znﬁhe (ChAr}Z’:xMP(g‘zlzavPG-zlz,) - a(tdgé(X, P, M)ch(F, 1'))
8

Here the Zp are the irreducible components of |Z], Z = Y5 npZp, Y := Zyxm P CY,
and h% : Y? — X is the induced projection.

We leave the proof of this sublemma later. With it, noting that for each irreducible
component Zg of Z, Zg xp P = Zg xx (X xum P), and we have a Cartesian diagram:
Zgxy P Xz
vp | Lbg
XxyP L X

Choose Fe-invariant hermitian metrics on .2, V. and £.Z, which satisfy Bismut condition
(A) with respect to the choice of metrics on F and on the normal bundles involved. Let
f:=(d,k) : X — X xp P be the natural inclusion induced by Id and k. Then, for all
B, the inverse image by vs of f(X(C)) is transverse in the complex points of Zg X p P to
the inverse image by p; of the zero section jZ : X(C) — P(N¢ @ 1). Therefore the complex
V. p}ﬁ&z, with its natural induced metrics, is a resolution of (jZ x f).F, and satisfies
Bismut condition (A) for the one component Zy of Z with multiplicity 1 which is non-empty.
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Since both the complexes G.zlz,xup and v5V.®p_‘m£.z are resolutions of the hermitian
vector sheaf F, if Zg(C) # 0, we have that

v s - »
h? (ChArz.gqu(gz'|Zo ) pgz-lx, )) = h? (ChAr}Z,gxMP(vﬁv‘ ® pjﬁg'legi pu;V.@p;,E.z 139))) .

Moreover, if Z5(C) = @, by the fact that the complexes are quasi-isomorphic, the same
formula is true as an identity in CHA"(b5(Z5)) = CH.(bg(Z5)).

The projection map * = pov = bo f from |Z] xa P to X is smooth at infinity, and
maps Y (C) isomorphically onto X{C) via h. Hence, applying Property 2.2, to the maps
™ :Zsxpm P—Xand h? : YP =Y N(Z5 xpu P) — X and noting that Zs(F) is empty
for all but one 3, we find that

b dd . V4
Z ﬂphf (ChArz,xMP(v:Sv- ® P],BE- IZ; y pu;V.@p;,E.ﬂz’ ))
I

= nprd (char(vpV. @ P}s€ % |2, Puzv.aps ,£.512,) N [Z5 X 1 P))
8

+a(m (chc(v3V. © PioE % pusv.apy,e.2)) ) -
We now compute the first term in the above expression, treating each term in the sum
separately. Noting that #® = bsop;g, we start with the direct image by pys. In CHAT(Zp),
we have, by Theorem 3.7 (d) and (e), that
pro«(char(vpV. ® P}p5-2|2,:Pu;v.ep;,s.ﬂz’) N{Zs xm P))

=Py (ChAr(P}pg-Zb,,Pp;,s.llz,) n (ChAr(Uj‘Sv':Pv;V.) N [Zp XM P]))

=ChAr(8.z1z‘,pg.a|z’) Npsoe (Ch,\r(v‘;v., Pv;v.) N [Zp XM P]) .
Now v(V.) is a resolution of 5.(0z,), where s : Z5 — Z5 X p P is the section of the smooth
morphism pyg : Zg Xy P — Z induced by the section f : X — X x 3 P. Over the complex
manifold (Zg xa P)(C), the associated metrics on vg(V.) satisfy Bismut condition (A),

since it is the pull-back by a submersion between complex manifolds of a complex which
satisfies Bismut condition (A). Applying Property 2.2 with a = 1 to the diagram

Zy = ZgxmP
Lpso
Zg,
we find that
. F1
pse(chac(v3V., pusv )N[Zp x i Pl)+a(psauchac(V. pv.)) = charz) o, p(Oz,, P02, )N 23],
which, by Property 2.3, is equal to

tdy, (Mzp/25% P PNzy13,x wr) D (Z5] = tdx, (63N X/ X %P PO SN xsxxpgr) N (Zp].
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But
chach (F,7) =3 ngblchac(€.71z,,p¢.215,) + a(buchac(€.Z, pe.2)),
A

so by Sublemma 1 we find that

ChArll‘;('}-, T) = (ChAr{[(}-! T) - n(b.cth(g.z,pg_z))) td;:(NXIXxMP, pNx;x.MP)

- a(b. (ch(£ .2, PE,?-)p]oo-ChBC(U-v"pU'V-)))
+ a(r.chgc(v'V. ® p}mg-z,ﬂu-v.ap;wc.z ))
- a{tdg&(X, P, M) ch(F, 1))
=(charae(F, 7)) tda; (VX)X 0 P PN/ xx e )
- a(b.chgc(é'.z Pe%) td‘l(Nx(c)/x(C)x wm(c)P(C)s PMX(c)/x(c)xmc,p(c)))
— a(buch(€.2, pg.5) prooechpc(v V., pyev.))
+ a(r.chac(v’v. ® p}mf-z,Pu-v.@p;”s.z))
~ a(tdge(X, P, M) ch(F, 7).

On the other hand, by Axiom 4 of relative Bott-Chern secondary characteristic currents
with respect to closed immersions, together with the projection formula for direct image
currents,

Mo (cth(u‘v. ® p}mf.z, pu.v.ep;wg_z))
=b.ch(8.z,pg_:)p.Cth(v.,pv_)
+ td'l(Nx(cj/mc)xmc,P(C). PN X (VX (C)X gy P(C)) b.chpc(€.7, pe 2),
80
charp (F,7) = (charag (F, 7)) tdxs (Nx/Xxpe Pr PNxsxx oy ») — 8(tdBE(X, P, M) ch(F, 7).
From this equality and the definition of 74;, we deduce that
p.Ac(F, ) =charp (F, 7).-xtdac(P, pp) + a(tdnc(X/P, px/p) ch(F, 7))
=(charp(F,7) ntdx:(NXIXXMPnPNx,x,“p)).ktdAr(Pn ep)
-a (ch(}', (X, P, ME* (4d(Tr(cy PTocc)))
+ h(F, ) tdnc(X/Pypx/))-

But, the normal bundle of X in X xp P coincides with k*7p;ps = &*7,. Therefore, by
_ applying Propaosition 3.8.b.(2) to the map p and the structure map of Y, and Theorem
2.7.(c) for j = po k, we get, from the equation above, that

P ac(F, ) = chark(F, 7).jtdac(M, par) + a(ch(F, 7) 2},
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where
z =tdpc(X/P,px/p) — tdac(X, P, M) Nk td(Tp(c), Tr(c))
~tdpc(0 — k" Tp(cym(c) = k" Tp(cy — 5" Tuicy — 0.p.)
td-l(k.TP(C)/M(C)’Pk'TP(C)/M(o;)td_I(NX(C)/M(C):pX(C)/M(C)):
which is nothing but tdpc(X/M, px/ar), and therefore

TP AT, T) = i, ac(F, )

Proof of Lemma 3. Choose metrics on the normal bundles of X(C) in P(C) and
M(C), and on N = Npg/p. The normal bundle of X(C) in P(N & 1)(C) is the direct sum
of j*(Nc) and Nx(cym(c). We endow it with the orthogonal sum of the corresponding
metrics. ‘Given the formula for Tp A, in terms of the arithmetic Chern character with sup-
ports, it then suffices to compare chA,‘g (F,7) with chA,f,r(Nm)(}',r). If we can show that
the arithmetic Chern character with supports is compatibie with restriction to principal
divisors, (see Sublemma 2 below,) then by P!-deformation theory in 1.9, we have that the
difference of these two classes is the integral over P! of

ch(F, T)td ™ (Mx xpry(cyw(c), px)lloglz|?],

where W is the deformation to the normal cone for the inclusion of M into P, and the map
X xP! — W is the natural inclusion. But the vector sheaf A XxP1)(C)/w(C) 18 an extension
OfJV(MxPl)(C)[W(C) by NX(C)]M(C) which coincides with NX(C)/P(C) over X(C)x {0}, and
the normal bundle of X(C) in P(N @ 1)(C) over X(C) x {oo}. Hence, we get

chach (F, 1) = charmven)(F,7)
= — a(ch(F, 7) tdg& (0 — Nx(cym(c) — Nx(cypc) — i"(Ne) — 0,p.)).

Similarly, since Tp(ng1)(c) 28 a hermitian vector sheaf is the orthogonal direct sum of Tys(c)
and Ng, we get, on M,

P (tdAr(Ps PP))
=s" (tdAr(Tp(NQI)!pr(Nel)) - {](tdBC(O d TM(C) - P‘TP(C) - Nc - 0’ p))

From these two equations and the definition with i = po j, we have

pAdF,T) = te(ve),Al(F, T) + a(ch(F, 7) y),
where
y =tdac(X/P, px/p)
~ tdge(0 — Nx(cymicy — Nx(cy pic) — 3" (Ne) — 0,p.) K*td(Tp(cy, )
- tdpc(X/P(N @ 1), px/p(Na1))
~ j* (tdBc(0 = Ty(cy — P* Te(cy — Nc — 0,p) td™ (Nx(cyp(varycy #))-
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So the assertion comes from the fact that y = 0, which follows from the fact that

tdpc(X/P(N @ 1), px/p(nve1)) = tdec(X/M, px/pr)
and Proposition 3.8.b. This completes the proof of Lemma 3, provided we have the following

Sublemma 2. Let £. be a complex of vector sheaves on an arithmetic variety P and
let X C P be the support of the homology of £.. Suppose that X, viewed as a
reduced subscheme of Pp, is smooth over F, and that on Pp, £. is a resolution of a
hermitian vector sheaf on Xpg. Let i : D — P be an arithmetic subvariety which is
a principal effective Cartier divisor that meets X transversally over F. Write {Dg,}
for the irreducible components of D, n, for the multiplicity of D, in the Weil divisor
[D} = ¥, na[Da] associated with D, and let n® : X N D, < X N D be the natural
inclusion. Then

i%chach (E.0.) = D manlchach 22 (£.lp. s pe., ) € CHA(X N D),
o

where ix : X N D «— X is the inclusion. Moreover, the above relation is also true more
generally. For example, if D is a divisor on P, and is contained in a Zariski open subset
U C P, as a principal divisor on U.

Proof of Sublemma 1. Let T be the support of W x 3 P of the homology of DG..
There is a natural projection from T to X x P!, which is an isomorphism over X x A! and
such that the inverse image of X x {00} is Y. Given any t € P!, we write T; for the inverse
image in T of X x {t}. Notice that the generic fiber of T is isomorphic to that of X x P!,
Let jo: P— W xp P and joo : Weo Xpar P — W xp P be the inclusions corresponding to
{0} and {oo} in P,

The normal vector sheaf of X{C) x P!(C) in W{C) is naturally isomorphic to the puli-
back of the normal sheaf of X(C) in M(C), i.e., h* (Nx(c)/M(c)(—l)), where h: X x P! —
X is the projection. We metrize it by choosing a metric on h* (N X(C)/M(C)) and tensoring
with the standard metric on the tautological line sheaf over P!(C). By Sublemma 2 above,
since TN{Weo Xp¢ P) =Y, Y N(M xp P) =9, we know that

Jo(chartyx o P{DG-,PDg.)) = chacp (G-, pg.) = charh (F,7),
and that

L] ‘ .
jo (charm x ,, P{DG.,PDG.)) = Zﬂﬁhf(ChAr‘é,pr(gz-lz,,Poz.lz, ).
]

By the method in 1.9 for the deformation to the normal cone, we see that

4
chach (F,7) = 3 _ nph (chary, x,, p(G7 |2y, PG= 1z,))
)
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is equal to the integral over P! of ch(F, 7)td™" (Nr(cyw(C): PNr(c)wic))[10812|7], and hence

s
charp (F,7) = Y nghf? (chary,x,, p(G? z41p95.15;)) = —a(td5e (X, P, M)eh(F, 7)).
B

This completes the proof of the sublemma.
Finally, we complete the proof by the following

Proof of Sublemma 2. We fix certain notation. Write Gp for the product of Grass-
mannian bundle [],,, G(nm, DCrn(E.)) over P x P!, Gp for the restriction of Gp to D x P*
(which may be identified with the corresponding product of Grassmannians for the restric-
tion of £. to D). Let ig : Gp « Gp be the inclusion of the divisor Gp in Gp. Let Gp_ be
the fiber of Gp over P x {oo}, which is a divisor in Gp; and let i, : Gp_, — Gp_, be the in-
clusion for the corresponding divisor in Gp. Write j : Gp_ «— Gp for the inclusion, and for
each a, let jp, be the corresponding inclusion over D, x P*. Obviously, Gp, NGp = Gp,,
and Gp_, is a principal divisor in the pull-back G of Gp over D x Al — {0}. (We can see
G% in a similar way). Write ¢ = 0 for the equation of this divisor and we have pull-back
maps jp : Zi(Gp) — Zx-1(Gp,) on cycles as well as on CHAT, together with similar
pull-back maps j*, 1, and ig; .

Let W C Gp be the Grassmannian graph of £. and Z = j*([W]) —[P] on Gp_ . On the
complement of the divisor Gp_, the variety W is the image of the section of Gp over P x Al
corresponding to the graphs of the differentials in £.. On the open subset Gp — Gp_, we
have an equality of cycles

(W) =) nalWp,}.

a

Also }
ip.(Wp.]) = Zp, + [Dal-

However, we know that the maps j* 0i* and i* 0 j* agree modulo rational equivalence. Thus
there is a K-chain ¢ on Gp,, such that

div(g) = j* o i*[W] —i" o 55 [W].

We claim that this K-chain can be chosen so that its support does not intersect the generic
fiber. Since the varieties Gp, W and Gp_ all meet transversally over F', hence the cycle
j* 0 i*[W] — i* o j*[W] is supported over the special fibers. Thus, using K-theory and the
Gersten complex, one may show that the A -chain ¢ can be constructed by blowing up the
.components-of the intersection which have the excess intersection which in this case are all
supported over special fibers: Let f be an equation for D, then the symbol {f,t} defines
an element in K2{W N (Gp — (G|p; U Gp,,))), and hence in K3 of the function field of
W. The differential of this element in the Gersten complex is compatible with the natural
product. We know that, on the components of div(f) where ¢ does not vanish, ¢ is equal to
e = div(t)*{f}. Now observe that div(y;) = jp 0ig[W], while div(p¢) = i 0j°[W]. Since
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the composition of two differentials in the Gersten complex is zero, we have div('go) =0, and
hence

i 0 it W] — i 0 5 W] = div(4),

or

Y na(Zp, +[Da]) ~ i°(Z + [P]) = div(4),

where ¢ = ¢ — ¢, + @y i8 a K;-chain supported on div(f) Ndiv(t) N W. Since D and X
are smooth and meet transversally over F', with the identification of the generic fiber of the
Grassmannian graph construction for the deformation to the normal cone of that over F,
the two cycles Zp, + [Dr] and i*(Zr + [Pr]) coincide. Hence the cycle ¢ constructed above
is supported only over the special fibers.) Furthermore, since away from X, W and Wp_,
W and Wp,_ are isomorphic to P x P! and D, x P! respectively, we see that the support
of ¢ lies over X N |D|.

Now choose metrics on DE. as in the proof of Property 2.2, and consider the class
i"chaX(E.,p) = 1" (n'_z (chA,X(S.z,pg.z) NZ}+a(xZchpc*(£.7, pg,z))).
Since X(C) and D(C) are smooth and intersect transversely in P(C),
i (a(r?chgcx(f.z, pg,z))) = a(nZ2chpc ™ (£.27, pg 25)).
Therefore, it suffices to show that, in CHAT(X n|D|),

i*m (chac(E .2, pes) N Z) = Znaq, (11'. (charX (E. D«,psx,,,))nzo,)),

where 7% : X N Dy — X N|D] is the natural inclusion. But 1 o 7%Pa factors through the
inclusion of Zp_ into |Z|N|X]|:= (r%)~}(|D|) followed by the projection from |Z|N|D]| to
X N |D|, we know, using Theorem 3.8.e for this inclusion, that the right hand side of this
formula is equal to

2Pl (chac(€.2 ) zpn D) P2 gyryoy) V(D maZD,))-
o

Also, by Theorem 3.8.b, applied to i, the left hand side i3 equal to

%l ZInIDl (char(& 21\ zin1D)1 PE.2) 34pypy) DV i°Z) -
On the other hand,
i'Z = Zn,zp —div(g) + T

in CHA™()Z| N |D|), where 7 := ):G[Da] — i*[P]. Thus by the fact that the support of 7 is
contained in P N|Z|, we have £.7};,/ is metrically split. So ChAr(S-zhri:Pz.‘l,,,) Nr=0in
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CHAT(|7]). Moreover, the fact that the support of the K'-chain ¢ does not meet X implies
divac(#) = (div(¢),0), and therefore

ChAr(g'zilﬂypf.zhﬂ) n divAl’(¢) =0

in CHA' (|4]). So we have

Z\n|D X ..
ﬂ-l- tnl I(Ch}\r (g'thlnlDl'pf.zhzlnlD‘)n: Z)

=l 21002 (ch o (€., 21y pe 3l zmo)) N O maZp,)),

which completes the proof of the theorem.

With above, we may also obtain a version of arithmetic Riemann-Roch theorem for
morphisms f : X — Y of arithmetic varieties only with the condition that, at infinity,
fc : X(C) — Y(C) is a smooth morphism of Kahler manifolds. We leave this formulation
to the reader.
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Chapter 11.8..
Arithmetic x-Theory
I: A Definition Of Higher Arithmetic x-Groups

The associated Dedekind zeta function for a number field has a simple pole at 5 = 1.
Moreover, the analytic class number formula in classical algebraic number theory gives the
corresponding residue in terms of the class number and the Dirichlet units regulator of the
field. This result may be thought of as a higher, non-trivial, local-global principle. On one
hand, for Re{s) > 1, the Dedekind zeta function is defined as a convergent Euler product,
given completely in terms of the local arithmetic of the field, which has a meromorphic
continuation to the whole complex plane. On the other hand, the ideal class group and the
group of units are global arithmetic invariants of the field. Nevertheless, it appears that
the existence of such a local-global principie is not an isolated phenomenon. The special
values, or better, the leading coefficients at integer points of the L-functions of arithmetic
varieties, seem to be closely related to the global arithmetic properties of these varieties.
In this direction, the conjecture of Birch and Swinnerton-Dyer shows an extraordinary
example, which deals with the arithmetic of abelian varieties. In general, Beilinson has
developed a completely general conjectural formalism which connects the transcendental
parts of the leading coefficients to the so-called regulators [Be 85]. Many mathematicians
have tried hard to verify these conjectures. Motivated by these examples, we introduce
another mathematical object, an arithmetic K-theory, to give regulators in a more general
sense. That is, regulators should give relations between the algebraic properties and the
analytic properties of arithmetic varieties.

More precisely, we first give a definition of higher arithmetic K-groups, following
Quillen’s definition of higher algebraic K-groups. Then we use this arithmetic K-theory
to connect the algebraic K-theory, which is a purely algebraic object, with a homotopy
theory, which is a purely analytic object. We then have a global triangle diagram, with the
boundary morphisms from algebraic objects to analytic objects being generalized regulators.
(See below.) Comparing this picture with the classical one, we have one advantage: we now
look at an arithmetic object globally, while the classical picture only gives two aspects of
the object. (If we look at the triangle mentioned above formally, the classical picture gives
two vertexes and one side, but the picture given in this paper has three sides and three
vertexes, even through we only add one more point.)

The strategy for giving a definition of higher arithmetic K-groups is to imitate what
Quillen did for higher algebraic K-groups. I asked A. J. Berrick about this possibility, he
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told me that one should start with the exact category theory used by Quillen. This has
proved to be a very important suggestion.

It is well-known that when Quillen introduced his definition for higher algebraic K-
groups, with the fact that the K-group defined by Grothendieck is the same as the one
introduced by himself usitg the classifying space, he starts with a special kind of category:
exact categories. Beginning with any exact category, Quillen could appty his Q-construction
to define higher algebraic K-groups [Qu 73]. Unfortunately, this does not work for the
arithmetic situation, simply because we cannot construct an exact category for which the
Grothendieck group is exactly the arithmetic K-group K2*(X) of an arithmetic variety X,
which was introduced by Gillet and Soulé {GS 91b]. Indeed, among all axioms for an exact
category, the most difficult one to deal with is the one that concerns the composition of
morphisms. As a consequence, we cannot find any bi-product construction for arithmetic
objects in the classical sense. (For more details, see section 3 and section 4 of this chapter.)

Yet, in category language for our purpose, the bi-product only has its meaning for the
construction of a special kind of pull-backs. So in this account, we decided not to start with
an exact category, but rather to consider the essential properties of exact categories, which
are used in the definition of Quillen’s algebraic K-theory. From this point of view, by noting
that many properties of exact categories are just consequences of the fact that every abelian
category can be realized as a full subcategory of the R-module category over a ring R, we
finally get a category, which is called a taips category, to which Quillen’s construction can be
applied, and hence make the definition of higher arithmetic K-groups. Roughly speaking,
the taips category is a right category to apply Quillen’s construction.

Now we introduce the main results of this chapter. For notation, see the later part of
this paper.

Main Theorem 1. Let X be a regular arithmetic variety over an arithmetic ring A.
Then there is a taips category Ta (.X) so that the Quillen construction can be applied.
In particular,

#I(BQTAI'(X)’ (03 090)) s K(!Ar(x)
Thus we may define an arithmetic K-theory by letting
KA (XY = i1 (BQTALX), (0,0, 0)),

forall i > 0.

Main Theorem 2. (a) Let QF : QTa,{.X) — @P(X) be the natural functor induced
by the forgetful functor
F:Ta(X) — P(X)
(E.pm) — &

(Here, as usual, we denote P(X) as the category of vector bundles on X.) Then for
any object £ of P(X), and object (£, p;n) of Tar(X), we have a natural induced long
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exact sequence of abelian groups

Kin(X) —
| R
m(E\QF, (& pim)lde)) & kar(x) £ Ki(X)

Rl
— m(E\QF,((£,pin), 1de)).

-~
(b) At its lower level, after tensoring with Q, the above long exact sequence becomes
the natural exact sequence

Ki(X)q = A(Xr) — K§'(X)q — Ko(X)q = 0

This chapter is organized as follows: In section 1, we recall the classicl definition of
algebraic K-groups Ko(R), K1(R} and K3(R) for a ring R, in order to get a good feeling;
in section 2, we recall the Quillen construction for an exact category and give Quillen’s
definition for higher algebraic K-groups; in section 3, we describe the essential properties of
exact categories that are used in Quillen’s construction; in section 4, we give the definition
of a taips category associated with an arithmetic veriety and hence make the definition of
an arithmetic K-theory; finally, in section 5, we formulate the global triangle relation.

11.8.1. The Classical K-Theory

There are plenty of references for classical K-theory. By classical here we mean the K-
theory before Quillen’s historical paper "Higher Agebraic K-Theory I”. The reader should
consult the books of Bass or Milnor when necessary.

Let R be a ring and denote by P(R) the category of finitely generated projective R-
modules. The Grothendieck group K(R) is the quotient group

Ko(R) = F/R,

where F is the free abelian group on the isomorphism classes of projective modules in P(R)
and R is the subgroup generated by the elements

[PeQq]-(Pl-[Q]

for all P,Q € P(R). For P, @ € P(R), [P] = [Q] in Ko(R) i8 equivalent to if PGP ~ Q@ P’
for some P’ € P(R) (if and only if P @ R” ~ Q & R" for some n > 0).

We now give the definition of K;(R) in the classical sense. Let Gl,(R) be the group
of invertible matrices of size n over R. Denote by E,(R) the subgroup of elementary

matrices, defined to be the group generated by the matrices eg—')(A), with 1 <t#£ 37 <

n, A € R, where es;-‘)(,\) is the unipotent matrix whose diagonal entries are all 1 and whose
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only non-zero off-diagonal entry is A in the (i,7)*"-position. Let Gla(R) — Gla41(R) be
the natural map given by
A (A 0)
0 1

and let GI(R) := lim_.Gl(R). Similarly, we let E(R) := lim_ E,(R). Since ¢{7’(A)
("“)(A) under Enp(R) — En41(R), we obtain elements e;;(A) € E(R) as the common

image of all e (A) for 1 < 4,j < n. Hence E(R) is the subgroup of GI(R) generated by
the ¢;;(A). An easy calculation shows that En(R) is petfect for n > 3 and so is E(R). In
greater detail,

[En(R), En(R)] = En(R) and [E(R), E(R)] = E(R).
In particular, by the fact that for any A € Gl,(R),

(g A(')‘l) € l’?zn(R)v

(E(R), E(R)] = [GI(R), GKR)}.

we see that

We define
K\(R) :=GI(R)/E(R) = GI(R)/[GY(R), GI(R))

=GI(R)*® ~ H,(GI(R), Z).

Finally, we give the classical definition of K3(R).

The n'" Steinberg group St,(R) is defined to be the quotient group of the free

abelian group on symbols zg-’)(/\) for 1 €i# j < nand A € R, modulo the normal
subgroup corresponding to the relations

1 2P 2P () = 2 + p) for any i, 5.
[:""(A) O] = 1for i Lk # 5.
3 [z‘"’(x),z‘"’(pn = 2P (\p) for i # k.

There is a natural surjection
n : Stn(R) — En(R),
given by 45,,(:; (p)) = e,‘,)(p) We also have a natural homomorphism
Sta(R) — Sty (R).
The infinite Steinberg group is

St(R) := lim_Stn(R)
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and there is the surjection

é :St(R) — E(R).

Then we define
K3(R) := Ker ¢.

The most important properties of K3(R) are the foliowing

Fact. (1). St,(R) n > 3 and S5t(R) are perfect.
(2). K2(R) = Ha(E(R), 7).

So far, we have given the classical definitions for, Ki(R) with i = 0,1,2, and this
suggests that we can use the homotopy groups of certain spaces to define a general algebraic
K-theory; this is just what Quillen did.

11.8.2. The Q-Construction From Exact Categories
In this section, we review the Q-construction of Quillen for an exact category. In order

to do this, it is also necessary to describe the construction of the classifying space for a small
category. The reference here is [Q 73] and [Sr 91).

I1.8.2.a. The Classifying Space Of A Small Category

We start with some topological preparation. Let A be the following category: for each
non-riegative integer n, let o := {0 < 1 < ... < n} be the ordered set consisting of 0, 1,...,n;
the objects of A are the ordered sets n, and the morphisms are the monotonic maps.

For each positive integer n, there are n + 1 maps in A

8 :n—1—n,

which are injective and are given by
nea o )1 if j <,
o) "{j+1, ifj >,
These are the face maps. Dually, there are n maps

s~ :ip—n-1,

which are surjective and are given by

am1on . 30 ifi<i,
5 (’)“{j-l, ifj > i.
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These are the degeneracy maps. The compositions of face maps and degenéracy maps
give all morphisms in A. Then we make the following definition:

A simplicial object of a category C is a contravariant functor A — C. A morphism of
simplicial objects in C is a natural transformation. A simplicial set is a functor A°P — Set,
where Set denotes the catggory of sets. Similarly, a simplicial space is a functor A°F —
Top, where Top denotes the category of topological spaces.

Suppose F': A°P — Set is a simplicial set. Then for each non-negative integer n, F(n)
is a set, called the set of n-simplices of F. The maps 87 give rise to n + 1 maps of
sets F(n) — F(n —1), called the face maps, which associate with each n-simplex in F(n)
a collection of n + 1 (n — 1)-simplices in F(n — 1), called its faces. Dually, the n maps
sP?~! give maps F(n — 1) — F(n), which associate with each (n — 1)-simplex a collection
of n degenerate n-simplices, These maps F(n — 1) — F(n) are called degeneracies. For
6 € F(n), we call F(87)(8) the i*" face of 6, and F(s?)(6) € F(n + 1) the i*" degenerate
simplex of 4.

A natural example of the above concepts is constructed as follows (it is also the moti-
vation for the notion). Let X be a topological space. Let S(X) denote the total singular
complex of X, so that S,,(X), the set of all n-simplices of S{X), is just the set of singular
n-simplices in X, i.e. Sn(X) is the set of all continuous maps A, — X, where A, is the
standard n-simplex

Bn:={(to,.. . ta) ER™ 1, 20,) t; =1}

If f:m — pis a morphism in A, then we introduce the natural map
f: Am — A,

such that n+— A,, f— f is a functor A — Top as follows:

f((EOr--‘:sm)) = (t01"'atn)

where t; = 3 iy 8j, With & = 0if {j : f(j) =4} = 0. It is easily checked that, S(X) :=
{Sn(X)}n>0 becomes a simplicial set.

With each simplicial set F' : A°P — Set, we can associate a topological space | F|, called
the geometric realization of F; |F| is defined as the quotient space

(L] Fln) x an)/ ~,
n>0

where for each n > 0, F(n) is regarded as a discrete topological space. The equivalence
relation ~ is defined as follows: given f : m — nin A, let f : Ay, — A, be the map
described above. Then for any § € F{(n), we set

(6, f()) ~ (F(£)(6).v)
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for all y € A,,. Clearly, the construction of the geometric realization is functorial.

For any simplicial set F', a simplex § € F(n) is non-degenerate if it is not the
degenerate simplex assigned to any (n — 1)-simplex by one of the degeneracies. The very
important property of |F| is that |F| is homeomorphic to a CW-complex, which has one
n-cell corresponding to each non-degenerate n-simplex of . We have the {ollowing general
facts about this construction.

Facts. (1) If F, G are simplicial sets, such that |F| and |G| are locally compact, then
|F x G| is homeomorphic to |F| x |G|. .

(2) Let A(n) := Homa(—,n), then |A(n)| ~ A

(3) The homotopy of |F| may be computed as follows: Let C,(F) be the free abelian
group on F(n), and let 87 : C,(F) — Cn—1(F) be the map induced by F'(0F). Then

C(F) = (Ca(F), dn:=) _(=1)'87 )nz1
is a chain complex such that for any abelian group A,
H(|F|,A) ~ H.(C(F) ®z A).

{4) Let X be a topological space, and let S(X) denote the total singular complex.
There is a continuous surjective map f : |S(X)| — X. For any base point z € X,
denote by S(z) the subcomplex of S(X) such that |S(z)| is a point whose image under
fis z. Then f : (|S(X)],|S(2)]) — (X,z) induces isomorphisms on the homotopy
groups. Hence if X is a CW-complex, f is also a homotopy equivalence.

Now we have the idea of the classifying space of a small category.

A category C is a small category if its objects form a set. The nerve of C, denoted
by NC, is defined in the following way: An n-simplex of NC is a diagram

ISLY VLY WL ELY

where A; € ObC(, f; € Mor(C. Given a map f :
NC(m) — NC(n) maps the above n-simplex to the

— pn in A, the corresponding map

m
m-simplex

where B;j := Ay(;), and g; : By_1 — B; is the composite map Ayi_1) — Ayj). (Here if
f(7—1) = f(j), we let Ayj_1) = Ay(;) be the identity map.) In partlcular the " face of
the above n-simplex is the (n — 1)-simplex

AOQAI _ .= A,‘_]_hwhAi.'.l —_ ... _’Ans

while the i*" degenerate simplex of the above n-simplex is the (n + 1}-simplex

AQLI'Al - .. .—'A,'EPA,'!‘—*‘*IA{.H A g An.
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The classifying space of C is the geometric realization of NC, and is denoted by BC; in

other words,
BC :=|NC|.

As an example, let C be the category {0 < 1}, consisting of two objects 0, 1 and a unique
(non-identity) morphism 0 — 1. Then B({0 < 1}} = I := [0, 1], the unit interval.

The above construction is functorial, the verification is left to the reader.

I1.8.2.b. Exact Categories

In this subsection, we review certain axioms in category theory.

A category C is a pair (ObC(,Mor(), where ObC consists of the objects of C, the
collection Mor C consists of morphisms between pairs of objects of C. That is, for any pair
of objects X, Y of C, there is a collection Hom¢(X,Y); An element f € Hom¢(X,Y) is
denoted a8 f : X — Y. If f € Home(X,Y) and g € Home(Y, Z), then there is a unique
element go f € Home(X, Z) and the following properties hold.

(1} For any f € Home(X,Y), g€ Home(Y, Z), h € Homg(Z, W), then
(hog)of=ho(gof).

(2) For any X € Ob(, there is a {unique) element Idx € Home (X, X) such that, for any
f € Home(X,Y), g € Home(Y, X), we have

feldx =f, ldxog=g.
(3) If (X,Y), (X', Y’) are not the same, then Hom¢(X,Y) and Home(X’, Y’} are disjoint.

We call P a subcategory of a category C, if all objects of D are objects of C,
Homp(X,Y) C Home(X,Y), and the composition of morphisms in D is the same as the
one in C. A subcategory 1a called a full subcategory if for any pair of objects X, Y of D,

we have
Homp{X,Y) = Home(X,Y).

An object e is called a final object, if for any X € Ob(, Homg(X,¢) consista of
only one element. Dually, an object ¢’ is called an initial object if for any X € Ob(,
Home (e, X} consists of only one element.

If for any pair of objects X, Y in C, Hom¢(X,Y) is an abelian group so that the
following conditions are satisfied, we call C an Ab-category:

(1) ho(f+9)=ho f+ hog whenever they make sense.
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(2) (f+g)oh= foh+ goh whenever they make sense.
(3) There is a unique zero object 0, i.e. 0 is an initial object and is also a final object.

If, furthermore, for any two objects X,Y in an Ab-category, there is a unique bi
product X x Y, then we call C an additive category. Here the bi-product means that.
for any two objects X, Y, there is an object W and four morphisms p € Hom¢ (W, X), g €
Home(W,Y'), i € Home (X, W), j € Home(Y, W), such that

poi=Idx, iop+jog=Idw, goj=Idy.

If for any object X in C, there is a unique obj;ct F(X) in C' and, for any f €
Homg(X,Y'), there is a unique morphism F(f} € Home(F(X), F(Y)) so that

F(gof)=F(g)o F(f), F(ldx)=Ildr(x),
then we call F a covariant functor.

For a certain additive category C, we can also introduce the kernel, cokernel, image ant
cotmage of a morphism f : X — Y. Moreover, an additive category is called an abelian
category if every morphism has its kernel and cokernel and, for any morphism f, the
zatural induced morphism Coker(f) — Im(f) is an isomorphism. Surely in this case, we
may introduce the concept about exact. Hence we also have the exact functor, etc.. A very
important fact about abelian categories is the following

Theorem. Every abelian category can be imbedded in an R-module category by aii
exact covariant functor.

This theorem has many corollaries. For instance, if gof is a monomorphism of an abeliar
category, then f is a monomorphism. Dually, there is a similar statement for epimorphisms.

Next we introduce the concepts and definitions for exact categories, following [Qu 73]

Let € be an additive category which is embedded as a full subcategory of an abeliar!
category .A. Suppose that C is closed under the extension in A in the sense that if an object
A of A has a subobject A’ such that A’ and A/A’ are isomorphic to objects of C, then A
itself is isomorphic to an object in €. Let £ be the class of sequences

*) - 0=XxAxixroo

in C which are exact in .A. A map in € is an admissible monomorphism {resp. admissible
epimorphism) if it occurs as the map ¢ {resp. j) of some member of £. We will aiso use —=
(resp. —+) to denote & monomotrphism (resp. an epimorphism). :

O.b‘viously, we have the following facts:

(1) Any sequence in C which is isomorphic to a sequence in £ is in £. For any X', X' in
C, the sequence
| 0— x5 g x P g
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is in C. For any sequence in £, 7 is a kernel for j and j is a cokernel for 7 in C.

(2) The classes of admissible epimorphisms is closed under composition and under the base
change by arbitary maps in C. The dual version still holds.

(3) Let X — X" be a map with a kernel in C. If there exists a map Y — X in C such
that ¥ — X — X" is an admissible epimorphism, then X — X" is an admissible
epimorphism. A simijar statement holds for admissible monomorphisms.

An exact category is an additive category C equipped with a family of sequences of
the form (*), called the short exact sequences of C, such that the properties 1, 2 and
3 hold. An exact functor F : C — (’ between exacl categories is an additive functor
carrying exact sequences in C into exact sequences in C’.

IL.8.2.c. The Quillen Construction

Let C be a small exact category. Recall that if M, N € Ob(, anarrowi: M — N is
called to be an admissible monomorphism if there is an exact sequence in C

0= MAN =P =0

for some object P in C. Similarly, ¢ : M — N is an admissible epimorphism if there is
an exact sequence

0—=P—-MLIN=0
for some object P in C.
Following Quillen, we can form a new category QC having the same objects as C, but

with morphisms defined in the following way. Let M and M’ be objects in C and consider
all diagrams

M- NLM
where j is an addmissible epimorphism and i is an admissible monomorphism. A morphism
M — N in QC is an equivalence class of diagtam M «— M’ — N above, where

M—M"N

is an equivalent diagram if and only if there is an isomorphism u : M’ — M"” making the
folowing diagram commute:

M «— M - N
Id | u 11d
M «— M' = N

The composition of morphisms is defined as follows. Given diagrams M «— M' — N,
N «— N’ — P, the composite morphism M — P in QC is represented by the diagram
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M «—— M' xy N' — P. That is, the diagram, with the square being a special pull rack
over an admissible monomorphism, as follows

M xy N 2 N SP

prol 1
. M’ - N
il
M

In particular, if i : M — N is an admissible monomorphism, we have an associated arrow
iy 1 M — N in QC, given by M« M N. Similarly, if ¢ : M — N is an admissible
epimorphism, we have an associated arrow ¢' : M — N in QC, given by N MEM. Thus
in general, if f: M — N is an arbitrary arrow in QC, given by the diagram

M MAN,

then f = i o¢', which comes immediately from the definition of the composition of mor-
phisms in QC. We can also form the pushout square in C

M 4 N
el 14
M 4 N,

where the horizontal arrows are admissible monomorphisms and vertical arrows are ,admiS—
sible epimorphisms. Such a square is called to be bi-cartesian. In particular, f = ¢ o} in
QC, from the following diagram :

M L N By

gl ‘ 1
M 5 N
d |
M

Thus, the assignments i — iy, g = ¢' have the following properties:

(1). If i, i’ are composable admissible monomorphisms, then (i o #); = 4, 0 i!; Similarly for
composable admissible epimorphisms ¢, ¢’, we have (go¢') =¢' o¢’ "
(2). If

M AN
gl ) iq
M 4 N

is a bi-cartesian square, then @1 o ¢ = q'! o).

In fact, (1) and (2) characterize QC in the following sense.
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Lemma. Let C be an exact category, D a category. Assume that

(1) For each object M in C, there is an object F(M) in D.

(2) For each admissible monomorphism ¢ : M’ — M, there is an arrow Fy(i) : F(M') —
F(M) such that Fi(io#') = Fi(i) o Fi(¢'), if i, are composable; Dually, for each
admissible epimorphism q : M — N, there is an arrow F3(q) : F(N) — F(M) such

that Fa(goq’) = F2(q") o Fa(g), if ¢, ¢’ are composable;

(3) If _
M 4 N
el 1l s
M 5 N

is bi-cartesian, then
Fi(i) e F3(q) = Fa(q') o Fr(i).

Then there is a well-defined functor F : QC — D given by

M F(M), (M« M'5N) = Fi(i) o Fy(q).

Proof. If M- M'ZN and M<— M"23N are two equivalent diagrams giving a
morphism M — N in QC, we have an isomorphism u : M’ — M"” such that g =g 0u, ¢ =
i; o u. Regarding u as an admissible monomorphism, we get Fy(i) = Fi(i1) o Fi(u), while
regarding u as admissible epimorphism, we get Fa{q) = F2(u) o F3(q1).

On the other hand, from the bi-cartesian square

Ml _& MH
ul JId
M l_"-" M

we have Fi(u)o Fa(u) = F3(ld) o Fy(Id) = Id. Hence
Fi(i) o Fa(q) = Fi(i1) o Fi(u) o Fa(u) o Fa(q1) = Fi(i1) o Fa(qy).

Thus Fy(i) o F3(q) depends only on the arrows in QC, and not on the particular diagram
which represents it.

Next, if M M'AN and N+ N'Z%P are given and M <= M’ xy N’ 2 P repre-
sents the composite arrow in QC, we have a diagram with a bi-cartesian square,

M xyN L N Bp

g1 e
M’ NN
ql

M
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andg=gyeq,i=iyo7. Then

Fi(i) o Fa(q) =F1(i2) o F1(i') o Fa(¢') o Fa(q1)
=Fi(i3) o Fa(q2) o Fi(i1) 0 Fa(q1).

This proves that (M «— M’ — N) — Fy(i) o F2(q) is compatible with composition in QC
and so yield a well defined functor QC — D.

Suppose now that C is a small exact category, so that the classifying space BQC is de-
fined. Let 0 be the zero object of C. Then the fundamensal group =, (BQC,0) is canonically
isomorphic to the Grothendieck group Ko{C). (For the proof, see the next chapter.) Moti-
vated by this fact, Quillen was able to give the foliowing remarkable definition of algebraic
K-theory: the i*" K-groups for a small exact category C, denoted as K;(C), is defined as
the (i 4+ 1)** homotopy group of the classifying space QC, i.e.

Ki(C) = mi41(BQC, 0).

In particular, if we let C be the category of finitely generated projective R-modules, then
the above definition for K;(X) with i = 0, 1, 2 is the same as those in the previous chapter.

11.8.3. The Essential Properties For The Q-Construction

In this section, we point out the essential properties of exact categories which make
the Quillen construction work. Later, we will use similar properties to characterize taips
categories of arithmetic varieties. For this purpose, we recall the following theorem and its
proof.

Theorem. (Quillen {73]) There is a natural isomorphism Ko(C) ~ m(BQC,{0})
for any small exact category C and the null object 0 € C, where Ky denotes the
Grothendieck group.

Lemma. The category of covering spaces of the classifying space BC of a small category
C ia naturally equivalent to the category of functors F' : C — Set such that F(u) 18 a
bijection for each morphism u of C.

Proof. Let p: E — BC be a covering space. For any object X of C, let E(X) be the
fiber over X € Ob BC, where X is regarded as a 0-simplex in NC, and hence determines a
O-cell in BC. Given a morphism u : Xy — X, we may regard u as a 1-simplex in NC, which
determines a path Bu in BC joining X, to X;. Since p is a covering, it has the unique path
lifting property, which gives a bijection (Bu). : E(X;) — E(X3), by associating to a point
y € E(X,) the second end-point of the unique path in E which lifis Bu and begins at y.
Hence X — E(X),u — (Bu). determines a functor ¢ — Set carrying all arrows of C into
bijections of Set.
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Conversely, if F : C — Set is a morphism inverting functor, i.e. F(u) is a bijection for
each morphism u. Let F\C be the category of pairs (X,z) with X € Ob(C, z € F(X), where
a morphism (X,2) — (X’,z’) is a morphism u : X — X' such that F(u)(z) = z’. The
forgetful functor F\C — C gives a map on classifying spaces pp : B{(F\C) — BC with fibers
pp'(X) = F(X) for any object X € Ob(.

Claim. pg is a covering space.

Suppose the claim is true, then for any morphism u : X — X’ in C and any z € F(X),
if £ = F(u)(z), u determines a morphism (X, z) — (X’'>’) in F\C, which gives the unique
path in B(F\C) lifting Bu and beginning at ¢ € p5'(X). Thus the above constructions are
inverse to each other, and give the desired equivalence of categories.

The proof of the claim. By a standard result from topology, we know that it is
enough to show that the map of simplicial sets N(F\C) — NC is a simplicial covering, i.e.
if A(n) is the simplicial set A(n)(p) = Homa(p,n), so that |A(n)] = A,, the standard
n-simplex, then for any given diagram of maps of simplicial sets

A(0) — N(F\C)
3 |
A(n) — NC,

we must show that there is a unique map A(n) — N(F\C) of simplicial sets making the
diagram commute. Of course, a map o : A(n) — NC determines an n-simplex ¢ € N,C, so
we must show that if ¢ € N,C is an n-simplex of NC, o¢ € No( F\C) a 0-simplex lying over
the ith-vertex of ¢, then there exists a unique n-simplex r € N,(F\C) which maps to o and
is such that ap is the i*"-vertex of r. Assume that ¢ is given by the diagram in C

° u A7)
MoSM 2. UM,

where the i*M-vertex of o is given by the object M;, so that oy is given by an object
(M;, z;) € F\C for z; € F(M;). Hence we have bijections

F(Mo) S p(a)FE2) . FUp(p,),

which for each i give a composite bijection f; : F(M;) — F(M;) for each j. In particular,
for j =4, f; is the identity. We have

F(u; /i
fi = fia1 0 Fuja) - F(M;) " F(Mj0) 2 F(M;).

Let z; € F(M;) be the unique element satisfying f;(z;) = z;. Then,
z; = fij(z;) = fi+1(F(uj41)(z;)),

and 7;41 = F(uj41)(z;). Thus we have a diagram in F\C, giving an element T € Na(F\C),

5

(MD,IU);“(MhIl);{... (M,,,zn),
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where #; is the morphism induced by u;. One sees at once that 7 is the unique n-simplex
liting o whose i*"-vertex is (M;,z;). This proves the claim, and finishes the proof of the
lemma.

The proof of the theorem. Let C be a small exact category, 0 € ObC a null
object. The category of covering spaces of BQC is equivalent to the category F of functors
F : QC — Set such that F(u) is a bijection for every arrow u of QC.

Let F' C F be the full subcategory consisting of functors F : QC — Set with
F(M) = F(0), F(i) = Idpy,
for any admissible monomorphism i : M’ — M in C.

We claim that L' and F are equivalent categories. In fact, if F € Ob F is an arbitary

functor, let F € Ob F' be the functor given by F‘(M) =F0). M LM AN represents
an arrow u: M — N in QC, let

F(u) = Finn)™" 0 F(g") o Flisn) : F(0) "8 r(M) "9 pomny FO™ Foo),

where for any M € Ob(C, we have ip : 0 — M, gar : M — 0. Since F(ian) is an
isomorphism in the category Set, it is clear that M — F{ips) gives a natural transformation
F — F which is an isomorphism of functors. Thus every object of F is isomorphic to an
object of X', and F is equivalent to F'.

Now, to prove the theorem, it suffices to show that F' is equivalent to the category of
Ko(C)-sets. (By definition, a Ko(C)-set is a set on which K;(C) acts through permutations.)

Step 1. By the lemma above, we know that the category BK(C) of covering spaces
of the classifying space of the group K¢(C) is equivalent to the category of Ky(C)-sets.

On the other hand, the universal cover BPT';ZC) is an initial object in the category

of covering spaces of BK(C), and the automotphism group of BKo(C) in the category of
covering spaces is just Ko(C), the fundamental group of BKy(C). Hence the category of
covering spaces of BQC also has an initial object whose automorphism group is Ko(C).

Step 2. Define a functor Ky(C) — Sets — F'.

Let S be a Ko(C)-set with ¢ : Ko(C) — Aut(S) the permutation representation. Then
we can define a functor Fs : QC — Set by means of Lemma I1.3 with the following assign-
ments: Fs{(M) = S for any M € ObC, (Fs)i(ir) = lds; (Fs)a(g') = ¢([Kerg]) € Aut(S).
We must show that

#([Ker (¢’ 0 q)]) = ¢([Ker q]) ¢([Ker ¢']).

But it is rather obvious. Finally, if
M L N
gl lq
M - N
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is a bi-cartesian square, then Kerq ~ Kergq’, so that ¢([Kerg]) = ¢([Ker q’j), and the
conditions of Lemma I1.3 hold. Therefore we do have a functor

Ko(C)—Set — F'
3 — Fs.

Step 3. Define a functor F' — Ky(C) — Set.

For F € Ob L', let ¢p : Ko(C) — Aut(F(0)) be given by ép([M]) = F(q}y). We can
check that this gives a well-defined homomorphism on K(C): for a given exact sequence in

c .
0= MaMIM" <0,

there is the bicartesian square

M LM
am L lq
0 M~

for which ¢' o ipe = ir 0 gj. Hence F(ghy,) = F(q'). Further, ¢}y = ¢' 0 ¢}y implies
Fqp) = F(q 0 ajyn) = F(aar) © Flahyn)-
So, by considering the split exact sequences
0-——* M-MoeM'-M"—0
0= M'-MoM'-M -0
we see that F(g}y), F(qyn) € Aut(F(0)) commute. Hence ¢p is well defined.

Clearly, (S,¢) — Fs and F — (F(0),¢r) give the desired equivalence of categories.
This proves the Theorem.

I1.8.4. A Definition Of Higher Arithmetic K-Groups

In this section, we make a definition of arithmetic K-theory, and obtain some of its
elementary but most important properties. The discussion is based on that of the last
section.

11.8.4.a. Arithmetic K-Groups
We begin by recalling the definition of the arithmetic K-group, K57(X), for an arith-

metic variety X over an arithmetic ring A, following [GS 91]. Later, we use the Quillen
construction to construct this group in another way.
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Let X be an arithmetic variety over an arithmetic ring A = (A, L, Fo). An hermitian
vector bundle on X is a pair (£, p), where £ a vector bundle on X, and p is an F-invariant
hermitian metric on the pull-back vector bundle of £ over X(C). The arithmetic K-group
K&§¥(X) is defined to be the quotient group of the abelian group generated by ((£, p);7),
where (£, p) is a hermitian vector bundle on X, and 5 € A(XR) an Fo-invariant C*® form on
X(C), with the subgroup generated by the following relations: For any short exact sequence
of vector bundles on X,

E.: 0=& =& =& —0,
if p; is Fo-invariant hermitian metric on the pull-back of &i over X(C) for each i, then
(&1, p1)vm) + (s, p3), 13) = ((€2,p2),m + 13 — chac(£.,p.)).

Here chpc(£., p.) denotes the classical Bott-Chern secondary characteristic form associated
with the hermitian vector bundle complex on X(C) corresponding to the exact sequence £.
on X, with respect to the Chern characteristic form ch.

There are several properties for K£7(X): From Chapter 2 and Chapter 3, we have the
following

Theorem. Let X be an arithmetic variety over an arithmetic ring {4, Z, F,). Then

there is a natural A-ring structure on K{*(X) such that if Ké\r’(’)(X) is the eigen-space
of the associated Adams operator ¢* with eigen-values £, then for each p > 0,

char : K3"P)(X) — CHR (X)q
is an isomorphism.

The basic idea to prove this theorem is to use the five lemma. There exists an exact
sequence .
@p>1CHPP1(X)q — A(Xr) — CHA((X)q — CH(X)q — 0.

Therefore, it is natural to have the following

Theorem. For any arithmetic variety X over an arithmetic ring (A, L, Feo ), there is a
natural exact sequence

Ky(X)q — A(XR) = Kar(X)q — K(X)q = 0,
and a natural local Chern character
ch : K1(X) — @1 CH*"!(X)q,
such that the following diagram commutes: -

K(X)q — A(Xr) — KadX)q — K(X)q — 0
ch | 1] char | ch |
@p>1CHPP~(X)q — A(Xr) — CHaX)q — CH(X)q — O
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In particular, we see that cha, is an isomorphism.
Putting these theorems together, we see that

(1). The arithmetic K-group works like the algebraic K-group.
(2). At the lowest level, there is a triangle relation as fotlows:

HA™(s) Ll KA(X)
R\ 7 F
K.(X) *

Here HA"(x) denotes certain analytic homology groups, N is the natural induced map,
F denotes the forgetful map, and R means certain regulators, which are generalizations
of the classical regulator maps.

I1.8.4.b. The Taips Category Of An Arithmetic Variety

Let X be an arithmetic variety over an arithmetic ring (A, Fs,L). There are two
possible ways to define the objects of the taips category to be constructed. The first is that
the objects consist of prime elements, i.e. hermitian vector bundles (£, p) on X, together
with the classes of Fuo-invariant differential forms, modulo the exact forms about 3, §. If
so, it 18 difficult to study the classical Bott-Chern secondary characteristic forms. Hence, it
is natural to make the other choice: we let the objects be triples (£,p;n), where (£,p) is
a hermitian vector bundle over X, and 7 is a differential form in A(Xgr). One may think
naively that we can define a "sequence”

0 — (&1,1:m) — (€2,p2;12) — (E3,pa573) — O
to be exact if

(1). The induced maps on the vector bundles give the short exact sequence
S.!O—’gl —"82'—‘83—'50;

(2). 2 —chpc(€.,0.) =m + 13

Then, one may try to go further and say that this definition gives us an exact category
and make the Quillen construction possible and hence we could reconstruct the arithmetic
K-group as the Grothendieck group of this exact category. Unfortunately, this does not
work well because there is no exact category at this level. (The reason will be seen later.)

From now on, we assume that the objects of the taips category associated with an
arithmetic variety X are triples (£, p;n) as above. We next define morphisms between
objects and, for this purpose, we find out that the terminology ’'essential’ is quite useful.
(Here ’essential’ means that, basically and theoretically, the whole story works just because
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we have them, but they do not work in practice.) Following the suggestion of A. J. Berrick,
we call the sequence

0 = (&1, p15m) = (€2,p2im) = (£3,p3,m3) — 0
an esgsential short exact sequence if

(1). The induced map on vector bundles gives a short exact sequence
E:0—= & — & —E3—0;
(2). 72 — chpe(E.,p) =m + 13 -
As a special case,
(£pim) = (F,7w)
is said to be an essential isomorphism if

(1). The induced map on vector bundles is an isomorphism £ ~ F.
(2). w—chpe(&,F;p,7)=1.

It is clear that
(€.pin) = (F,7iw)
is an essential isomorphism if and only if there is an essential short exact sequence
0—(0,0;0) = (&£, psm) > (F,mw) — 0.

We now make a detailed analysis of the possible morphisms among objects. To explain
this, we consider the situation for abelian groups: suppose a : E — F is a morphism of
abelian groups E, F. Then we have the following diagram

0 0
t !
Ker(a) Coket{a)
l . T
E — F
! 1
E/Ker(a) =~ 'Im(a)

l

0 0,

where the columns are exact and the row at the bottom is an isomorphism. For any two
objects (£, p; 1), (F, r;w), we shali call the diagram

0 0
1 1
(Ker(a),iol; m(a)) (Coker(a)T, 703 (a))
(&,p:m) (2l (F,riw)
! 1

(5/Ker(ai,ﬁ;m(a)) ~ (Im(a),frl;wl(a))

0 0
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a general morphism, where the two columns are essential short exact sequences, the row
at the bottom is an essential isomorphism, | means the restriction, and ~ means the quotient.

In particular, for general morphisms, we have the following very important relation
between ns(e) and w(a):

na(a) —wi(a) = n—w + chpe(a : £ — Fin, 1),

where chpc(a : &€ — F;n, 1) denotes the classical Bott-@hern secondary characteristic form
associated with the natural exact sequence

0 — (Ker(e),p|) = (£,p) = (¥,7) — (Coker(a),7) — 0.

Remark 1. We will see later that morphisms, in the taips category of an arithmetic
variety X, are not the general morphisms: Roughly speaking, a morphism in the associated
taips category is a special general morphism.

Remark 2. For any general morphism as above, from the definition of an essential exact
sequence, we can easily determine n,{a), w!(a), and w3(e) in terms of the corresponding
classical Bott-Chern secondary characteristic forms and n3(a). In particular, if the objects
and the morphism for vector bundles are given, then 7;(a), w!(a), and w3(a) are uniquely
determined by ns(a).

We define the kernel of a general morphism (a, n3(a)) as (Ker(a), pf; 7a(«)). Similarly,
we define the cokernel of a general morphism (a, n3{a)) as (Coker(w), 7;w3(a)). For con-
venience, we call (£/Ker(a), 5; m(a)) the quotient of (o, 73(a)), and (Im(a), 7|;w!(a)) the
image of (a,73()). Also, a general morphism (a,n3(a)) is a general monomorphism
if its kernel is (0,0;0). Dually, a general morphism (o, 73(a)) i8 a general epimorphism
if its cokernel is (0,0;0). With these definitions, we see that an essential isomorphism is a
general morphism which is both a general monomorphism and a general epimorphism. Fur-
ther, there is an essential short exact sequence, which comes from a general monomorphism
a followed by a general epimorphism 3, for which the kernel of § is essentially isomorphic
to the quotient of a.

Before we make the definition for morphisms, we give the properties of the category to
be constructed, which are needed to apply Quillen’s construction. For brevity, we denote
this category by Tar(X), and call it the taips category determined by the arithmetic
variety X, even though, at this moment, we do not have the definition of morphisms in

Tac(X).

A summary of the last section shows that in order to use the Quillen construction for
Tac(X), among others, we need the following items:

(1). A zero element 0 for the category. That is, an object 0 such that for any object (£, p; n),
there is a unique morphism from 0 to (£, p;7), and a unique morphism from (£, p;n)
to 0.
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(ii). For any two objects (£,p;1), (F,T;w), the set Homr,,((£,p;n), (F,7;w)) must be an
abelian group.
(iii). There is a composition for morphisms

Homr,, (€, pim), (F, 7;w)) x Homy,, ((F, miw), (G, vi X))
— Homg, ((€, p;m\ (G, v; X)),

denoted by -
(fig)—gof,

such that the composition is bi-linear with respect to the (group) addition of Hom.
That is, whenever it makes sense,

go(f+f)=gof+gof, (¢9g+g)of=gof+gof

(iv). Whenever it makes sense,
Idef=f, gold=g.

(v). There are definitions of monomorphisms and epimorphisms so that
Moﬁo o Mono € Mono, Epio Epi € Epi.

That is, the composition of two monomorphisms is a monomorphism, and the compo-
sition of two epimorphisms is an epimorphism.

(vi). There are certain special pull-back constructions in Tx.(X). More precisely, we need
the pull-back of monomorphisms with respect to epimorphismas.

Remark 3. In (vi), we drop out the condition that the bi-product should exist, which
is apparently needed for Quillen’s construction. In order to explain (vi), we look at the
situation in set theory: there the pull-back is defined by the diagram

MXQN — N
l lp
M L Q.

Furthermore, the set M xn Q is constructed as the set {(z,y) € M x N : p(z) = ¢(y)}.
Therefore the essential point for the bi-product in the Quillen construction is that the bi-
product has its very important consequence to create the pull-back. In this sense, we may
omit the axiom for the bi-product. Also by considering the Quillen construction, we know
that we do not need to have a general pull-back construction. What we need is the special
pull-back of monomorphisms with respect to epimorphisms,

Once we make all these items clear, we can discuss how to introduce morphisms for

TA;-(JY).
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First, for any object (£, p; ), quite naturally, we can introduce the general identity
morphism for (£, p;n) by letting it be (Id, 0). That is, we have the following diagram

0 0
| )
. (0,0;0) (0,0;0)
| )
Enm 2 (& pn)
L {1d,0) re
(Epm) =" (E,pm)
l i
0 0.

There is an obvious choice for the zero object of Ta.(X) viz. the object (0,0;0), where the
first O is the zero bundle, the second 0 is the zero metric, while the third 0 is the zero form.
We need to show that (0,0;0) is an initial object and is also a finial object. Since we have
not yet made a definition for morphisms, we cannot consider this now. However, we shall
still think of (0, 0;0) as the zero object, and call (0, 0;0) the general zero element. Hence
we also call (0;n) the general zero morphism for any two objects (£, p;n), (F,r;w).
That is, we have the following diagram .

0 0

l ]
(€,p;m) (F,rw)

l i
Epim) R (Frw)

l T
(06,0,0) =~ (0,0;0)

l 1

0 0

Now note that only four types of morphisms are needed in the items above, i.e. the
zero morphism, the identity morphism, monomorphisms, and epimorphisms, so we can begin
with a detailed discussion for them in the sense of general morphisms. In particular, we pay

special attention to the structure of ns{a). So it is convenient to recall the following:

For a general morphism

0 0
! 1

(Ker(a), pl;m(a)) - {(Coker(a), 7;w3(a))
Lo [

(€.pin) (o2ale) (F, 'Tr;W)

l

(E/Ker(a),pim(a)) = Um(a)v‘;l:wl(ﬂ))
1
0 0,
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we have
m(a) —w3(a) = p—w + chpcla : £ — F;n, 7).

In the following, we denote chpg(a : £ — F;n, 1) by chpg(a).
We discuss the above situations case by case.

a. The general zero morphism is given by

0 0
| Ta
€,pm) (Fymiw)
| , 1
(S,f;n) - (J",;;w)
{0,0;0) =~ (0,0;0)
| T
0 0.
So 73(0) = n.
b. The general identity morphism is given by
0 0
! 1
(0,0;0) (0,0,0)
! 14,0 T
Emn) =2 (&)
l T
Emm) = (Emn)
l T
0 0.
So ng(Id) = 0.
c. A general monomorphism is given by
0 0
! T
(0,0;0) (Coker(a), 7;w3(a))
! T
& pm) T (F,miw)
{ )
. (&) = (Im(@), r;w!(a))
| i -
0 0.

So g3(a) = 0.
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d. A general epimorphism is given by

0 0
(Ker(a),pl;h—tw + chpc(a)) 0,0:)
‘ (f,f;n) rmle) (T.;’;w)
(E/Ker(ai, pim(a)) = (F ;;w)

0 0.

So n3(a) = n — w + chpc(a).

Therefore, we find that n3(a) in these four cases has the form an+6(n—w)+cchpc(a)
with a, b, ¢ € {0,1}. More precisely, we have the following observation.

a. The general zero morphism gives

{a,b,c) = (1,0,0).
b. The general identity morphism gives

(a,b,¢) =(0,1,1).
¢. A general monomorphism gives

(a,b,¢) =(0,0,0).
d. A general epimorphism gives

(a,b,¢) = (0,1,1).

In these terms, we can describe the morphism as (a;a,b,¢), where « denotes the mor-
phism for vector bundles in the usual sense, a, b € {0, 1} and ¢ € Z. In this way, we may
use an addition and a multiplication for ¢, Z; and Z to define addition and composition for
morphisms of the form (a;a, b, c). But this does not work well. For example, (g, b, ¢) for the
zero morphism is not (0,0,0), while {a,b,¢c) for the identity morphism is not (1,1,1). So
we still cannot get the corresponding items (i), ..., (vi) listed above. In ordet to overcome
this problem, we introduce two maps from the field Z; = {0,¢} to the set {0,1} C Z:

J:{0,e} — {0,1},
0 .

[ 0;
e pomr 1;
and
J':{0,e} — {0,1},
I 1;
e — 0.
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Main Definition A. (1). For any two objects (£, p;n), (F,;w) of Ta:(X), neither of
which is (0,0;0), we let

HomTA:(X)((EnP;’;'): (]:- f;u))
. ={(aja,b,c): a € Hom(£,F), a, b€ 23, c€ Z}.

If either one of (£, p; 1), (F,T;w) is (0,0;0), then

Homr, (x)((€,pin), (F,miw))e {(0;0,0,0)},

where the first 0 means the zero morphism of vector bundles.
(2). Suppose
(@ja,b,¢c), (a';a',¥',c") € Homy,,(x)((€, pi0), (F,Tiw)),
then

{a;a,d,¢) :=(a';a', b, ¢")

if and only if

(3). Suppose
(a;a,b,¢), (a';a',¥',¢") € Homr,, (x)((€, pi ), (F,7w)),

then
(a;a,b,¢)+ (0", b, ') == (a+a’;a+d’ b+ ¥, c+ ),
where for the right hand side, the first addition means the usual addition of morphisms
of vector bundles, the second and the third additions mean the addition in the group
Z, while the last addition means the addition in Z.
(4). Suppose
(a;a,b,¢), (a';a' ¥, ') € Homy,,(xy((€, pi 1), (F,73w)),

then
(aja,b,c)o(a’;a',¥,c") ;== (doa’;aoad’bob,coc),

where for the right hand side, the first o means the usual composition of morphisms of
vector bundies, the second and the third mean the multiplication in the field Z,, while
the last o means the multiplication in the integer ring Z.
(5). Suppose
(a;albl c) € HomTA,(X)((g!p; 77)1 (}-1 T;w)) "I“" {0},

then the kernel of the morphism (a; a, b, ¢) is defined to be
(Ker(a), pl; J'(a)n + J(b)(n — w} + ¢ chpc(a)).
That is, the kernel of the general morphism

(a,J'(a)n+ J(b)(n —w) + cchpc(a)),
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(6).

(7).
(8).

(9).

(10).

-

(11).
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which is usually called the associated general morphism of («;a, b, ¢}. The coker-
nel of the morphism (a;a,b,c} is defined to be the cokernel of the associated general
morphism

(a,J'(a)n + J(b)(n — w) + echpc(a)).

Similarly, we define ghe image of the morphism (a;a,b,¢) to be the image of the
associated general morphism

(o, J'(a)n + J(b)(n ~ w) + cchpc(a)),
and the quotient of the morphism (a;a, b, c) as the quotient of the associated general
morphism

(@, J'(a)7 + J (b)(n — w) + c chac(@)).

For the morphism connected with (0,0;0), we define its kernel, image and quotient to
be that associated with (0;0,0,0).
For any object (£,p;n), which is not (0,0;0), we define the identity morphism of
(£,p;1) to be (Idg;e, 1,1).
In Homy, (x){(€,p; 1), (F,T;w)), we define the zero morphism to be (0;0,0,0).
Suppose

(a;a,b,c) € HomTA.(X)((SsP; 71): (Fr r;w)) # {0}

Then (a;a, b,c) is an isomorphism if
(a). (a,b,c) =(e,1,1).
(b). a is an isomorphism of vector bundies.
(c). The kernel of («; a,b,¢) is (0,0;0).
In particular, an identity morphism is an isomorphism.
Suppose
(@;8,b,¢) € Homr, (x)((€,pi 1), (F,7iw)) # {0}

Then (a;a,b,c) is a monomorphism if it is the identity morphism, or it is an isomor-
phism, or it satisfies the following condition
(a). £ is a subvector sheaf of ¥ and « is the natural inclusion.
(b). (a,b,¢) = (e,0,0).
For convenience, all morphisms starting from (0,0;0) are also called monomor-
phisms of Tx.(X).
Suppose _
(a;a,b,c) € HomTA.(X)(((‘:yP; 'I): (]:v T;W)) # {0}

Then (a;a,b,¢) is an epimorphism if

(). a isa surjective morphism of vector bundles.

(b). (a,b,¢) = (e, 1,1).
For convienence, all morphisms which end with (0,0;0) are also called epimor-
phisms of 7x.(X). In particular, an isomorphism is an epimorphism.

The sequence from Ta(X)

- naynd, e 3,0 ba,¢2
(0,0;0) -»(Sl,pi;m)(a Lo )(Sz,Pz;ﬂz)( bl )(53.P3;7?3) — (0,0;0)
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is a short exact sequence, if

(a). (en;ay,by,c,) is a monomorphism.

(b). {a2;az,ba,¢q) is an epimorphism.

(c). The associated sequence for general morphisms is an essential short exact sequence.
(12). With the above definition, we call 75.(X) the taips category associated with the

arithmetic variety X ..

Proposition. (1). The category T4 (X), satisfies the items (i), (i), (i4), (iv), and

(v}, which are need for the Quillen construction.

(2). If (a;a,b,c) is a monomorphism, then its assocsated general morphism is a general
monomorphism; In particular, the kernel is (0, 0;0).

(3). If (e; a,b, ¢) is an epimorphism, then its associated general morphism is a general
epimorphism; in particular, the cokernel is (0,0;0).

(4). If (a; a,b,¢) is the identity morphism, then its associated general morphism is the
general identity morphism. .

(5). If (a;a,b,¢) is an isomorphism, then its associated general isomorphism is an es-
sential isomorphism.

This proposition is easily proved from the definition. We leave it to the reader. The
proposition tells us that the definitions above give the essential properties which are needed
for an arithmetic K-theory. In particular, the definition does include the action of the
classical Bott-Chern secondary characteristic forms for exact sequences.

Thus, to apply the Quillen construction, what we need now is the construction of a
special pull-back for monomorphisms with respect to epimorphisms. Before we give this
pull-back construction, we have to find the necessary conditions for it. Start with the
picture

(&1, p1im)
(ay;a1, | b1,61)
ayay,by.cy
(€3, p3,m3) (aaidatyics) (E2,p2;m2)

where (ay;ay,b;,¢;) i8 an epimorphism and (ag3; a3, b3, c3) 18 a monomorphism, we need to
find an object (€4, p4; M), an epimorphism (az; az, b3, c2), and & monomorphism (a4; a4, ba, c4)li
so that we can complete the diagram as follows:

(a4;aa,bq,c4)
—_

(Ea, a3 m4) (&1, 15m)
(az;02, 1 by,¢2) (on;81,1 by,¢4)
Ga;ﬂs.ba.c.\

(&3, p3:7m3) (osigs Zyees) (€2, p2;m).

Furthermore, we need the following additional very strong condition: there is a natural
essential isomorphism
Ker(az; az, b3, ¢3) =~ Ker{ay;ay,b1,¢1),

which will be needed in the proof of the main theorem. There are basically three different
situations. The first is that in which

(E2,p2:m) = (0,0;0).
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In this situation, by the additional condition above, we let (&4, pa;14) be the kernel of the
epimorphism (a;; a1,5;,¢;). The associated morphisms are easily determined and we have

the following picture.

(01301.51.64)
—

(Ker(ay), p1l;om ~ m + chpe(ai)) (& p1im)
(cr2; a2, ] ba,ca) (ay;a1,{ b,c1)
asias,by,cy
(0,0;0) (eoizade®) (g, paim),

where a4 is the natural inclusion. Note that once we know the objects and the morphisms for
corresponding vector bundles, then the associated epimorphism or the associated monomor-
phism is easily determined by definition.

Now we come to the second situation, in which

(€2, p2:m) # (0,0;0),

and the corresponding monomorphism is not an isomorphism. In this case, for vector bun-
dles, the answer is natural: we take £4 as the pull-back of £ by the map a;. Then &
is a subvector bundle of £,. The associated morphisms for vector bundles are also easily
determined: ay is just the natural inclusion, while a3 is the surjective induced by ;. Next,
we have to choose a metric on £, but this is also quite obvious, since we may choose the
restriction metric from £;. Thus, for (€4, pa;n4), the only term we need to determine is
the differential form n4. But this is also not very difficult. In fact, from the additional
condition about the kernel, which now has a definite meaning, the isomorphism of vector
sheaves between the kernel of ag and the kernel of «; is determined. So, by the definition
of the essential short exact sequence, we have a unique choice for the form n,.

Finally, we discuss the third case, in which the corresponding monomorphism is an
isomorphism. So we have £, = £, x¢, £3 with the corresponding hermitian metric p; x,, p3.
Note that now aj is an isomorphism, we see that all these make sense. Let a4 be the first
projection, which is an isomorphistn, and a3 be the second projection. Put (ag,b2,c3) =
(as,b4,¢4) = (e,1,1). Thus for the definition, the final problem is to find out 54. For doing
so, we only need to put the condition that (az; a4, bs,c4) is an isomorphism in Ta(X). With
this definition, we also need to show that the relation for the kernels holds: Recall that the
classical Bott-Chern secondary characteristic forms associated to a short exact sequence of
hermitian vector bundles may be constructed by using the P!-deformation, so twisting by
an isometry does not change this secondary form.

We now have

Proposition-Definition. For any picture

(&, p1im)
(a1;a1,1 b1,01)

(E2,p25m2)

(ora;a3,b3,c3)
—_—

(€3, p3;713)
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where (ay;ay,b1,¢;) is an epimorphism and (a3; a3, b3, c3) is a monomorphism, there is
a unique pull-back construction in Ta (X ):

(a4;84,04,¢4)
—

(€4, pasna) (&1,p1:m)
(?2;“231 bg,Cg) (al;alrl bllcl)
(ora;a3,83,08
(&3, p3;m3) (ositaidyca) (2. p23m2),

where (oz;a3,b2,¢2) is an epimorphism, and (a4;a4,b4,c4) is 2 monomorphism. We
call this square a bi-cartesian square in 7T5:(.X), and denote (€3, p4;74) by

(E1,P13M) X(£3,03m2) (E3, P31 7).

Furthermore, we have

Ker (a3;as,bz,c3) = Ker (1501, by, ¢1).

Now we come to first main result.

* Main Theorem I For any regular arithmetic variety X, there is a natural isomorphism

K§*(X) = m (BQTac(X),(0,0;0)).

The proof of the main theorem is similar to that of Quillen’s theorem in Chapter 3, but

since the category Ta.(X) has its own special properties, we give a detailed proof below.

(1).
(2).

(3).

Proof. We begin with two lemmas.

Lemma 1. The category of covering spaces of the classifying space BQTx(X) is
naturally equivalent to the category of functors F : Q7o (X) — Set such that F(u) is
a bijection for any morphism u of Q74.(X).

Lemma 2. Let D be any category. Assume that

For each object M in T, (X), we are given only one object F(M) in D.

For each monomorphism i : M’ — M, we are given an arrow Fy(f) : F(M') — F(M)
such that if 1,1’ are composable Fi(iot') = F(i) o Fy (7).

Dually, for each epimorphism ¢ : M — N, we are given an arrow F3(q) : F(N) — F(M)
such that Fy(go ¢') = F3(q’) o Fa(q) if ¢, ¢’ are composable;

If
M 4 N
q! Iy
M 5 N

is bi-cartesian, then
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Then there is a well-defined functor F : Q7,,(X) — D given by

M — F(M), (M= M'5N) — F(3) o Fa(q).

The proof of Lemma 1. Let p : E — BQT7x(X) be a covering space. For any
object M of Ta,(X), let E(M) be the fiber over M € Ob BQTa.(X), where M is regarded
as & O-simplex in NQTx.(X), which determines a O-cell in BQT,.(.X). Given a morphism
u: M, — M;, we regard u as a 1-simplex in NQ7,.(.X), which determines a path Bu in
BQTa((X) joining M, to M. Since p is a covering, it has the unique path lifting property,
which gives a bijection (Bu). : E(M;) — E(Ma), by associating to a point y € E(M,)
the second end-point of the unique path in E which lifts Bu and begins at y. Hence
M — E(M), u — (Bu). determines a functor Q7 (X) — Set carrying all arrows of QTy,
to bijections of Set.

Conversely, if F : QTa(X) — Set is a morphism inverting functor, i.e. f(u) is a
bijection for each morphism u. Let F\QT,.(X) be the category of pairs (M,m) with
M € ObQT7a(X),m € F(M), where a morphism (M,m) — (M’,m’) is a morphism
u: M — M’ such that F(u)(m) = m’. The forgetful functor F\QTa(X) — QTa.(X) gives
a map on classifying spaces pp : B(F\Q7ac(X)) — BQTa-(X) with fibers p5' (M) = F(M)
for any object M € Ob T (X).

Claim. pr is a covering space.

Suppose the claim is true. Let u : M — M’ be a morphism in Q75{(X) and let
m € F(M). If m' = F(u)(m), then u determines a morphism (M,m) — (M',m’) in
F\QTa:(X), which gives the unique path in B(F\QTx.(X)) lifting Bu and beginning at
me p;l(M).

Thus the above constructions are inverse to each other, and give the desired equivalence
of categories.

The proof of the claim. By a standard result from topology, we know that it is
enough to show that the map of simplicial sets N(F\QTa(X)) — NQTa.(X) is a simplicial
covering, i.e. if A(n) is the simplicial set A(n}(p) = Homa(p, n), then given any diagram
of maps of simplicial sets

A(LO) - N(F\Qf'm(X))
A(n) —  NQTa(X),

we must show that there is a unique map A(n) — N(F\Q7a-(X)) of simplicial sets which
makes the diagram commute. Of course, a map ¢ : A(n) — NQ7a(X) is just an n-simplex
o € NoQTa(X), so we must show that if 0 € N,,Q7.(X) is an n-simplex of NQT,(X),
and o9 € No(F\QTa:(X)) is a O-simplex lying over the i*P-vertex of o, then there exists a
unique n-simplex € N,(F\Q7a(X)) which maps to o, such that oq is the ¢*P-vertex of
. Assume that o is given by the diagram in QT {X)

u usz u
Mo—lwwl-—' e -—'HW,.,
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and the i*" vertex of ¢ is given by the object M;, so that g is given by an object (M;, z;)
of F\NQTa:(X), where z; € F(M;). Then we have bijections

F(Mo) & p(M) e . FU Ry,

which gives a composite bifection f; : F(M;) — F(M;) for each j (with f; being the identity)
such that

F(uj) 1
fi = fis1 0 Fluz) s F(M;) T F(M;0) "2 F(M5).
Let m; € F(M;) be the unique element satisfying f;(m#) = m;. Then,
mi = fj(mj) = fja(F(ujp1)(m;)),

and mj4+y = F(uj41)(m;). Thus there is a diagram in F\Q7x(X),
(Mo, mo)3(My, m)) 3 .. B3 (M, m,),

where {i; is the morphism induced by u;. This determines an element v € No(F\Q7a(X)).
One sees at once that r is the unique n-simplex lifting o, whose i*P-vertex is (M;,m;). This
proves that pp : B(F\QTx(X)) — BQTa.(X) is a covering, and completes the proof of
Lemma 1.

The proof of Lemma 2. If

(Evyp1im) (ozielol) (&0, P03 M0) (232,0,0) (&2,p2;m),
vie 1 ahie,0,0
(&1,p15m) eyieled) (€5, P03 m0) (22290 (&2, p2:m2),

are equivalent diagrams which give a morphism (&1, p1;m1) — (€2, p2;7R) in @QTA(X), then,
(by definition,) there is an isomorphism u : £ — £} such that

(a1;e,1,1) = (ai;e,1,1) o (use, 1, 1), (az;¢,0,0) = (ah;e,0,0) 0 (u;e, 1,1).
So for admissible monomorphisms, we get A
Fi(az;e,0,0) = Fi(ah;¢e,0,0) 0 Fi{u;e,1,1);
and for admissible epimorphisms, we get
Falayg;e,1,1) = Fa(u;e,1,1) o Fa(aije, 1,1).
On the other hand, from the bi-cartesian square

u;e,1,1 ' s
(Eoopoim) D (€5, phimb)
(u;e, 1 1,1) (Id;e, | 1,1)
Id;e 1,
& ohims) "I (e, i),
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we have
Fi(uje, 1,1) 0 Fy(u;e, 1,1) = Fa(Id;e, 1,1) 0 Fi(Id;e,1,1) = Id,

since
(Id;el 11 1) o (ﬁ:etolo) == (ﬁ;elol 0)1
and .

(Id;e, 1, 1) o (B;e,1,1) = (B;e, 1, 1).

Hence

Fl(ﬂz; 6,03 0) o F?(al;e! 11 1)
=F1(a3;e,0,0)0 Fy(u;e,1,1) 0 Fa(u;e, 1,1) 0 Fa(al;e, 1,1)
=Fi(ab;¢e,0,0) 0 Fy(a);e, 1,1).
Thus Fi(az;e,0,0) o Fa(ay;e,1,1) depends only on the arrows in Q7a(X), and does not
depend on the particular diagram which represents it.

Next, if M« M'LN and N2 N'Z2P are given, and M <— M’ xy N’ 5 P
represents the composite arrow in Q74.(X), we have a diagram

M xy N 5 N Bp

71l o lg
M % N
Q!
M

1

where the square is bi-cartesian, g = q; o q and i = i3 04'. Then

Fi(i) o Fa(q) =Fi(ia) o F1(i') 0 Fa(q') o Fa(qh)
:Fl(t'g) (=] FQ(QQ) Q Fl(il) o Fg(ql).

This proves that (M «— M’—i»N) — F)(i}o F{q) is compatible with composition in Q7 .( X)
and so yields a well-defined functor F : QT (X) — D.

Finailly, we come to the proof of the main theorem.

The proof of the main theorem. By Lemma 1, the category of covering spaces of
BQTa.(X) is equivalent to the category F of functors F' : QTa (X ) — Set such that F(u)
is a bijection for every arrow u of @7 (.X).

Let F' C E be the full subcategory consisting of functors F : QTa.(X) — Set with
F(M) = F(0), F(i) = ldp(o) for each admissible monomorphism i : M’ — M in Tx(X).
We claim that ¥’ and F are equivalent categories.

In fact, if F € ObF is an arbitary functor, let Fe O_bf be the functor given by
F(M) = F(0); and if M «*— M’ = N represents an arrow u: M — N in QTar(X), let

Fu) = Flisn)™" 0 F(g') o Flin) : F(0) "2 p(an) 90 poay F0™ Py,
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where for any M € Ty.(X), we have that
i 0= M, g : M — 0,

while for any monomorphism (a;e,0,0) and any epimorphism (f;¢,1,1) from (£, p;n) to
(F,r;w), we denote by (ale,0,0); and (F;e, 1, 1)! the following pictures:

(Epm 2D (7 mw)
(Id;e, ] 1,1) -

(&, pim).

and
(Id;e,1,1)
plhikle

3]
(ﬁ;cvl L, 1)
(F,mw).

One can also prove that for any two composable arrows u, v in Q7 (X), we have

(E.pm)

F(vou) = F(v)o(u).

Clearly M +— F(ias) determines a natural transformation F — F which is an isomorphism
of functors, since F(ip) is an isomorphism in the category Set by the picture

Fmy P o
II
F(0).

Thus every object of F is isomorphic to an object of F', and F is equivalent to F'.

Claim. To prove the theorem, it suffices to show that F' is equivalent to the category
of K§¥(X)-sets.

We divide the proof of this theorem into the following 3 steps.
Step 1. The proof of the last claim.

By Lemma 1, we know that the category of covering spaces of the classifying space of
the group K§7(X), BK{T(X), is equivalent to the category of K§7(X)-sets.

On the other hand, the universal covering BK‘;‘:;‘(X) of BK{*(X) is an initial object in

the category of covering spaces of BK£"(X), and the automorphism group of BK{*(X) in
the category of covering spaces is just K§7(X), the fundamental group of BK#(.X). Hence

“. the category of covering spaces of BQTa(X) also has an initial object whose automorphism

group is K37(X).-Therefore, if F' is equivalent to the category of K{*(.X)-sets, we have

Ka"(k) ~ 1 (BQTa:(X),(0,0;0)).
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Step 2. Define a functor K{7(.X) — Set — F'.

Let S be a K{7(X)-set and let ¢ : KAT(X) — Aut(S) be the permutation representa-
tion. We definre a functor Fs : Q7a(X) — Set by means of Lemma 2 with the following
assignments: Fg(M) =S for any M € ObT74.(X), and

(Fsh(i) = s, (Fs)a(e) = ¢([Kerg]) € Aut(S).

First, we need to show that if »
M 3 N .
¢l 14

M S N

is a bi-cartesian square, then Ker ¢ =~ Ker ¢’. But this relation follows from the definition of
the bi-cartesian square in Tp.(X). Therefore,

$([Ker g]) = $([Ker ¢]).

Then we need to show that, for any two composable epimorphisms ¢ and ¢',

o({Ker (¢’ o )]) = &((Ker q]) &([Ker ¢']).

But this is a direct consequence of the definitions of epimorphisms and their composition,
the bi-cartesin square, the kernel, the exact sequence, and the property of the classical Bott-
Chern secondary characteristic form associated with the following special 3 x 3 picture [2]
or [5],

0 0
! l
0 — Ker(g) — Ker{g¢og) — Ker(¢) — 0
| | i
0 — Ker(g) — & L & - 0
g oql lq
53 = 83
| l
0 0

All the conditions of Lemma 2 are now satisfied. Hence, we have a functor
K{"(X)~Set — F
S — Fg.

Step 3. Define a functor F' — K§7(X) - Set.
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Now for F € Ob E', let ¢p : K§7(X) — Aut(F(0)) be given by

¢r([M]) = Flap)-

We need to check that thisis a well-defined homomorphism on K£7(X): if we have an exact
sequence in T (X)
0— M'LMLM —0

by definition, we can get a bi-cartesian square *

M L M
M L lq
0 tml M

for which ¢' 0 ipgu = iy 0 gj,. Hence F(g},.) = F(¢'); and g}y = ¢' 0 ¢}y implies

F(ap) = F(q 0 gyn) = Flgigr) © Fgagn)-

Therefore, if we prove that

F(ghn 0 qapr) = F(gher) © Fghyn),

then ¢p is well-defined. For this, we only need to consider two ’split’ exact sequences

0— (& nm 2 F oo rin+w)PEIF, riw) = 0,

and

0= (F, r;w) 22 @ F,p @ r;n+w) P2 D(E pin) — 0.

So F(qés’m)), F(qé,-l,.'w)) € Aut(F(0)) commute.

It follows that (S,4) — Fs, F — (F(0),ér) give the desired equivalence of categories.
This proves Main Theorem 1.

Motivated by the above theorem, we make

Main Definition B. Let X be a regular arithemetic variety over an arithmetic ring
A. The (i+ 1)*-homotopy group of the classifying space of the Quillen construction of
the taips category 7a.(X) is called the i*P-arithmetic K-group, denoted by KA7(X).
That is, for all i > 0, we have

KM(X) i= iy (BQTae(X),(0,0;0)).
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I1.8.5. The Global Triangle

From the previous section, we have arithmetic K-groups KAT(X) for i > 0 and any
regular arithmetic variety X. In this chapter, we give the following ” global triangle”, which
gives the relation between the analytic properties, the arithmetic properties and the algebraic
properties of arithmetic varieties:

N
—

RN JF
K.(X)

H (%) . K3 (X)

We first recall some results from category theory.

Let F : { — ' be a functor. Then for any object N of ', we let N\F denote the
category consisting of pairs (M,v), where v : N — F(M), and a morphism from (M, v) to
(M',v') is amap w: M — M’ such that F(w)ov = . In particular, when F is an identity
functor of C', we obtain the category N\C' of objects under N.

Main Theorem II. (1). Let QF : Q7. (X) — QP(X) be the natural functor induced
by the forgetful functor
F:Tar(X) — P(X)
&pm) - £

Here, P(X) is the category of vector bundles on X. For any object £ of P(X), and
object (£, p; 1) of Ty (X), we have a natural induced long exact sequence of abelian

groups
Kiy1(X) -
| R
i (E\QFE. (€, pim) 1de)) & KA(x) & Ki(X)

R\
— m(E\QF,((£,p;m),1dg)).

(2). At its lowest level, after tensoring with Q, the long exact sequence above becomes
the natural exact sequence

KI(IY)Q - A-.(.XR) - KAr(X)Q ad K'(X)Q - 0,

= stated in Chapter IV.

. The first part of the main theorem is a direct consequence of Quillen’s Theorem A and
Theorem B. For convenience, we recall them below.

Theorem A. Let F : ¢ — ' be a functor. If the category N\F is contractible for
every object N of C’, then the functor F is a homotopy equivalence.
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Theorem B. Let F :  — C' be a functor such that for every arrow N — N in ', the

induced functor N'\F — N\F is a homotopy equivalence, then for any F~!(N), there
is a natural induced exact sequence

- = mipa (€L N) = mi(N\F (M, 1dy) = mi( G, M) — i€ N) —

In order to use these two theorems, we need the following result from [Qu 73].
Proposition. A category having either an initial or a final object is contractible.
Proof of the Theorem. We only need to show that for any object £ in @QP{X),
E\QF = {((F,1;w),v) : (F,1iw) € ObQTar(X),v: £ — F);
and for any arrow u: £ — £ in QP(X),

wW\QF : E\QF — E\QF
(Firw)v) — (F,mw),vou).

Then for any ((F,7jw),v: €& = F), u: & — &', we have

((F,mw), v)\(u\QF)
={((G,vix)w)8):w:E =G, 5:((F,v;x), wou) — ((F,7;w),v)}.

In particular, we see that (((0,0;0),0),0) is an object of the category ((F, Tjw), v)\{u\QF).
Therefore, by Quillen’s results above, we have the long exact sequence

T (BQP(X),E) .
IR

m(E\QF, (€, p;1),1dg)) % m(BQTadX),(E,pim)) 5 frs(BQ:(lX),f)
- W'(S\QF:((S,P’U)’HE))

Thus, by the main definition B, we have Part 1.

For Part 2, the only difficult part is to show that

m (E\QF, (€, pi ), 1de)) = A(XR).

But this can be deduced directly from the definition, or by the five-lemma.
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