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Introduction

In this paper, we will prove the arithmetic Riemann-Roch theorem for l.c.i. mor-
phisms of arithmetic varieties. Roughly speaking, this arithmetic version of Grothendieck
Riemann-Roch theorem is a direct consequence of the existence of relative Bott-Chern
secondary characteristic objects for both smooth morphisms and closed immersions, which
are developed in [W 91a] and [BGS 91] respectively.

It is well-known that Riemann-Roch theorem has a long history. The most impor-
tant event of this theory began with Hirzebruch’'s remarkable formula. Soon after the
discovery of Hirzebruch Riemann-Roch formula, we came to its two deep generalizations.
The first is Grothendieck Riemann-Roch theorem in algebraic geometry, which states that

the Riemann-Roch theorem in algebraic geometry is in fact the following commutative

diagram:

Ko(x) 259 cH(X)q

| fx 1 fen
Ko(Y) = CH(Y)q

for any l.c.i. morphism of regular varieties f : X — Y. The second is the famous Atiyah-
Singer index theorem, which deals with more general spin-manifolds and elliptic operators.
In the recent years, following Seeley, Patod;. and others, mathematians use heat kernel
technique to offer a kind of local index theorem, instead of using corbodism theory. For
more details, please see [B 86], [BS 58], [FL 85], [H 56], [SGA 6], and the collection of
Atiyah’s works [A].



Roughly speaking, the arithmetic Riemann-Roch theorem is a natural generalization
of classical Riemann-Roch theorem in the sense of Grothendieck. In fact, if we use the
arithmetic notations in the above diagram, we still have 8 commutative diagram for a l.c.i.
morphism of regular arithmetic varieties. Here we add a technical assumption that the
morphism at infinity should be smooth. The aim of this paper is to show a method to do

8O.

By the works of Gillet and Soulé, we know that at first we need to give a good
definition for the push-out morphism of arithmetic K-groups. The basic strategy for
offering this push-out morphism of arithmetic K-groups is to factor the l.c.i. morphism
as a regular closed immersion followed by a projection as usual. But instead of using a
push-out morphism of arithmetic K-groups for closed immersion, we directly offer oné for
l.c.i. morphism. In certain sense, this approach saves us lots of space, as to give a proper
push-out morphism of arithmetic K-groups for closed immersion needs quite a big theory
associated with relative version for arithmetic intersection theory and arithmetic K-theory.
The key point in our deﬁnition is the theory about relative version of classical Bott-Chern
secondary characteristic forms for both smooth morphisms and closed immersions [BGS
91] and [W 91a]. After we give this definition by using the properties of relative Bott-
Chern secondary characteristic objects, the arithmetic Riemann-Roch theorem is a direct

consequence.

One more thing we need to explain here is that indeed, in the category of complex
geometry, arithmetic Riemann-Roch theorem is a refined version of classical Riemann-Roch:
the classical theorem deals with algebraic cycles, but the arithmetic theorem deals with
forms. Furthermore, our first axioms for the relative Bott-Chern secondary characteristic

forms with respect to smooth forms is equivalent to local index theorem.

This paper is organized as follows: In part one, we give the existence theorem of
relative Bott-Chern secondary characteristic objects for both smooth morphism and closed
immersion. In part two, we will give the arithmetic Riemann-Roch theorem for l.c.i.

morphism f : X — Y, but with a technical assumption that f at infinity is smooth and

2



X, Y are regular.

As a sketch version of [W 91a] and [W 91b], here we only state the main results and
the ideas behind our proof. The details may be found in [W 91a] and [W 91b).

Acknowledgements: At the beginning of 1990, I bega.ﬁ to study Arakelov geometry.
Up to now, I got various helps from different kinds of sources. Here I would like to express
my thanks to Lang for his constant helps, encouragements, suggestions and patiences. Also
I would like to express my thanks to Hirzebruch for his kindly invitations and supports. For
experts, they will know that basically this paper comes from the véry important pioneer
works given by Bismut, Gillet, Soulé and Faltings. I thank them warmly. Thanks also due
to Barth, Kobayashi, Jorgenson, Wolfgang Miller, Reid, Ribet, Todorov for their help.

Part 1. Relative Bott-Chern Secondary Characteristic Objects

In this part, we will give the axioms for various kinds of Bott-Chern secondary charac-
teristic objects and state their existences. It contains three sections. In section 1, we deal
with the classical Bott-Chern secondary characteristic forms. In section 2, we consider
the relative Bott-Chern secondary characteristic forms for smooth morphism. Finally, in
section 3, we give the theory about relative Bott-Chern secondary characteristic currents
for closed immersion, following [BGS 91].

§I.1. Classical Bott-Chern Secondary Characteristic Forms

In this section, we recall the basic facts associated with the classical Bott-Chern
secondary characteristic forms. References are [BC 68] and [BGS 88].

Let X be a complex manifold. A hermitian vector sheaf on X is a pair (£, p) consisting
of a holomorphic vector sheaf £ on X and a smooth hermitian metric pon £. It is a

standard fact that there exists a unique smooth connection ¢, on £ which is unitary and
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the antiholomorphic component Vg‘l of which is equal to the Cauchy-Riemann operator
O¢ of €. As usual, we call this connection the hermitian holomorphic connection of (£, p).

Its curvature K¢ is defined by z. Obviously, K¢ € A''(X,End€). We let Re = 55 Ke

be its Ricci tensor.

Let B C R be a subring, ¢ € B{[T1, ..., Ta]] be any symmetric power series. For every
k > 0, let ¢{¥) be the homogenous component of ¢ of degree k. Then there exists a unique
polynomial map ®*) : M, (C) — C such that
1. ) is invariant under conjugation by Gl,(C).
2. ®F)(diag(ay, ...,an)) = 6 (ai, ..., a,).

More generally, for any B-algebra A, we can also define ® = ;5 o) . M, (A) — A.
Furthermore, if I C A is a nilpotent subalgebra, then we may define

& =PeW: M(I) - A
k>0

With this, if (£, p) is a rank n hermitian vector sheaf on X, and ¢ as above, we can
define

B(€,p) == B(—Re) € AX) := (P A77(X)
p20

as follows.

First locally identify End £ with M,(C) and then apply the discussion above to

I= @PZ]AP"D(X).

Note that since @ is invariant under conjugation, we have the following

Facts: 1. ¢(£, p) is closed.

2. For any morphism f, f*(¢(€,p)) = ¢(f*E, f*p). |
3. The de Rham cohomology class of ¢(&, p) does not depend on the choice of p,
but the form ¢(&, p) does depend on p.
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Fact 3 is the starting point for us to introduce the whole story below. Roughly
speaking, the refined version of ¢(&, p) for finite dimensional vector bundle and infinite
dimensional vector bundle, i.e. Bott-Chern Secondary Characteristic Forms and Relative

Bott-Chern Secondary Characteristic Forms, are central parts of our theory.

Next we state the following axioms for the classical Bott-Chern secondary char-
acteristic form, ¢pc(€.,p1,p2,p3) associated with a short exact sequence of vector

sheaves £.:0 — & — & — & — 0 and with metrics p;’son &; s for j = 1,2,3.

Axiom 1. (Downstairs Rule) Let £. : 0 — & — & — & — 0 be a short exact
sequence of holomorphic vector sheaves on X. We may choose arbitary hermitian

metrics pj’s on &; ’s for j = 1,2,3. Then we have
dd*¢Bc(€.,p1,p2,p3) = ¢(€2,p2) — $(&1 D E3,p1 D p3)

in A(X) := A(X)/(Imd + Im8).

Axiom 2. (Base Change Rule) For any morphism f,

[*éBc(E., p1,p2,p3) = éBc(f*E., o1, P2, F*p3).

Axiom 3. (Uniqueness Rule) If (&, p2) = (& & &3, p1 ® p3), then

¢Bc(E.,p1,p2,p3) = 0.

Now we have the following

Bott-Chern Theorem. There exists a unique differential form ¢gc(€., p1,p2,03)

which satisfies the above three axioms.

Sketch of the proof. Here we will use the P!-deformation technique to prove this
result.



Let P! be the complex projective line. First we will construct an exact sequence DE.

on X x P!, called a P! deformation of £..

Let s be a section of Op1(1), which vanishes at oo and such that s(0) = 1. Let
£5(1)=E Q@ Op(1), & = (& @ E(1))/&
with idg, ® s: & — £1(1). Then we have

Deg. . 0 &6(1)—= & — & —0.

Now for any point z € P!, let ¢, : X — X x P! by 7.(z) = (z,z). We have
1. & ~ %6, if 2 # co.
2. & ~ 5 6(1).
3. 26 ~60&.

Using a partition of unity, we can choose a hermitian metric g, on £, in such a way

that the isomorphism 1 and 3 above become isometries. Thus we may let

600(E-1p1 2 p3) = [ Toglel"d(En, ).

Since

d.d%[log|z|*] = 60 — b0,

we can easily have Axiom 1 by fact 2. Here é denotes the Dirac distribution. For others,

please see Theorem 1.29 of [BGS 88].
§1.2. Relative Bott-Chern Secondary Characteristic Forms For Smooth Morphism

In this section, we state the basic facts associated with the relative Bott-Chern sec-
ondary characteristic forms for smooth morphism between complex Kahler manifolds.

These relative Bott-Chern secondary characteristic forms may be throught as a natural
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generalization of the classical Bott-Chern secondary characteristic forms with respect to

Chern forms. References here are [BGS 91], [BGV 91] and [W 91a).

/L‘t/at f : X - Y be a smooth morphism, which is a Kahler fibration, of compact
complex Kahler manifolds with ps the hermitian metric on the relative tangent sheaf
Tx;y- Let (£, p) be an f-acyclic hermitian vector sheaf on X, i.e. higher direct images of
& with respect to f vanish. We may introduce a relative version of classical Bott-Chern
secondary characteristic form for them by the following axioms. Usually, we will denote

the relative Bott-Chern secondary characteristic form on Y as chpc(&, p, f, p5).

Axiom 1. (Downstairs Rule)

dydychpc(&,p, f,pf)
= fu(ch(&, p)td(Tx v, ps)) — ch(f.E, fup).

Axiom 2. (Base Change Rule) For any base change ¢, we have

g chsc(€,p, f,ps) = che(g5E, g7p, f4.95Ps)-

Here gy denotes the induced morphism of g with respect to f, and f; denotes the

induced morphism of f with respect to g.

Axiom 3. (Triangle Rule For Hermitian Vector Sheaves) For any short exact sequence

of f-acyclic vector sheaves
E.: 00& =& & —0,
with hermitian metrics p; on &; for ¢+ = 1,2, 3, let its direct image be
fu€.: 0= f.&1 = fub2 — fu€3 >0

with associated metrics f.p;. We have

ChBC(£2,P2,f,Pf) - ChBC(g],Pl,f,Pf) - dlBC(&S,P?.,f,Pf)
= fu(chpc(€.,p)td(Tx/v,ps)) — chec(f.&., fup).
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Axiom 4. (Triangle Rule For Morphisms ) Let f : X — Y and g : Y — Z be
two smooth morphisms of complex compact manifolds. Let (£,p) be an f-acyclic
hermitian vector sheaf on X such that f.€ is g-acyclic. We have the short exact

sequence for relative tangent sheaves:
0— Tx/y = Txiz = f*Ty;z — 0,

with hermitian metrics py, pgos and p; on Tx,y, Tx/z and Ty, z respectively. Then

chec(€,,90 f,pgof) — chBc(fo€, fup,9,p9) — gu(chBe(E,p, f,p)td(Ty)z, pg))
= (g0 f)u(ch(E, p)tdpc(X,Y, 2)).
Here tdpc(X,Y, Z) is the Bott-Chern secondary characteristic form associated to the

above short exact sequence of the relative hermitian tangent sheaves.

The main result associated with relative Bott-Chern secondary characteristic forms

for smooth morphism is the following

Existence Theorem Of Relative Bott-Chern Secondary Characteristic Forms
For Smooth Morphism. Let f : X — Y be a smooth morphism, which is a Kahler
fibration, of compact complex Kahler manifolds with py the hermitian metric on the
relative tangent sheaf Tx,y. Let (£, p) be an f-acyclic hermitian vector sheaf on X.
Then there exists a unique differential form on Y, chpc(&,p, f, pg), such that the

above axioms 1, 2, 3, and 4 hold.

Idea of the proof: The basic idea here is that we first construct a differential form

on Y. Then we check that our form satisfies the above axioms.

To construct the relative Bott-Chern secondary characteristic forms, we may imitate
the process in the last section for the classical Bott-Chern secondary characteristic forms

as follows:

In the last section, we construct the classical Bott-Chern secondary characteristic

forms as an integration of certain forms with respect to P!. Note that if we only want
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to consider the Bott-Chern secondary vharacteristic forms with respect to Chern forms,
we may let ¢ as the exponential function. We do use the same approach to construct
our relative Bott-Chern secondary characterictic forms here. For doing this, we have two
problems. The first one is that how we can find a canonical connection. The second
one is what is our corresponding concept for the exponential function. For the first, it
is well-known that we can use Bismut super-connection. For the second, by the works of
mathematicians working on index theorem, we know that the corresponding concept for
this exponential function is nothing but the associated heat kernel. Once we find these,

the construction is the same as in the classical situation.

After we finish the above construction, we can check the our axioms step by step. For

example, to check axiom 1, we have to use Bismut local index theorem [B 86] and a result

of Berline and Vergne [BGV 91]|. More details may be found in [GS 91a], [W 91a).

§I.3. Relative Bott-Chern Secondary Characteristic Current For Closed Immersion

In this section, we recall the theory for relative Bott-Chern secondary characteristic

currents for closed immersion. Readers may find the results of this section from [BGS 91].

Let ¢ : X < Y be a closed immersion of complex manifolds. Let £ be a vector sheaf on
X. Let N; be the normal sheaf of X in Y. Suppose that we have the following resolution

of vector sheaves for the direct image of 1.£:
009 Fmn—= Fm1—= ... Fo— 1. =0
For any z € X, let Fy , be the k** homology group of complex
0— Fpn = Fmne1 = ... > Fo — 0.

Set F; = ®F} . Thus if we metrize the above situation, we may put hermitian metrics on

all vector sheaves. Hence we may introduce the formal adjoints for the boundary maps.
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By a generalized Hodge theorem, we know that
Fk={w€fg lvw:O,v"w:O}.

Naturally, on Fi, there is an induced metric.

By the local uniqueness of resolutions, we have the following statements:

1. For k = 0,1,...,m,z € X, the dimension of F} ; is constant on each irreducible

component of X. So that Fj is a holomorphic vector sheaf on X.

2. For z € X,u € T, X, let 0,v(z) be the derivative of the chain map v calculated in
any given local trivialization of (F.,v.) near . Then 0yv(z) acts on F;. When acting
on F;, 8,v(z) only dependents on the image y of u in N ;. So we will write d,v(z)
instead of d,v(z).

3. Forany z € X,y € M, (8,v)*(z) = 0. f y € NV;, let 1, be the interior multiplication
operator by y acting on the exterior algebra AN™*. Let ¢, act like iy, ® 1 on AN*QE.
Then the graded holomorphic complex (F., dyv.) on the total space of the vector sheaf
N is canonically isomorphic to the Koszul complex (AN ® £,1,). Furthermore, for
any given metric pu;, pe on N;, € respectively, there always exist metrics px on Fi
such that the above canonical algebraic isomorphism becomes an isometry (Usually,

we will call the condition here as Bismut condition (A)).
Next we will introduce the concept: wave front.

If 7y is a current on Y, we denote WF(y) the wave front set of . For the definition and
the properties of the wave front set, please see [H6 83]. Especially, we know that WF(«)
is a closed conic subset of TgY — {0}. Also if p is the projection from the total space of
cotangent sheaf of Y to Y, pWF() is exactly the singular support of v, whose complement
in Y is the set of points z such that v is C* on a neighborhood of z. Usually, we denote
Dn;; the set of currents ¥ on Y which satisfy that WF(y) C Mg. Thus the elements in
Dy are smooth on Y — X. Also there is a natural topology on D, which may be defined

as follows:
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Let U be a small open set in Y, which we identify with an open ball in R*. Over
U, we identify T3Y with U x R?. Let I be a closed conic set in R?! such that if z € U,
I NNy, = 8. Let ¢ be a smooth current on R? with compact support included in U and
let m be an integer. If v is a current, let ¢y be the Fourier transform of ¢y (which is

considered as a current on R? here). If v € Dy, set

Pu ,l",ga,m('}’) ‘= SUPger Iflm |‘P_7(£)|

With this, we say a sequence of current {yn} in Daj; converges to v € D, if ‘
1. limp—ooYn = < in the sense of distributions.
2. limy . ooPur,pm(yn —7) =0.
Usually, we also let
PY ={we Dpr; | w is a sum of currents of type (p,p)}.

And
P;’O = {w e PY |w=0a+8B witha, B¢ Dirz }-

If X =@, we also wirte PY, PY"? instead of P¥, P};‘O respectively.

With these notations, we may introduce the axioms for relative Bott-Chern sec-

ondary characteristic current for closed immersion, chgc(€, p, 1, pi), as follows:
Axiom 1. (Transgression Formula)
dd°chpc(E, p, 1, pi) = td™' (N, gn)ch(€, p)bx — ch(€, p).
Axiom 2. (Base Change Rule) Let f : Y — Y be a holomorphic morphism. Assume
that f is transversal to ¥. That is, for any = € f~1(X),

Im df(z) + Ty X = T:Y.
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Then we have

ChBC(f‘g, f'pa ifs Pi/) = f.ChBC(gaP) inol')'

Axiom 3. (Triangle Rule For Hermitian Vector Sheaves) Let
08 o2& & —0

be a short exact sequence of vector sheaves on X. Then we may find the resolution

Fi,. for 1.& in the above sense, with the condition that
0— F1;— Faj — F3; — 0

is a short exact sequence. Put metrics satisfying Bismut condition (A) on them. Then

we have

3
Y _(=1)*chBc(Er, p1si, pi) =

k=1

1.(td ™ (W, par)chsc(€, p,4,00)) — Y _ (1) chse(F. 5, p.,3)

j=0
in PY/PY°.

Axiom 4. (Triangle Rule For Closed Immersions) Let ¢ : X’ <5 Y be another closed

immersion such that X and X' intersect transversally, i.e. if z € X N X', then
T.X +T. X' =T.Y.

Let i : X" = X N X' = Y be the induced closed immersion. For any vector sheaves

£ (resp. £€') on X (resp. X'), let
&= Elx ®g'[xv.

. Y,0
Then in PY, x:/Px_x:, we have

chpc(E”, p",i", pin) =
= ch(F'.,p' Jehpc(€, p, 1, pi) + 1. (td™ (N, par)ch(E, pe)i*chpc (£, 0, ¢, pir)
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and
chpc(&”, p",i", pin) =
ch(F.,p.)chpc(E', '\, pir) + ii(td'l(N', pa )eh(E', pe )i chpe (€, p, 1, pi).

With this, we may state the main results of [BGS 91] as the following

Existence Theorem Of Relative Bott-Chern Secondary Characteristic Cur-
rent For Closed Immersion. With the notation as above, let : : X — Y be a
closed immersion of compact complex Kahler manifolds. Let (£, p) be a hermitian
vector sheaf on X. Then there exists a unique current in PY, chpc(&, p, f, ps), such
that the above axioms 1, 2, 3, and 4 hold.

The proof of this existence theorem may be found in [BGS 91].

Part II. Arithmetic Riemann-Theorem For l.c.i. Morphism

In this part, we will use the results in the first part to give the arithmetic Riemann-
Roch theorem for l.c.i. morphism by pure algebraic methods.

§11.1. Push-Out Morphism For Arithmetic K-Groups

In this section we will give a definition of push-out morphism of arithmetic K-groups
for l.c.i. morphism of regular arithmetic varieties, but with a technical assumption that f

at infinity is smooth.

Let f: X — Y be a l.c.i. morphism between regular arithmetic varieties. It is well-
known that for l.c.i. morphism f, we have the following decompsition: a closed immersion
1 : X — P followed by a projection g : P — Y. Usually, we may try to define

fr :Kar(X)Q = Kar(Y)q
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by introducing the push-out morphism of arithmetic K-groups for both smooth morphism
and closed immersion. For a smooth morphism, there is no problem (see below). For
closed immersion, we have a problem: It can be done in principle, but the problem now
is that we need a systematic theory for relative arithmetic intersection theory and relative
arithmetic K-theory for closed immersion. Since we do not want to develop the relative
theory here, we will give a direct definition of push-out morphism of arithmetic K-groups

for l.c.i. morphism.

Note that since the arithmetic K-group Ka.(X) is generated by f-acyclic hermitian
vector sheaves and smooth forms, we only need to give the definition of fx for both of

these kinds of elements, and to prove the compatibility of our definition.

For doing this, let us introduce a few more notations. For the above decompsition of

f, since fc is smooth, we may have the following short exact sequence:
N:0—o T »i"Ty = Nic — 0.
With this, for any T € CHa,(X)q, as in [GS 91b], we define

tdar(f,p0)T :=

= bdar(i" Ty, 8" pg)(tdar Wiy o) T) + tlno( S/, £1/) T € CHar(X)q.
Here tdpc(f/g, pys/q) is the intersection of the classical Bott-Chern secondary characteristic
forms associated with the short exact sequence N above and tdy; (V:, pa; ). And as usual

we omit the notation for the morphism a, which send a smooth form a to an arithmetic

cycle (0, a).

Now, for smooth forms, there is no problem, as the arithmetic Riemann-Roch theorem
is supposed to be a generalization of the classical Riemann-Roch theorem. Therefore, if
a € Ka.(X), it is natural for us to let

fr(a) = fula tdas(f, ps))-

Next we will give the definition of fx for f-acyclic hermitian vector sheaves. Let

(€, p) be an f-acyclic hermitian vector sheaf on X. From part I, we know that there is a
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resolution of g-acyclic vector sheaves on P for 1.£ :
O—an—’...—)fl—)fg—)i‘g—'o.

Equiped F; with metrics p;, which satisfy Bismut condition (A), we may give the following
definition:
fk(Ep) =

= Z(—l)j(g.fj,g,pj) + Z(—l)jChBC(fja Pi» 9> Pg)

=0 i=0

+ Z gt(ChAr(fja pj)tdAr(ga Py)P(ga pg)) + gt(ChBC(g, P, ia Pi )tdAr(.% Pg))
=0

+ fu(char(€, p)tdBc(f/9,p1/4))-

Here we use the isomorphism cha, to think the elements

Y~ 9u(chae(F;, pj)tdar(g, pg)P(g: pg))
j=0
and

g.(cth(E, P, 1, pi)tdar(g, Py)) + fo(char(€, P)tdBC(f/g, Pf/g))

in CHarq as those in Kxrq. Note that since they are in the image of a, the mean of those
elements in K ArQ are the same as those in CHArq. The P term above corresponds to
the associated additive homology class for any power series P(z) = .., axz*, which is

defined as follows: for any hermitian line sheaf (£, p)

P(L,p) = Y mrer(L, )"
k>0

Now we have the following

Proposition. With the above definition for smooth forms and f-acyclic hermitian

sheaves, we have a well-defined group morphism

f;? : CHa+(X)q — CHAr(Y)Q.
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Here one may ask the dependence of ff on the various data. But this is a direct

consequence of the following main result of this paper

Arithmetic Riemann-Roch Theorem For l.c.i. Morphism. There exists a
unique power series P(z) such that, for any l.c.i. morphism f : X — Y of regular
arithmetic varieties with f at infinity is smooth, and for any element T € CHa (X )q,

we have

charf&(T) := fou(Y tda:(f,py))-

Usually, we denote f§ as fx.

In fact, by proposition 1 of 2.6.2 of {GS 91b], we know that tda:(f, py) depends only
on the choice of metric on 7y, and not on the choice of i, g, nor on the metrics on N; and
7,4. Therefore, we know that our fx also depends only on the choice of the metric on Ty,

and not on others.

8I1.2. Sketch Of The Proof Of Arithmetic Riemann-Roch Theorem

We divide the proof of arithmetic Riemann-Roch theorem for l.c.i. morphism into two
steps.

First, we have to verify our result for smooth morphisms, which has its root in [F 91].
Then we prove the arithmetic Riemann-Roch theorem in general by combining the cases

for both smooth morphism and closed immersion.

For smooth morphism f, we can assume that 7 is an identity morphism and g = f is
a smooth morphism. Note that since the definition in the last section make sense in this

situation, we may define

EIT(S, p; f, Pr P) = ChArfI};(E, P) - fCH(ChAT(ga P) tdAl‘(f1 Pf))'
By the existence theorem of the relative Bott-Chern secondary characteristic forms for
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smooth morphisms, we can show that Err(€, p; f, ps; P) does not depend on the metrics
and in fact defines a morphism from K(Xq) to the image of a. (For this reason, we usually
let

Err(E, f, P) := Err(E, p; f, pys; P).)

Now we have to prove Err is 0 for a fixed power series P(z). For doing this, we may

also introduce an error therm for a closed immersion. That is,
Err(€,1, P) := Err(€, f, P) — Erx(i.€, g, P).

Now we may prove that if Err is 0 for both P!-bundles and codimension one closed immer-
sions, then Err is 0 in general, by taking certain standard results from algebraic K-theory.
But for P!-bundles, as the algebraic K-groups has a relatively simple structure, we can
check directly. On the other hand, for codimensional one closed immersions, we have to use-
a result for relative Bott-Chern secondary characrteristic forms with respect to the theory
of deformation to the normal cone. (In fact, this relation between relative Bott-Chern sec-
ondary characteristic forms and the theory of deformation to the normal cone will finally
give us the so-called Bott-Chern ternary objects. As there is no obvious application for
them, we do not study them here.) More details may be found in [F 91} and [W 91a].

Now we give the proof of arithmetic Riemann-Roch theorem in general. This is a
direct consequence of the arithmetic Riemann-Roch theorem for smooth morphism and
the following result of {BGS 91]:

Arithmetic Riemann-Roch Theorem For Closed Immersion With the notation
as above, let 1 : X — P be a closed immersion of regular arithmetic varieties over
a regular arithmetic variety ¥ with smooth srtucture morphisms f : X — Y and
g: P Y. Let £ be an f-acyclic hermitian vector sheaf on X. Then we have: for
any T in CHa.(P),

gou(char(F., p.) T) = feu(char(€, p)tdar(WV, pa)~'i*T)—gou(chne (£, p, i, pi)w(T)).

17



Here w denotes the quasi-forgetting morphism from CHy, to A(X(C)):

w(Z,9z) = dd°gz + 6..

Remark: The condition of that f is smooth is not necessary for certain purpose, say
taking a as tda:(g,py). We only need to assume that f is a l.c.i. morphism with that f
at infinity is smooth: This can be achieved by operation formalism of Fulton [FL 85]. For
more details, please see 4.2.3 of [GS 91b].

Proof of arithmetic Riemann-Roch theorem for l.c.i. morphism. Obviously,
it is sufficient for us to prove the formula for f-acyclic hermitian vector sheaves. Let (£, p)

be such an element, we have

chA,fK(g,p) — fCH(ChAr(g; P) tdAt(f’ pf))

=Y (~1) char(gsFj,9:05) + ¥ _(—1) chnc(F, p5, 9, Pg)

=0 j=0

+ Y gu(char(F5, £5)tdas(g, pg)P(g,p4)) + gx(chc (€, p, i, pi)tdac(g, pg))
=0

+ fu(char(€, p)tdBc(f/9, P5/4)) — fon(char(E, p) tdar(f, py))

= > (~1)char(9k(Fj, £5)) + g+(chc(£, p, 3, pi)tdar(g, £g))

=0

+ fu(char(€, p)tdBc(f/9,p5/9)) — fou(char(E, p) tdac(f, p5))-

By arithmetic Riamenn-Roch theorem for smooth morphism g, we know that the above

combination of terms is equal to

n

> (~1Y gon(char(F;, p)tdar(g, pg)) + ge(chc (€, p, i, pi)tdar(g, pg))

j=0
+ fu(cha:(€, p)tdBc(f/9,p1/4)) — fou(chac(€, p) tda:(f, ps))-

On the other hand, by the arithmetic Riemann-Roch theorem for closed immersion 7, we

know that the last quantity is
Fo(chas(€, P)tdar ™" (Ni, pas) 17tdac(g, pg) + char(€, P)tdBC(f /9, P1/4)
— cha:(€, p)tdar(f, p£)),

18



which is 0 by definition.

Remark 1. If we look at the classical Kodaira vanishing theorem, we will have certain

good feeling to find the analogue here, hence about arithmetic vanishing theorem.

Remark 2. By our arithmetic Riemann-Roch theorem, we can deduce Deligne’s
Riemann-Roch theorem for semi-stable arithmetic surfaces up to isometry class and also
give the uncertain constants a(g), which were firstly offered by Jorgenson [J 91] via his
degeneration method, in Deligne’s Riemann-Roch theorem.

Remark 3. One may deal with the Riemann-Roch theorem for a general l.c.i. mor-
phism f : X — Y with Xq and Y are regular. The first step is to use 7-construction
in [GS 91b] instead of chs,. The second step is that we have to give a good definition
for arithmetic Todd genus in this situation. But this may be achieved by considering the

arithmetic K-group associated with coherent sheaves.
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