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Arithmetic Riemann-Roch Theorem:

An Approach with relative Bott-ehern Secondary Characteristic Objects

A Sketch

Lin Weng

Introduction

In this paper, we will prove the arithmetic Riemann-Roch theorem for l.c.i. mor­

phiSInS cf arithmetic varieties. Roughly speaking, this arithmetic version of Grothendieck

Riemann-Roch theorem is a direct consequence of the existence of relative Bott-Chern

secondary characteristic objects for both smooth morphisms and closed immersions, which

are developed in [W 9Ia] and [BGS 91] respectively.

It is well-known that Riemann-Roch theorem has a long history. The most impor­

tant event of this theory began with Hirzebroch's remarkable formula. Soon after the

discovery cf Hirzebruch Riemann-Roch formula, we carne to its two deep generalizations.

The first is Grothendieck Riemann-Roch theorem in algebraic geometry, which states that

the Riemann-Roch theorem in algebraic geometry ia in fact the following commutative

diagram:

Ko(X) ch~(f) CH(X)Q

! IK ! ICH
eh

Ko(Y) --+ CH(Y)Q

for any tc.i. morphism of regular varieties I : X -+ Y. The second is the famous Atiyah­

Singer index theorem, which deals with more general spin-manifolds and elliptic operators.

In the recent years, following Seeley, Patodi and others, mathematians use beat kernel

technique to offer a kind of local index theorem, instead of using corbodism theory. For

more details, please see [B 86], [BS 58], [FL 85], [H 56], [SGA 6], and th~ collection of

Atiyah's works [Al.
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Roughly speaking, the arithmetic Riem8.DD-Roch theorem is a natural generalization

of classica1 Riemann-Roch theorem in the sense of Grothenclieck. In fact, if we use the

arithmetic notations in the ahove diagram, we still have a commutative diagram for a l.c.i.

morphism of regular arithmetic varieties. Here we add a technical assumption that the

morphism at infinity should be smooth. The aim of this paper is to show a method to do

so.

By the works of Gillet and Soule, we know that at first we need to give a good

definition for the push~ut morphism of arithmetic K-groups. The basic strategy far

offering tbis push-out morphism of arithmetic K-groups ia to factor the l.c.i. morphism

aB a regular closed immersion followed by a projection as usual. But instead of ':l8ing a

push-out" morphiam of arithmetic K-groupa for closed immersion, we directly offer one for

l.c.i. morphism. In certain sense, tbis approach saves us lots of spare, as to give a proper

push-out morpbism of arithmetic K-groups for closed immersion needs quite a hig theory

associated with relative version for arithmetic intersection theory and arithmetic K-theory.

The key point in our definition is the theory about relative version of classical Bott-Chern

secondary characteristic forms for both smooth morphisms and closed immersions [BGS

91] and [W 918]. Mter we give tbis definition by using the properties of relative Bott­

ehern secondary characteristic objects, the arithmetie Riemann-Roch theorem ia a direct

consequence.

One more thing we need to explain here is that indeed, in the category of complex

geometry, anthmetie Riemann-Roch theorem ia a refined version cf classical Riemann-RoclI:

the classical theorem deals with algebraic eycles, hut the arithmetic theorem deals with

forms. Furthermore, our first axioms for the relative Bott-Chern secondary characteristie

fonns with respect to smooth forms ia equivalent to loeal index theorem.

This paper is organized as follows: In part one, we give the existence theorem of

relative Bott-ehern secondary characteristie ohjects for both smooth morphism and closed

immersion. In part two, we will give the arithmetic Riemann-Roch theorem for l.e.i.

morphism f : X -+ Y, hut with a technical assumption that f at infinity is smooth and
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X, Y are regular.

As a sketch version cf (W 91a] and [W 91b], bere we only state tbe main results and

the ideas behind our proof. Tbe details may be found in (W 91a] and [W 91b].

Acknowledgements: At tbe beginning cf 1990, I began to study Arakelov geometry.

Up to now, I got various helps from different kinds cf sources. Here I would like to express

my thanks to Lang for bis eonstant belps, eneouragements, suggestions and patiences. Also

I would like to express my tbanks to Hirzebroch for bis kindly invitations and supports. For

experts, they will know that basieally tbis paper comes from the very important pioneer

works given by Bismut, Gillet, Soule and Faltings. I thank them warmlv. Thanks also due

to Barth, Kobayashi, Jargenson, Walfgang Müller, Reid, Ribet, Todarav far their help.

Part I. Relative Bott·Chern Secondary Characteristic Objects

In tbis part, we will give the axioms for various kinds of Bott-Chern secondary charac­

teristie objects and state tbeir existenees. It contains three sections. In section 1, we deal

witb tbe c1assieal Bott-Chern secondary characteristie torms. In section 2, we consider

tbe relative Bott-ehern secondary characteristic forms for smooth morphism. Finally, in

section 3, we give the theory about relative Bott-Chern secondary characteristic currents

for closed immersion, following [BGS 91].

§I.l. Classical Bott-Chern Secondary Characteristic Forms

In this section, we recall the basic facts associated with the classical Bott-Chern

secondary characteristie forms. References are [BC 68] and (BGS 88].

Let X be a eomplex manifold. A bermitian vector sheaf on X ia a pair (f., p) consisting

of a holomorphic vector sheaf E on X and a smooth bermitian metne p on E. It is a

standal'd fact that there exists a unique smooth connection 'VE on E which is unitary and
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the antiholomorphie eomponent V~,l of which is equal to the Cauchy-Riemann operator

Be of &. As usual, we eall trus eonnection the hermitian holomorphie eonneetion of (&, p).

Hs eurvature Ke is defined by v~. Obviously, K e E A1,1(X, End&). We let Re = 2~iKe

be its Ried tensor.

Let B eRbe a subring, 4J E B[[TI, ..., Tnll be auy symmetrie power series. For every

k 2 0, let 4J(k) be the homogenous eomponent of 4J of degree k. Then there exists a tulique

polynomial map ~(k) : Mn(C) -+ C such that

1. cP(k) is invariant under eonjugation by Gln(C).

2. <p(k)(diag(aI, ... , an)) = 4J(k)(al, ... , an).

More generally, for any B-algebra A, we ean also define <p = EBk~o ~(k) : Mn(A) -+ A.

Furthennore, if I C A is a nilpotent subalgebra, then we may define

~ = EB ~(k) : Mn(I) -+ A.
k~O

With this, if (E, p) is a rank n hermitian vector sheaf on X, and <P as above, we ean

define

4J(E, p) := <p( -Re) E A(X) := EB AP,P(X)
p~O

as follows.

First locally identify End E with Mn(C) and then apply the discussion above to

Note that since <p is invariant under conjugation, we have the following

Facts: 1. </>( &, p) is dosed.

2. For auy morphism j, j*( </>(&, p)) = fjJ(j* c, j*p).

3. The de Rham eohomology dass of </>(c, p) does not depend on the choiee of p,

but the form 4J(E, p) does depend on p.
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Fact 3 is the starting point for us to introduce the whole story below. Roughly

speaking, the refined version of 4>(&, p) for finite dimensional vector blUldle and infinite

dimensional vector blUldle, Le. Bott-ehern Secondary Characteristic Forms and Relative

Bott-ehern Secondary Characteristic Fonns, are central parts of our theory.

Next we state the following axioms for the classical Bott-Chern secondary char­

acteristic form, <PBC ( &., PI , P2 , P3 ) associated with a short exact sequence of vector

sheaves &. : 0 -+ &1 -+ &2 -+ &3 -+ 0 and with metries pj's on Ej 's for j = 1,2,3.

Axiom 1. (Downstairs Rule) Let &. : 0 -4 &1 --+ &2 -4 E3 -4 0 be a shorl exact

sequence of holomorphic vector sheaves on X. We may choose arbitary hermitian

metries pj's on Ej 's for j = 1,2,3. Then we have

in Ä(X):= A(X)j(Im8+ Im8).

Axiom 2. (Base Change Rule) For any morphism /,

Axiom 3. (Uniqueness Rule) H (E2 , (2) = (EI EB E3,PI EB P3), then

<PBC(&" PI, />2, P3) = O.

Now we have the following

Bott-Chern Theorem. There exists a unique differential form <PBc(E., Pt, P2, (3)

which satisfies the above three axioms.

Sketch of the proof. Here we will use the pI-deformation technique to prove tms

result.
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Let pI be the complex projective line. First we will construct an exact sequence DE.

on X x pI, called a pI defonnation of E..

Let s be a section of Opt (1), which vanishes at 00 and such that s(O) = 1. Let

with idEt @ s : EI ---4 EI (1). Then we have

Now for any point z E pI, let iz : X ~ X X pI by iz(X) = (x, z). We have

1. E2 ~ i:t2 , if z =I- 00.

2. EI ~ i~EI (1).

3. i~&2 ~ EI ffi E2.

Using a partition of tmity, we can choose a hennitian metric 1>2 on &2 in such a way

that the isomorphism 1 and 3 above become isometries. Thus we may let

Since

we can easily have Axiom 1 by fact 2. Here ödenotes the Dirac distribution. For others,

please see Theorem 1.29 of [BGS 88].

§I.2. Relative Bott-Chern Secondary Characteristic Forms For Smooth Morphism

In this section, we state the basic facts associated with the relative Bott-Chern sec­

ondary characteristic fonus for smooth morphism between complex Kähler manifolds.

These relative Bott-Chern secondary characteristic fonus may be throught as a natural
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generalization of the classical Bott-Chern secondary charaeteristic forms with respect to

Chern forms. References here are (BGS 91], (BGV 91] and (W gla].

/~'t I : X -+ Y be a smooth morphism, which is a Kähler fibration, of compact

eomplex Kähler manifolds with PI the hermitian metric on the relative tangent sheaf

Tx/y. Let (E, p) be an I-acyclic hermitian vector sheaf on X, i.e. higher direct images of

E with respeet to I vanish. We may introduee a relative version of classical Bott-ehern

secondary eharacteristie form for them by the following axioms. Usually, we will denote

the relative Bott...Chern secondary characteristic form on Y as ebBC (E, P, I, PI)'

Axiom 1. (Downstairs Rule)

dydychBC(E, p,!, PI)

= !.(ch(E,p)td(Tx/y,PI)) - eh(!.E,!.p).

Axiom 2. (Base Change Rule) For any base change g, we have

Here gl denotes the induced morphism of 9 with respeet to I, and Ig denotes the

induced morphism of I with respect to g.

Axiom 3. (Triangle Rule For Hennitian Vector Sheaves) For any short exaet sequence

of ! -acyelic veetor sheaves

with hermitian metries Pi on Ei for i = 1,2,3, let its direct image be

with assoeiated metrics I.Pi. We have

ChBC(E2 , P2, /, PI) - ehBc(El, PI, I, PI) - chBC(E3 , P3, /, PI)

- 1.(chBC(E., p)td(Tx / y , PI)) - ChBC(!.E., !.p).
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Axiom 4. (Triangle Rule For Morphisms ) Let ! : X -+ Y and 9 : Y -+ Z be

two smooth morprusms of complex compact manifolds. Let (c, p) be an ! -acyclic

hermitian vector sheaf on X such that !.f, is g-acyclic. We have the short exact

sequence for relative tangent sheaves:

with hermitian metrics PI, Pgol and Pg on Tx / y , Tx /z and Ty/z respectively. Then

ChBC(C, P, go /, Pgo/) - ChBC(!.E, /.p,g, pg) - 9.(ChBC(E, P, /, PI )td(Ty /z , pg))

= (g 0 /).(ch(E,p)tdBC(X, Y, Z)).

Here tdBC(X, Y, Z) is the Bott-Chern secondary characteristic form associated to the

above short exact sequence of the relative hermitian tangent sheaves.

The main result associated with relative Bott-Chern secondary characteristic forms

for smooth morphism is the following

Existence Theorem OfRelative Bott-Chern Secondary Characteristic Forms_

For Smooth Morphism. Let f : X -+ Y be a smooth morphism, which is a Kähler

fibration, of compact complex Kähler manifolds with PI the hennitian metric on the

relative tangent sheaf Tx / y . Let (c, p) be an /-acyc1ic hermitian vector sheaf on X.

Then there exists a unique differential form on Y, ChBC(E,p,/,PI), such that the

above axioms 1, 2,3, and 4 hold.

Idea of the proof: The basic idea here is that we first construct a differential form

on Y. Then we check that our fonn satisfies the above axioms.

To construct the relative Bott-Chern secondary characteristic forms, we may imitate

the process in the last section for the classical Bott-Chern secondary characteristic forms

as folIows:

In the last section, we construct the classical Bott-Chern secondary characteristic

forms as an integration of certain forms with respect to pI. Note that if we only want
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to consider the Bott-Chern secondary vharacteristic forms with respect to Chern forms,

we may let <p as the exponential function. We do use the same approach to construct

our relative Bott-Chern secondary characterictic forms here. For doing this, we have two

problems. The first one is that how we can find a canonical connection. The second

one is what is our corresponding concept for the exponential function. For the first, it

is well-known that we can use Bismut super-connection. For the second, by the works of

mathematicians working on index theorem, we know that the corresponding concept for

this exponential function is nothing hut the associated heat kernel. Gnce we find these,

the construction is the same as in the classical situation.

After we finish the above construction, we can check the our axioms step by step. For

example, to check axiom 1, we have to use Bismut local index theorem [B 86] and a result

of Berline and Vergne [BGV 91]. More details may be found in [GS 91al, [W 91a].

§I.3. Relative Bott-ehern Secondary Characteristic Current For Closed Immersion

In this section, we recall the theory for relative Bott-Chern secondary characteristic

currents for closed immersion. Readers may find the results of this section from [BGS 91].

Let i : X C-.....+ Y be a closed immersion of complex manifolds. Let E be a vector sheaf on

X. Let Ni be the normal sheaf of X in Y. Suppose that we have the following resolution

of vector sheaves for the direct image of i.E:

For any x EX, let Fk,z he the kth homology group of complex

o -i' Fm -. Fm- 1 -+ ... -+ Fo -+ O.

Set Fr, = mFk,r,. Thus if we metrize the above situation, we may put hennitian metries on

all vector sheaves. Hence we may introduce the formal adjoints for the houndary maps.
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/

By a generalized Hodge theorem, we know that

FA: = {w E :FA: 11X.fJ = 0, v·w = O}.

Naturally, on FA:, there is an indueed metrie.

By the loeal uniqueness of resolutions, we have the following statements:

1. For k = 0,1, ... , m, x E X, the dimension of FA:,% is constant on each irreducible

eomponent of X. So that FA: is a holomorphie vector sheaf on X.

2. For x E X, u E Tr,X, let 8uv(x) be the derivative of the chain map v calculated in

any given loeal trivialization of (.1"., v.) near x. Then 8uv(x) aets on F x . When aeting

on Fr;, 8uv(x) oo1y dependents on the image y of u in Ni,x. So we will write 8y v(x)

instead of 8u v(x).

3. For any x E X, Y E Ni, (8,1V)2(X) = O. H y E Ni, let i y be the interior multiplieation

operator by y aeting on the exterior algebra AN·. Let iy aet like i y 0 1 on I\J{. &; E.

Then the graded holomorphie complex (F., 8yv.) on the total space of the veetor sheaf

Ni is eanonically isomorphie to the Koszul eomplex (/\Alt ® E, iy). Furthermore, for

any given metrie PNi, PE on Ni, E respeetively, there always exist metrics PI. on :FA:

such that the above eanonieal algebraie isomorphism beeomes an isometry (Usually,

we will eall the eondition here as Bismut condition (A»).

Next we will introduee the coneept: wave front.

H, is a current on Y, we denote WF(,) the wave front set of,. For the definition and

the properties of the wave front set, please see [Hö 83]. Especially, we know that WF(,)

is a closed conie subset of TiY - {O}. Also if p is the projection from the total space of

cotangent sheaf of Y to Y, pWF(I') is exactly the singular support of 1', whose eomplement

in Y is the set of points x such that 'Y is Coo on a neighborhood of x. Usually, we denote

DNi the set of currents 'Y on Y which satisfy that WF('Y) c Nit.. Thus the elements in

DN',- are smooth on Y - X. Also there is a natural topology on DN',- which may be defined
R R

as folIows:
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/
/

Let U be a small open set in Y, which we identify with an open ball in R 2/
• Over

U, we identify TiY with U x R 2/
• Let r be a closed conic set in R 21 such that if x E U,

r nNix = 0. Let t.p be a smooth current on R 21 with compact support included in U and

let m be an integer. H f is a current, let <PI be the Fourier transfonn of CfYY (which is

considered as a current on R 21 here). H f E VNa., set

With this, we say a sequence of current {In} in VN;. converges to f E VIV;., if

1. limn_ex>fn = f in the sense of distributions.

Usually, we also let

Pk := {w E VN;.. Iw is a sum of currents of type (p,p)}.

And
YO Y -

Px ' := {w E Px Iw = 8a+ßß with a, ß E VIV;'}'

H X = 0, we also wirte p Y , pY,O instead of pr, pI'o respectively.
,

With these notations, we may introduce the axioms for relative Bott-ehern sec­

ondary characteristic current for closed immersion, ChBC(E, P, i, Pi), as follows:

Axiom 1. (Transgression Formula)

Axiom 2. (Base Change Rule) Let f :Y -+ Y be a holomorphic morphism. Assume

that I is transversal to Y. That is, for any x E l-l(X),

11



I

Then we have

Axiom 3. (Triangle Rule Für Hermitian Vector Sheaves) Let

be a short exact sequence of vector sheaves on X. Then we may find the resolution

Fit,. for i.Ek in the above sense, with the condition that

is a short exact sequence. Put metrics satisfying Bismut condition (A) on them. Then

we have

3

L(-1)kchBc(Ek, Pk,i, pd =
k=l

m

i.(td-1(N, PN)chBC(t:', P, i, Pi)) - L(-1)ichBC(F.,j, P.,i)
i=O

. pY/pY,O
m X x'

Axiom 4. (Triangle Rule For Closed Immersions) Let i' : X' L+ Y be another closed

immersion such that X and X' intersect transversally, i.e. if x E X n X', then

TzX + TrX' = TrY.

Let i" : X" = X n X' L+ Y be the induced closed immersion. For any vector sheaves

E (resp. E') on X (resp. X'), let

Eil := fix 0 f'lx'.

Then in PIux'/p~~x',we have

h ( e" "." )c BC c. ,P ,t , Pi" =

= ch(F., p'.)chBC(E, P, i, Pi) + i.(td-1(N", PN )ch(f, Pe )i"'chBC(E', p', i', pi')

12



I

and

h ( co" "." )c BC (;.. ,P ,1 ,Pi" =
ch(F., p. )chBC(C', p', i', Pi' ) + i~(td-1(.N', P.",!, )ch(E', PE' )i'*chBC(c, p, i, pi).

With this, we may state the main results of [BGS 91] as the following

Existence Theorem oe Relative Bott-Chern Secondary Characteristic Cur­

rent For Closed Immersion. With the notation as above, let i : X --J. Y be a

closed immersion of compact complex Kähler manifolds. Let (E, p) be a hermitian

vector sheaf on X. Then there exists a unique current in pr, chBc(c,p,!,P/), such

that the above axioms 1, 2, 3, and 4 hold.

The proof of this existence theorem may be found in [BGS 91].

Part 11. Arithmetic Riemann-Theorem For l.c.i. Morphism

In this part, we will use the results in the first part to give the arithmetic Riemann­

Roch theorem forl.c.i. morphism hy pure algehraic methods.

§II.l. Push-Out Morphism For Arithmetic K ..Groups

In this section we will give adefinition of push-out morprusm of arithmetic K -groups

for l.c.i. morphism of regular arithmetic varieties, hut with a technical assumption that f

at infinity is smooth.

Let! : X --J. Y be a l.c.i. morphism between regular arithmetic varieties. It is well­

known that for l.c.i. morphism /, we have the following decompsition: a closed immersion

i : X f--J. P followed by a projection g : P -. Y. Usually, we may try to define
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by introducing the push-out morphism of arithmetic K-groups for both smooth morphism

and closed immersion. For a smooth morphism, there is no problem (see below). For

closed immersion, we have a problem: It can be done in principle, but the problem now

is that we need a systematic theory for relative arithmetic interseetion theory and relative

arithmetic K-theory for closed immersion. Since we do not want to develop the relative

theory here, we will give a direct definition of push-out morphism of arithmetic K-groups

for l.c.i. morphism.

Note that since the arithmetic K-group KAr(X) is generated by /-acyclic hermitian

vector sheaves and smooth fonns, we only need to give the definition of / K for both of

these kinds of elements, and to prove the compatibility of our definition.

For doing this, let us introduce a few more notations. For the above decompsition of

/, since !e is smooth, we may have the following shorl exact sequence:

With this, for any l' E CHAr(X)Q, as in [GS 9tb], we define

tdAr (!, P!)l' :=

= tdAr (i*7;" i* pg)(tdAr -1 (N"i, p1VJT) + tdBC(//g, P!/g)l' E CHAr(X)Q.

Here tdBC(!/9, PI/g) is the intersection of the classical Bott-Chern secondary characteristic

forms associated with the short exact sequence N above and tdÄ:(Ni, P1VJ. And as usual

we omit the notation for the morphism a, which send a smooth form a to an aritlunetic

cycle (0,0').

Now, for smooth farms, there is no problem, as the arithmetic lliemann-Roch theorem

is supposed to be a generalization of the classical Riemann-Roch theorem. Therefore, if

a E KAr(X), it is natural for us to let

Next we will give the definition of ! K for /-acyclic hermitian vector sheaves. Let

(E, p) be an /-acyclic hermitian vector sheaf on X. From part I, we know that there is a

14



resolution of g-acyclic vector sheaves on P for i.E :

Equiped:Fj with metrics Pi, whieh satisfy Bismut condition (A), we may give the following

definition:

fk(E,p) =:
n n

= L( -l)i(g.:Fj,g.Pj) +L( -l)ichBC(:Fj, Pj, g, Pg)
i=o j=o

n

+L g.(chAr(orj, Pi )tdAr(g, pg )P(g, pg» + g.(chBC(E, P, i, Pi )tdAr(g, pg»
j=O

+ f.( ehAr(E, P)tdBC(f/ g, P//g»).

Here we use the isomorphism ehAr to think the elements

n

L g.(chAr (orj, Pi)tdAr(g, pg)P(g, Pg»
j=O

and

g.(ehBc (E, P, i, Pi)tdAr(g, pg» + !.(chAr(E, p)tdBc(f/ g, P/ / g»

in CHArQ as those in KArQ. Note that sinee they are in the image of a, the mean of those

elements in KArQ are the same as those in CHArQ. The P tenn above corresponds to

the assoeiated additive homology class for any power series P(x) = r; k;:::O ak x k, which is

defined as follows: for any hermitian line sheaf (1:" p)

P([',p):= LQkCl(["p)k.
k2: 0

Now we have the following

Proposition. With the above definition for smooth forms and !-acyclie hermitian

sheaves, we have a well-defined group morphism

15



Here one may ask the dependence of !k on the various data. But this is a direct

consequence of the following main result of this paper

Arithmetic Riemann·Roch Theorem For l.c.i. Morphism. There exists a

unique power series P{x) such that, for any l.c.i. morphism f : X ~ Y of regular

arithmetic varieties with f at infinity is smooth, and for any element l' E CHAr{X)Q,

we have

Usually, we denote / k as / K .

In fact, by proposition I of 2.6.2 of [GS gIb], we know that tdAr{!, PI) depends only

on the choice of metric on T,c' and not on the choice of i, 9, nor on the metrics on Ni and

Tg. Therefore, we know that our /K also depends only on the choice of the metric on T,c'
and not on others.

§II.2. Sketch Of The Proof Of Arithmetic Riemann-Roch Theorem

We divide the proof of arithmetic Riemann-Roch theorem for l.c.i. morphism into two

steps.

First, we have to verify our result for smooth morphisms, which has its root in [F 91].

Then we prove the arithmetic Riemann-Roch theorem in general by combining the cases

for both smooth morphism and closed immersion.

For smooth morphism /, we can assume that i is an identity morphism and 9 = f is

a smooth morphism. Note that since the definition in the last section make sense in this

situation, we may define

By the existence theorem of the relative Bott-ehern secondary characteristic forms for
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smooth morphisms, we can show that Err(E, pj /, PI; P) does not depend on the metncs

and in fact defi.nes a morphism from K(XQ) to the image of a. (For this reason, we usually

let

Err(&, /, P) := Err(E, p; /, PIj P).)

Now we have to prove Err ia 0 for a fixed power senes P(x). For doing this, we may

also introduce an error therm for a closed immersion. That is,

Err(&, i, P) := Err(t', /, P) - Err(i",E, g, P).

Now we may prove that if Err is 0 for both pl-bundles and codimension one closed immer­

sions, then Err is 0 in general, by taking certain standard results from aJgebraic K-theory.

But for pl-bundles, as the algebraic K-groups has a relatively simple structure, we can

check directly. On the other hand, for codimensional one closed immersions, we have to use'

a result for relative Bott-ehern secondary characrteristic forms with respect to the theory

of defonnation to the Donnal cone. (In fact, this relation between relative Bott-ehern sec­

ondary characteristic forms and the theory of defonnation to the normal cone will finally

give us the so-called Bott-Chern ternary objects. As there is no obvious application for

them, we do not study them here.) More details may be found in [F 91] and [W 91a].

Now we give the proof of arithmetic Riemann-Roch theorem in general. This is a

direct consequence of the arithmetic Riemann-Roch theorem for smooth morphism and

the following result of [BGS 91]:

Arithmetic Riemann-Roch Theorem For Closed Immersion With the notation

as above, let i : X ---;. P be a closed immersion of regular arithmetic varieties over

a regular arithmetic variety Y with smooth srtucture morphisms f : X ---;. Y and

9 : P ~ Y. Let & be an f-acyclic hennitian vector sheaf on X. Then we have: for

any T in CHAr(P),

gCH(chAr(F., p.) T) = fCH(chAr(E,p)tdAr(N, PN)-li"'T)-gCH(chBC(E, p, i, Pi)w(T)).
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Here w denotes the quasi-forgetting morphism from CHAr to A(X(C)):

Remark: The condition of that I is smooth is not necessary for certain purpose, say

taking Cl: as tdAr(g, pg). We only need to assume that I is a l.c.i. morphism with that I

at infinity is smooth: This can be achieved by operation formalism of Fulton [FL 85]. Für

more details, please see 4.2.3 of [GS 91b].

Proof of arithmetic Riemann-Roch theorem for I.c.i. morphism. Obviously,

it is sufficient for us to prove the fOrDlula for f-acyclic hermitian vector sheaves. Let (E, p)

be such an element, we have

ChArfK(E,p) - ICH (chAr(E, p) tdAr(f, PI))
n n

= L(-1)jchAr(g.Fj,g.pj) +L(-1)jchBC(Fj, Pj, g, pg)
j=o j=O
n

+ L g",(chAr(Fh pj )tdAr(g, pg )P(g, pg)) + g",(chBC(E, p, i, p;)tdAr(g, pg))
j=O

+ f.(chAr(E,p)tdBC(I/g,p//g)) - fCH(chAr(E,p) tdAr(!,p/))
n

= L(-1)jchAr(gK(Fh pj)) + g.(chBC (&, p, i, p;)tdAr(g, pg))
j=O

+ ! ... (chAr(&,p)tdBC(f/g,p//g)) - ICH(chAr(&,P) tdAr(f,Pi))·

By arithmetic RiameIll1-Roch theorem for smooth morphism g, we lrnow that the above

combination of terms is equal to

n

L(-1)jgeHechAr(Fj, pj )tdAr(g, pg)) +g",(chBc(E, P, i, Pi)tdAr(g, pg))
j=O

On the other hand, by the arithmetic Riemann-Roch theorem for closed immersion i, we

know that the last quantity is

1.(chAr(&, P)tdAr -1 (Ni, PNi) i·tdAr(g, pg) +chAr(&, p)tdBc(f/ g, Pi/g)

- chAr(c,p)tdAr(f,Pi))'

18



which is 0 by definition.

Remark 1. H we look at the classical Kodaira vanishing theorem, we will have certain

good feeling to find the analogue here, hence about arithmetic vanishing theorem.

Remark 2. By our arithmetic Riemann-Roch theorem, we can deduce Deligne's

Riemann-Roch theorem for semi-stable arithmetic surlaces up to isometry class and also

give the uncertain constants a(g), which were firstly offered by Jorgenson [J 91] via his

degeneration method, in Deligne's Riemann-Roch theorem.

Remark 3. Oue may deal with the Riemann-Roch theorem for a generall.c.i. mor­

phism f : X --+ Y with XQ and Y are regular. The first step is to use r-construction

in [GS 91b] instead of chAr. The second step is that we have to give a good definition

for arithmetic Todd genus in this situation. But this may be achieved by considering the

arithmetic K-group associated with coherent sheaves.
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