Pontryagin-Thom construction in topological coincidence theory

Mitsunobu Tsutaya (Kyushu Univ.)

Homotopy Okinawa 21 September 2018

Plan

- 1. Introduction
- 2. Background: Lefschetz and Reidemeister traces
- 3. Description of $\omega(f_0, f_1)$ by Pontryagin–Thom construction
- 4. Serre spectral sequence
- 5. Jiang invariance by string topology spectrum

1. Introduction

Introduction

•0000000

- Topological fixed point theory
- Topological coincidence theory
- Bordism invariant $\omega(f_0, f_1)$
- First aim
- Decomposition of $\omega(f_0, f_1)$
- Jiang invariance of $\omega(f_0, f_1)$
- Second aim

Topological fixed point theory

A typical problem in topological fixed point theory is as follows:

▶ Determine if a given self map $f: X \to X$ can be deformed to a fixed point free map f' (i.e. $f'(x) \neq x$ for any $x \in X$).

Topological coincidence theory

A typical problem in topological coincidence theory is as follows:

▶ Determine if given maps $f_0, f_1: X \to Y$ can be deformed to a coincidence free maps f'_0, f'_1 (i.e. $f'_0(x) \neq f'_1(x)$ for any $x \in X$).

This relates to the following problems:

- Fixed point problem.
- ▶ Root problem: can a given map $f: X \to X$ be deformed to a map f' of which the image does not contain a given point $a \in X$?
- ▶ Intersection problem: can given maps $f_0: X \to Z$ and $f_1: Y \to Z$ be deformed to maps with disjoint images?

Bordism invariant $\omega(f_0, f_1)$

Let $f_0, f_1: M \to N$ be maps between smooth closed connected manifolds.

► Hatcher–Quinn (1974) and Koschorke (2006) introduced some obstruction bordism class

$$\omega(f_0, f_1) \in \Omega_{\dim M - \dim N}(\operatorname{Hoeq}(f_0, f_1); TN - TM)$$

for the coincedence problem of f_0 and f_1 , where Hoeq (f_0, f_1) is the homotopy equalizer of f_0 and f_1 .

- If f_0 and f_1 can be deformed to coincidence free maps, then $\omega(f_0, f_1) = 0.$
- ▶ When $\dim M < 2 \dim N 2$, the converse also holds.

First aim

One of the main aim of this talk is to describe $\omega(f_0, f_1)$ by Pontryagin–Thom construction. This enables us to compute $\omega(f_0, f_1)$ by Serre spectral sequence in some cases.

0000000

- Denote the path component corresponding to $\alpha \in \pi_0(\operatorname{Hoeq}(f_0, f_1))$ by $\operatorname{Hoeq}(f_0, f_1)_{\alpha}$.
- There is a decomposition

$$\begin{split} &\Omega_*(\operatorname{Hoeq}(f_0,f_1);TN-TM)\\ &=\bigoplus_{\alpha\in\pi_0(\operatorname{Hoeq}(f_0,f_1))}\Omega_*(\operatorname{Hoeq}(f_0,f_1)_\alpha;TN-TM). \end{split}$$

• We define $\omega(f_0, f_1)_{\alpha} \in \Omega_*(\text{Hoeq}(f_0, f_1)_{\alpha}; TN - TM)$ as the corresponding component of $\omega(f_0, f_1)$.

Jiang invariance of $\overline{\omega(f_0,f_1)}$

▶ We call the following subgroup the Jiang subgroup of f_0 :

$$J(f_0) = \{ \alpha \in \pi_1(N) \mid (\alpha, f_0) \colon S^1 \vee M \to N \text{ extends over } S^1 \times M \}.$$

- ► It is known that $J(f_0)$ acts on $\pi_0(\text{Hoeq}(f_0, f_1))$.
- The Jiang invariance (Crabb (2010)) is stated as follows: for $\alpha \in \pi_0(\text{Hoeq}(f_0, f_1))$ and $\beta \in J(f_0)$, $\omega(f_0, f_1)_{\alpha} = 0$ if and only if $\omega(f_0, f_1)_{\beta\alpha} = 0$.

Second aim

The second aim is to realize the Jiang invariance by some action of string topology spectra using the Pontryagin–Thom description of $\omega(f_0,f_1)$.

Background: Lefschetz and Reidemeister traces

2. Background: Lefschetz and Reidemeister traces

Lefschetz trace

Introduction

- Lefschetz fixed point theorem
- Local description
- Reidemeister class
- Reidemeister trace
- Reidemeister's fixed point theorem

Lefschetz trace

Let $f: M \to M$ be a self map on a smooth closed connected manifold M with dim M = m.

► The number

Introduction

$$\operatorname{trace}(f) = \sum_{i=0}^{m} (-1)^{i} \operatorname{trace} H_{i}(f; \mathbb{Q})$$

is called the Lefschetz trace of f.

Lefschetz fixed point theorem

Lefschetz fixed point theorem

If $trace(f) \neq 0$, then f cannot be deformed to a fixed point free map.

If dim $M \ge 3$ and M is simply connected, then the converse also holds.

If f has a finite number of fixed points x_1, \ldots, x_k , then there is an equality

$$\operatorname{trace}(f) = \sum_{j=1}^{k} \operatorname{ind}(f; x_j),$$

where $ind(f; x_i)$ is called the fixed point index of f at x_i .

► This equality implies the Lefschetz fixed point theorem.

Reidemeister class

 \triangleright The homotopy fixed point space Hofix(f) is defined by the pullback square (compare with the usual fixed point set)

$$\begin{aligned} & \text{Hofix}(f) \longrightarrow M^{[0,1]} \\ & \downarrow & \downarrow^{(ev_0, ev_1)} \\ & M \xrightarrow{\text{(id},f)} M \times M. \end{aligned}$$

Each fixed point $x \in M$ naturally lifts to a point in Hofix(f). The path component contains this lift is called the corresponding Reidemeister class (or Nielsen class).

Suppose f has a finite number of fixed points x_1, \ldots, x_k . The following formal sum $\rho(f)$ is called the Reidemeister trace:

$$\rho(f) = \sum_{j=1}^{k} \operatorname{ind}(f; x_j) \alpha_{x_j} \in \mathbb{Z}[\pi_0(\operatorname{Hofix}(f))],$$

where $\alpha_{x_i} \in \pi_0(\text{Hofix}(f))$ is the Reidemeister class corresponding to x_i .

Reidemeister's fixed point theorem

Theorem (Reidemeister (1936))

If $\rho(f) \neq 0$, then f cannot be deformed to a fixed point free map.

- ▶ If dim $M \ge 3$, then the converse also holds.
- The invariant $\omega(\mathrm{id}, f)$ coincides with $\rho(f)$ (Koschorke (2006)).

Description of $\omega(f_0, f_1)$ by **Pontryagin–Thom construction**

- 3. Description of $\omega(f_0, f_1)$ by Pontryagin–Thom construction
 - Spectrum

Introduction

- Thom spectrum
- Pontryagin-Thom construction
- Lifting of Pontryagin–Thom construction
- Homotopy equalizer
- $\sim \omega(f_0, f_1)$ by Pontryagin–Thom construction
- Remarks on $\omega(f_0, f_1)$

- A spectrum $E = (\{E_k, \epsilon_k\}_{k>0})$ consists of sequences of based spaces $\{E_k\}_{k>0}$ and maps $\{\epsilon_k \colon \Sigma E_k \to E_{k+1}\}_{k>0}$.
- ► The definition of general maps between spectra is slightly complicated. In this talk, we only consider maps such as $E \to E'$ realized by $E_k \to E'_k$ for some sufficiently large k. This is sufficient if E is a finite CW spectrum.

Let X be a space and ξ a vector bundle over X. Denote the associated disk and sphere bundles by $D(\xi)$ and $S(\xi)$, respectively.

- ► The based space Thom $(\xi) = D(\xi)/S(\xi)$ is called the Thom space of ξ .
- Consider the Whitney sum $\epsilon_x^1 \oplus \xi$ with the trivial line bundle ϵ_x^1 . Then $D(\epsilon_v^1 \oplus \xi)/S(\epsilon_v^1 \oplus \xi) \cong \Sigma D(\xi)/S(\xi)$.
- $X^{\xi} = \{\text{Thom}(\epsilon_{\mathbf{Y}}^{k} \oplus \xi)\}_{k} \text{ is called the Thom spectrum of } \xi.$
- \triangleright This is generalised to a stable vector bundle ξ . For example, M^{-TM} for a smooth closed manifold M is the Thom spectrum of the stable normal bundle -TM.
- There is a natural isomorphism

$$\pi_i(X^{\xi}) \cong \Omega_{i-\operatorname{rank} \xi}(X;\xi)$$

where π_i denotes the *i*-th stable homotopy group.

Let M and N be smooth closed manifolds and ξ a stable vector bundle over N.

- For a map $f: M \to N$, the Pontryagin-Thom construction is a $\operatorname{map} f^! : N^{\xi} \to M^{f^*(\xi + TN) - TM}.$
- ▶ When $\xi = -TN$, $f^!: N^{-TN} \to M^{-TM}$ is the Spanier–Whitehead dual of f.

Consider the pullback of Hurewicz fibrations:

$$X_{M} \xrightarrow{\tilde{f}} X_{N}$$

$$\downarrow^{\pi_{N}} \qquad \downarrow^{\pi_{N}}$$

$$M \xrightarrow{f} N,$$

where M and N are smooth closed manifolds. Let ξ be a stable vector bundle over X_N .

ightharpoonup Since \tilde{f} has "finite codimension", we can give the Pontryagin-Thom construction

$$\tilde{f}^!\colon X_N^\xi\to X_M^{\tilde{f^*}\xi+\pi_M^*(f^*TN-TM)}.$$

Homotopy equalizer

The homotopy equalizer $\operatorname{Hoeq}(f_0, f_1)$ of maps $f_0, f_1 \colon M \to N$ is defined by the pullback square

$$\text{Hoeq}(f_0, f_1) \xrightarrow{F} N^{[0,1]} \\
\downarrow \\
M \xrightarrow{(f_0, f_1)} N \times N$$

- ► The map $F^!: N^{-TN} \to \text{Hoeq}(f_0, f_1)^{TN-TM}$ is induced.
- ► Transposing this square, we also have the map $\tilde{\Delta}^!$: $M^{-TM} \to \text{Hoeq}(f_0, f_1)^{TN-TM}$.

$\omega(f_0, f_1)$ by Pontryagin–Thom construction

Proposition

Introduction

The following composite coincides with $\omega(f_0, f_1) \in \pi_0(\text{Hoeq}(f_0, f_1)^{TN-TM})$:

$$S^0 \xrightarrow{\eta} N^{-TN} \xrightarrow{F^!} \text{Hoeq}(f_0, f_1)^{TN-TM},$$

where η is the unit map, that is, the Spanier–Whitehead dual of the map $N \rightarrow \text{point}$.

The following composite also represents $\omega(f_0, f_1)$:

$$S^0 \xrightarrow{\eta} M^{-TM} \xrightarrow{\tilde{\Delta}^!} \text{Hoeq}(f_0, f_1)^{TN-TM}.$$

Remarks on $\omega(f_0, f_1)$

- ► The original definition by Hatcher–Quinn and Koschorke is more geometric.
- More fibrewise homotopy theoretic descriptions are given by Klein-Williams (2007) and Crabb (2010).
- Suppose $\dim M = \dim N$. Then there is an isomorphism

$$\begin{split} & \pi_0(\operatorname{Hoeq}(f_0, f_1)^{TN-TM}) \\ & \cong \mathbb{Z}[\pi_0(\operatorname{Hoeq}(f_0, f_1)_{\operatorname{ori}})] \oplus \mathbb{Z}/2\mathbb{Z}[\pi_0(\operatorname{Hoeq}(f_0, f_1)_{\operatorname{non-ori}})], \end{split}$$

where $Hoeq(f_0, f_1)_{ori}$ is the union of the path components on which TN - TM is orientable and Hoeq $(f_0, f_1)_{\text{non-ori}}$ is the union of the path components on which TN - TM is not orientable (Koschorke (2006)).

Serre spectral sequence

- 4. Serre spectral sequence
 - ► Relative Serre spectral sequence
 - ► Serre spectral sequence for Thom spectrum

Relative Serre spectral sequence

Let h_* be a homology theory satisfying the wedge and weak homotopy equivalence axioms.

Let $F \to E \xrightarrow{\pi} B$ be a Hurewicz fibration, $E' \to E$ a fibrewise closed cofibration and $A \subset B$ a closed cofibration. Then we have the relative Serre spectral sequence

$$E_{p,q}^2 = \tilde{H}_p(B/A; h_q(F/F')) \Longrightarrow h_{p+q}(E/(E' \cup \pi^{-1}(A))).$$

Let $F \to E \xrightarrow{\pi} B$ be a Hurewicz fibration and $\bar{\xi}$ and ξ be stable vector bundles over B and E, respectively.

▶ Applying the relative Serre spectral sequence, we obtain the spectral sequence

$$E_{p,q}^2 = \tilde{H}_p(B^{\bar{\xi}}; \underline{h_q(F^{\xi|_F})}) \Longrightarrow h_{p+q}(E^{\pi^*\bar{\xi}+\xi}).$$

► A Pontryagin–Thom construction map induces a morphism of spectral sequences compatible with the natural maps on E^2 and E^{∞} -terms:

$$\tilde{H}_{p}(N^{\xi}; \underline{h_{q}(F^{\xi|F})}) \to \tilde{H}_{p}(M^{f^{*}(\xi+TN)-TM}; \underline{h_{q}(F^{\xi|F})}),
h_{p+q}(X_{N}^{\pi^{*}\xi+\xi}) \to h_{p+q}(X_{M}^{\tilde{f}^{*}(\pi_{N}^{*}\xi+\xi)+\pi_{M}^{*}(f^{*}TN-TM)}).$$

A similar spectral sequence for a string topology spectrum is studied by Cohen–Jones–Yan (2004).

Jiang invariance by string topology spectrum

- 5. Jiang invariance by string topology spectrum
 - Generalized string topology spectrum
 - String topology spectrum and homotopy equalizer
 - ▶ Jiang invariance by string topology spectrum

Generalized string topology spectrum

Let $X \to M$ be a fibrewise topological monoid over a smooth closed manifold M. The following are due to Gruher–Salvatore (2008).

- ▶ By the Pontryagin–Thom construction associated to the diagonal map $M \to M \times M$ and the fibrewise multiplication, X^{-TM} is a ring spectrum.
- ightharpoonup Similarly, if $Y \to M$ is a fibrewise module over X and ξ a stable vector bundle over Y, then Y^{ξ} is a module over X^{-TM} .

$$f_0^*LN = \{(x, \ell) \in M \times N^{[0,1]} \mid \ell(0) = \ell(1) = f_0(x)\}$$

$$\text{Hoeq}(f_0, f_1) = \{(x, \ell) \in M \times N^{[0,1]} \mid \ell(0) = f_0(x), \ell(1) = f_1(x)\}$$

- ▶ By the obvious concatenation of paths, $(f_0^*LN)^{-TM}$ is a ring spectrum and Hoeq $(f_0, f_1)^{TN-TM}$ is a module over $(f_0^*LN)^{-TM}$.
- ► A section s: $M \to f_0^*LN$ (= a cyclic homotopy of f_0) defines an element $[s]_* \in \pi_0((f_0^*LN)^{-TM})$ by the composite

$$S^0 \xrightarrow{\eta} M^{-TM} \xrightarrow{s} (f_0^* LN)^{-TM}.$$

Theorem

Introduction

The map $\tilde{\Delta}^!: M^{-TM} \to \operatorname{Hoeq}(f_0, f_1)^{TN-TM}$ is fixed under the action of $[s]_* \in \pi_0((f_0^*LN)^{-TM})$ for any section $s: M \to f_0^*LN$.

- ► This implies the Jiang invariance mentioned before.
- ► Similarly, there are an action of $(f_1^*LN)^{-TM}$ on Hoeq $(f_0, f_1)^{TN-TM}$ and the corresponding Jiang invariance.