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Topological fixed point theory

A typical problem in topological fixed point theory is as follows:

» Determine if a given self map f: X — X can be deformed to a
fixed point free map f” (i.e. f'(x) # x for any x € X).
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Topological coincidence theory

A typical problem in topological coincidence theory is as follows:
» Determine if given maps fp,f1: X — Y can be deformed to a
coincidence free maps f7. f/ (i.e. f(x) # f/(x) for any x € X).
This relates to the following problems:
» Fixed point problem.

» Root problem: can a given map f: X — X be deformed to a map
S’ of which the image does not contain a given point a € X?

» Intersection problem: can given maps fy: X —» Zandf;: ¥ —» Z
be deformed to maps with disjoint images?
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Bordism invariant w(f, f1)

Let fo,f1: M — N be maps between smooth closed connected
manifolds.

» Hatcher—Quinn (1974) and Koschorke (2006) introduced some
obstruction bordism class

w(fo,f1) € Qdim m—dimn(Hoeq(fo, f1); TN — TM)

for the coincedence problem of fy and f;, where Hoeq(fy, f1) is
the homotopy equalizer of f; and f;.

> If fy and f] can be deformed to coincidence free maps, then

w(fo.f1) = 0.
» When dimM < 2dim N - 2, the converse also holds.
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First aim

One of the main aim of this talk is to describe w(fy, f1) by
Pontryagin—Thom construction. This enables us to compute w(fy, f1)
by Serre spectral sequence in some cases.
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Decomposition of w(fy, f)

» Denote the path component corresponding to
@ € mo(Hoeq(fo. f1)) by Hoeq(/o. f1)a-
» There is a decomposition

Q.(Hoeq(fo. f1); TN — TM)
- @ Q*(Hoeq(fo’fl)a; TN — TM)

aeno(Hoeq(fo./1))

> We define w(fy, f1)a € Q(Hoeq(fo,f1)a; TN — TM) as the
corresponding component of w(fy, f1).
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Jiang invariance of w(f;, f)

> We call the following subgroup the Jiang subgroup of fj:
J(fo) ={a e mi(N) | (o, fp): SV M — N extends over S' X M}.

» It is known that J(fy) acts on mo(Hoeq(fo, f1))-

» The Jiang invariance (Crabb (2010)) is stated as follows: for
a € mo(Hoeq(fo, f1)) and B € J(fo), w(fo,f1)e = 0 if and only if
w(fo,f1)ga = 0.
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Second aim

The second aim is to realize the Jiang invariance by some action of
string topology spectra using the Pontryagin—Thom description of

w(f()?fl)'
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Background: Lefschetz and Reidemeister traces

2. Background: Lefschetz and Reidemeister traces
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Lefschetz trace

Letf: M — M be a self map on a smooth closed connected manifold
M with dimM = m.

» The number

m

trace(f) = Z(—l)i trace H;(f; Q)

i=0

is called the Lefschetz trace of f.
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Lefschetz fixed point theorem

Lefschetz fixed point theorem
If trace(f) # O, then f cannot be deformed to a fixed point free map. J

» If dimM > 3 and M is simply connected, then the converse also
holds.
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Local description

» If f has a finite number of fixed points x, ..., Xk, then there is an

equality
k

trace(f) = Z ind(f; x;),

j=1
where ind(f; x;) is called the fixed point index of f at x;.
» This equality implies the Lefschetz fixed point theorem.
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Reidemeister class

» The homotopy fixed point space Hofix(f) is defined by the
pullback square (compare with the usual fixed point set)

Hofix(f) — M1

l j(evo,evl)

M——MXxM.
(id)
» Each fixed point x € M naturally lifts to a point in Hofix(f). The
path component contains this lift is called the corresponding
Reidemeister class (or Nielsen class).
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Reidemeister trace

> Suppose f has a finite number of fixed points xy,...,x;. The
following formal sum p(f) is called the Reidemeister trace:

k

p(f) = ) ind(f; xj)a; € Zimo(Hofix()],

J=1

where @,; € mo(Hofix(f)) is the Reidemeister class corresponding
to x;.
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Reidemeister’s fixed point theorem

Theorem (Reidemeister (1936))
If p(f) # 0, then f cannot be deformed to a fixed point free map. J

» If dim M > 3, then the converse also holds.
» The invariant w(id, ) coincides with p(f) (Koschorke (2006)).
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Description of w(fy, f;) by Pontryagin-Thom construction
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Spectrum

> A spectrum E = ({Ey, € }k>0) consists of sequences of based
spaces {E¢}x>0 and maps {€;: ZE; — Epy1}i0-

» The definition of general maps between spectra is slightly
complicated. In this talk, we only consider maps such as £ — E’
realized by Ey — E for some sufficiently large k. This is
sufficient if E is a finite CW spectrum.
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Thom spectrum

Let X be a space and ¢ a vector bundle over X. Denote the associated
disk and sphere bundles by D(¢) and S(£), respectively.

>

>

The based space Thom(&) = D(£)/S(¢) is called the Thom space
of &.

Consider the Whitney sum e}( @ ¢ with the trivial line bundle e}(.
Then D(e} ® €)/S(ey ® &) = ZD(£)/S(é).

> X¢ = {Thom(e} @ &)} is called the Thom spectrum of &.

» This is generalised to a stable vector bundle £. For example,

M~™ for a smooth closed manifold M is the Thom spectrum of
the stable normal bundle —7TM.

There is a natural isomorphism
7i(X5) = Qi rankg(X: €)

where 71; denotes the i-th stable homotopy group.
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Pontryagin—-Thom construction

Let M and N be smooth closed manifolds and ¢ a stable vector bundle
over N.

» Foramap f: M — N, the Pontryagin—Thom construction is a
map f*: N¢ — MFTETN-TM

» When & = —TN, f': NNV — M~™ s the Spanier—Whitehead
dual of f.



Description of w(fy, f])
[e]e]e]e] Telele]

Lifting of Pontryagin—Thom construction

Consider the pullback of Hurewicz fibrations:

Xy L>XN

M ——N,
f

where M and N are smooth closed manifolds. Let & be a stable vector
bundle over Xy.

» Since f has “finite codimension”, we can give the
Pontryagin—Thom construction

2. vE Sré+my (f*TN-TM)
XX, " .
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Homotopy equalizer

The homotopy equalizer Hoeq(fy, f1) of maps fy,f1: M — N is defined
by the pullback square

Hoeq(fp. f1) —— N1O11

|

M—NXN
(o1)
» The map F': N~V — Hoeq(fy, f1)™ ™ is induced.

> Transposing this square, we also have the map
A': M~™ — Hoeq(fy, /i)™ ™.
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w(fo,f1) by Pontryagin-Thom construction

Proposition

The following composite coincides with
w(fo.f1) € mo(Hoeq(fo, /)™ ™)

F!
SO l N—TN N Hoeq(fOsfl)TN_TM,

where 7 is the unit map, that is, the Spanier—Whitehead dual of the
map N — point.

» The following composite also represents w(fy, f1):

s 2 ™ 2 Hoeq(fo. f1)™ ™,
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Remarks on w(fy, f1)

The original definition by Hatcher—Quinn and Koschorke is more
geometric.

More fibrewise homotopy theoretic descriptions are given by
Klein—Williams (2007) and Crabb (2010).

Suppose dim M = dim N. Then there is an isomorphism

mo(Hoeq(fo, f1) ™ ™)
= Z[ro(Hoeq(fo, f1)ori)] ® Z/2Z[o(Hoeq(fo, finon-ori)];

where Hoeq(fo, f1)ori 1S the union of the path components on
which TN — TM is orientable and Hoeq(fy, f1)non-ori 1S the union
of the path components on which TN — TM is not orientable
(Koschorke (2006)).
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Serre spectral sequence

4. Serre spectral sequence

> Relative Serre spectral sequence
> Serre spectral sequence for Thom spectrum
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Relative Serre spectral sequence

Let &, be a homology theory satisfying the wedge and weak
homotopy equivalence axioms.

> Let F — E 2 B be a Hurewicz fibration, E/ — F a fibrewise
closed cofibration and A C B a closed cofibration. Then we have
the relative Serre spectral sequence

E2, = Hy(BJA: hy(FIF") = hpef(E/(E' U™ ().
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Serre spectral sequence for Thom spectrum

Let F — E 5 B be a Hurewicz fibration and £ and & be stable vector
bundles over B and E, respectively.

> Applying the relative Serre spectral sequence, we obtain the
spectral sequence

E2, = Hy (B hy(F5r)) = Iy g(E7545).

» A Pontryagin—Thom construction map induces a morphism of
spectral sequences compatible with the natural maps on E? and
E~-terms:

Hy(N*: hg(F)) — By E T g (14,

*E S E+ &)+t (f*TN-TM)
g Xy £6) = By (X, T ).

> A similar spectral sequence for a string topology spectrum is
studied by Cohen—Jones—Yan (2004).
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Jiang invariance by string topology spectrum

5. Jiang invariance by string topology spectrum
> Generalized string topology spectrum
> String topology spectrum and homotopy equalizer
» Jiang invariance by string topology spectrum




Generalized string topology spectrum

Let X — M be a fibrewise topological monoid over a smooth closed
manifold M. The following are due to Gruher—Salvatore (2008).

» By the Pontryagin—Thom construction associated to the diagonal
map M — M x M and the fibrewise multiplication, X~™ is a
ring spectrum.

» Similarly, if Y — M is a fibrewise module over X and ¢ a stable
vector bundle over Y, then Y?¢ is a module over X~ ™.
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String topology spectrum and homotopy equalizer

foLN = {(x, €) € M x N | ¢(0) = £(1) = fo(x))
Hoeq(fo.fi) = {(x,€) € M x N1 | £0) = fox), (1) = fi(x)}

> By the obvious concatenation of paths, (f;LN )"™ is aring
spectrum and Hoeq(fy, /1) ~™ is a module over (f; LN)™™.

> Asection s: M — fiLN (= a cyclic homotopy of fp) defines an
element [s]. € no((f(’; LN)~T™) by the composite

M CTM S g ane
SO L ™ L (g LNy



Jiang invariance by string topology spectrum

Theorem

The map A': M~™ — Hoeq(fy, f1)™ ™ is fixed under the action of
[s]. € mo((fy LN)~™) for any section s: M — f¥LN.

» This implies the Jiang invariance mentioned before.

> Similarly, there are an action of (f'LN Y~™ on Hoeq(fo, f1)™ ™
and the corresponding Jiang invariance.
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