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This talk is based on the paper

Tsutaya, Mapping spaces from projective spaces, Homology,
Homotopy Appl. 18 (2016), 173–203.
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H-maps between topological monoids

I A topological monoid is a pointed space G equipped with an
associative multiplication m: G × G → G such that the
basepoint is the identity element.

I A pointed map f : G → G′ between topological monoids is
called an H-map if the following diagram commutes up to
homotopy

G × G m //

f× f
��

G
f
��

G′ × G′
m′
// G′.
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An-maps (Sugawara, 1961; Stasheff, 1963)

Let G and G′ be topological monoids.
I A pair ( f, { fi}) of a pointed map f : G → G′ and a family of

maps { fi : I×(i−1) × G×i → G′}n
i=1

(called an An-form)
satisfying appropriate conditions is called an An-map.

I The conditions for small n is depicted as follows.

f2 f3



Background Main results Applications

Remarks on An-maps

I Stasheff (1963) introduced An-spaces as H-spaces equipped
with higher homotopy associativity data.

I An-maps were generalized to morphisms between An-spaces
(Boardman–Vogt, 1972; Iwase, 1983).

f ((xy)z)

f (xy) f (x) f (y)

f (x)
n = 1

n = 2

n = 3 n = 4f (x(yz))

f (x) f (yz) f (xy) f (z)

f (x)( f (y) f (z)) ( f (x) f (y)) f (z)

I The parameterizing spaces are called multiplihedra. They
were constructed by Boardman–Vogt (using their tensor
product and resolution of operads) and Iwase (realizing them
as subsets of Euclidean spaces).
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Projective spaces

I The n-th stage of the geometric realization

BnG =

 n∐
i=0

∆i
× G×i

/∼
is called the n-th projective space of G. The full geometric
realization BG = B∞G is the classifying space of G.

I B0G = point, B1G = ΣG (reduced suspension).
I B0G ⊂ B1G ⊂ · · · ⊂ BG.
I (Examples) BnS0 = RPn, BnS1 = CPn, BnS3 = HPn.
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An-maps and projective spaces

I Sugawara (1961) constructed the induced map
Bn f : BnG → BnG′ of an An-map f = ( f, { fi}) : G → G′. In
particular, B1 f = Σ f .

I Stasheff (1963) proved the converse in some sense. Suppose
G′ is grouplike (i.e. π0(G′) is a group). Then a pointed map
f : G → G′ admits an An-form { fi}

n
i=1

if there exists a map
BnG → BG′ making the following diagram commutative:

ΣG
Σ f //

��

ΣG′

��
BnG // BG′.

I Iwase (1983) extended these results to general An-spaces.

The main aim of this talk is to refine these results!



Background Main results Applications

Main results

2. Main results
I Composition of An-maps
I Category of topological monoids and An-maps
I Continuous functor Bn
I Main theorem



Background Main results Applications

Composition of An-maps

I The “composition” of An-maps can be considered as in the
following figure (Stasheff, 1963):

gf2

g2( f × f )

I But this composition is neither associative nor unital. We can
make this composition associative and unital mimicking the
Moore loops.
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Category of topological monoids and An-maps

Define a topological categoryAn as follows:
I Objects are topological monoids.
I Morphisms are triples ( f, { fi}, `) of pointed maps, its Moore

An-form
{ fi : [0,∞)×(i−1)

× G×i
→ G′}n

i=1

with the size ` ∈ [0,∞). If ` = 0, we require ( f, { fi}) to be a
homomorphism with the trivial An-form.

I A space of morphisms is topologized as a subspace

An(G,G′) ⊂
n∏

i=1

Map(I×(i−1)
× G×i,G′) × [0,∞).
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Continuous functor Bn

I The projective space functor is realized as a continuous
functor

Bn : An → (category of pointed spaces).

I The induced map and the compatibility with composition look
like the following figure.
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Main theorem

Theorem A (T, 2016)

Let G be a topological monoid (with some cofibrantness condition)
and G′ be a grouplike topological monoid. Then the following
composite is a weak equivalence:

An(G,G′)
Bn
−−→ Map∗(BnG, BnG′) → Map∗(BnG, BG′).

I This theorem also can be expressed as the following
“adjunction” weak equivalence:

An(G,ΩMX) ' Map∗(BnG, X)

for the Moore loop space ΩMX of a pointed space X.
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Remarks on the “adjoint pair” (Bn,Ω
M)

I The associated “monad”

ΩMB1 = ΩMΣ : (pointed spaces) → (topological monoids)

is equivalent to the James construction (James, 1955).
I The associated “comonad”

BnΩM : (pointed spaces) → (pointed spaces)

is equivalent to the n-th Ganea construction (Iwase, 1998).
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Extension of the evaluation fiber sequence

I Let Map(BnG, BG)in be the path-component of
Map(BnG, BG) containing the inclusion in : BnG → BG and
Map∗(BnG, BG)in = Map∗(BnG, BG) ∩Map(BnG, BG)in.

I For a topological group G, letAn(G,G)conj be the union of
path components containing conjugation homomorphisms.

Theorem B (T, 2016)

Let G be a topological group (with some cofibrantness condition).
Then the map G → An(G,G)conj assigning conjugations deloops
and the following sequence of maps is a fiber sequence:

G → Map∗(BnG, BG)in → Map(BnG, BG)in

evaluation
−−−−−−−−→ BG

→ BAn(G,G)conj.
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Proof of Theorem B

I The conjugation in G induces the actions on the mapping
spacesAn(G,G), Map∗(BnG, BG).

I This action on Map∗(BnG, BG) coincides with the induced
action of the evaluation fiber sequence

G → Map∗(BnG, BG)in → Map(BnG, BG)in → BG.

I The map assigning conjugations G → An(G,G)conj is a
homomorphism.

I The weak equivalence in Theorem A is G-equivariant.
I Thus the above evaluation fiber sequence is equivalent to the

left 4 terms of the following fiber sequence:

G → An(G,G)conj → EG×GAn(G,G)conj → BG → BAn(G,G)conj.
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Remarks on Theorem B

I When n = 0, the evaluation fiber sequence is trivial:

G → Map∗(B0G, BG)i0 = ∗ → Map(B0G, BG)i0 = BG
=
−→ BG.

I When n = ∞, the extension of the evaluation fiber sequence
is well-known:

G → Map∗(BG, BG)id → Map(BG, BG)id
evaluation
−−−−−−−−→ BG

→ B Map∗(BG, BG)id → B Map(BG, BG)id.

I When 1 ≤ n < ∞, the evaluation fiber sequence no longer
extends to the right if G is a compact connected simple Lie
group since Map(BnG, BG)in is not a loop space
(Hasui–Kishimoto–T).
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Homotopy commutativity

I A discrete group Γ is commutative if and only if any inner
automorphism Γ → Γ is the identity map. Consider an
An-version of this property.

Theorem C (T, 2016)

Let G be a topological group (with some cofibrantness condition).
The homomorphism conj : G → A`(G,G) is homotopic to the
constant map at the identity as an Ak-map if and only if the wedge
sum of the inclusions

BkG ∨ B`G → BG

extends over the product BkG × B`G.

I The latter condition is equivalent to the condition that G is a
C(k, `)-space (Kishimoto–Kono, 2010).
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Proof of Theorem C

conj : G → A`(G,G) is null-homotopic as an Ak-map.
Theorem A
⇔ BkG → BG

B conj
−−−−−→ BA`(G,G)conj is null-homotopic.

Theorem B
⇔ BkG → BG lifts to a map BkG → Map(B`G, BG)i` .

adjunction
⇔ BkG ∨ B`G → BG extends over BkG × B`G.
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T f
k
-spaces

Theorem D
Let G be a topological group (with some cofibrantness condition)
and f : X → BG a map. Then the existence of the dotted arrows
in these two diagrams are equivalent:

ΣG ∨ X
(i1, f ) //

��

BG

BkG × X

99 BkG ∨ X
(ik, f ) //

��

BG

BkG × X

::

I These conditions are the definitions of a T f
k
-space and a

C f
k
-space for BG by Iwase–Mimura–Oda–Yoon (2014).

I A Tid
k

-space is just a Tk-space by Aguadé (1987).
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Proof of Theorem D

I Suppose there exists a map F : BkG × X → BG making the
left diagram commutative.

I Taking the adjoint, F corresponds to a map X → Ak(G,G) by
Theorem A.

I Let h ∈ Ak(G,G) be a homotopy inverse of F(∗). This exists
because the underlying map of F(∗) is a homotopy
equivalence.

I The map BkG × X → BG corresponding to the composite

X → Ak(G,G)
composing h
−−−−−−−−−−→ Ak(G,G)

is the desired dotted arrow in the right diagram.
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Other applications

I Applications to fiberwise An-types of adjoint bundles.
I Applications to computations of the homology groups of the

classifying spaces of gauge groups (Kishimoto–Theriault).
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