Mapping spaces from projective spaces

Mitsunobu Tsutaya (Kyushu Univ.)

International Conference on Manifolds, Groups and Homotopy Isle of Skye 21 June 2018

This talk is based on the paper

Tsutaya, Mapping spaces from projective spaces, Homology, Homotopy Appl. 18 (2016), 173–203.

Plan

- 1. Main results
 - A_n-spaces
 - ► A_n-maps
 - A_n-maps between topological monoids
 - Composition of A_n-maps
 - Projective spaces
 - A_n-maps and projective spaces
 - Main result 1
 - Main result 2
- 2. Applications
 - Higher homotopy commutativity
 - Homology of classifying spaces of gauge groups

1. Main results

- ► A_n-spaces
- A_n-maps
- A_n-maps between topological monoids
- Composition of A_n-maps
- Projective spaces
- A_n-maps and projective spaces
- Main result 1
- Main result 2

A_n -spaces

An *H*-space equipped with higher homotopy associativity data for the multiplication of n elements is called an A_n -space (Stasheff 1963).

A_n -maps

A map between A_n -spaces preserving higher homotopy associativity data is called an A_n -map (Sugawara, Stasheff, Boardman–Vogt, Iwase).

A_n -maps between topological monoids

In this talk, we concentrate on A_n -maps between topological monoids (Sugawara, Stasheff).

$$f(x) = \begin{cases} f(xy) & f(xyz) \\ f_2 & f_3 \\ f(x)f(y) & f(xy)f(z) \end{cases}$$

The *i*-th structure homotopy has the form

$$f_i\colon I^{\times(i-1)}\times G^{\times i}\to H.$$

Composition of A_n -maps

 A_n -maps $(f, \{f_i\}_i): G \to H$ and $(g, \{g_i\}_i): H \to K$ can be composed.

This composition is associative if we apply the Moore path technique. Then we obtain the topological category \mathcal{R}_n of topological monoids and A_n -maps with "size" $\in [0, \infty)$.

Background

Projective spaces

The *n*-th projective space B_nG is the *n*-th stage of the bar construction

$$B_n G = B_n(*, G, *) = \left(\bigsqcup_{0 \le i \le n} \Delta^i \times G^{\times i} \right) / \sim.$$

There are natural inclusions

$$* = B_0 G \subset B_1 G \subset \cdots \subset B_{\infty} G = BG.$$

Example. $B_n S^0 = \mathbb{R}P^n$, $B_n S^1 = \mathbb{C}P^n$, $B_n S^3 = \mathbb{H}P^n$.

Background

Projective spaces

B_n induces a continuous functor

 $B_n: \mathcal{A}_n \rightarrow (\text{based spaces}).$

Example. $B_1G \cong \Sigma G$ naturally.

A_n -maps and projective spaces

Stasheff proved the converse.

Theorem (Stasheff 1963). A map $f: G \rightarrow H$ admits an A_n -map structure (A_n -form) if the composite

$$\Sigma G \xrightarrow{\Sigma f} \Sigma H \cong B_1 H \xrightarrow{\text{inclusion}} BH$$

extends over B_nG .

Applications

A_n -maps and projective spaces

Question. Can we recover an A_n -form of an A_n -map $G \rightarrow H$ from the composite

$$B_n G \to B_n H \to B H$$
?

Answer. Yes (up to homotopy).

Theorem (T 2016)

If G is a topological monoid (+ some cofibrantness condition) and H is a topological group, then the following composite is a weak homotopy equivalence:

$$\mathcal{A}_n(G,H) \xrightarrow{B_n} \operatorname{Map}_*(B_nG,B_nH) \to \operatorname{Map}_*(B_nG,BH).$$

Moreover, this map is *H*-equivariant.

The action of *H* on $\mathcal{A}_n(G, H)$ and $\operatorname{Map}_*(B_nG, BH)$ induced from the conjugation:

 $\operatorname{conj}(h): H \to H, \quad \operatorname{conj}(h)(x) = hxh^{-1},$ $B\operatorname{conj}(h): BH \to BH.$

From this theorem, there is a homotopy equivalence of fibre sequences

Then, when G = H, we obtain the following result.

Theorem (T 2016)

If G is a topological group (+ some cofibrantness condition), then there is a fibre sequence

 $\cdots \to \operatorname{Map}_{*}(B_{n}G, BG)_{i_{n}} \to \operatorname{Map}(B_{n}G, BG)_{i_{n}} \to BG$ $\xrightarrow{B \operatorname{conj}} B\mathcal{A}_{n}(G, G)_{\operatorname{conj}}.$

 $\operatorname{Map}(B_nG, BG)_{i_n}$ = the path component containing the inclusion, $\operatorname{Map}_*(B_nG, BG)_{i_n} = \operatorname{Map}_*(B_nG, BG) \cap \operatorname{Map}(B_nG, BG)_{i_n},$ $\mathcal{A}_n(G, G)_{\operatorname{conj}}$ = the path components containing conjugations.

Remark.

- 1. When $n = \infty$, it is well known that this sequence extends one more step.
 - $\cdots \to \operatorname{Map}_{*}(BG, BG)_{\mathrm{id}} \to \operatorname{Map}(BG, BG)_{\mathrm{id}} \to BG$ $\xrightarrow{B \operatorname{conj}} B \operatorname{Map}_{*}(BG, BG)_{\mathrm{id}} \to B \operatorname{Map}(BG, BG)_{\mathrm{id}}.$
- 2. When $1 \le n < \infty$ and *G* is a compact connected simple Lie group, the sequence in the theorem no longer extends to the right (Hasui–Kishimoto–T).

- Higher homotopy commutativity
- Homology of classifying spaces of gauge groups

Applications

Homotopy commutativity

Recall. A discrete group Γ is commutative if and only if any inner automorphism $\Gamma \rightarrow \Gamma$ is the identity map.

Problem. Let *G* be a topological group. Characterize the following condition in terms of projective spaces: the homomorphism **conj**: $G \rightarrow \mathcal{R}_{\ell}(G, G)$ is homotopic to the constant map at the identity as an A_k -map.

Applications

Homotopy commutativity

Answer. The previous condition is equivalent to the condition that the wedge sum of the inclusions

$B_kG \vee B_\ell G \to BG$

extends over the product $B_k G \times B_\ell G$ (equivalently, *G* is a $C(k, \ell)$ -space (Kishimoto–Kono)).

Applications

Homotopy commutativity

Proof.

conj: $G \rightarrow \mathcal{R}_{\ell}(G, G)$ is null-homotopic as an A_k -map.

- $\Leftrightarrow \quad B_k G \to BG \xrightarrow{B \text{ conj}} B\mathcal{A}_{\ell}(G,G)_{\text{conj}} \text{ is null-homotopic.}$
- $\Leftrightarrow B_k G \to BG \text{ lifts to a map } B_k G \to \operatorname{Map}(B_\ell G, BG)_{i_\ell}.$
- $\Leftrightarrow B_k G \lor B_\ell G \to BG \text{ extends over } B_k G \times B_\ell G.$

Homology of classifying spaces of gauge groups

Let *G* be a simple 1-connected Lie group, $f: S^4 \rightarrow BG$ the inclusion and *p* be a prime such that $G_{(p)}$ is a product of spheres.

Theorem(Kishimoto–Theriault). In the Serre *p*-local or mod *p* homology spectral sequence of fibration

 $\operatorname{Map}_*(S^4, BG)_f \to \operatorname{Map}(S^4, BG)_f \to BG,$

the differentials are $H_*(\operatorname{Map}_*(S^4, BG)_f) \cong H_*(\Omega_0^3G)$ -linear.

Homology of classifying spaces of gauge groups

Remark. For the restriction $P = f^*EG$ of the universal bundle *EG*, there is a weak homotopy equivalence

 $BG(P) \simeq \operatorname{Map}(S^4, BG)_f.$

Proof. This follows from the fact that the above fibration is *p*-locally a retract of the principal fibration

 $\operatorname{Map}_*(\Sigma G, BG)_{i_1} \to \operatorname{Map}(\Sigma G, BG)_{i_1} \to BG.$