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This talk is based on the paper

Tsutaya, Mapping spaces from projective spaces, Homology,
Homotopy Appl. 18 (2016), 173–203.
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An-spaces

An H-space equipped with higher homotopy associativity
data for the multiplication of n elements is called an
An-space (Stasheff 1963).
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An-maps

A map between An-spaces preserving higher homotopy
associativity data is called an An-map (Sugawara, Stasheff,
Boardman–Vogt, Iwase).

f ((xy)z)

f (xy) f (x) f (y)

f (x)
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Background Applications

An-maps between topological monoids

In this talk, we concentrate on An-maps between topological
monoids (Sugawara, Stasheff).

f2 f3

The i-th structure homotopy has the form

fi : I×(i−1)
× G×i

→ H.
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Composition of An-maps

An-maps ( f, { fi}i) : G → H and (g, {gi}i) : H → K can be
composed.

gf2

g2( f × f )

This composition is associative if we apply the Moore path
technique. Then we obtain the topological categoryAn of
topological monoids and An-maps with “size” ∈ [0,∞).

An(G, H) = space of An-maps from G to H.
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Projective spaces

The n-th projective space BnG is the n-th stage of the bar
construction

BnG = Bn(∗,G, ∗) =

∐
0≤i≤n

∆i
× G×i

/∼.
There are natural inclusions

∗ = B0G ⊂ B1G ⊂ · · · ⊂ B∞G = BG.

Example. BnS0 = RPn, BnS1 = CPn, BnS3 = HPn.
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Projective spaces

Bn induces a continuous functor

Bn : An → (based spaces).

Example. B1G � ΣG naturally.
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An-maps and projective spaces

Stasheff proved the converse.

Theorem (Stasheff 1963). A map f : G → H admits an
An-map structure (An-form) if the composite

ΣG
Σ f
−−→ ΣH � B1H

inclusion
−−−−−−→ BH

extends over BnG.
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An-maps and projective spaces

Question. Can we recover an An-form of an An-map
G → H from the composite

BnG → BnH → BH?

Answer. Yes (up to homotopy).
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Main result 1

Theorem (T 2016)
If G is a topological monoid (+ some cofibrantness condition)
and H is a topological group, then the following composite is
a weak homotopy equivalence:

An(G, H)
Bn
−−→ Map∗(BnG, BnH) → Map∗(BnG, BH).

Moreover, this map is H-equivariant.

The action of H onAn(G, H) and Map∗(BnG, BH) induced
from the conjugation:

conj(h) : H → H, conj(h)(x) = hxh−1,

B conj(h) : BH → BH.



Background Applications

Main result 2

From this theorem, there is a homotopy equivalence of fibre
sequences

· · · // H //An(G, H) //

'

��

X //

'

��

BH

· · · // H //Map∗(BnG, BH) //Map(BnG, BH) // BH

Then, when G = H, we obtain the following result.
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Main result 2

Theorem (T 2016)
If G is a topological group (+ some cofibrantness condition),
then there is a fibre sequence

· · · → Map∗(BnG, BG)in → Map(BnG, BG)in → BG
B conj
−−−−→ BAn(G,G)conj.

Map(BnG, BG)in = the path component containing the inclusion,
Map∗(BnG, BG)in = Map∗(BnG, BG) ∩Map(BnG, BG)in,

An(G,G)conj = the path components containing conjugations.



Background Applications

Main result 2

Remark.
1. When n = ∞, it is well known that this sequence

extends one more step.

· · · → Map∗(BG, BG)id → Map(BG, BG)id → BG
B conj
−−−−→ B Map∗(BG, BG)id → B Map(BG, BG)id.

2. When 1 ≤ n < ∞ and G is a compact connected simple
Lie group, the sequence in the theorem no longer
extends to the right (Hasui–Kishimoto–T).
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2. Applications
I Higher homotopy commutativity
I Homology of classifying spaces of gauge groups
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Homotopy commutativity

Recall. A discrete group Γ is commutative if and only if any
inner automorphism Γ → Γ is the identity map.

Problem. Let G be a topological group. Characterize the
following condition in terms of projective spaces: the
homomorphism conj : G → A`(G,G) is homotopic to the
constant map at the identity as an Ak-map.
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Homotopy commutativity

Answer. The previous condition is equivalent to the
condition that the wedge sum of the inclusions

BkG ∨ B`G → BG

extends over the product BkG × B`G (equivalently, G is a
C(k, `)-space (Kishimoto–Kono)).
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Homotopy commutativity

Proof.

conj : G → A`(G,G) is null-homotopic as an Ak-map.

⇔ BkG → BG
B conj
−−−−→ BA`(G,G)conj is null-homotopic.

⇔ BkG → BG lifts to a map BkG → Map(B`G, BG)i` .

⇔ BkG ∨ B`G → BG extends over BkG × B`G.
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Homology of classifying spaces of gauge groups

Let G be a simple 1-connected Lie group, f : S4 → BG the
inclusion and p be a prime such that G(p) is a product of
spheres.

Theorem(Kishimoto–Theriault). In the Serre p-local or mod
p homology spectral sequence of fibration

Map∗(S
4, BG) f → Map(S4, BG) f → BG,

the differentials are H∗(Map∗(S4, BG) f ) � H∗(Ω3
0
G)-linear.
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Homology of classifying spaces of gauge groups

Remark. For the restriction P = f ∗EG of the universal
bundle EG, there is a weak homotopy equivalence

BG(P) ' Map(S4, BG) f .

Proof. This follows from the fact that the above fibration is
p-locally a retract of the principal fibration

Map∗(ΣG, BG)i1 → Map(ΣG, BG)i1 → BG.
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