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G a pointed space, m: G X G - G a (continuous) map.
Suppose m(*,x) = m(x, *) = x. We denote as xy = m(x,y).
The pair G = (G, m) is called an H-space.

G is homotopy associative if two maps G x G X G — G given by
(x,y,2)  x(yz) and (x, y,z) — (xy)z are homotopic,

G is homotopy invertible if there exists a map ¢: G — G such that
two maps G — G given by x — xt(x) and x — «(x)x are homotopic
to the constant map,

G is homotopy commutative if two maps G X G — G given by
(x,y) B xy and (x,y) — yx are homotopic.

If G is a topological group, then G is a homotopy associative, homotopy
invertible H-space.



G a homotopy associative H-space. Fix an associating homotopy
M(t; x,y, z) such that M(0; x, y, z) = x(yz) and M(1; x,y,2) = (xy)z.
With respect to this homotopy, the following two homotopies are not
homotopic in general.

x((vz2)w)

xM(t;y,z,w)

x(y(zw))

M(t;x,yz,w)
(x(vz))w

M(t;x,p,zw) M(t;x,y,z)w

@X)(w)  Mexyzw)  ((xy)2)w

The existence of a homotopy between these homotopies is the first
higher homotopy associativity.



Similarly, there are more higher homotopy associativities and higher

homotopy commutativities.

structures parameterizations
associativity Ap-space associahedra
homomorphism A,-map multiplihedra, cubes
commutativity Williams Cg-space permutohedra

Sugawara Cj-space

k-fold loop space

cubes, resultohedra

little k-cubes
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G, H topological monoids, f: G — H a basepoint preserving map.

A family of maps {f;: [0,1]1*¢D x GX —» H} is called an A,-form on f if
the following conditions are satisfied:

. A=f
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3. “unit conditions”.

A pair (f, {fi}) is called an A,-map. We denote the space of A,-maps by
A.(G, H). If the underlying map f is a homotopy equivalence, (f, {f;}) is
said to be an A ,-equivalence. Two topological monoids are said to be

A ,-equivalent if there is an A ,-equivalence between them.
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Amapf: G- Hisa...
homomorphism = A,-map = ---
cee = A,-map = Ay_p-map = -
-+« = Aj-map = basepoint preserving map.
Topological monoids G and H are...

isomomorphic = A.-equivalent = ---
««+ = A,-equivalent = A,_;-equivalent = - .-
.-+ = Aj-equivalent = homotopy equivalent.



G a topological monoid. There exists a sequence of spaces
* = B0G c XG = B,Gc B,GC:.--C BG

such that if G is homotopy invertible, QBG is A,-equivalent to G.

B,G is called the n-th projective space of G.

BG is called the classifying space of G.

They are given by the bar construction or the Dold—Lashof construction.

There exists a map B, : A,(G, H) —» Map,(B,G, B,H) for each n
making the following diagram commute:

B\G B,G oo B,G
l lB1(f,{fi})=Ef an(f,{fi))
ByH B,H oo B, G




The converse is also known, which is convenient to study the obstruction
to the existence of A,-forms.

Suppose H is a homotopy invertible (=grouplike) topological monoid. A
basepoint preserving map f: G — H admits an A,-form if there exists a
dashed arrow such that the resulting square is commutative:

y6—vH
B,G - — =~ BH

Homotopy invertible topological monoids G and H are A ,-equivalent if
and only if their classifying spaces BG and BH are homotopy equivalent.
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G a topological group, P — B a principal G-bundle.

Amap f: P — Pis called an automorphism if f is G-equivariant and
covers the identity on B.
The gauge group G(P) is the space of automorphisms on P.

P is a pullback of the universal bundle EG along a map a@: B — BG.
Such a map « is called the classifying map of P.

P——EG

|

B —— BG

Let a be a classifying map of P. Then BG(P) is homotopy equivalent to
the path component Map(B, BG),, containing «.




G a compact connected Lie group, B a finite CW complex.

Consider all principal G-bundles P over B: is the number of homotopy
types of G(P), or of BG(P), finite?

\

Theorem (Crabb—Sutherland 2000 (r < 2), T 2012 (2 < 1 < o))

Let n be a positive integer. Then, as P ranges over all principal
G-bundles over B, the number of A,-equivalence types of G(P) is finite.

Theorem (Kishimoto—T 2016)

Let G be a compact connected simple Lie group. Then, as P ranges over
all principal G-bundles over the d-dimensional sphere S¢, the number of
A -equivalence types of G(P) is infinite if and only if #7,(BG) = .




Any map f: X — Y can be replaced by a fibration up to homotopy
equivalence:

11

f fibration

—
[
~ e~

h<

The fiber F of f is called the homotopy fiber of f. Taking the homotopy
fiber repeatedly, we obtain the homotopy fiber sequence:

Qf f
e a3 QF 5 QX —- QY 5 F 5 X > Y.

In general, this sequence does not extends to the right.
For a basepoint preserving map f: X — Y, we have the evaluation fiber
sequence

evaluation

coo = QMap(X,Y); —» QY - Mapy(X,Y); - Map(X,Y); —— Y.



Theorem (T 2016)

Let G, H be topological monoids. If H is homotopy invertible, then the
following composite is a homotopy equivalence:

B,
An(G, H) — Map,(B,G, B,H) - Map,(B,G, BH).

\

Corollary (T 2016)

Let G be a topological monoid and X a path connected pointed space.
Then there is a natural homotopy equivalence

An(G, QX) = Map,(B,G, X).




Leti,: B,G — BG be the inclusion and A, (G, G)inn be the union of path
components containing inner automorphisms.

Corollary (T 2016)
Let G be a topological group. Then there is a homotopy fiber sequence

evaluation

Map,(B,G, BG);, - Map(B,G, BG);, — BG — BA,(G, G)in.

Let E,G be the restriction of the universal bundle EG over B, G. Then
BG(E,G) = Map(B,G, BG);,.

If G is a compact connected simple Lie group, then G(E,G) is not a
double loop space when1 < n < 0.

This implies that the above evaluation fiber sequence no longer extends
for such G and n.



Let G be a homotopy commutative H-space having the homotopy type of
a finite connected CW complex. Then G is homotopy equivalent to a
torus.

A topological monoid G is said to be a Williams C-space if it admits a
“C-form”.

G a compact connected simple Lie group,
H*(G;Q) = AQ(xl,. cesXy), X; € HZ'zi_l, n L+ < nyg.

1. If p > kny, then G, is a Williams Cg-space.

2. If p < kny, then G, is not a Williams Cy-space except in the case
(G, p) = (Sp(2),3), (G2, 5).



A topological monoid G is said to be a Sugawara Ci-space if the
multiplication G x G —» G admits an Ag-form.

G is a Sugawara Cj-space = G is a Williams Cj-space.

Williams C;-space Sugawara C;-space
xyz - xzy X1X2)1V2 V1X1X2)2
el b yxz zxy 4 X
yzx  zyx X1yaXa X1V1X2)2

Theorem (Hasui—Kishimoto—T)

Let G be a compact connected simple Lie group. Then, G, is a
Sugawara Cy-space if p > kny.




Corollary (Hasui—Kishimoto—T)

Let G be a compact connected simple Lie group. Then, the following
hold.

1. If p > (k + n)ng, then G(E,G),) is a Sugawara Ci-space.

2. It (n+ Dn; < p < (k + n)ng, then G(E,G)(y,) is not a Williams
Cy-space.

This implies that G(E,G)(p) is not a double loop space if n < co.

G is a Sugawara Cy-space if and only if the wedge sum of the inclusions
BiG vV B;G — BG extends over the union U;,j=x BiG X B;G. ltis
sufficient to observe that the obstruction of this extension problem
vanishes.
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