Applications of Stasheff's A_{∞} -theory to Lie groups

Mitsunobu Tsutaya (Kyushu Univ.)

MSJ Spring Meeting 2017 Tokyo Metropolitan University 24 Mar. 2017

Outline

Background

- Homotopical properties of binary operation
- Higher homotopy structures on binary operation

2. Stasheff's A_{∞} -theory

- $ightharpoonup A_n$ -maps
- Classifying space and projective spaces

3. Applications to Lie groups

- Gauge groups and mapping spaces
- Finiteness of gauge groups
- Extension of evaluation fiber sequence
- Higher homotopy commutativity of Lie groups

Background

1. Background

- Homotopical properties of binary operation
- Higher homotopy structures on binary operation

Homotopical properties of binary operation

G a pointed space, $m: G \times G \to G$ a (continuous) map. Suppose m(*,x) = m(x,*) = x. We denote as xy = m(x,y). The pair G = (G,m) is called an H-space.

Definition

- 1. *G* is homotopy associative if two maps $G \times G \times G \to G$ given by $(x, y, z) \mapsto x(yz)$ and $(x, y, z) \mapsto (xy)z$ are homotopic,
- 2. G is homotopy invertible if there exists a map $\iota: G \to G$ such that two maps $G \to G$ given by $x \mapsto x\iota(x)$ and $x \mapsto \iota(x)x$ are homotopic to the constant map,
- 3. *G* is homotopy commutative if two maps $G \times G \to G$ given by $(x, y) \mapsto xy$ and $(x, y) \mapsto yx$ are homotopic.

Example

If G is a topological group, then G is a homotopy associative, homotopy invertible H-space.

Higher homotopy structures on binary operation

G a homotopy associative H-space. Fix an associating homotopy M(t;x,y,z) such that M(0;x,y,z)=x(yz) and M(1;x,y,z)=(xy)z. With respect to this homotopy, the following two homotopies are not homotopic in general.

The existence of a homotopy between these homotopies is the first higher homotopy associativity.

Higher homotopy structures on binary operation

Similarly, there are more higher homotopy associativities and higher homotopy commutativities.

	structures	parameterizations
associativity	A_n -space	associahedra
homomorphism	A_n -map	multiplihedra, cubes
commutativity	Williams C_k -space	permutohedra
	Sugawara C_k -space	cubes, resultohedra
	\emph{k} -fold loop space	little k -cubes

Stasheff's A_{∞} -theory

- 2. Stasheff's A_{∞} -theory
 - $ightharpoonup A_n$ -maps
 - Classifying space and projective spaces

A_n -maps

G, H topological monoids, $f: G \to H$ a basepoint preserving map.

Definition (Sugawara 1960 ($n = \infty$), Stasheff 1963)

A family of maps $\{f_i\colon [0,1]^{\times (i-1)}\times G^{\times i}\to H\}$ is called an A_n -form on f if the following conditions are satisfied:

- 1. $f_1 = f$,
- 2. $f_i(t_1, \dots, t_{i-1}; x_1, \dots, x_i)$ = $\begin{cases} f_{i-1}(t_1, \dots, \hat{t}_k, \dots, t_{i-1}; x_1, \dots, x_k x_{k+1}, \dots, x_i) & t_k = 0 \\ f_k(t_1, \dots, t_{k-1}; x_1, \dots, x_k) f_{i-k}(t_{k+1}, \dots, t_i; x_{k+1}, \dots, x_i) & t_k = 1, \end{cases}$
- "unit conditions".

A pair $(f, \{f_i\})$ is called an A_n -map. We denote the space of A_n -maps by $\mathcal{R}_n(G, H)$. If the underlying map f is a homotopy equivalence, $(f, \{f_i\})$ is said to be an A_n -equivalence. Two topological monoids are said to be A_n -equivalent if there is an A_n -equivalence between them.

A map $f: G \to H$ is a...

homomorphism
$$\Rightarrow A_{\infty}$$
-map $\Rightarrow \cdots$

$$\cdots \Rightarrow A_n$$
-map $\Rightarrow A_{n-1}$ -map $\Rightarrow \cdots$

$$\cdots \Rightarrow A_2$$
-map \Rightarrow basepoint preserving map.

Topological monoids *G* and *H* are...

isomomorphic
$$\Rightarrow A_{\infty}$$
-equivalent $\Rightarrow \cdots$

$$\cdots \Rightarrow A_n$$
-equivalent $\Rightarrow A_{n-1}$ -equivalent $\Rightarrow \cdots$

$$\cdots \Rightarrow A_2$$
-equivalent \Rightarrow homotopy equivalent.

Classifying space and projective spaces

G a topological monoid. There exists a sequence of spaces

$$* = B_0G \subset \Sigma G = B_1G \subset B_2G \subset \cdots \subset BG$$

such that if G is homotopy invertible, ΩBG is A_{∞} -equivalent to G.

 B_nG is called the *n*-th projective space of G.

BG is called the classifying space of **G**.

They are given by the bar construction or the Dold–Lashof construction.

Proposition (Sugawara 1960 ($n = \infty$), Stasheff 1963)

There exists a map $B_n: \mathcal{A}_n(G,H) \to \operatorname{Map}_0(B_nG,B_nH)$ for each n making the following diagram commute:

$$B_0G \longrightarrow B_1G \longrightarrow \cdots \longrightarrow B_nG$$

$$\downarrow \qquad \qquad \downarrow B_1(f,\{f_i\}) = \Sigma f \qquad \qquad \downarrow B_n(f,\{f_i\})$$

$$B_0H \longrightarrow B_1H \longrightarrow \cdots \longrightarrow B_nG$$

Classifying space and projective spaces

The converse is also known, which is convenient to study the obstruction to the existence of A_n -forms.

Proposition (Stasheff 1963)

Suppose H is a homotopy invertible (=grouplike) topological monoid. A basepoint preserving map $f: G \to H$ admits an A_n -form if there exists a dashed arrow such that the resulting square is commutative:

$$\Sigma G \xrightarrow{\Sigma f} \Sigma H$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_n G - - > BH$$

Corollary

Homotopy invertible topological monoids G and H are A_{∞} -equivalent if and only if their classifying spaces BG and BH are homotopy equivalent.

Applications to Lie groups

- 3. Applications to Lie groups
 - Gauge groups and mapping spaces
 - Finiteness of gauge groups
 - Extension of evaluation fiber sequence
 - Higher commutativity of Lie groups

Gauge groups and mapping spaces

G a topological group, $P \rightarrow B$ a principal G-bundle.

Definition

A map $f: P \to P$ is called an automorphism if f is G-equivariant and covers the identity on B.

The gauge group G(P) is the space of automorphisms on P.

P is a pullback of the universal bundle EG along a map $\alpha: B \to BG$. Such a map α is called the classifying map of P.

$$P \longrightarrow EG$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{\alpha} BG$$

Proposition (Gottlieb 1972)

Let α be a classifying map of P. Then $B\mathcal{G}(P)$ is homotopy equivalent to the path component $\mathbf{Map}(B, BG)_{\alpha}$ containing α .

Finiteness of gauge groups

G a compact connected Lie group, *B* a finite CW complex.

Problem (Crabb–Sutherland 2000)

Consider all principal G-bundles P over B: is the number of homotopy types of $\mathcal{G}(P)$, or of $B\mathcal{G}(P)$, finite?

Theorem (Crabb–Sutherland 2000 $(n \le 2)$, T 2012 $(2 < n < \infty)$)

Let n be a positive integer. Then, as P ranges over all principal G-bundles over B, the number of A_n -equivalence types of G(P) is finite.

Theorem (Kishimoto-T 2016)

Let G be a compact connected simple Lie group. Then, as P ranges over all principal G-bundles over the d-dimensional sphere S^d , the number of A_{∞} -equivalence types of G(P) is infinite if and only if $\#\pi_d(BG) = \infty$.

Extension of evaluation fiber sequence

Any map $f: X \to Y$ can be replaced by a fibration up to homotopy equivalence:

$$X \xrightarrow{\simeq} \tilde{X}$$

$$\downarrow f \qquad \qquad \downarrow \tilde{f} \text{ fibration}$$

$$Y = Y$$

The fiber F of \tilde{f} is called the homotopy fiber of f. Taking the homotopy fiber repeatedly, we obtain the homotopy fiber sequence:

$$\cdots \to \Omega F \to \Omega X \xrightarrow{\Omega f} \Omega Y \to F \to X \xrightarrow{f} Y.$$

In general, this sequence does not extends to the right. For a basepoint preserving map $f \colon X \to Y$, we have the evaluation fiber sequence

$$\cdots \to \Omega \operatorname{Map}(X,Y)_f \to \Omega Y \to \operatorname{Map}_0(X,Y)_f \to \operatorname{Map}(X,Y)_f \xrightarrow{\operatorname{evaluation}} Y.$$

Extension of evaluation fiber sequence

Theorem (T 2016)

Let G, H be topological monoids. If H is homotopy invertible, then the following composite is a homotopy equivalence:

$$\mathcal{A}_n(G,H) \xrightarrow{B_n} \operatorname{Map}_0(B_nG,B_nH) \to \operatorname{Map}_0(B_nG,BH).$$

Corollary (T 2016)

Let ${\it G}$ be a topological monoid and ${\it X}$ a path connected pointed space. Then there is a natural homotopy equivalence

$$\mathcal{A}_n(G, \Omega X) \simeq \operatorname{Map}_0(B_nG, X).$$

Extension of evaluation fiber sequence

Let $i_n: B_nG \to BG$ be the inclusion and $\mathcal{A}_n(G,G)_{\text{inn}}$ be the union of path components containing inner automorphisms.

Corollary (T 2016)

Let G be a topological group. Then there is a homotopy fiber sequence

$$\operatorname{Map}_0(B_nG,BG)_{i_n} \to \operatorname{Map}(B_nG,BG)_{i_n} \xrightarrow{\operatorname{evaluation}} BG \to B\mathcal{A}_n(G,G)_{\operatorname{inn}}.$$

Let E_nG be the restriction of the universal bundle EG over B_nG . Then $BG(E_nG) \simeq \operatorname{Map}(B_nG,BG)_{i_n}$.

Conjecture (T 2016)

If G is a compact connected simple Lie group, then $\mathcal{G}(E_nG)$ is not a double loop space when $1 \le n < \infty$.

This implies that the above evaluation fiber sequence no longer extends for such G and n.

Higher homotopy commutativity of Lie groups

Theorem (Hubbuck 1969)

Let G be a homotopy commutative H-space having the homotopy type of a finite connected CW complex. Then G is homotopy equivalent to a torus.

Definition (Williams 1970)

A topological monoid G is said to be a Williams C_k -space if it admits a " C_k -form".

G a compact connected simple Lie group,

$$H^*(G;\mathbb{Q}) = \Lambda_{\mathbb{Q}}(x_1,\ldots,x_\ell), x_i \in H^{2n_i-1}, n_1 \leq \cdots \leq n_\ell.$$

Theorem (McGibbon 1984 (k = 2), Saumell 1995 (k > 2)

- 1. If $p > kn_{\ell}$, then $G_{(p)}$ is a Williams C_k -space.
- 2. If $p < kn_{\ell}$, then $G_{(p)}$ is not a Williams C_k -space except in the case $(G,p) = (\operatorname{Sp}(2),3), (G_2,5)$.

Higher homotopy commutativity of Lie groups

Definition (Sugawara 1960 ($k = \infty$), McGibbon 1989 ($k < \infty$))

A topological monoid G is said to be a Sugawara C_k -space if the multiplication $G \times G \to G$ admits an A_k -form.

Proposition

G is a Sugawara C_k -space $\Rightarrow G$ is a Williams C_k -space.

Theorem (Hasui-Kishimoto-T)

Let G be a compact connected simple Lie group. Then, $G_{(p)}$ is a Sugawara C_k -space if $p > kn_\ell$.

Higher homotopy commutativity of Lie groups

Corollary (Hasui-Kishimoto-T)

Let *G* be a compact connected simple Lie group. Then, the following hold.

- 1. If $p > (k + n)n_{\ell}$, then $\mathcal{G}(E_nG)_{(p)}$ is a Sugawara C_k -space.
- 2. If $(n+1)n_{\ell} , then <math>\mathcal{G}(E_nG)_{(p)}$ is not a Williams C_k -space.

This implies that $\mathcal{G}(E_nG)_{(p)}$ is not a double loop space if $n < \infty$.

Outline of the proof of Theorem

G is a Sugawara C_k -space if and only if the wedge sum of the inclusions $B_kG \vee B_kG \to BG$ extends over the union $\bigcup_{i+j=k} B_iG \times B_jG$. It is sufficient to observe that the obstruction of this extension problem vanishes.

Related works:

- Finiteness of A_n-equivalence types of gauge groups, J. London Math. Soc. 85 (2012), 142-164.
- (with D. Kishimoto) Infiniteness of A_{∞} -types of gauge groups, J. Topol. 9 (2016), 181-191.
- Mapping spaces from projective spaces, Homology, Homotopy Appl. 18 (2016), 173-203.
- (with S. Hasui and D. Kishimoto) Higher homotopy commutativity in localized Lie groups and gauge groups, preprint, arXiv:1612.08816.