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Homotopical properties of binary operation

Homotopical properties of binary operation

G a pointed space, m: G × G → G a (continuous) map.
Suppose m(∗, x) = m(x, ∗) = x. We denote as xy = m(x, y).
The pair G = (G, m) is called an H-space.

Definition

1. G is homotopy associative if two maps G × G × G → G given by
(x, y, z) 7→ x(yz) and (x, y, z) 7→ (xy)z are homotopic,

2. G is homotopy invertible if there exists a map ι : G → G such that
two maps G → G given by x 7→ xι(x) and x 7→ ι(x)x are homotopic
to the constant map,

3. G is homotopy commutative if two maps G × G → G given by
(x, y) 7→ xy and (x, y) 7→ yx are homotopic.

Example

If G is a topological group, then G is a homotopy associative, homotopy
invertible H-space.
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Higher homotopy structures on binary operation

G a homotopy associative H-space. Fix an associating homotopy
M(t; x, y, z) such that M(0; x, y, z) = x(yz) and M(1; x, y, z) = (xy)z.
With respect to this homotopy, the following two homotopies are not
homotopic in general.

x(y(zw))

x((yz)w)

(x(yz))w

((xy)z)w(xy)(zw)

xM(t;y,z,w) M(t;x,yz,w)

M(t;x,y,z)w

M(t;xy,z,w)

M(t;x,y,zw)

The existence of a homotopy between these homotopies is the first
higher homotopy associativity.
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Higher homotopy structures on binary operation

Higher homotopy structures on binary operation

Similarly, there are more higher homotopy associativities and higher
homotopy commutativities.

structures parameterizations

associativity An-space associahedra

homomorphism An-map multiplihedra, cubes

commutativity Williams Ck-space permutohedra

Sugawara Ck-space cubes, resultohedra

k-fold loop space little k-cubes
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An-maps

An-maps

G, H topological monoids, f : G → H a basepoint preserving map.

Definition (Sugawara 1960 (n = ∞), Stasheff 1963)

A family of maps { fi : [0, 1]×(i−1) × G×i → H} is called an An-form on f if
the following conditions are satisfied:

1. f1 = f ,

2. fi(t1, . . . , t i−1; x1, . . . , xi)

=

 fi−1(t1, . . . , t̂k, . . . , t i−1; x1, . . . , xkxk+1, . . . , xi) tk = 0
fk(t1, . . . , tk−1; x1, . . . , xk) fi−k(tk+1, . . . , t i; xk+1, . . . , xi) tk = 1,

3. “unit conditions”.

A pair ( f, { fi}) is called an An-map. We denote the space of An-maps by
An(G, H). If the underlying map f is a homotopy equivalence, ( f, { fi}) is
said to be an An-equivalence. Two topological monoids are said to be
An-equivalent if there is an An-equivalence between them.
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An-maps

An-maps

f(x1x2)f(x3)

f(x1x2x3) f(x1)f(x2x3)

f(x1)f(x2)f(x3)f(x1)f(x2)

f(x1x2)

f2 f3

f(x1)

A map f : G → H is a...

homomorphism ⇒ A∞-map ⇒ · · ·

· · · ⇒ An-map ⇒ An−1-map ⇒ · · ·

· · · ⇒ A2-map ⇒ basepoint preserving map.

Topological monoids G and H are...

isomomorphic ⇒ A∞-equivalent ⇒ · · ·

· · · ⇒ An-equivalent ⇒ An−1-equivalent ⇒ · · ·

· · · ⇒ A2-equivalent ⇒ homotopy equivalent.
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Classifying space and projective spaces

Classifying space and projective spaces

G a topological monoid. There exists a sequence of spaces

∗ = B0G ⊂ ΣG = B1G ⊂ B2G ⊂ · · · ⊂ BG

such that if G is homotopy invertible, ΩBG is A∞-equivalent to G.
BnG is called the n-th projective space of G.
BG is called the classifying space of G.
They are given by the bar construction or the Dold–Lashof construction.

Proposition (Sugawara 1960 (n = ∞), Stasheff 1963)

There exists a map Bn : An(G, H) → Map0(BnG, BnH) for each n
making the following diagram commute:

B0G //

��

B1G //

B1( f,{ fi})=Σ f
��

· · · // BnG

Bn( f,{ fi})
��

B0H // B1H // · · · // BnG
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Classifying space and projective spaces

Classifying space and projective spaces

The converse is also known, which is convenient to study the obstruction
to the existence of An-forms.

Proposition (Stasheff 1963)

Suppose H is a homotopy invertible (=grouplike) topological monoid. A
basepoint preserving map f : G → H admits an An-form if there exists a
dashed arrow such that the resulting square is commutative:

ΣG
Σ f //

��

ΣH

��
BnG // BH

Corollary

Homotopy invertible topological monoids G and H are A∞-equivalent if
and only if their classifying spaces BG and BH are homotopy equivalent.
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Gauge groups and mapping spaces

Gauge groups and mapping spaces

G a topological group, P → B a principal G-bundle.

Definition

A map f : P → P is called an automorphism if f is G-equivariant and
covers the identity on B.
The gauge group G(P) is the space of automorphisms on P.

P is a pullback of the universal bundle EG along a map α : B → BG.
Such a map α is called the classifying map of P.

P //

��

EG

��
B α // BG

Proposition (Gottlieb 1972)

Let α be a classifying map of P. Then BG(P) is homotopy equivalent to
the path component Map(B, BG)α containing α.
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Finiteness of gauge groups

Finiteness of gauge groups

G a compact connected Lie group, B a finite CW complex.

Problem (Crabb–Sutherland 2000)

Consider all principal G-bundles P over B: is the number of homotopy
types of G(P), or of BG(P), finite?

Theorem (Crabb–Sutherland 2000 (n ≤ 2), T 2012 (2 < n < ∞))

Let n be a positive integer. Then, as P ranges over all principal
G-bundles over B, the number of An-equivalence types of G(P) is finite.

Theorem (Kishimoto–T 2016)

Let G be a compact connected simple Lie group. Then, as P ranges over
all principal G-bundles over the d-dimensional sphere Sd, the number of
A∞-equivalence types of G(P) is infinite if and only if #πd(BG) = ∞.
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Extension of evaluation fiber sequence

Any map f : X → Y can be replaced by a fibration up to homotopy
equivalence:

X ' //

f
��

X̃

f̃ fibration
��

Y Y

The fiber F of f̃ is called the homotopy fiber of f . Taking the homotopy
fiber repeatedly, we obtain the homotopy fiber sequence:

· · · → ΩF → ΩX
Ω f
−−−→ ΩY → F → X

f
−→ Y.

In general, this sequence does not extends to the right.
For a basepoint preserving map f : X → Y, we have the evaluation fiber
sequence

· · · → Ω Map(X, Y) f → ΩY → Map0(X, Y) f → Map(X, Y) f
evaluation
−−−−−−−→ Y.
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Extension of evaluation fiber sequence

Extension of evaluation fiber sequence

Theorem (T 2016)

Let G, H be topological monoids. If H is homotopy invertible, then the
following composite is a homotopy equivalence:

An(G, H)
Bn
−−→ Map0(BnG, BnH) → Map0(BnG, BH).

Corollary (T 2016)

Let G be a topological monoid and X a path connected pointed space.
Then there is a natural homotopy equivalence

An(G,ΩX) ' Map0(BnG, X).
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Extension of evaluation fiber sequence

Extension of evaluation fiber sequence

Let in : BnG → BG be the inclusion andAn(G,G)inn be the union of path
components containing inner automorphisms.

Corollary (T 2016)

Let G be a topological group. Then there is a homotopy fiber sequence

Map0(BnG, BG)in → Map(BnG, BG)in

evaluation
−−−−−−−→ BG → BAn(G,G)inn.

Let EnG be the restriction of the universal bundle EG over BnG. Then
BG(EnG) ' Map(BnG, BG)in.

Conjecture (T 2016)

If G is a compact connected simple Lie group, then G(EnG) is not a
double loop space when 1 ≤ n < ∞.

This implies that the above evaluation fiber sequence no longer extends
for such G and n.
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Higher homotopy commutativity of Lie groups

Higher homotopy commutativity of Lie groups

Theorem (Hubbuck 1969)

Let G be a homotopy commutative H-space having the homotopy type of
a finite connected CW complex. Then G is homotopy equivalent to a
torus.

Definition (Williams 1970)

A topological monoid G is said to be a Williams Ck-space if it admits a
“Ck-form”.

G a compact connected simple Lie group,
H∗(G;Q) = ΛQ(x1, . . . , x`), xi ∈ H2ni−1, n1 ≤ · · · ≤ n`.

Theorem (McGibbon 1984 (k = 2), Saumell 1995 (k > 2))

1. If p > kn`, then G(p) is a Williams Ck-space.

2. If p < kn`, then G(p) is not a Williams Ck-space except in the case
(G, p) = (Sp(2), 3), (G2, 5).
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Higher homotopy commutativity of Lie groups

Higher homotopy commutativity of Lie groups

Definition (Sugawara 1960 (k = ∞), McGibbon 1989 (k < ∞))

A topological monoid G is said to be a Sugawara Ck-space if the
multiplication G × G → G admits an Ak-form.

Proposition

G is a Sugawara Ck-space⇒ G is a Williams Ck-space.

xy yx

xyz

yxz

xzy

yzx zyx

zxy xy yx

x1x2y1y2

x1y1y2x2

y1x1x2y2

x1y1x2y2

Williams Ck-space Sugawara Ck-space

Theorem (Hasui–Kishimoto–T)

Let G be a compact connected simple Lie group. Then, G(p) is a
Sugawara Ck-space if p > kn`.
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Higher homotopy commutativity of Lie groups

Higher homotopy commutativity of Lie groups

Corollary (Hasui–Kishimoto–T)

Let G be a compact connected simple Lie group. Then, the following
hold.

1. If p > (k + n)n`, then G(EnG)(p) is a Sugawara Ck-space.

2. If (n + 1)n` < p < (k + n)n`, then G(EnG)(p) is not a Williams
Ck-space.

This implies that G(EnG)(p) is not a double loop space if n < ∞.

Outline of the proof of Theorem

G is a Sugawara Ck-space if and only if the wedge sum of the inclusions
BkG ∨ BkG → BG extends over the union

⋃
i+ j=k BiG × B jG. It is

sufficient to observe that the obstruction of this extension problem
vanishes.
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Higher homotopy commutativity of Lie groups

Related works:
I Finiteness of An-equivalence types of gauge groups, J. London

Math. Soc. 85 (2012), 142-164.
I (with D. Kishimoto) Infiniteness of A∞-types of gauge groups, J.

Topol. 9 (2016), 181-191.
I Mapping spaces from projective spaces, Homology, Homotopy Appl.

18 (2016), 173-203.
I (with S. Hasui and D. Kishimoto) Higher homotopy commutativity in

localized Lie groups and gauge groups, preprint, arXiv:1612.08816.


	Background
	Homotopical properties of binary operation
	Higher homotopy structures on binary operation

	Stasheff's A-theory
	An-maps
	Classifying space and projective spaces

	Applications to Lie groups
	Gauge groups and mapping spaces
	Finiteness of gauge groups
	Extension of evaluation fiber sequence
	Higher homotopy commutativity of Lie groups


