Geometric Norm Equality Related to
the Harmonicity of the Poisson—Hua Kernel

for Homogeneous Siegel Domains

Takaaki NOMURA

(Kyoto University)

Twente

December 18, 2001



Motivation of this work

D : a Homogeneous Siegel domain

2 : the Shilov boundary of D

P(z,C) (zeD, Ce€2):

the Poisson kernel of D defined a la Hua

< : the Laplace-Beltrami operator of D

(with respect to the Bergman kernel)

Theorem (Hua-Look ('59), Korényi ('65), Xu ('79))
ZLP(-,§) =0V €X < D : symm.

D : symmetric
<= Vze D, do, € Hol(D) s.t.

def
2 . .
{ O, = identity,

z is an isolated fixed point of o,.
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[«<]  well known

e Hua-Look : direct and case-by-case computation
for 4 classical domains

e Koranyi : stronger result for general symmetric
domains
P(-,C) is annihilated by any Hol(D)°-invariant
differential operator without const. term

(Hol(D)® is semisimple for symmetric D)

[=] less known

e Lu Ru-Qian : An example of non-symmetric Siegel
domain for which P(-,C) is not killed by .Z

(Chinese Math. Acta, 7 (1965))

e Xu Yichao : though the proof is hardly traceable
at least for me

(1) Needs to understand his own theory of “N-Siegel domains”,
(2) Some of cited papers of his are written in Chinese

not available in English.



The purpose of this talk (my contribution)

Wants to know a geometric reason that the
theorem is true

(— geometric relationship with a Cayley transform)

e Connection with a geometric property of a
bounded model of homogeneous Siegel
domains

Validity of some norm equality
<= Symmetry of the domain

Specialists’ folklore

There is no canonical bounded model for
non-(quasi)symmetric Siegel domains.

My standpoint

Appropriate bounded model varies with
problems one treats.




® (Canonical bounded model for symmetric Siegel domains
------ Harish-Chandra model

of a Hermitian symmetric space
( Open unit ball of a positive Hermitian JTS )

w.r.t the spectral norm

® (Canonical bounded model for quasisymmetric Siegel domains
------ by Dorfmeister (1980)
Image of a Siegel domain under the Cayley transform
naturally defined in terms of Jordan algebra structure

(requires a proof for the bddness of the image, of course)

e For general homogeneous Siegel domains
We can consider

e Cayley transf. assoc. to the Szego kernel
(N, today's talk)
e Cayley transf. assoc. to the Bergman kernel
(N, JLT, 2001)
e Cayley transf. assoc. to the char. ftn of the cone
(R. Penney, 1996)

etc. ..
& More generally, one can define a family of Cayley transform

parametrized by admissible linear forms
(N, to appear in Diff. Geom. Appl.)



Siegel Domains

V . a real vector space
U
(2 : a regular open convex cone
( <= contains no entire line)

def
W =V
U : another complex vector space

QO :U x U — W, Hermitian sesquilinear Q-positive
e Q(u' ,u) = QO(u,u')*
| Qu,u) € Q\{0} (0#Vu e U)

D:={(uw) eUXW;w+w"—Q(u,u) € Q}

Siegel domain (of type Il)

Assume that D is homogeneous

i.e., Hol(D) ~ D transitively

o If U ={0}, then D=Q+iV.
(tube domain or type | domain)



3G : split solvable ~ D simply transitively

g := Lie(G) has a structure of normal j-algebra.
(Pjatetskii-Shapiro)
3/ : integrable almost complex structure on g
Jw : admissible linear form on g, i.e,
(x|y)w = ([Jx,y],w) defines a J-invariant

_/\

inner product on g.

Example (Koszul '55). Koszul form.
(x,B) :=tr(ad(Jx) —Jad(x)) (x€g).

P is admissible

o In fact, (x|y); is the real part of the Hermitian
inner product defined by the Bergman metric

on D =~ G (up to a positive scalar multiple).



Pseudoinverse assoc. with the Szego kernel

S : the Szego kernel of D
(= reprod. kernel of the Hardy space)

Hardy space H*(D)
holomorphic functions F' on D such that

sup/ /‘F(u,t+%Q(u,u)+ix){zdxdm(u) < ©
teQJUJV

31 : holomorphic on Q4 iV such that

S(z1,22) =1 (W1 +w; — Q(”lauz))
(zj=(u;,w;) € D)



In more detail

dH C G : s.t. H ~ Q simply transitively
E € Q (base point; virtual identity matrix)
Then H ~ Q (diffeo) by h — hE.

For each x : H — R one dim. repre.
define A, on Q by

A(hE) = (k) (h€ H)

e A, extends to a holomorphic function on
Q + iV as the Laplace transform of the
Riesz distribution on the dual cone QF
(Glndlkln, Ishi (J. Math. Soc. Japan, 2000)), where

Q“:={EecV"; (x,E) >0 Vxe Q\{0}}.

e Jx, dc >0 st. n =cA,




Cayley transform
Rez> 0 w| <1

D

0 F

N

Z_l—I—W_ 14 2 W_z—l_1 2
C1l-w 1—w z+1 z+1

If one puts in a complex semisimple Jordan algebra

e+w Z—e
Z=——), W= —ro,
e—w Z+e
then the above figure is the case for symmetric tube

domains.

e In general, if one can define something like (z+ 1)1
(denominator), one has a Cayley transform by
1-2(z+1)"1 for tube domains.



For each x € Q, define .# (x) € V* by
(v, 7 (x)) :== —Dylogn(x)
(Dvf(x):=4 (x—l—tv)’tzo)
o S(Ax)=A"17(x) (A>0)

Prop. (1) Z(x) € Q*and . : Q — Q* is bij.
(2) # extends analytically to a rational map
W — W=

(3) One also has an explicit formula for
1 Q* = Q, which continues analytically
to a rational map W* — W.
Thus . is birational.

(4) .7 :Q+iV — Z(Q+iV) is biholo.

Remark. If ) : H — R is defined in a natural way by
an admissible linear form, then the above proposition
holds for .7 = .#, [N, to appear in Diff. Geom. Appl.].



Cayley transform

E* .= 7(E) € Q"
Cw):=E*—2.7(W+E) for tube domains
€ (u,w):=2(0(u,),#(wW+E))dC(w)

eU’ € w*
U' : the space of antilinear forms on U

Prop. (1) € : D — € (D) is birational
and biholomorphic.
(2) €' can be written explicitly.

Theorem [N]. %'(D) is bounded
(in U WH).

Remark. (1) C, and %, can be defined similarly from
Z,,. One can prove that &, (D) is bounded [N].

(2) For general x, €, (D) for symmetric D is not the
standard Harish-Chandra model of a Hermitian

symmetric space.



Norm equality
e:=(0,F) € D : base point
(x|¥)e : J-inv. inner prod. on g

~+ Upon G=D by g+ g-e, we have
Hermitian inner prod. on T.(D) =U & W

~» Herm. inner prod. (-|), and norm || - ||,
on the ‘dual’ vector space U™ @ W*.

> : the Shilov boundary of D
2= {(u,w) eUXW;2Rew = Q(u,u)}

o W, cg: trad(x) = (x|¥,)» (Vxeg)

S(szz) n(w, +w;—0(uy,u,)) with n = cAy
Ay (hE) = x(h) = e 18" (o € h* C g*).

Theorem [N].

1L (25 = (Yo, a) for VE€X
<= Dissymm.and w| =7y, (v>0).

(x,p) =tr(ad (Jx) —Jad (x)) : Koszul form



(x]y)e inner prod. on g

~ left invariant Riemannian metric on G

~> Laplace—-Beltrami operator ., on G

Upon G=D by g+ g-e,
we have, for v = 8, £ = Z (' > 0)

(& : Laplace—Beltrami operator <~ the Bergman metric of D).

Prop (Urakawa '79). Z,=—-A+W¥,,.
o Ai=X{+--+ X5, €U(g),

o {X,,... dlmg} is an ONB of g w.rt. (+|-)q
(A is independent of choice of ONB.)

o (|W,),=trad(:),

e Elements of U(g) are regarded as left invariant
differential operators on G — thus if X € g,

Xf(x)= (xexth)‘ o




Poisson kernel

S(z,,2,) : the Szego kernel of the Siegel domain D
We know

S(Z17Z2) — W(Wl +w; — Q(”]?”Z))a N =cA,.

S(z,&) for z€ D and € € X has a meaning.

ISEE)P

P(z,L): S(z,2)

(zeD, E€X):

the Poisson kernel of D

PS(g):=P(g-e, &) (g€0).

Theorem [NI].
ZoPE (e) = (=|C (D)5 + (Pa, a))PL (e),

T,a)

where o is related to x by y(expT) = e

Remark. By P(g-z, §) = x(g)P(z, g '-C) (g € G),
LuPe =0VE €X <= Z,P/(e)=0 VX

Theorem. ﬁng =0forVC € X
<= Dissymm.and w| ., =v-Bf, (v >0).




Validity of the norm equality for symmetric D (@0 = f3)

D : symmetric = 2 := % (D) is the Harish-Chandra
model of a Hermitian symmetric space

In particular, 7 is circular (Note %'(e) = 0).

G:=Hol(Z)° : semisimple Lie gr. (with trivial center)
K:= Stab.(0) : maximal cpt subgr. of G

Circularity of 2 (= Kiis linear)
+ K-inv. of the Bergman metric
—> K C Unitary group

%3350 — —E*,
Shilov boundary X, of Z = K- (—E").

Since X, is also a G-orbit £, = G- (—E*) and since
Y is an orbit of a nilpotent subgroup of G C Hol(D)°,
we get

() C G (—E) =%,
— K- (—E")
{2 2l = I1E"Il -

We see easily that HE*H%3 = (¥, 0) in this case.




Norm equality —> symmetry of D

(1) Reduction to a quasisymmetric domain

K : the Bergman kernel of D

K(21,2) = No(w; + w3 — Ouy,u,)),
dxo: H—R3, J¢y, >0 st. ny= COAXO,
Ay (hE) = xo(h): Ay ~> hol. ftn on Q+iV

(x]y)x = DiDylogAy (E) : inner prod. of V

Def. D= D(Q,Q) is quasisymmetric

= Q is selfdual w.r.t. (-|-).

Define a non-associative prod. xy in V by

(xy|z)x = —3D:D,Dlog A, (E).

Prop. (Dorfmeister, D'Atri, Dotti, Vinberg).

D is quasisymmetric <= prod. xy is Jordan.

In this case, V is a Euclidean Jordan algebra.



g=axn
a : abelian, n : sum of a-root spaces
(positive roots only)

Possible forms of roots:

%(ak:l:aj) (J<k), oy, %(Xk

Always dimgq, =1 (Vk).

Prop. (D'Atri and Dotti '83; D : irred.)

D 1s quasisymmetric

(1) dimg(ak+aj)/2
(2) dimgock/2 is indep. of k.

is indep. of j,k,

Extend (-|-)« to a C-bilinear form on W x W.
(| y) = (Outy, 1) | E ) c

defines a Hermitian inner product on U.
For each w € W, define ¢(w) € End(U) by
(@(W)uy |uy) i = (Q(uy,uy) [w) .
Clearly @(E) = identity operator on U.



Prop. (Dorfmeister). D is quasisymmetric

—> w— @(w) is a Jordan *-repre. of W =V
{ o(w’) = @(w)",
O(wiw) =3 (@(w1)9(w,) +@(wy) 9 (w,)).

(2) Reduction : quasisymm =— symm

Quasisymmetric Siegel domain

Euclidean Jordan algebra V' and
<
Jordan *-representation @ of W = V..

Symmetric Siegel domain

< Positive Hermitian JTS

The following strange formula fills the gap:

(W) o(Q(u,u'))u= @(Q(@(w)u,u))u,
where u,u’ €U and w e W.



natural action
Z =W & U ~

complex semisimple
Jordan algebra

with V Euclidean JA

Prop. (Satake). Quasisymm. D is symm.

<= V and @ come from a positive Hermitian

JTS this way.

Definition of triple product: z; = (uj,wj) (j=1,2,3),
{z,,2,23} := (u,w), where
wi=5Q(w3)@(w3)u; +30(w))@(w3)uy
+ %@(Q(ul,uz))% + %‘P(Q(”y ”2))1417
wi= (ww3)wsy +w (Waws) —ws(w,ws)

+50(uy, 9(W3)uy) + 3 0(uz, (W} )uy).



Prop. (Dorfmeister).

Irreducible quasisymmetric D is symmetric

<= df|,...,f; Jordan frame of V s.t.
with U, := @(f,)U we have

Q(Quy,uy))uy =0
for Vu, € U, and Vu, € U,.

In a similar way

Theorem [N; Diff. Geom. Appl., 15-1 (2001)].
Berezin transforms on D commute with £,
<= D is symmetric and

wl[g,g] — Yﬁ[g,g] (v>0).

Related norm equality

%y - Cayley transf. assoc. to the Bergman kernel.

Theorem [N; Transform. Groups, 6-3 (2001)].

15(8-e)llo = [|€5(g " - €)llo holds for Vg € G
<= D is symmetric and

Oljgg) =V Bl g (v>0).




