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Siegel Domains — Introduction —

Introduced by Pjatetskii-Shapiro (1959),
holomorphically equivalent to bounded domains

* Study of homogeneous bounded domains (HBD) by E. Cartan
[Abh. Math. Sem. Univ. Hamburg, 11 (1935)]
e HBD in C? and C? are all symmetric.

Assumptions on the automorphism group: ( = symmetry).
A. Borel, Koszul semisimple (1954, 1955)

Hano unimodular  (1957)

Note: Cartan did not make the conjecture that all HBDs are
symmetric. What Cartan actually wrote is:

“..., il semble que la, comme dans beaucoups d'autres problemes,
il faille s’appuyer sur une idée nouvelle.”

Example of non-symmetric (type Il) Siegel domain in C* (1959)
Gindikin wrote: [Israel Math. Conf. Proc ]

“It is funny to remember now, how suspiciously we listened for
the first time to the proof that this domain is nonsymmetric.”

Example of non-selfdual homogeneous convex cone in R>
by Vinberg (1960)
~+ C> contains a non-symmetric type | Siegel domain
(= tube domain)

Natural Question. How do we characterize symmetric
Siegel domains (among homogeneous Siegel domains)?




Siegel Domains — Definition —

V' : a real vector space
U
() . a regular open convex cone

( = contains no entire line)
de

W: =V, (w— w": conjugation w.r.t. V)
U : another complex vector space

O :U x U — W, Hermitian sesquilinear -positive
| O, u) = Q(u,u')"
Ie., =
O(u,u) € Q\{0} (0 # Vu e U)

D:={(u,w) €U XW;w+w"—QO(u,u) € Q}
Siegel domain (of type II)

o If U=1{0}, then D=Q+iV.
(tube domain or type | domain)

Assume that D is homogeneous

i.e., Hol(D) ~ D transitively



Symmetry Characterizations

D: a homogeneous Siegel domain

D is symmetric
<= Vz€ D, Jo, € Hol(D) s.t.

def
2 . .
{ o, = identity,

Z is an isolated fixed point of o,.

Satake, Dorfmeister (both late '70s)
.-+ In terms of defining data
(I will touch on this later in this talk.)

D'Atri (1979) --- Diff. Geometric (curvature cond.)

[DDZ] D'Atri, Dorfmeister and Y. Zhao (1985)
.- - Study of isotropy representation

One of DDZ.’s results is:

D(D)HIP)" is commutative <= D is symm.




Today’s talk

# . Laplace—Beltrami operator
(w.r.t. a standard metric of D)

Theorem A. [N, 2001]
< commutes with the Berezin transforms
<= D is symmetric and
the metric considered is Bergman
(up to const. multiple > 0).

Theorem B. [N, preprint]
The Poisson—Hua kernel is annihilated by .Z
<= D is symmetric and
the metric considered 1s Bergman
(up to const. multiple > 0).

Remark. If one takes the Bergman metric from the
beginning in Theorem B, then the theorem is due to
Hua—-Look ('59), Kordnyi ('65) for <
Xu ('79) for =
However, | think very few people traced Xu's proof

(required to understand his own theory of N-Siegel domains, and
to read some of his papers written in Chinese without English

translation).



Pjatetskii-Shapiro algebras — normal j-algebras —

3G : split solvable ™~ D simply transitively

g := Lie(G) has a structure of normal j-algebra.
(Pjatetskii-Shapiro algebra)
3/ : integrable almost complex structure on g,
Jw : admissible linear form on g, i.e,
(x|v)w = (|Jx,y],w) defines a J-invariant

inner product on g.

\
Example (Koszul '55). Koszul form.

(x,B) :=tr(ad(Jx) —Jad(x)) (x € g).
B is admissible

o In fact, (x|y)g is the real part of the Hermitian
inner product on g = T¢(D) defined by the Bergman
metric on D =~ G (up to a positive scalar multiple).




Structure of g

g=axn {a . abelian,

n : sum of a-root spaces (positive roots only)

Always contains a product of ax+b algebra:
dH,,...,H, : a basis of a (r :=rankg) s.t.
if £;:=—JH, €n, then |[H, E\| =0, E,.

Possible forms of roots:
1 : 1
slop+a;) (j<k), o, 504
0,...,0 : basis of a* dual to H,, ..., H,.

e g, =RE, (Vk).
A k
® g, are mutually orthogonal w.r.t. {-|-), (Vo: adm.)

Eleg: (E,E)=1and =0onaand g, (ax# o).

e Admissible linear forms are a*® {0} ® Y R_,E;.
k=1

)
For s = (sq,...,8,) € R", we put EJ := Y s, E € g".
k=1

If s, >0,...,5, >0 (we'll write s > 0), then
(x|y)s:= (|Jx,y],ES) is a J-inv. inner product on g

~> left invariant Riemannian metric on G

~ % the corresponding L-B operator on G.



Berezin transforms

K : the Bergman kernel of D

the Berezin kernel

K(2,2,)
A (z4,2,)) =
)L( v%) (K<51721)K(szzz

’ 2

A
)) (z;€D; A €R)

e A, is G-invariant: A, (g-2;, 8:2,) =A,(2),2,).
Since D ~ G, we work on G:
a,(g):=A,(g-e;e) (g€G, ecD:fixed ref. pt.)

® a, € LYG)if A > A, (0 < Ay < 1: explicitly calculated).

non-vanishing condition for Hilbert spaces of holomorphic
functions on D, in which k* is the reproducing kernel.

Berezin transform

B, f(x) = [ f)a, (7 'x)dy = fxa, ()
B, € B(L*(G)) : selfadjoint, positive.

Recall B € g: Koszul form. B, = E_|, with ¢ > 0.

Theorem A. A > A, : fixed.
B, commutes with Z;
<= D is symmetric and s = y¢ with y > 0.




Poisson—Hua kernel

S(z,,2,) : the Szego kernel of D
(= reprod. kernel of the Hardy space)

Hardy space

Hilbert space of holomorphic functions F' on D s.t.

sup a’m /‘F u,t+30(u, u)+lx)‘ dx < oo
reQ

2 : the Shilov boundary of D
2= {(u,w) €U xW;2Rew = Q(u,u)}

S(z,8) for z€ D and { € X still has a meaning.

PO =5

(zeD, L €X):

the Poisson kernel of D

PE(g):=P(g-e §) (g€G).

Theorem B. % PG 0forvV{ eX
<= Dis symmetrlc and s = yc with ¥ > 0.




Geometric backgrounds

Geometric reason that Theorems A and B are true ?

Connection with a geometry of bounded models of
homogeneous Siegel domains

geometry «~» geometric norm equality

e Validity of norm equality
<= Symmetry of the domain

Specialists’ folklore

There is no (most) canonical bounded model for
non-(quasi)symmetric Siegel domains.

My standpoint

Appropriate bounded model varies with
problems one treats.



® Canonical bounded model for symmetric Siegel domains
------ Harish-Chandra model

of a non-cpt Hermitian symmetric space

( Open unit ball of a positive Hermitian JTS )

w.r.t the spectral norm

® Canonical bounded model for quasisymmetric Siegel domains
------ by Dorfmeister (1980)
Image of a Siegel domain under the Cayley transform

naturally defined in terms of Jordan algebra structure

e For general homogeneous Siegel domains

We can consider

e Cayley transf. assoc. to the Szego kernel

e Cayley transf. assoc. to the Bergman kernel

e Cayley transf. assoc. to the char. ftn of the cone
etc. ..

More generally, we can define Cayley transforms
associated to the admissible linear forms E (s > 0).



Cayley transform
Rez >0 w| < 1

o

0 o

N

N

If one puts in a complex semisimple Jordan algebra

then the above figure is the case for symmetric tube
domains.

e In general, if one can define something like (z+1)"!
(denominator), one has a Cayley transform by
1—2(z+1)"! for tube domains.



Pseudoinverse assoc. to £

dH C G : s.t. H ~ Q simply transitively

E € Q (canonically fixed base point)
Then H ~ Q (diffeo) by h+— hE.

e Note G=NxA, H=N,xA with A:=expa

.
For s=(s,...,s;) €R", put 05:= jglsjaj ca

(ay,...,0: basis of a* dual to H,,...,H,).
Then, (x,o ) = (Jx,E) (Vx € a).

xs(expx) :=exp(x, o) (x €a) :
character of A, hence of H.

~~ function on Q by A(hE) := y.(h) (h€ H)

e A extends to a holomorphic function on Q4 iV

as the Laplace transform of the Riesz distribution
on the dual cone Q* (Gindikin, Ishi (2000)), where

Q" :={EeV*;(x,&) >0 Vxe Q\{0}}.




For each x € Q, define .Z(x) € V* by
(v, Z5(x)) := =D, logA_(x) (veV).

(va(x) = % (x+tv)’tzo)
o Ji(Ax)=A"1%((x) (A >0)

Proposition. Suppose E{ 1s admissible.

(1) H(x) € Q* and & : Q — QF is bijective.

(2) ¥ extends analytically to a rational map
W — W*,

(3) One also has an explicit formula for
Z1: Q* — Q, which continues analytically
to a rational map W* — W,
Thus ¥ is birational.

(4) Is:Q+iV — F(Q+iV) is biholo.

Remark. Bergman kernel and Szego kernel are of the
form (up to positive const.)

N(z1,2) = A—s(Wl +w; — Q(’/‘la’h)) (Zj = (ujij))'
and the char. ftn of Q is A_; for some s > 0 (up to
positive const.).

e In general J(Q+iV) ¢ Q*+iV*.




Cayley transform
One has E; = J,(E) € Q*.
Cs(w) :=E;—2.%(w+E) for tube domains

Cs(u,w) :=2(0(u, "), Fs(w+E)) & Cs(w)
eU" cew*
U" : the space of antilinear forms on U

Proposition.
(1) %s: D — %s(D) is birat. and biholomorphic.
(2) %,! can be written explicitly.

Theorem [N]. %5(D) is bounded
(inU" ®W").

Remark. For general s > 0, 64(D) for symmetric D is
not the standard Harish-Chandra model of a
non-compact Hermitian symmetric space

(can be even non-convex, for example).




Norm equality I

(x|y)s : J-inv. inner prod. on g
~» Upon G=D by g+ g-e, we have
Hermitian inner prod. on To(D) =U & W

~» Hermitian inner product (-|-)s and norm || -|/s on
the “dual’ vector space U @ W*.

Take W € g so that trad (x) = (x| Ws)s (Vx € g).
Then ¥ € a.

Recall that |, = E|, for some ¢ > 0, so
A_.(w;+w5—Q(u,,u,)) is the Bergman kernel of D
(up to pos. const.).

Proposition. Forany g € G
Zsa,(g) =24, (g) (=2 Ce(g &) 5 +{¥s, o))

Observations. (1) a,(g) =a,(g™") for Vg € G.
(2) B, commutes with .Z;
— Ya,(g) =%a,(g7") for Vg € G.




Theorem. [N, 2001]
1e(g-e)lls = €e(g™" e)|s for Vg € G
<= D is symmetric and s = y¢ with y > 0.

Since %¢(e) =0, the Theorem can be rephrased as:

Theorem.
|h-0|ls = ||h'-0l||s for Vh € 6e0Go b, —
9 :=%6(D) is symmetric and s = yc¢ with y > 0.

It D is symmetric, & is essentially the Harish-Chandra
model of a non-cpt Hermitian symmetric space.

G :=Hol(Z)° : semisimple Lie group
K := Stab(0) : maximal cpt subgroup of G.

Using G = KAK with A :=%,0A0%. !, one can prove
easily that ||2-0||c = ||A~!-0]|¢ for any h € G.



The case of unitdisk D C C

c=sutt={e= (5 B) ilap-ipr -1}

o
with g.Z:_Z+E (zeD).
Bz+o
)
g-OIQ
< * g = lg0=lg 0l
1 _ P
g 1.0=—
\ (04

However, if one stays within the Iwasawa solvable
subgroup, we have an interesting picture.

g t t )
coshi sinhi
A:=<a:= ; ; ;teER B,
inh — h—
\ sin 5 COS 5 }
r l l )
I I:
N:=qng = ; ; ,EER .
\ AR }

Then %”COGO%”C_I = NA.



r:=a,-0=tanh(z/2)

P ngat-Ozné-rE N-7:
horocycle emanating from 1 € dID cutting R at r.

O : (ngat)_1 O0=n_,a,0=n_,.- (=r)eN-(—r):
horocycle emanating from 1 € dDD cutting R at —r.



Norm equality 11

Take b > 0 so that A [ (w, +w; — O(u,,u,)) is the
Szego kernel of D (up to positive const.).

Proposition.

ZLPE () = (=11, (OIS + (Ws, 0,)) P (e).

Remark. By P(g-z, §) = x_(8)P(z, 87" {) (€ G),
LP; =0V €X <= LP/(e)=0 V(X

Theorem [N].

16, (D)ls = (s, 0,) for VE € X
<= D is symmetric and s = yb with ¥ > 0.
In this case we also have s = y'¢ with Y > 0.

Recall ¢ > 0 is taken so that B|, = E}|,, where B is
the Koszul form.




Validity of NE for symmetric D (s = ¢)

D : symmetric = 7 := %.(D) is the Harish-Chandra
model of a Hermitian symmetric space

In particular, 7 is circular (Note %¢(e) =0).

G:=Hol(2)° : semisimple Lie gr. (with trivial center)

K:= Stab(0) : maximal cpt subgr. of G

Circularity of 7 ( = Kiis linear)
+ K-invariance of the Bergman metric
—> K C Unitary group

G230 —E,
Shilov boundary X, of 7 = K- (—E).

Since X, is also a G-orbit X, = G- (—E;) and since
Y is an orbit of a nilpotent subgroup of G C Hol(D)®,
we get
(5)C G (~E) -3,
= K- (—E)
CHzs llzlle = [1EC -

We see easily that ||E}||Z = (W, 04,) in this case
(because b is a multiple of ¢).



Norm equality —> symmetry of D

Assumption :

(1) €e(g-e)lls=1Ce(g™" - €)lls for Vg € G.
or

(i) 16, (O)II2 = (Ws, ) for V¢ € %

What we do is substitute specific g € G in (i) (resp.
¢ € X in (ii)) and extract informations.

(1) Reduction to a quasisymmetric domain

K : the Bergman kernel of D
Recall that x(z,,z,) = A_(w, + w5 —O(u,,u,))
(up to positive const.).

If x,y €V, define (x|y),:=D,D,logA_.(E).

Definition. D = D(Q, Q) is quasisymmetric

= Q is selfdual w.rt. (|- ).

Define a non-associative product xy in V by

(xy|z)x = —2DyDyD logA_(E).



Prop. (Dorfmeister-D’ Atri-Dotti-Vinberg)

D 1s quasisymmetric <= product xy is Jordan.

In this case, V is a Euclidean Jordan algebra.

My tool is the following

Proposition. (D’Atri-Dotti) D : irreducible.

D is quasisymmetric
(1) dimg
(2) dimg o, /2 1s indep. of k.

/2 1s indep. of j,k,

(ock+ocj

Extend (-|-)x to a C-bilinear form on W x W.

(g [1y) e i = (Quy,up) | E )i
defines a Hermitian inner product on U.

For each w € W, define ¢(w) € End(U) by
(Pw)uy [uy) e = (Quy,u5) [ W)

Clearly @(E) = identity operator on U.



Proposition. (Dorfmeister). D is quasisymm.

—> w+— @(w) is a Jordan *-repre. of W =V,

{ o(w") = o(w),

o(wyw,) = 5(‘P(W1)(P(W2) + (P(Wz)(P(W1))-

(2) Reduction : quasisymm = symm

Quasisymmetric Siegel domain

Jordan *-representation ¢ of W = V..

{Euclidean Jordan algebra V and
<—>

Symmetric Siegel domain
< Positive Hermitian JTS

The following strange formula fills the gap:

(W) (Q(u,u'))u = (Q(@(w)u,u))u,
where u,u’ €U and w € W.



natural action
Z =W o U ~

complex semisimple Jordan algebra x-repre. of W
Jordan algebra

W=V,
with V' Euclidean JA

Proposition. (Satake) Quasisymm.D is symm.

<= V and ¢ come from a positive Hermitian

JTS this way.

Definition of triple product: z; = (uj,wj) (j=1,2,3),
{ZI,Z2,Z3} = (M,W), where
U= %‘P(Wg,)(P(W;)”l + %‘P(WO(P(W;)%
+%¢(Q(ul’u2))u3+%(P(Q(”3au2))up
1
2

wi= (W wh)wy +w (Waws) — ws (w,ws)

+ 300y, 9(W3)iy) + 3013, (W} )y ).



Proposition. (Dorfmeister)
Irreducible quasisymmetric D is symmetric

<= df;,..., [ Jordan frame of V s.t.
with U, := ¢(f,)U we have

Q(Quy,uy))uy =0
for Vu, € U, and Vu, € U,.
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