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Motivation of this work

D : a Homogeneous Siegel domain

Σ : the Shilov boundary of D

P (z, ζ) (z ∈ D, ζ ∈ Σ) :
the Poisson kernel of D defined à la Hua

L : the Laplace–Beltrami operator of D

(with respect to the Bergman kernel)

Theorem (Hua-Look (’59), Korányi (’65), Xu (’79))

LP (·, ζ) = 0 ∀ζ ∈ Σ ⇐⇒ D : symm.

D : symmetric

⇐⇒
def

∀z ∈ D, ∃σz ∈ Hol(D) s.t.{
σ2z = identity,

z is an isolated fixed point of σz.
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[⇐] well known

• Hua-Look : direct and case-by-case computation
for 4 classical domains

• Korányi : stronger result for general symmetric

domains

P (·, ζ) is annihilated by any Hol(D)◦-invariant
differential operator without const. term

(Hol(D)◦ is semisimple for symmetric D)

[⇒] less known

• Lu Ru-Qian : An example of non-symmetric Siegel
domain for which P (·, ζ) is not killed by L
(Chinese Math. Acta, 7 (1965))

• Xu Yichao : though the proof is hardly traceable
at least for me

(1) Needs to understand his own theory of “N -Siegel domains”,

(2) Some of cited papers of his are written in Chinese

not available in English.



The purpose of this talk (my contribution)

Wants to know a geometric reason that the
theorem is true

(→ geometric relationship with a Cayley transform)

• Connection with a geometric property of a
bounded model of homogeneous Siegel
domains

Validity of some norm equality
⇐⇒ Symmetry of the domain

Specialists’ folklore

There is no canonical bounded model for
non-(quasi)symmetric Siegel domains.



• Canonical bounded model for symmetric Siegel domains

· · · · · · Harish-Chandra model
of a Hermitian symmetric space(

Open unit ball of a positive Hermitian JTS
w.r.t the spectral norm

)
• Canonical bounded model for quasisymmetric Siegel domains

· · · · · · by Dorfmeister (1980)
Image of a Siegel domain under the Cayley transform

naturally defined in terms of Jordan algebra structure

(requires a proof for the bddness of the image, of course)

• For general homogeneous Siegel domains
We can consider

• Cayley transf. assoc. with the Szegö kernel
(N, today’s talk)

• Cayley transf. assoc. with the Bergman kernel
(N, JLT, 2001)

• Cayley transf. assoc. with the char. ftn of the cone
(R. Penney, 1996)

etc

♣ More generally, one can define a family of Cayley transform

parametrized by admissible linear forms (N, preprint, 2001).



Siegel Domains

V : a real vector space
∪
Ω : a regular open convex cone

(⇐⇒
def

contains no entire line)

W := VC (w 
→ w∗ : conjugation w.r.t. V )

U : another complex vector space

Q : U×U →W , Hermitian sesquilinear Ω-positive

i.e.,

{
Q(u′, u) = Q(u, u′)∗

Q(u, u) ∈ Ω \ {0} (0 �= ∀u ∈ U)

D := {(u, w) ∈ U×W ; w+w∗−Q(u, u) ∈ Ω}
Siegel domain (of type II)

Assume that D is homogeneous

i.e., Hol(D) � D transitively

• If U = {0}, then D = Ω + iV .
(tube domain or type I domain)



∃G : split solvable � D simply transitively

g := Lie(G) has a structure of normal j-algebra.
(Pjatetskii-Shapiro)


∃J : integrable almost complex structure on g

∃ω : admissible linear form on g, i.e.,

〈 x | y 〉ω := 〈[Jx, y], ω〉 defines a J-invariant
inner product on g.

Example (Koszul ’55). Koszul form.

〈x, β〉 := tr
(
ad(Jx)− J ad(x)

)
(x ∈ g).

β is admissible

• In fact, 〈x | y 〉β is the real part of the Hermitian
inner product defined by the Bergman metric

on D ≈ G (up to a positive scalar multiple).

Throughout this talk we take ω = β.



Cayley transform
Re z > 0 |w| < 1

•0 •1• −1•0 •1

•∞

z =
1 + w

1 − w
= −1 +

2

1 − w
w =

z − 1

z + 1
= 1 − 2

z + 1

If one puts in a complex semisimple Jordan algebra

z =
e + w

e − w
, w =

z − e

z + e
,

then the above figure is the case for symmetric tube
domains.

• In general, if one can define something like (z+1)−1

(denominator), one has a Cayley transform by
1 − 2(z + 1)−1 for tube domains.



Pseudoinverse assoc. with the Szegö kernel

S : the Szegö kernel of D
(= reprod. kernel of the Hardy space)

Hardy space H2(D)

holomorphic functions F on D such that

sup
t∈Ω

∫
U

∫
V

∣∣F(
u, t+1

2
Q(u, u)+ix

)∣∣2 dxdm(u) <∞

∃η : holomorphic on Ω + iV such that

S(z1, z2) = η
(
w1 + w∗2 −Q(u1, u2)

)
(zj = (uj, wj) ∈ D)



In more detail

∃H ⊂ G : s.t. H � Ω simply transitively

E ∈ Ω (base point; virtual identity matrix)

Then H ≈ Ω (diffeo) by h 
→ hE.

For each χ : H → R
×
+ one dim. repre.

define ∆χ on Ω by

∆χ(hE) := χ(h) (h ∈ H)

• ∆χ extends to a holomorphic function on
Ω + iV as the Laplace transform of the
Riesz distribution on the dual cone Ω∗
(Gindikin, Ishi (J. Math. Soc. Japan, 2000)), where

Ω∗ := {ξ ∈ V ∗ ; 〈x, ξ〉 > 0 ∀x ∈ Ω \ {0}}.

• ∃χ, ∃c > 0 s.t. η = c∆χ



For each x ∈ Ω, define I(x) ∈ V ∗ by
〈v, I(x)〉 := −Dv log η(x)(

Dvf(x) :=
d
dt
f(x + tv)

∣∣
t=0

)
• I(λx) = λ−1I(x) (λ > 0)

Prop. (1) I(x) ∈ Ω∗ and I : Ω� Ω∗ is bijec.

(2) I extends analytically to a rational map
W → W ∗.

(3) One also has an explicit formula for
I−1 : Ω∗ � Ω, which continues analytically
to a rational map W ∗ → W .
Thus I is birational.

(4) I : Ω+ iV � I(Ω+ iV ) is biholomorphic.

Remark. If χ : H → R
×
+ is defined in a natural way by

an admissible linear form, then the above proposition

holds for I = Iχ [N, preprint 2001].



Cayley transform

E∗ := I(E) ∈ Ω∗.
C(w) := E∗ − 2 I(w + E) for tube domains

C(u,w) := 2 〈Q(u, ·), I(w + E)〉 ⊕ C(w)
∈ U † ∈ W ∗

U† : the space of antilinear forms on U

Prop. (1) C : D � C(D) is birational
and biholomorphic.

(2) C−1 can be written explicitly.

Theorem [N]. C(D) is bounded
(in U† ⊕W ∗).

Remark. (1) Cχ and Cχ can be defined similarly from
Iχ. One can prove that Cχ(D) is bounded [N].

(2) For general χ, Cχ(D) for symmetric D is not the

standard Harish-Chandra model of a Hermitian

symmetric space (no circularity).



Norm equality

e := (0, E) ∈ D : base point

the Bergman metric of the Siegel domain D

� Hermitian inner prod. on Te(D) ≡ U⊕W
� Hermitian inner prod (· | ·) and norm ‖ · ‖

on the dual vector space U† ⊕W ∗.

Σ : the Shilov boundary of D
Σ =

{
(u,w) ∈ U×W ; 2 Rew = Q(u, u)

}
〈x, β〉 = tr (ad (Jx)−J ad (x)) : Koszul form
� inner prod. 〈x | y 〉β = 〈[Jx, y], β〉 on g

• Ψ ∈ g for which tr ad (x) = 〈x |Ψ 〉β (∀x ∈ g)

S(z1, z2) = η(w1 + w∗2 −Q(u1, u2)) with η = c∆χ

∆χ(hE) = χ(h) = e−〈log h,α〉 (α ∈ h∗ ⊂ g∗).

Theorem [N].

‖C(ζ)‖2 = 〈Ψ, α〉 for ∀ζ ∈ Σ ⇐⇒ D is symm.



〈x | y 〉β inner prod. on g

� left invariant Riemannian metric on G

� Laplace–Beltrami operator Lβ on G
G ≈ D (diffeo) by g 
→ g · e.
Upon G ≡ D, we have Lβ = c′L (c′ > 0),

(L : Laplace–Beltrami operator� the Bergman metric of D)

Prop (Urakawa ’79). Lβ = −Λ + Ψ.
• Λ := X2

1 + · · · +X2
dim g ∈ U(g),

• {X1, . . . , Xdim g} is an ONB of g w.r.t. 〈 · | · 〉β
(Λ is independent of choice of ONB.)

• 〈 · |Ψ 〉β = tr ad (·),
• Elements of U(g) are regarded as left invariant
differential operators on G — thus if X ∈ g,

Xf(x) = d
dtf(x exp tX)

∣∣
t=0

.



Poisson kernel

S(z1, z2) : the Szegö kernel of the Siegel domain D

We know

S(z1, z2) = η(w1 + w∗2 −Q(u1, u2)), η = c∆χ.

S(z, ζ) for z ∈ D and ζ ∈ Σ has a meaning.

P (z, ζ) :=
|S(z, ζ)|2
S(z, z)

(z ∈ D, ζ ∈ Σ) :
the Poisson kernel of D

PG
ζ (g) := P (g · e, ζ) (g ∈ G).

Theorem [N].

LβP
G
ζ (e) = (−‖C(ζ)‖2 + 〈Ψ, α〉)PG

ζ (e),

where α is related to χ by χ(expT ) = e−〈T,α〉.

Remark. By P (g · z, ζ) = χ(g)P (z, g−1 · ζ) (g ∈ G),

LβP
G
ζ = 0 ∀ζ ∈ Σ ⇐⇒ LβP

G
ζ (e) = 0 ∀ζ ∈ Σ.

Theorem.

LβP
G
ζ = 0 for ∀ζ ∈ Σ ⇐⇒ D is symmetric.



Validity of the norm equality for symmetric D

D : symmetric =⇒ D := C(D) is the Harish-Chandra
model of a Hermitian symmetric space

In particular, D is circular (Note C(e) = 0).

G := Hol(D)◦ : semisimple Lie gr. (with trivial center)
K := StabG(0) : maximal cpt subgr. of G

Circularity of D =⇒ K ⊂ Unitary group{
C : Σ # 0 
→ −E∗,
Shilov boundary ΣD of D = K · (−E∗).

Since ΣD is also a G-orbit ΣD = G · (−E∗) and since
Σ is an orbit of a nilpotent subgroup of G ⊂ Hol(D)◦,
we get

C(Σ) ⊂ G · (−E∗) = ΣD
= K · (−E∗)
⊂ {z ; ‖z‖ = ‖E∗‖}.

We see easily that ‖E∗‖2 = 〈Ψ, α〉 in this case.



Norm equality =⇒ symmetry of D

Assumption : ‖C(ζ)‖2 = 〈Ψ, α〉 for ∀ζ ∈ Σ.
(1) Reduction to a quasisymmetric domain

κ : the Bergman kernel of D
 κ(z1, z2) = η0(w1 + w∗2 −Q(u1, u2)),
∃χ0 : H → R

×
+, ∃c0 > 0 s.t. η0 = c0∆χ0

,
∆χ0

(hE) = χ0(h): ∆χ0
� hol. ftn on Ω + iV

〈x | y 〉κ := DxDy log ∆χ0
(E) : inner prod. of V

Def. D = D(Ω, Q) is quasisymmetric

⇐⇒
def

Ω is selfdual w.r.t. 〈 · | · 〉κ.

Define a non-associative prod. xy in V by

〈 xy | z 〉κ = −1
2DxDyDz log ∆χ0

(E).

Prop.(Dorfmeister, D’Atri, Dotti Miatello, Vinberg).

D is quasisymmetric ⇐⇒ prod. xy is Jordan.

In this case, V is a Euclidean Jordan algebra.



g = a � n
a : abelian, n : sum of a-root spaces

(positive roots only)

Possible forms of roots:
1
2
(αk ± αk) (j < k), αk,

1
2
αk

Always dim gαk = 1 (∀k).

Prop. (D’Atri and Dotti Miatello ’83; D : irred.)

D is quasisymmetric

⇐⇒
{
(1) dim g(αk+αj)/2 is indep. of j, k,

(2) dim gαk/2 is indep. of k.

Extend 〈 · | · 〉κ to a C-bilinear form on W ×W .

(u1 | u2)κ := 〈Q(u1, u2) |E 〉κ
defines a Hermitian inner product on U .

For each w ∈W , define ϕ(w) ∈ EndC(U) by

(ϕ(w)u1 | u2)κ = 〈Q(u1, u2) |w 〉κ.
Clearly ϕ(E) = identity operator on U .



Prop. (Dorfmeister). D is quasisymmetric

=⇒ w 
→ ϕ(w) is a Jordan ∗-repre. ofW = VC{
ϕ(w∗) = ϕ(w)∗,

ϕ(w1w2) =
1
2

(
ϕ(w1)ϕ(w2) + ϕ(w2)ϕ(w1)

)
.

(2) Reduction : quasisymm =⇒ symm

Quasisymmetric Siegel domain

↔
{
Euclidean Jordan algebra V and

Jordan ∗-representation ϕ of W = VC.

Symmetric Siegel domain

↔ Positive Hermitian JTS



W U W U

Z = W ⊕ U �

natural action

complex semisimple Jordan algebra ∗-repre. of W
Jordan algebra

W = VC

with V Euclidean JA

Prop. (Satake).

Quasisymmetric D is symmetric

⇐⇒ V and ϕ come from a positive Hermitian

JTS this way.

Prop. (Dorfmeister).

Irreducible quasisymmetric D is symmetric

⇐⇒ ∃f1, . . . , fr: Jordan frame of V s.t.
with Uk := ϕ(fk)U we have

ϕ(Q(u1, u2))u1 = 0

for ∀u1 ∈ U1 and ∀u2 ∈ U2.



In a similar way

Theorem [N; Diff. Geom. Appl., 15-1 (2001)].
Berezin transforms on D commute with the
Laplace–Beltrami operator
⇐⇒ D is symmetric.

Related norm equality

CB : Cayley transf. assoc. with the Bergman kernel.

Theorem [N; Transform. Groups, 6-3 (2001)].

‖CB(g · e)‖ = ‖CB(g−1 · e)‖ holds for ∀g ∈ G
⇐⇒ D is symmetric.


