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Siegel Domains — Introduction —

Introduced by Piatetski-Shapiro (1957),
holomorphically equivalent to bounded domains

Motivation for the introduction

e Description of Hermitian symmetric spaces (HSS)
by upper-half plane type domains

e There are HSSs that cannot be realized as tube
domains V +1Q
(V: real VS, Q: open convex cone in V)

e Application to the theory of automorphic functions

The most unexpected application
------ Discovery of “many” non-symmetric homogeneous

bounded domains (HBD) (1959)

Earlier study of HBD
E. Cartan, Abh. Math. Sem. Univ. Hamburg, 11 (1935)
------ HBDs in C? and C3 are all symmetric.

Problem : What happens in C" forn=47

Remark. Cartan did not make the conjecture that all
HBDs are symmetric. What Cartan actually wrote is:
“..., il semble que la, comme dans beaucoups d'autres problemes,
il faille s"appuyer sur une idée nouvelle.”



Y : HBD

Armand Borel (1954), Jean-Louis Koszul (1955)
2 is a hom. space of ss Lie gr. = & is symmetric.

Jun-ichi Hano (1957)
weaken the assumption of ss to unimodular

(unimodular <ﬁ> left Haar measure is right invariant)
e

Piatetski-Shapiro (1959)
Examples of non-symm. homogeneous Siegel domains
(type Il domains = non-tube domains)

e Gindikin wrote: [Israel Math. Conf. Proc.]
“It is funny to remember now, how suspiciously we listened for

the first time to the proof that this domain is nonsymmetric.”

Vinberg (1960)
Non-symm. homogeneous tube domain
«~ Non-selfdual homogenous open convex cone

Min. dimension =5

How do we characterize
symmetric Siegel domains (among homogeneous
Siegel domains)?
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Siegel Domains — Definition —

V : a real vector space (dimV < )
U
Q) : a regular open convex cone

( = contains no entire line)
e

W=V,
U : another complex vector space (dimU < oo)

Q:U xU — W, Hermitian sesquilinear Q-positive
) Q(u/7 U) — Q(U, U/)*
ie., -
Q(u,u) € Q\ {0} (0#VueU)

Siegel domain (of type Il)

D:={(uw) €U xW; w+w —Q(u,u) € Q}

e U = {0} is allowed. In this case D =Q+1iV.
(tube domain or type | domain)

Assume that D is homogeneous

i.e., Hol(D) ~ D transitively



D: a homogeneous Siegel domain

e D is symmetric
<= Vze D, Jo, € Hol(D) s.t.

def
{022 = identity,

Z is an isolated fixed point of 0.

Siegel domain of rank 1 (symmetric)

V=R, Q={xeR; x>0}
W=C, U=C"(m=0,12,...),
Q(uy, Up) = 3T, (ug,u, € C).

D= {(uw); Rew> Z[u]?} »B™IcC™l=U xW

u w—1
w+1 w+1

by €' (u,w) = ( ) . Cayley transform

e B™1is symmetric

------ Z+— —Zis the symmetry around 0 € B™?.

Via €, the symmetry around (0,1) is given by
(U,W) = (_W—lua W_l)
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Non-quasisymmetric Siegel domain

V =Sym(2,R), Q=Sym " (2,R),
W =Sym(2,C), U=C,

0
Q(uy, Up) = (8 2U1U2) (U, u, € C).

Wy W,
W, Ws
D = {(u,w) ; 2Rew—Q(u,u) € Q}

= {(u,wl,wz,w3) e C*; (Vl 'z > > O}.

ByWBWZ ( ) <—>(W17W27W3)6<C3

V, Vi—|uf®

Non-symmetric quasisymmetric Siegel domain

V, Q W : as above, U =C?

2U.U, u,ts, + u,l,
Qu,u) = (u U. Jiulu’ 122u U’2 ) ew.
1~2 271 2¥2

2 U _
Q(u,u) = 2( uy| Reuluz) € Q.

Reul, |u,l®

_ [ vi—|ul® v,—Reul,
D_{(U’W>’<v2—Reu1U2 V, — |Uy|? >0




Characterizations of symmetric Siegel domains

Late 1970's : Satake (book published in 1980)
Dorfmeister (Habilitationsschrift, 1978)
.-+ In terms of defining data

D'Atri (1979) --- Diff. Geometric (curvature cond.)
D’Atri, Dorfmeister and Y. Zhao [DDZ] (1985)

.-+ Study of isotropy representation

One of DDZ's results
D(D)® is commutative <= D is symmetric

G :=Hol(D)° : identity component
D(D)® : algebra of G-inv. differential operators on D

Remark.

o If D is symmetric, then D(D)® is better:
D(D)® = Clt,,....t] (r:=rankD))
e If D is non-symmetric, then D(D)® is worse [DDZ]:
3 first order T € D(D)®
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Today'’s talk

< . Laplace—Beltrami operator
(w.r.t. a standard Kahler metric of D)

Theorem A. [N, 2001]
Z commutes with the Berezin transforms
<= D is symmetric and
the metric considered is Bergman
(up to const. multiple > 0).

Theorem B. [N, 2003]
The Poisson—Hua kernel is annihilated by .
<= D is symmetric and
the metric considered is Bergman
(up to const. multiple > 0).

Remark. If one takes the Bergman metric from the
beginning in Theorem B, then the theorem is due to
Hua—-Look ('59), Kordnyi ('65) for <
Xu ('79) for =
However, | think very few people traced Xu's proof
(required to understand his own theory of N-Siegel domains, and
to read some of his papers written in Chinese that are not available

in English translation).
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PiatetSki'ShapirO algebraS- normal j-algebras —

JG C Hol,4 (D) : split solvable ~ D
simply transitively

g :=Lie(G) has a str. of Piatetski-Shapiro algebra.
(normal j-algebra)
3J : integrable almost complex structure on g,
J : admissible linear form on g, i.e,
(X|Y)w = ([IX Y], w) defines a J-invariant
(pos. def.) inner product on g.

_/\

\
Example (Koszul '55). Koszul form.

(x,B) :==tr(adJx) —Jadx)) (xe€ g).
This B is admissible

e In fact, (X|y)g is the real part of the Hermitian
inner product on g = T¢(D) defined by the Bergman
metric on D ~ G (up to a positive scalar multiple).
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Structure of g

g=axn a : abelian,
n : sum of a-root spaces (positive roots only)

Always contains a product of ax+b algebra:
dH,,...,H; : a basis of a (r :=rankg) s.t.

Possible forms of roots:
1 : 1 1
st a;) (J<K), ap,...,0r, 304,...,500
ay,...,0 : basis of a* dual to Hy,... H,.

ogak:REk (k=1,...,r).
® g, are mutually orthogonal w.r.t. {-|-), (Vw: adm.)

Eicg” (E,E)=1and =0onaand g4 (a # Q).

r
e Admissible linear forms are a*® {0} & S R_,E;.
K=1

r

Fors=(s,,...,5) €R", we put E{ :== Y SE; €g"
k=1

Ifs;>0,...,5 >0 (we'll write s> 0), then

(X|y)s:=(|IxY|,E) is a J-inv. inner product on g
~~ |left invariant Riemannian metric on G
~ Z& the corresponding L-B operator on G.
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Berezin transforms

K : the Bergman kernel of D

the Berezin kernel
K(2,2,)]?

A)\ (217 ZZ) = (K(ZCU Zl)K(ZZ’ 4

o A is G-invariant: A, (9-7, 9-2,) =A,(2,,2).
Since D ~ G, we work on G:
a,(9) ' =A,(g-e,e) (geG, ecD:fixed ref. pt.)

A
)) (z,€D; A €R)

® 3, C Ll(G) ifA > A (0< Ag < 1: explicitly calculated).

Berezin transform
B, f(X) ::/Gf(y)a)\ (y x)dy= f xa,(x)
B, € B(L%G)) : selfadjoint, positive.
Recall B € g: Koszul form. ||, = E.|,| with ¢ > 0.

Theorem A. A > Ay : fixed.
B, commutes with £
<= D is symmetric and S= yCc with y > 0.
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Poisson—Hua kernel

S(z,,2,) : the Szego kernel of D
(= reprod. kernel of the Hardy space)

e Hardy space

Hilbert space of holomorphic functions F on D s.t.

sup dm(u)/]F(u,t+%Q(u,u)+ix)\2dx<oo
teQ JU \Y

2 : the Shilov boundary of D
Then, Z={(u,w) €U xW;2Rew=Q(u,u)}.

S(z,{) for ze D and { € % still has a meaning.

P(z,() = Sz P (zeD, (€2):

-~ S(z72
the Poisson kernel of D
PE(g) :=P(g-e, {) (geG).

TheoremB. ZAPS=0forV{ €
<= D is symmetric and S= yc with y > 0.
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Geometric backgrounds

Geometric reason that Theorems A and B are true ?

— Connection with a geometry of bounded models of
homogeneous Siegel domains —

geometry «~» geometric norm equality

e Validity of norm equality
<= Symmetry of the domain

Specialists' folklore

There is no (most) canonical bounded model for
non-(quasi)symmetric Siegel domains.

My standpoint

Appropriate bounded model varies with
problems one treats.
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® Canonical bounded model for symmetric Siegel domains
------ Harish-Chandra model

of non-cpt Hermitian symmetric spaces
< Open unit ball of a positive Hermitian JTS )

w.r.t the spectral norm

® Canonical bounded model for quasisymmetric Siegel domains
------ by Dorfmeister (1980)
Image of Siegel domain under the Cayley transform
naturally defined in terms of Jordan algebra structure

(but non-convex unless symmetric. By C. Kai, in preparation)

e For general homogeneous Siegel domains
We can consider

e Cayley transf. assoc. to the Szego kernel

e Cayley transf. assoc. to the Bergman kernel

e Cayley transf. assoc. to the char. ftn of the cone
etc. ..

More generally, we can define Cayley transforms
associated to the admissible linear forms EZ (s> 0).
[N, 2003]
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Compound power functions (After Gindikin)
dJH C G : s.t. H ~ Q simply transitively

E € Q (canonically fixed base point)
Then H ~ Q (diffeo) by h+— hE.

e Note G=NxA H=N;xA with A:=expa

r
For s=(s;,...,S) €R", put as:= J_lejorj €a’
(ay,...,Qr: basis of a* dual to Hy,...,H;).

X<s(eXpX) :=exp(X, ds) (X E a) :
1-dim. representation of A, hence of H.

~ function on Q by A¢(hE) := x.(h) (heH)

Example : If Q = Sym™™(r,R), then
Do) = By (X)1 B (X)% 5 A (X)%
A(X),...,0(X) : principal minors of X

s extends to a holomorphic function on Q + IV
as the Laplace transform of the Riesz distribution
on the dual cone Q* (Gindikin, Ishi (2000)), where

Q :={&cV*; (x,&)>0VvxecQ\{0}}.
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Pseudoinverse map associated &
For each x € Q, define Z4(X) € V* by
(V, Z5(X)) := —DylogA_¢(x) (veV).
(Dvf(x) := SF(x+tv)|_,)
o J5(AX)=A"17(x) (A >0)

Proposition. Suppose EZ is admissible.

(1) Zs(X) € Q" and F5: Q — Q* is bijective.

(2) .#s extends analytically to a rational map
W — W+,

(3) One also has an explicit formula for
F:1:Q* — Q, which continues analytically

to a rational map W* — W.
Thus % is birational.

(4) I5: Q+IV — F5(Q+1V) is biholomorphic.

Remark. Bergman kernel and Szego kernel are of the
form (up to positive const.)

N(2,2,) = D_g(Wy +W; — Q(uy, Up)) (7 = (uj,w))),
and the characteristic function of Q is A_¢ for some
s> 0 (up to positive const.).

o J(Q+NV)=Q +iV*
&= S, =---=5 and Q is selfdual.
[Kai-N, preprint, 2003]
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Cayley transform
One has E! = 74(E) € Q*. (1_WLH:H)
Cs(W) :=E —2.7((wWw+E) for tube domains

s(u,w) :=2(Q(u,-), S(W+E)) dCs(w)
cU’ c W
UT : the space of antilinear forms on U

Proposition.
(1) 6s:D — %5(D) is birat. and biholomorphic.
(2) €5 can be written explicitly.

Theorem. [N, 2003] %s(D) is bounded
(in UTpW*).

Remark. For general s> 0, 65(D) for symmetric D is
not the standard Harish-Chandra model of a
non-compact Hermitian symmetric space

(can be even non-convex, for example).

o C(Q+1V) is convex
&= S, =---=5 and Q is selfdual.
[Kai-N, in writing]
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Norm equality |

(X|Y)s : J-invariant inner product on g
~+ Upon G=D by g g-e, we have
Hermitian inner prod. on To(D) =U ®&W

~» Hermitian inner product (-|-)s and norm || -||s on
the “dual’ vector space UT@W*.

Take Ws € g so that trad(x) = (x| Ws)s (VX € g).
Then we know W5 € a.

Recall that 3|, = E;|, for some ¢ > 0, so that
A_ (W, +wW5—Q(uy,U,)) is the Bergman kernel of D
(up to positive const.).

Proposition. For any g€ G
o%sa,\ (g) = A a,\ (g) (_A Hcgc(g ) e) H§+<LP87 aC>) .

Observations. (1) a,(g) =a,(g*) for Vg€ G.
(2) B, commutes with Zs
— Za,(9)=%a,(g ") for Vg e G.

Therefore:
B, commutes with -Zs

> [|€(g-e)lls=l1Ec(g¢)lls (Vg€ G).
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Theorem. [N, 2001]
1%c(9-¢)[ls = [|6c(g7" ) |s for Vg € G
<= D is symmetric and S= yc with y > 0.

Since %c(e) = 0, this can be rephrased as:

Theorem.
|h-0lls=||h~t-0||s for Yhe €.oGo €t +—
9 = %6¢:(D) is symmetric and S= yc with y > 0.

If D is symmetric, & is essentially the Harish-Chandra
model of a non-cpt Hermitian symmetric space.
G:=Hol(Z)° : semisimple Lie group

K := Staly(0) : maximal cpt subgroup of G.

Using G = KAK with A 1= %,0A0%_.*, one can prove
easily that ||h-0||c = ||h™%-0]|¢ for any h e G.
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The case of unitdisk DcC

_ _Jq_ (2 B 2_1p2 —
c—sun1)={o=(j o) ilap-ipr-1
with goz:EZ+E ze D).

Bz+a

)

g-0-2
@ = lg0=lg0

-1 L
g Q= ——
\ a

However, if one stays within the lwasawa solvable
subgroup, we have an interesting picture.

( t ot
COShé smhé
A:=<a .= " {
sinh= cosh-
\ 2 2
( i i
1—— _
N:= < e \= i2 2 i
S 1+ —
\ 25 + ZE

Then 6.0Go %, = NA.

\

‘teR

aV a

/

SN

\

VY a
.

/



r:=a-0=tanht/2)
P: néat-O:nE-r eN-r:
horocycle emanating from 1 € 0D cutting R at .

Q: (na)*-0=n_a;-0=n__ (=r)eN-(-r):
horocycle emanating from 1 € 0D cutting R at —r.

21
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Norm equality |

Take b > 0 so that A_, (w; +wW; — Q(Uy,U,)) is the
Szego kernel of D (up to positive const.).

Proposition.

ZSPZG(G) — (—H%b(Z)HgﬂL <L|J37 ab>)PzG(e)'

Remark. By P(g-z, {) =X _,(9)P(z. g *-{) (g€ G),
LPP =0V el < ZLP(e)=0VcX

Therefore:

LPP=0V{eZ = [|5,(s=(¥sap) V(€.

Theorem. [N, 2003]

165(0)]I§ = (Ws, ay,) for V{ € Z
<= D is symmetric and s= yb with y > 0.
In this case we also have S= y'c with y > 0.

Recall ¢ > O is taken so that (3|, = E;|,, where 3 is
the Koszul form.
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Validity of NE for symmetric D (s= c)
D : symmetric = ¥ := %¢(D) is the Harish-Chandra
model of a Hermitian symmetric space
In particular, 7 is circular (Note ¢¢(e) = 0).
G:=Hol(2)° : semisimple Lie gr. (with trivial center)
K:= Staly:(0) : maximal cpt subgr. of G
Circularity of Z (= Kiis linear)

+ K-invariance of the Bergman metric
—> K C Unitary group

{CKC:ZBOHE(T,

Shilov boundary 2, of 7 = K- (—E{).

Since 2, is also a G-orbit Z,, = G- (—E) and since
2 is an orbit of a nilpotent subgroup of G C Hol(D)°,
we get

C(2) CcG-(-E) =2,
~K-(-E)
1z ll2le = [1Ecllc}-
We see easily that ||EZ[|2 = (W, a,) in this case
(because b is a multiple of c).
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Norm equality — symmetry of D

(i) [1€c(g-e)lls= [|€c(g7" ¢)||s for Vg € G,
or

(i) [1%(Q)II2 = (Ws, ty) for ¥ € =

What we do is substitute specific g € G in (i) (resp.
¢ € 2 in (ii)) and extract informations.

(1) Reduction to a quasisymmetric domain

K : the Bergman kernel of D
Recall that k(z,,2,) = A_ (W, +wW5 — Q(uy,U,))
(up to positive const.).

If X,y €V, define (X|y)x := DyDylogA_.(E).

Definition. D =D(Q,Q) is quasisymmetric

<= Qs selfdual w.rt. (-] ).
def

Define a non-associative product Xy in V by

(xy|z)x = —3DxDyD;logA_((E).
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Prop. (Dorfmeister-D’Atri-Dotti-Vinberg)

D is quasisymmetric <= product XY is Jordan.

In this case, V is a Euclidean Jordan algebra.

My tool is the following

Proposition. (D'Atri-Dotti) D : irreducible.
D is quasisymmetric
(1) dimg(ak+aj)
(2) dimgark/2 is indep. of k.

/2 is indep. of |,K,

Extend (-|-)x to a C-bilinear form on W x W.

(Ug [Up)k := (Q(Uy, Up) [ E )«
defines a Hermitian inner product on U.

For each w e W, define ¢(w) € End.(U) by
(@ (W)uy [Uy)x = (Q(Uy, Up) [W).
Clearly ¢ (E) = identity operator on U.
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Proposition. (Dorfmeister). D is quasisymm.
—> W ¢ (W) is a Jordan *-repre. of W =V,
{ o (W) = o(w)",
O (WyWy) = (P (W)@ (W) + ¢ (Wo)p (wy)).

(2) Reduction : quasisymmetric =—> symmetric

Quasisymmetric Siegel domain

Euclidean Jordan algebra V and
<—
Jordan *-representation ¢ of W = V..

Symmetric Siegel domain
— Positive Hermitian JTS

The following strange formula fills the gap:

¢ (W) (Q(u,u))u=¢(Q(¢(W)u,u))u,

where u,U €U and we W.



natural action

Z =Wao U -
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complex semisimple
Jordan algebra

with V Euclidean JA

<= V and ¢ come from a positive Hermitian

JTS this way.

Proposition. (Satake) Quasisymm. D is symm.

Definition of triple product: z; = (uj,Wj) (j=1,2,3),
{2,,2,,23} := (u,w), where
U= 36 (Wa) @ (Wa)uy + 50 (W)@ (W3)uy
+ 36 (Q(Uy, Uy))ug+ 36 (Q(Ug, Uy) Uy,
W i= (W) Wo) W + Wy (WoW3) — Wa(W; Ws)
+3Q(uy, @ (W3)Uy) + 3Q(Ug, @ (W1)Uy).
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Proposition. (Dorfmeister)

Irreducible quasisymmetric D is symmetric

<= df,,..., f;: Jordan frame of V s.t.
with U, := ¢ (f, )U we have

$(Q(Uy,Up))u; =0
for Vu, € U; and Vu, € U,.
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