Takeshi KAWAZOE

Hardy space for Jacobi analysis and its applications

Abstract. Let (\mathbb{R}_+, Δ) denote a space equipped with the measure $\Delta(x)dx$, where

 $\Delta(x) = (2\mathrm{sh}x)^{2\alpha+1}(2\mathrm{ch}x)^{2\beta+1},$

 $x \in \mathbb{R}^+$, $\alpha \ge \beta \ge -1/2$, and a suitable convolution associated with Jacobi function $\phi_{\lambda}(x)$. Since $\Delta(x)$ has an exponential growth order, (\mathbb{R}_+, Δ) is not of homogeneous type. A real Hardy space $H^1(\Delta)$ on (\mathbb{R}_+, Δ) is induced by using radial maximal operator as a usual manner. Then, $H^1(\Delta)$ is related with the classical weighted H^1 Hardy spaces on \mathbb{R} , especially, it can be characterized in terms of weighted Tribel-Lizorkin spaces on \mathbb{R} . Hence, we can obtain an atomic decomposition of $H^1(\Delta)$ and the interpolation space between $H^1(\Delta)$ and $L^1(\Delta)$ that coincides with $L^p(\Delta)$. As an application, we shall consider Fourier multiplier for Jacobi transform $\widehat{f}(\lambda) = \int_0^\infty f(x)\phi_{\lambda}(x)\Delta(x)dx$.